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An appraisal of compiler technology 

by ROBERT M. McCLURE 

Consultant 

INTRODUCTION 

Although the last decade has seen the implementation 
of a very large number of compilers for every conceiv­
able language, the literature on compiler writing is still 
unorganized. There are many papers on formal lan­
guages, syntactic analysis, graph theoretic register as­
signment, and similar topics to be sure. But, they are 
not very useful in helping the newcomer to the field 
decide how to design a compiler. Even the recent books 
in the field are more encyclopedic in nature than instruc­
tive. The best single book available is Gries,! which has 
a good bibliography for further study. 

The few open descriptions of compilers that do exist 
rarely are candid about the mistakes that were made. 
This is, after all, human nature. lVloreover the nature of 
scientific publishing is not conducive to papers of an 
evaluative or subjective nature. The principal reason, 
therefore, for writing this paper, is not to add to the basic 
body of scientific knowledge, but rather to provide a 
few value judgments on how compilers are being writ­
ten and should be written. Since subjective statements 
should always be prefaced with "It is my opinion that", 
the indulgent reader will understand that this phrase 
should be applied to the entire paper. 

There is an enormous amount of material to be stud­
ied in connection with compiler design. lVlost of it is 
very difficult to read. vVe refer to the listings of the com­
pilers themselves and associated internal documenta­
tion. At present there is no alternative to obtaining a 
comprehensive knowledge of the field. Even if one is 
willing to put forward the effort, however, much of the 
material is difficult to obtain. The desire of computer 
manufacturers and software houses to protect their lat­
est ideas interferes with a free flow of information. The 
result of this is the growth of an oral tradition for pass­
ing information much like the wandering troubadours of 
yore. Until this changes, there will be hardships worked 
on those who would like to learn the trade. 

In order to reduce this paper to manageable size and 
to make generalizations more useful, let it be under-

1 

stood that we are mainly talking about so-called "pro­
duction" compilers. By this we mean compilers for im­
portant languages that are intended for translating pro­
grams that are expected to be run extensively. l\Iore­
over, we restrict our consideration to compilers for 
medium and large scale general purpose computers. The 
subject of compilers for minicomputers and special 
purpose computers is deserving of considerable study on 
its own. Also research compilers, "quick and dirty" 
compilers, and pedagogic compilers will not be con­
sidered in this commentary. Finally, it is inevitable that 
someone's favorite technique will be given a short straw. 
For this we plead for tolerance. 

SYNTACTIC ANALYSIS 

In the area of syntactic analysis or parsing, the neces­
sary solutions are clearly at hand. Parsers are now rou­
tinely constructed by graduate students as class proj­
ects. The literature on the subject is extensive, and new 
techniques are revealed regularly. Almost all compilers 
are written using only two of the many available meth­
ods however: recursive descent or precedence. Rarely 
are either used in pure form. Compilers that use both 
methods intermixed are common. Although both of 
these methods have their roots in the very earliest com­
pilers, they remain the mainstays of the business. 

Recursive descent 

The basic idea in recursive descent is that there is a 
one-to-one correspondence between the syntactic units 
in the formal description .of the language and routines 
for their recognition. Each routine examines the input 
text by either scanning for specified terminal tokens 
(usually produced by a separate lexical analyzer) or by 
calling other routines to recognize non-terminal syn­
tactic units. Figure 1 is a flowchart of one such simple 
recognizer. Because most practical languages are de­
fined recursively, the recognizers must themselves be 
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Figure I-Recognition routine 

recursive. Upon exit from each procedure, either the 
required syntactic unit has been recognized· and the 
appropriate actions taken, or an error message has been 
produced. 

Recursive descent analyzers are usually written so 
that it is never necessary to "back up" the input stream. 
If an impasse is reached, an error indication is given, 
perhaps a correction attempted, and the scan resumed 
at some readily recognizable token, such as ";". The 
knowledge of the context at the time an error is dis­
covered allows more meaningful diagnostics to be gen­
erated than with any other technique. 

The use of recursive descent usually requires the re­
arrangement of the formal syntax, since left recursions 
must be removed. Although this is not difficult, it does 
somewhat spoil the clarity of the approach. For peculiar 
grammars, it is easier to use recursive descent than to 
transform the grammar into a form suitable for prece­
dence analysis. Although the methodology is basically 
ad hoc, recursive descent is the most widely used 
method of syntactic analysis. 

Recursive descent has one further advantage for a 
language with a large number of productions. Prece­
dence methods seem to require table sizes proportional 
to the square of the number of syntactic units, whereas 
recursive descent recognizers are roughly proportional 
to the grammar size. 

Precedence analysis 

The idea that operators have varying degrees of 
"precedence" or "binding-power" is quite old, and has 
been used in some of the earliest compilers. The formali­
zation of precedence relations between operators ac­
tually started with Floyd2 in 1963. Now it is more 
customary to define precedence relations between all 
syntactic units. While very few producti0Ii compilers 
have used a formal precedence parser yet, the modern 
implementation of these techniques such as described 
by lVlcKeeman,3 is clearly destined for wider use. 

The fundamental attraction of precedence methods 
lies in the automatic construction of analyzers from the 
formal grammar for the language to be analyzed. Parsers 

built in this way can be quickly changed to reflect 
language changes simply by changing the tables without 
modifying the underlying interpretation algorithm. 
Furthermore, if the tables are constructed by formal 
methods, the language accepted is exactly that speci­
fied and no other. This considerably simplifies the con­
struction of bug-free parsers. 

There are some drawbacks to parsers built wholly 
around precedence methods. For example, many 
languages in everyday use, such as COBOL and FOR­
TRAN can simply not be made into precedence lan­
guages. Even PL/I can only be fit into the correct mold 
with considerable difficulty. 1Vloreover, the tables re­
quired can be quite large. 

A major problem with precedence parsing methods is 
the problem of recovery from source program errors and 
the issuance of good diagnostics for such errors. Several 
approaches to solving this problem have been tried with 
only modest success. Various techniques for reducing 
the size of the tables required, such as the introduction 
of precedence functions, serve only to complicate this 
problem. 

Nevertheless, there are several conditions that sug­
gest strongly that a precedence parser of some variety 
should be tried. If, for example, a parser must be pro­
duced in the shortest possible time. Precedence parsers 
tend to be easy to debug. A further advantage is gained 
if the language is being designed at the same time as the 
compiler, since the language can be made into a prece­
dence language. Finally, a precedence parser is often a 
most suitable alternative when recursive procedure calls 
required for recursive descent parsing are either im­
possible (as in FORTRAN) or expensive (as in PL/I). 

Mixed strategies 

A number of compilers use the technique of recursive 
descent for analysis of the larger syntactic units such as 
statements, and turn to precedence methods for parsing 
expressions. In this case, simple operator precedence 
analysis is customarily used. There is no conceptual or 
practical difficulty in accomplishing this since the ex­
pression recognizer requires relatively small tables which 
may easily be hand constructed. The number of calls on 
procedures is minimized (normally a high overhead 
item) and perhaps the best of both worlds is achieved. 

The idea of mixing parsing techniques can be gen­
eralized. It appears (with no theoretical foundation as 
yet) that a good partition is achieved when the sub­
grammar to be parsed with a precedence parser results 
in a relatively dense precedence matrix, and the sub­
grammar to be parsed with a recursive descent parser 
would result in a relatively sparse (for legitimate sym­
bol pairs) precedence matrix. 



INTERNAL REPRESENTATION 

Generation of code occurs simultaneously with syn­
tactic analysis only in very small compilers and quick 
and dirty compilers. In most compilers the results of 
syntactic analysis are stored for later code generation. 
A number of ways have been described for the internal 
representation of the results of parsing, two of which 
have attained really wide usage: tree structures (most 
usually a form known as triples) and late operator 
Polish notation. Figure 2 illustrates several forms of the 
representation of a simple expression. Form (a) is a 
binary tree, called triples when recorded in the tabular 
form shown, since each line consists of an operator and 
two operands. The result of each operator is known im­
plicitly by the line number of the triple. Form (b) is a 
tree form with variable sized nodes. Form (c) is the Pol­
ish form and is actually the string that results from tra­
versing the terminal nodes of a parse tree in a prescribed 
order. 

The simpler compilers prefer the Polish representa­
tion since subsequent processing usually amounts to 
simply a linear reading of the text. Fortunately the 
order in which action is to be taken by the code genera-

A + B + C * D 

1 * C D 
2 + B (1) 

3 + A (2) 

BINARY TREE 

1 C 

2 D 

3 A 

(B) 
4 B 

5 *2 (1) 

6 +3 (3) 

FULL TREE 

(c) 

POll SH STR I NG 

Figure 2-Internal representations 
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tor is very nearly that of tokens in the Polish string any­
way. Since this is also the order of generating the Polish 
string, the only advantage gained from deferred genera­
tion is that obtained by a full reading of all of the text, 
including declarations, implicit as well as explicit. Al­
though optimization can be implemented on internal 
representations in Polish form, tree forms are much 
easier to work with. 

A further advantage of Polish strings is that they may 
be easily written on and read from sequential data files, 
are conceptually simple, and require a minimum of ad­
ditional space for linkage information. If memory space 
is at a premium or the simplest representation is pre­
ferred, Polish strings are recommended. 

Complete representation of the source program in 
tree form is now growing in popularity, and has ap­
peared in quite a number of the more recent compilers. 
It is especially prevalent in compilers for major lan­
guages for the larger machine in which optimization is 
important. The ease with which the program can be 
searched and/or rearranged is the primary motivation 
for this selection. For building a generation system based 
upon formal semantics, an internal tree representation 
is a good choice. Not only does it appear that code gen­
eration can be formalized but also that optimization 
strategies can be formalized utilizing the idea of trans­
formation sets defined over trees. 

SYlVIBOL TABLES AND DICTIONARIES 

Considerable effort has gone into devising symbol 
table routines that have all of the desirable properties 
of compactness of storage required, speed of access, and 
simplicity of construction. The result is that almost all' 
compilers use some variant of the hash link method. 
In this method, the symbol to be looked up is first 
hashed into a reasonably small range such as 31 to 512. 
This hash index is then used to access the head of a list 
of symbols with the same hash value. This is shown 
schematically in Figure 3., This hash chain is frequently 
ordered, say alphabetically, to reduce further the look­
up time. 

The dictionary information associated with each sym­
bol may either be included directly with the external 
representation or be contained in a separate table. Since 
in a multiple pass compiler, the external representation 
is not required after the lexical analysis is complete, 
the separation of symbol table and dictionary has be­
come customary. 

It is becoming increasingly important to make pro­
vision for symbol tables and dictionaries to grow be­
yond the bounds of the available main memory. This 
presents no unusual problems for hardware systems that 
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tive size of these tables could only be statistically deter-
o mined, unnecessary limitation in the size of programs 

N-l 
HASH 
TABLE 

(CHAIN HEADS) 

~ 
~l 

\ "----1 B EE tc 
SYMBOLS WITH'IDENTICA'-.-~ 
HASH VALUES ~ 

Figure 3-Hash chain symbol table 

support virtual memory, but does require careful at­
tention if it must be strictly software supported. The 
simplest and usual method is to divide the space re­
quired into pages and to address this space through an 
availability table. This method is used in the IBM 
PL/I compiler (F-Level) to allow the compilation of 
very large programs on a relatively small machine. In 
designing symbol table methods for use with software 
virtual memory, a premium is placed on minimizing the 
number of references to different blocks. 

Compilers for block structured languages with im­
mediate code generation usually allocate new dictionary 
entries in stack fashion. That is, new entries are placed 
in first position on the correct hash chain. Searching the 
hash chain then automatically gives the correct instance 
of the symbol searched for. At block closure, all the 
chains are pruned until an enclosing block number is 
found. The table is then shortened to the level that 
existed at block entry. In this way, symbol table entries 
that are no longer needed by the compilation are 
constantly discarded. Although PL/I is block struc­
tured, this very simple approach is not available with­
out refinement. In PL/I, declarations may at any point 
be made in enclosing blocks. For examples, lables on 
entry statements belong to the immediately enclosing 
block, implicitly declared variables belong to the outer­
most block, and variables declared with the EXTER­
N AL attribute are scopeless. 

TABLE MANAGEMENT 

Early compilers had fixed size tables for storing in­
formation needed during compilation. Since the rela-

that could be compiled frequently occurred. During the 
1960's however, dynamic allocation of storage came 
into· widespread use. Although many techniques have 
been invented, only two have proven extremely popu­
lar: movable, contiguous tables, and block allocation. 

Movable tables 

The conceptual simplicity of having tables in con­
secutive memory locations is a major reason for adopt­
ing the idea of "floating" tables. The additional burden 
of referencing all entries indirectly through a current 
table base pointer is a small price to pay for this sim­
plicity. First used in compilers by Digitek in a series of 
minicomputer compilers and by IBM in a COBOL com­
piler for the IBlVl 7090 in the early 1960's, the basic 
ideas have been widely adopted. Modern computer 
architecture that makes both base addressing and in­
dexing simultaneously available makes implementation 
extremely simple. 

Every table is allowed to grow (or shrink) indepen­
dently. Before any table expands, a check is made to see 
if there is available space. If not, space is made available 
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Figure 4-Movable table storage allocation 



by actually copying the data items in the tables to be 
moved into another location in memory. Although copy­
ing data in memory to reorganize storage seems inef­
ficient at first, it turns out to be quite satisfactory in 
practice since it occurs rarely. Figure 4 shows how tables 
are rearranged to allow available space for all tables to 
grow. 

The interesting questions about this form of alloca­
tion revolve around deciding how much of the available 
space to allocate to each table. Garwick suggests that 
space be allocated in proportion to how much each table 
has grown since the last allocation. CITRUS (the stor­
age allocation package in the IBlVl COBOL compiler) 
required specification of the desired increment of space. 
Most common is dividing the remaining space propor­
tional to the current size of each table (with some pre­
scribed minimum). All methods will run out of space 
only when there is absolutely no more. This may not be 
desirable, though, since considerable time will be spent 
trying to squeeze in the last item before overflow occurs. 

lVlovable tables seem to work best for relatively small 
memories, for machines in which internal speeds are fast 
relative to 1-0 speeds, or for systems in which all avail­
able memory is allocated to the compiler at the start of 
any compilation. 

List structures are complicated by the necessity to 
use relative links rather than absolute addresses and to 
identify the table pointed to. 

B lock allocation 

Block allocation methods are the second most popular 
storage management technique. In this case, tables are 
not kept in contiguous locations, and information is 
usually linked together. Each routine that may add data 
to a table is responsible for requesting a block of suit­
able size (sometimes a system fixed size) for the purpose 
at hand. Usually space is allocated in multiples of the 
basic element size of the table at hand in order to avoid 
calling the main allocator too often. Since OS/360 imple­
ments this form of allocation as a primitive in the 
operating system, this form of allocation has been quite 
widely used on that machine. 

This technique does have the principal advantage 
that since table segments are not moved after alloca­
tion, absolute pointers may be used in list structures. 
It suffers from the drawback that storage fragmentation 
can occur and may prevent usage of all available flem­
ory. 

Block allocation is suggested whenever memory is a 
resource to be shared with other simultaneous users of 
the machine in a multiprogramming environment. This 
is because it is desirable to minimize the amount of 
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memory required at any given time, and most main 
memory allocation algorithms supported by operating 
systems do not guarantee that additional memory will 
be allocated contiguously with previously allocated 
memory. 

IMPLEl\1:ENTATION TECHNIQUES 

Early compilers were invariably written in assembly 
language; most still are today. It was originally felt 
that only assembly language could yield the efficiency 
that was required in such a widely used program as a 
compiler, and that the required operations were not well 
supported by higher level languages. Although it has 
now been generally recognized that very little of any 
compiler needs to be "tightly coded" to achieve nearly 
the same efficiency, the tradition of assembly coding is 
dying a slow and painful death. 

A second reason usually given for writing a compiler 
in assembly language was to minimize the space that the 
compiler required for its code. Factors of 1.5 to 3 have 
been cited. With the growth of main memory sizes avail­
able, the almost universal availability of random access 
secondary storage, and the common use of dynamic 
loading techniques, the requirement for small code has 
been considerably reduced in importance. 

Advocates of coding in "higher level" languages have 
not always been completely candid in their arguments 
either. It is frequently stated that one of the main mo­
tives for using a higher level language is the gain in read­
ability that occurs. Anyone who has tried to read a 
compiler written in FORTRAN knows that this simply 
is not the case. A much stronger case may be made for 
PL/I or ALGOL. The fluidity of these languages plus 
the natural benefits of block structuring generally re­
sult in code substantially more readable than assembly 
code. 

A major drawback to most higher level languages for 
coding compilers is that the native data types manipu­
lated in these languages are neither those required in 
either lexical scanning, nor those required for table 
management. Both of these are vitally important in 
compiling, and result in the construction of subroutines, 
frequently in assembly code, to support them. The link­
age overhead in using these routines can be substantial. 

By all odds, the most compelling reason for using a 
higher level language is the conciseness with which code 
can be written. The sheer laboriousness of assembly code 
is a major obstacle to its use. One of the best measures of 
the suitability of a language for a particular purpose is 
the number of characters that must be written to achieve 
the desired result. Since error rates in programming are 
almost independent of the language being written, con-
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cise programs will have fewer bugs than verbose pro­
grams. 

Pops 

One approach that has gained a number of particu­
larly ardent adherents is that of writing compilers in an 
interpretive language. This idea seems also to have 
originated in the early 1960's. Although the COBOL 
compiler for the IBJVI 1410 was written in interpreted 
code, the main source of the popularity was the series of 
(mostly FORTRAN) compilers 'vrit~en by Digitek. A 
number of syntax directed compilers of the same vintage 
utilized an internal representation of a similar nature. 
The increased suitability of current computer instruc­
tion sets for compiler writing has caused the technique 
to largely fall from favor for large machine compilers in 
recent years. The technique has much to recommend it 
for some applications, though, and it is worthy of a few 
comments. 

Since there have been no published papers on the 
Digitek POP system, which appears to be the most 
highly developed system, we will include here a some­
what more complete description than for the other ideas 
discussed in this paper. 

The name POP derives from the Programmed OPera­
tors on the SDS 910 for which the first Digitek FOR­
TRAN compiler was written. These were a series of un­
assigned operation codes that caused a trap to a loca­
tion distinct for each such op-code. This enabled the 
user to define the meaning of each of these op-codes by 
a subroutine. Subsequently, for other machines which 
did not have such a feature, a completely interpretive 
system was substituted. 

The POP system consists of a set of operations that 
resemble single address instructions. The single operand 
in each POP is either a single data element (usually an 
integer but perhaps a pointer into a table, etc.), a charac­
ter, a string of characters (this is handled indirectly), a 
table (movable), or a flag. Additional data types are 
defined as needed. Tables are implemented as contigu­
ous, movable tables as previously described. A pointer 
is defined as having a table number part plus an offset 
into a table. Pointers are used for forming linked struc­
tures and for referencing data in tables if other than the 
last item is to be referenced. Tables are normally used 
like stacks. One table is distinguished as the main stack 
and is often used as an implicit second operand. Another 
table is distinguished as the stack used to save return 
addresses in procedure calls. Recursion is therefore quite 
natural. 

To illustrate how this system is used, we will define 
several of the more common POP's. The first POP is 

LDS (Load Stack), and is written as: 

LDS 
LDS 

A 
B 

This sequence of two POP's is interpreted as follows: 
~irst the data item A, a single work item, perhaps an 
mteger, is placed on the main stack, extending it by one 
word in the process. Then the item B is added to the 
stack, extending it once again. At the conclusion the 
stack appears as in Figure 5. The end of stack it~m is 
referred to as item 0 and the next item (A) is referred to 
as item 1. 

The POP STS (Store Stack) is simply the converse. 
For instance: 

STS A 
STS B 

stores the end item of the stack in cell A, and shortens 
the stack. The second POP stores the new end item in 
cell B and shortens it once again. The net effect of the 
four POP's we executed is to exchange cells A and B. 

Similarly, the stack may be loaded with the end item 
on any table by MOF (Move Off) which has as an 
operand a table number. The effect of this is to lengthen 
the stack and to shorten the table specified as the 
operand of the instruction by moving one word of data. 
This operation is usually defined to set a global flag to 
FALSE rather than to move an item if the table speci­
fied is empty. The companion operation is lVI0N (Move 
On). Hence to move the contents of one table into 
another, the four instruction loop suffices: 

LA 

END OF STACK 

MOF 
BRT 
lVION 
BRU 

TAB LEI 
ALLDONE 
TABLE2 
LA 

A 

B 

Figure 5-Picture of end of stack 
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The two new instructions above are BRT (Branch True) 
and BRU (Branch Unconditional). 

Character scanning is done with primitives of the 
form 

CRS character 
The POP CRS (Character Scan) has as its operand the 
internal representation of a character. If the specified 
character is the next in the character input stream, the 
input scanning pointer is advanced and a global flag set 
to TRUE. Otherwise the global flag is set to FALSE. 
Similarly a complete string may be matched with SCN 
(String Scan), as in 

SCN "BEGIN" 

Subroutine calling is done with BRS (Branch and 
Save) which stores the return address in a stack. The 
natural implementation of recursion leads most POP 
written compilers to be of the recursive descent variety. 
For instance the sequence of code required to recognize 
the syntax SU1VI :: = TERl\1 {+ TERl\/I } * is as simple 
as 

SUM BRS 
CRS 
BRT 
RET 

TERM 

"+" 
SUM 

The POP system is fleshed out with instructions for 
packing and unpacking data words, creating instruc­
tions, setting and testing flags, and so on almost ad 
infinitum. In theory, a POP compiler can be moved 
from one machine to another simply by writing a new 
interpreter for the next machine. In practice, this is not 
feasible because the bulk of the work in writing a com­
piler is in designing the code generation strategy, which 
must be rethought for any new machine in any event. 

POP compilers are considerably more compact in 
code than machine coded compilers, especially where 
there is an addressability problem (such as in a mini­
computer). Fortunately this is the place that compact­
ness is needed most. POP written compilers are, how­
ever, slower than machine coded compilers not only be­
cause of the interpretive overhead, but also because of 
the redundant work done in moving data through the 
stack. This problem is masked in minicomputers since 
their computing power is very high relative to input 
output speeds of paper tape and teletypes. 

The synopsis is that POPs are a fairly good way to 
write very small compilers for minicomputers and a 
poor way to write compilers for large machines. 

Translator writing systems 

As an implementation technique, the use of one of 
the many extant Translator Writing Systems deserves 
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at least some mention. The idea of using a TWS is very 
appealing, but in practice the use of TWS has not proven 
much of a boon. The reason is quite simple. To date, 
TWS has done a good job of lexical scan, parsing, and 
the dictionary parts of a compiler, but has made few 
inroads into the most difficult parts, namely code gen­
eration and optimization. Even if the facilities provided 
by a TWS are valuable, the penalty of forcing a user 
into a prescribed mold has been too stiff for most pro­
duction compiler writers to bear. 

CODE GENERATION 

Code generation has traditionally been one of the 
most ad hoc (and bug-ridden) parts of any compiler. 
There is some evidence, though, that this is changing 
rather rapidly. Formally, the generation of code is the 
attaching of semantics to specific syntactic structures. 
In the case of immediate generation, of course, op­
portunities for substantially altering the source order 
are minimal and conversion of the parse back into se­
quences of instructions proceeds strictly on a local basis. 
The actual generation of code is accomplished either by 
open sequences of code that construct the required in­
structions or by the equivalent of macro sequences 
selected by combination of the operator and the as­
sociated operand types. In the latter case, the macros 
are usually described in a format similar to the assembly 
language of the target machine. Conditional features 
similar to conditional features in macro assemblers are 
used to improve on the quality of code generated. Pro­
vision is normally made to test the state of the target 
machine as well as supplementary information about 
the operands. The macros also update the state of the 
target machine. 

In multipass compilers, there is now a move to sys­
tematize code generation by formal tree transforma­
tions so that all data conversions, register loadings, and 
the like, are explicitly recognized in the tree structure. 
Most of the current work in formal semantics is along 
this line. Information may be collected during tree 
traversals which aids considerably in the production of 
high quality code. 

Whether the code is produced by conventional or 
table driven techniques is far less important that the 
organization of the generation as a sequence of trans­
formations rather than as a complex series of decisions 
based upon global data left as side effects of prior gen­
eration. 

OPTIMIZATION 

One of the most important differences between pro­
duction compilers and experimental compilers is that 
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most production compilers try much harder to generate 
high quality code even at the expense of considerably 
slower compiling. This tradition dates from the very 
first FORTRAN compiler. At that time, it was felt 
necessary to compete with hand generated code in 
quality in order to gain acceptance. Since that time 
much effort has gone into finding ways to improve the 
quality of code generated by compilers. Unfortunately, 
the matter is too tightly bound up with the specifics of 
the language at hand. FORTRAN, for example, is rela­
tively easy to optimize. PL/I, on the other hand, is 
almost impossible due to the significance of side-effects 
in the language. If, of course, optimization information 
is supplied by the programmer (which is rarely done), 
the problem becomes more nearly like that of FOR­
TRAN. 

After carefully sifting through all of the forms of 
optimization that have been used however, there are 
only two areas Qf optimization that have sufficient pay­
off to warrant consideration, unless super-optimization 
is being attempted. That is, there are only two issues in 
addition to strictly local improvements in generated 
sequences. These two areas are register assignment and 
address calculation. 

Optimal register assignment 

Also dating back to the earliest compilers is the prob­
lem of optimal assignment of the registers available in 
the machine. If a computer has only one register of a 
given class, or a very large number, the problem is 
minimal or does not exist. However, for common 
machines with 3 to 16 registers in a register class, the 
advantage to finding the correct data items to maintain 
in registers can be substantial. This is particularly true 
of values used for array accessing. Although there have 
been numerous papers on this subject, the general prob­
lem is still unsolved. Even the most satisfactory ap­
proaches require an excessive amount of computation 
to find an optimal solution. 

The consequence of this dilemma, is that most com­
pilers that do not do flow analysis usually simplify the 
problem by merely keeping a simple record of register 
contents. Loads and stores are then done on a strictly 
local basis. This works quite satisfactorily for all except 
the most demanding requirements. 

A ddress calculation 

One of the most important forms of non-trivial opti­
mization and one that requires at least a modicum of 
flow analysis is the calculation of subscripts within a 

loop by repeated addition of some precalculated value 
to an address rather than a full recalculation of the ad­
dress. This is best shown by the simple loop: 

DO K = 2T099; 

A(I, J, K) = A(I, J, K +1) + A(I,J, K - 1); 

END; 

The address calculations required can be drastically re­
duced with only two observations. First, all three array 
addresses are related to each other with only a constant 
difference. Second, consecutive executions of the loop 
body require only that the address be adjusted by a 
constant amount. The first of these simplifications is 
called common subexpression elimination. The second 
is called recursive address calculation. (It has nothing 
to do with recursion in the programming sense. Here it 
is really an iteration.) 

Gear4 reports on a reasonably straightforward way of 
accomplishing this by consecutive passes over the parsed 
program in alternating directions. Although his tech­
nique is applicable without alteration only to explicit 
loops in the program with no local branching to disturb 
the movement of code, with more extensive flow analysis 
this can be generally accomplished. 

Although common subexpressions other than sub­
script expressions can be located and moved, the bene­
fits are not impressive and there are perils. The necessity 
of avoidance of altering the side effects of the evaluation 
is often underestimated. For this reason, more general 
common sub expression detection is not often done. 

Since programs that do considerable accessing of 
multidimensional arrays spend a large part of the time 
in address calculation, locating common index expres­
sions and calculating addresses recursively in loops is 
recommended as one of the first targets in any compiler 
intended to produce very high quality code. 

SUMMARY 

This has been intended as a brief overview of the way 
in which production compilers are written at the present 
time as seen by one of the practitioners of the art. The 
word art is used here as little has been accomplished in 
applying engineering techniques to compiler writing 
outside of the areas of lexical and syntactic analysis. 
The parts associated with declaration processing and 
code generation and optimization are still very ad hoc. 
The need for researchers to find better descriptive de­
vices for generation strategies and the miscellaneous 
problems surrounding the creation of real object pro­
grams is still great. The need for compiler writers to 



apply the best that is already known is perhaps even 
greater. 
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A laboratory for the study of 
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INTRODUCTION 

We are concerned in this paper with facilities, tools, and 
techniques for automating programming and thus we 
had best commence with discussing what we mean by 
programming. Given a precise specification of some task 
to be accomplished or some abstract object to be con­
structed, programming is the activity of producing an 
algorithm or procedure-a program-capable of per­
forming the task or constructing a representation of the 
object on some computing system. The initial specifica­
tions and the resulting program are both couched in 
some (programming) language-perhaps the same 
language. The process typically involves such activities 
as: choosing efficient representations for data and al­
gorithms, taking advantage of known or deduced con­
straints on data and algorithms to permit more efficient 
computations, verifying (proving) that the task will be 
accomplished or that the object constructed is, in fact, 
the one desired, demonstrating that certain performance 
criteria are met, and so on. 

The kind of facility currently available which might 
be characterized as contributing to automating pro­
gramming is usually called a compiler. It typically trans­
lates an algorithm from some higher level (program­
ming) language to a lower level ("machine") language, 
attempting to utilize memory and instruction resources 
effectively and, perhaps, reorganizing the computational 
steps, as implied by the higher level language repre­
sentation, to move invariant computations out of loops, 
check most likely (or cheapest) arms of conditions first, 
and so on. 

Weare not here concerned with traditional compilers; 
indeed, we will assume the existence of a good compiler. 

* This work was supported in part by the Advanced Research 
Projects Agency under contract F-19628-68-C-0379 and by the 
U.S. Air Force Electronics Systems Division under contract 
F19628-71-6-0173. 
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Weare concerned with facilities at a "higher level": 
translating specifications which contain much less com­
mitment to particular data and algorithmic representa­
tions than is usual with higher level programming lan­
guages, and performing rather more drastic reorganiza­
tion of representation, implied computational steps, and 
even implied method of computation than is done with 
traditional compilers. We imagine our end product to 
be programs in a higher level language. On the other 
hand, we must note that the line between the kind of 
facility we will describe and a good compiler is very fine 
indeed and we will suggest that certain kinds of trans­
formations sometimes made by conventional compilers 
might better be approached with the tools and tech­
niques described here. 

The purpose of this paper is to describe a facility 
which we characterize as a laboratory for the study of 
automating programming. We view the laboratory as a 
pilot model of a facility for practical production pro­
gramming. The time and expense invested in program­
ming today and the lack of confidence that most pro­
grams today actually do what they are intended to do 
in all cases is surely dramatic evidence of the value of 
such a facility. The need is particularly acute when the 
task to be accomplished is complex and the resulting 
program is necessarily large. Such situations are pre­
cisely those encountered in many research areas of com­
puter science as well as in many production systems soft­
ware projects. Dealing with this kind of complexity, 
which is to say producing efficient verifiably correct 
program systems satisfying complex requirements is a 
significant, decidedly non-trivial problem. 

The second section of this paper contains a critical 
discussion of a wide variety of work and research areas 
which are related; the third section is devoted to a 
broad general description of the laboratory; the fourth 
section then briefly describes the ECL programming 
system, the intended host for the laboratory; the fifth 
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section discusses, in general terms, a variety of program 
au tomation techniques to be employed; the sixth section 
describes the basic components of the initial laboratory ; 
and the seventh section summarizes what we hope to 
accomplish with the laboratory and mentions several 
open problems. 

RELATED WORK 

There is a considerable body of work and a number of 
current research areas which are related to program­
ming automation. lVlost of this work does not, at present, 
provide anything like a complete system; much of it 
does provide components of a system for automating pro­
gramming and is thus directly related to and sometimes 
directly usable in the laboratory we will describe. 

We have divided the work to be discussed into seven 
different areas: automatic program synthesis, mechan­
ical theorem proving, automatic program verification, 
program proof techniques, higher level programming 
languages, equivalence of program schemata, and sys­
tem measurement techniques. In each case we are dis­
cussing the "vork of several people; the bibliography cites 
the recent work we feel is most relevant. 

A utomatic program synthesis 

The basic idea here is to construct a program to pro­
duce certain specified outputs from some specified in­
puts, given predicates asserted true of the inputs and 
the outputs as related to the inputs. The basic technique 
is to (mechanically) prove the theorem that there exist 
outputs satisfying the predicate and then to extract a 
program from the proof for constructing the outputs. 
It has been suggested that these techniques can also be 
utilized to transform programs, for example to trans­
form a recursive procedure into an equivalent iterative 
procedure using the two stage process of first deducing a 
predicate that characterizes the recursive procedure and 
then synthesizing an equivalent iterative procedure 
which computes the outputs satisfying the predicate 
deduced. 

We view the work in this area to date as primarily of 
theoretical interest and contributing to better mechan­
ical theorem proving and proof analysis techniques. It 
is often more convenient to produce an (inefficient) 
algorithm than it is to produce a predicate; the two 
stage process proposed for "improvement" of programs 
is awkward and, we believe, highly inefficient as com­
pared with the direct transformation techniques to be 
discussed below. 

111 echanical theorem proving 

The heart of any system for automating program­
ming will be a facility for mechanical theorem proving. 
At the present time there are two basically different ap­
proaches to mechanical theorem proving and a realiza­
tion of both these approaches provide important com­
ponents of our laboratory. One approach is to construct 
a theorem prover which will, given enough resources, 
prove any true theorem in the first order predicate calcu­
lus with un interpreted constants; the other approach 
is to provide a theorem prover which is subject to con­
siderable control (i.e., allO\vs one to employ heuristics 
to control the strategy of proof) and which utilizes in­
terpretations of the constants wherever possible for 
efficiency. l\Iechanical theorem provers of the first sort 
are now usually based on the resolution principle. We 
term those of the second sort "programmable theorem 
provers". 

Resolution theorelll provers 

Robinson's 1965 paper introducing the resolution 
principle has been followed by vigorous activity in 
implementing mechanical theorem provers based on this 
principle. lVluch of the activity has been concerned with 
developing strategies for ordering consideration of 
resolvents; at the present time the breadth-first, unit­
preference, and set-of-support general strategies have 
been studied and other variations are being considered. 
It is clear that a powerful resolution-principle based 
theorem prover will be an important component of the 
laboratory. 

Prograllllllable theorelll provers 

In the PLANNER system, Hewitt provides a facility 
for programmable theorem proving in the sense that one 
can very easily utilize interpretations of the objects and 
operations entering into a theorem to control the 
strategy of proof, one can make the choice of technique 
used in any particular instance data dependent, and can 
very readily employ any general mechanical theorem 
prover, effectively as a subroutine. The use of a small 
subset of Hewitt's proposed facilities by Winograd 
(called micro-planner by him; see [Winograd 71], [Suss­
man 70]) in his program for understanding natural lan­
guage gives dramatic evidence of the effectiveness of 
the approach. We thus include a programmable theorem 
prover on the style of Hewitt's and Winograd's as the 
basis for the theorem proving component of our labora­
tory. 



A utomatic program verification 

The work in this area is concerned with mechaniza­
tion of what we term "flow chart induction". Given a 
representation of some algorithm as a flow chart with as­
signments, conditional branching, and looping, one ap­
pends to the boxes of the flow chart predicates asserted 
true of the variables at various points in the computa­
tion and, in particular, of the inputs and the outputs. 
The procedure is then to attempt to mechanically dem­
onstrate that the whole is consistent and thus that the 
program is correct. 

Again, we view this work as primarily of theoretical 
interest. The theorem proving techniques utilized in 
King's system (see [King]) are particularly interesting, 
however, as they utilize interpretations of the integers 
and operations over the integers; while not general, 
they do provide rather more efficient methods for proofs 
concerning integers than is presently possible with the 
more general resolution-type proof methods which do 
not employ interpretations. 

Program proof techniques 

A number of workers have been concerned with de­
veloping proof techniques which are adapted to obtain­
ing proofs of various properties of programs. These in­
clude some new induction methods-structural induc­
tion and flow chart induction-simulation techniques, 
and so on. This work provides a very important basis 
for proving the equivalence of various programs. 

Higher Level Programming Languages 

A considerable amount of work in the development of 
higher level programming languages has been concerned 
with providing languages which are particularly ap­
propriate for certain application areas in the sense that 
they free the programmer from having to concern him­
self with the kind of detail which is not relevant to the 
application area in which he works. For example, APL 
permits a programmer to deal with arrays and array 
operations and relieves him of concern with the details 
of allocation, accessing, and indexing of the array ele­
ments. SNOBOL 4 directly supports algorithms which 
require back tracking, providing the mechanics auto­
mati cally and permitting one to write theorem-proving, 
non-deterministic parsing, and such like algorithms very 
easily. SETL provides general finite sets as basic data 
objects plus the usual array of mathematical operations 
and predicates on sets; it thus permits one to utilize 
quite succinct statements of a wide variety of mathe-
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mati cal algorithms and to considerably ease the problem 
of proving that the algorithms have certain properties. 
EeL (which we discuss in some detail in a later section) 
provides a complete programming system with facilities 
which permit one to construct extended language facil­
ities such as those provided in APL, SNOBOL 4, and 
SETL, and to carefully provide for efficient data repre­
sentation and machine algorithms to host these extended 
language facilities. 

Equivalence of program schemata 

There has been considerable interest recently in 
studying various program schemata and investigating 
their relative power, developing techniques for proving 
their equivalence, and so on. Most of the work to date 
is interpretation independent and while, for example, 
many transformations from recursive specification to 
iterative specification of algorithms have been devel­
oped, it is clear that many practical transformations 
cannot be done without employing interpretations. 

The most common use of interpretation dependent 
transformations is in "highly optimizing" compilers. 
There, a very specific, usually ad hoc set of transforma­
tions is employed to gain efficiency. Often the transfor­
mations are too ad hoc-under certain conditions they 
do not preserve functionality (i.e., don't work correctly). 

System performance measurement techniques 

It is a quite straightforward matter to arrange for 
various probes, monitors, and the like to permit meas­
urements of the performance of programs, presuming 
that appropriate test input data sets are available, and 
a considerable amount of work has been done in this 
area. However, there are two further areas which are 
now the subject of investigation which we feel may yield 
important components for our laboratory. These are 
mathematical analysis of algorithms and automatic 
generation of probability distributions for interesting 
system parameters. 

Mathematical analysis of algorithms 

Several people have been working recently in the 
area of developing methodology and techniques for the 
mathematical analysis of algorithms to obtain estimates 
and/ or bounds on certain critical parameters and for 
developing (and proving) optimal algorithms for certain 
functions. We envision the manipulation facilities of the 
laboratory as being readily adaptable to providing 
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mechanical assistance in this activity, particularly in 
the area of aiding in the inevitable symbolic algebraic 
manipulation required in carrying out a mathematical 
analysis. 

AutoDlatic synthesis of probability 
distribu tions 

Some recent work by Nemeth (see [Nemeth]) may, 
when it is developed further, provide an interesting and 
valuable component of the laboratory. What he is trying 
to do is to develop algorithms for mechanically generat­
ing probability distributions for various parameters 
from a computational schema augmented by given 
probability distributions for input variables and func­
tions employed. Use of techniques like his should prove 
far superior to actually carrying· out the computation 
for sample data values. A mixture of mechanical genera­
tion of distributions and carrying out portions of a 
computation might, in the earlier stages, provide a 
practical tool. 

All the above work is related and relevant to auto­
mating programming, but none, in our opinion, is ade­
quate alone. The need .now is to integrate these facili­
ties, techniques, and so on into a system-a laboratory 
for the study of automating programming. 

THE APPROACH TO BE TAKEN IN THE 
LABORATORY 

The goal of such a laboratory is a practical, running 
system that will be a significant aid to the construction 
of real-world programs. Automating programming en­
tails transferring to the computer those facets of 
programming which are not carried out efficiently by 
humans. It is our contention that the activity most in 
need of such transfer is the optimization (in a very broad 
sense of the word) of programs. The orientation of the 
laboratory and the principal task to which it will be put 
is that of taking an existing program and improving 
upon it. 

That optimization is, indeed, a key problem requires 
little defense. If "program" is taken in a sufficiently 
broad sense, it is easy to produce some algorithm which 
performs any stated task. Given just the right language, 
program synthesis is seldom a significant issue. For 
many problems, the most natural task description is 
precisely a program in an appropriate notation. The use 
of an extensible language makes straightforward the 
definition of such notation. For other problems, it may 
be that a predicate to be satisfied is a better task state­
ment, but this too is in some sense a program. The line 
between procedural and non-procedural languages is 

fuzzy at best and it may be erased entirely by the use 
of theorem-proving techniques to transform predicates 
into programs (and conversely). 

As we see the problem, the issue is not arriving at a 
program, but arriving at a good one. In most cases, 
programs obtained from theorem provers applied to 
predicates, from a rough-cut program written as a task 
description, or even from the hands of a good program­
mer leave much to be desired. Often, the initial program 
is several orders of magnitude away from desired or 
even acceptable behavior. The larger the program, the 
more likely this is to be the case. The reasons are gen­
erally such defects as inefficient representation of data, 
failure to exploit possible constraints, use of inefficient 
or inappropriate control structures, redundant or par­
tially redundant computations, inefficient search strat­
egies, and failure to exploit features of the intended host 
environment. Recognizing the occurrence of such defects 
and remedying them is the primary goal of the labora­
tory. 

ECL AS A BASIS FOR THE LABORATORY 

The ECL programming system and the ELI language 
have been designed to allow rapid construction of large 
complex programs, perhaps followed by modification 
and contraction of the programs to gain efficiency. The 
facilities of ECL permit one to compose, execute, com­
pile and debug programs interactively. The ELI lan­
guage is an extensible language with facilities for ex­
tension on three axes: syntax, data, and operations. 

The ELI language plays four roles in the laboratory: 
(1) it is the language used to construct the various com­
ponents of the system; (2) it and its extensions are the 
language used to state algorithms which are to be 
manipulated by the system; (3) it is the target language 
for transformations (i.e., ELI programs are transformed 
into better ELl programs); and (4) it is the host lan­
guage for the theorems constituting the data base. * 

The features of ELI and its host system, EeL, which 
are particularly relevant to the laboratory are the fol­
lowing: 

(a) Data types (called "modes" in ELl) can be pro­
grammer defined usi~g several basic data types 
(e.g., integers, reals, characters, etc.) and, re­
cursively, several mode valued functions (e.g., 
construction of homogeneous sequences, non­
homogeneous sequences, pointers, etc.). 

* That is, the parts of a theorem (i.e., the conditions, antecedent, 
consequent, and recommendation list as described in the following 
section) are couched in an extension of ELl and "glued together" 
as an ELl procedure by operators defined as extensions; of 
course, the theorems are not "executed" in the usual sense. 



(b) Procedures can be generic in the sense that a 
given procedure (say that for +) can have a 
number of different bodies or meanings and the 
selection of a particular body or meaning to be 
used is determined by the mode(s) of the argu­
ment(s) utilized in some call of the procedure. 
Thus, for example, it is particularly straight­
forward to accommodate refinements in represen­
tation of some general data type (e.g., sets) with­
out doing violence to algorithms defined on it by 
associating a new mode with a refinement and 
defining new versions of operators particularized 
to that mode via the generic mechanism. 

(c) The compile-time, load-time, run-time, and the 
like kinds of restrictions employed in most sys­
tems are not present in EeL. In particular, the 
EeL compiler is a program which can be called 
at any time; it is given a program to be compiled 
and a list of variables (free in that program) 
whose values are to be taken as fixed. It then 
converts the program to a form which takes ad­
vantage of whatever efficiencies it can from the 
freezing of values. There is no distinction be­
tween compiled code and non-compiled (interpre­
tive) code insofar as their discernible effect when 
executed. 

(d) EeL provides storage allocation and reclamation 
mechanisms which are quite sensitive to spacej 
time efficiencies. Thus, the so-called "data com­
piler" goes to some lengths to utilize memory 
efficiently when allocating a component of a 
complex data structure containing several 
"pieces" . 
The use of both "stack" and "heap" mechanisms 
for allocation and freeing of space is also pro­
vided. 

(e) EeL provides for multiple concurrent paths and 
permits complete user control over the environ­
ment for each concurrent path. In addition to 
permitting strategies such as employing, say, a 
general resolution theorem prover to be applied 
to some difficult theorem in parallel with other 
undertakings, this feature makes it particularly 
straightforward to set up and run some program 
in an environment of ones choosing; for example, 
to gather statistics on its behavior in some 
simulated "real" environment. 

(f) Error conditions (both system detected and 
those defined by user programs) are generally 
handled by setting interrupts and each interrupt 
is, optionally, handled by a user defined pro­
cedure. This feature is very helpful in test execu­
tion and evaluation of subject programs and per­
mits construction of elaborate control mecha-
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nisms when appropriate, as might be the case in 
controlling the behavior of the programmable 
theorem prover. 

There are two extensions of EeL which provide par­
ticularly convenient linguistic facilities for stating al­
gorithms; these are an extension which permits one to 
deal with sets and set operations* and an extension 
which hosts non-deterministic programs. 

OPERATION OF THE INITIAL LABORATORY 

The laboratory, like EeL, is intended for interactive 
use. A programmer approaches it with a problem 
specification and a set of requirements on how the 
program is to perform. He and the system together 
undertake to produce a program which meets the 
specifications and requirements. The intention is tha~ 
the laboratory be a practical tool for everyday use, i.e., 
that hard, real-world problems with realistic perform­
ance requirements be brought to and handled by the 
laboratory. 

The problem specification may be an existing program 
written in ELI, possibly a long-standing production 
program. In this case, the presumption is that its per­
formance falls short of that required and that the con­
cern is with automating its tuning. Alternatively, the 
specification may be an ELI program written in a very 
liberal extension and constructed solely as a concise 
algorithmic statement of the problem task. There may 
be little expectation that such a program will meet any 
non-trivial performance requirements. Significant im­
provements may be needed even to reach the desired 
order of magnitude. Finally, the problem specification 
may be a set of predicates to be satisfied. Here the 
laboratory begins by constructing an initial ELI pro­
gram using as its target an extension set' designed for 
this purpose. Again, such a program may be several 
orders of magnitude removed from acceptable per­
formance. 

In very general terms, the laboratory is a man­
machine system for transforming the initial program to 
an equivalent one which meets the stated requirements. 
The heart of the system is a set of transformations, ac­
tually theorems concerning the language, which pre­
serve functionality while improving the program. De­
ciding whether an arbitrary transformation either pre­
serves functionality or improves the program is, of 
course, impossible, but decision procedures for the gen-

* This extension permits us to capture most of the facilities 
proposed for the language SETL. See [Schwartz 70] for a particu­
larly cogent argument for providing sets and set operations in a 
higher-level programming language. 
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eral case are not needed here. The laboratory will em­
ploy specific transformations which under appropriate 
circumstances-i.e., when their enabling predicates 
hold-maintain program equivalence. Constructing 
these transformations and verifying that the validity of 
the enabling predicates do insure functionality will be a 
task assigned to humans who may, of course utilize the 
facilities of the laboratory to prove the validity. While 
the functionality of the transformations may be assured, 
such is not the case for their effectiveness. To obtain a 
sufficiently powerful set of transformations it is neces­
sary to include many whose utility is conditional, e.g., 
those which are effective only under circumstances 
which are difficult or impossible to verify analytically, 
or those which optimize performance in one metric at 
thB(perhaps unacceptable) expense of another. In gen­
eral, the transformation set will include transformations 
which are mutually exclusive (i.e., only one of some sub­
set can be applied) and some which are inverses (i.e., 
applying two or more repeatedly will lead to a loop). 
Hence, choice of which transformations to apply is 
governed specifically by the performance requirements 
demanded of the program and the disparity between 
these and the program at each state of optimization. 

Determining program performance is a crucial issue. 
There are two basic approaches, both of which are used 
in the laboratory. The first is analytic. The system de­
rives closed-form expressions for program behavior 
based entirely on a static inspection of program struc­
ture and interpretation of the program operations. Then 
given a description of an input data set, e.g., as a set of 
probability distributions for possible input valnes, the 
system can describe the exact program behavior. W'hen­
ever such closed form expressions can be obtained, this 
is clearly the best certification of program performance. 
However, at present our analytical techniques are too 
weak for any but the simplest programs. The second ap­
proach is that of actually running the program on 
benchmark data sets, data sets provided by the pro­
grammer as part of his performance specifications. Be­
tween these two extremes lies the spectrum of simula­
tion: those portions of the program which can be treated 
analytically are replaced by simulation blocks and the 
rest of the program is run as is. The large area of mixed 
strategy is particularly powerful since it allows one to 
use only partially representative benchmark data sets 
yet extrapolate meaningful results from them by the 
use of analytical techniques. 

The utility of the laboratory will be governed prin­
cipally by the specificity of admissible performance 
specifications and the degree to which they can be met 
on the intended machine. Performance specifications 
include the obvious bounds on execution time and 

space. Alternatively, they might be cast in the form: 
as fast or as small as possible. This is, however, only a 
rough cut. Few problems and fewer host machines are 
entirely homogeneous. In real time situations, optimiz­
ing total execution time may be far less important then 
attaining a certain minimum for particular sections. 
Similarly, the total space occupied by a program and 
its data is far less important than the distribution of this 
space over several storage devices of various capacities 
and access speeds. Also, the intended host machine may 
be a multiprocessor or provide multiprocessing capa­
bilities by means of special processors (e.g., graphics) or 
remote processors (e.g., a network). Partitioning the 
computation among the various processors so that the 
computation load on each is beneath prescribed limits 
is another task of the laboratory. 

The possible transformations for obtaining the desired 
performance vary considerably in scope, power, and ef­
fectiveness. A sketch of those which currently seem to 
have the greatest payoff may give the flavor of what 
may be accomplished. 

The most straightforward are those for reducing the 
space occupied by data. Any field containing literal 
data restricted to N possible values requires, of course, 
no more than [10g2N] bits. What may not be quite so 
obvious is that with an appropriate programming lan­
guage, simply changing declarations is all that is re­
quired to control the storage allocated, perform the cod­
ing and uncoding on data access, and handle the neces­
sary conversions. ELI is such a language; hence, the 
class of transformations is readily obtained. In the case 
of sequences of literal data fields (e.g., character strings), 
further compression can be obtained by block encoding. 
Relations can be represented in a variety of ways and 
changing from one to another often results in significant 
economics. Sparcely populated arrays can be changed 
to lists or hash tables in which the array indices are re­
trieval keys. Conversely, the space occupied by pointers 
(e.g., in list structure) can be reduced if linked lists are 
replaced by arrays in which relations are represented by 
small integer array indices occupying only a few bits. 

One candidate for optimization of both time and space 
is sets and set operations. There are a number of par­
ticularly efficient representations for sets applicable 
only under certain conditions (e.g., bit vectors when the 
number of elements is fixed and relatively small or lists 
in canonical set order when the generation of new sets is 
carefully controlled) or efficient only when the set opera­
tions are circumscribed (e.g., hash tables when the 
operations' are union and intersection but not set com­
plement). When such a representation is possible, its 
use will often produce dramatic improvement over 
standard list structure techniques. 



Transformations for optimizing time are often subtle 
and require sophisticated techniques for manipulating 
program structures. Perhaps the best understood sort is 
the transformation of recursive to iterative programs. 
Even restricting attention to uninterpreted schemas, 
there are several interesting schema classes for which 
the transformation can always be carried out. By ad­
joining additional transformations which exploit the 
properties of specific common program operations, a 
very powerful tool for eliminating program recursion 
may be obtained. 

Time can always be saved at the expense of space by 
substituting the definition of a routine for a call on it. 
Where recursion is absent or has been previously re­
moved, it is possible to perform repeated back substitu­
tion until all calls have been eliminated. While too costly 
in space to be employed everywhere, it is very effective 
if performed on the most frequently executed portions 
of the program. Aside from the obvious virtue of elimi­
nating the expense of function call, it has the more sig­
nificant virtue of allowing each back substituted de­
fining instance to be optimized independently-in the 
context of the text into which it is placed. 

The principal class of time optimizations is the elimi­
nation of searches. A few such transformations are sim­
ple, e.g., the replacement of association lists by hashed 
structures or balanced trees, and the substitution of ar­
rays for lists which are frequently accessed by indexing. 
Searching is, however, not confined to . lists. Structures 
of all sorts-arrays, queues, strings, and so on-are 
frequently searched for an element or set of elements 
having some property. When the density of hits is small, 
blind search is inefficient. An appropriate method is to 
adj oin bookkeeping records to the given structure and 
add bookkeeping code to the program so as to keep track 
of what would be the result of searching. When the in­
cremental costs of maintaining the necessary records is 
small compared to the search cost, this often provides a 
significant optimization. Determining what records 
must be kept and how to keep them are non-trivial prob­
lems, but ones which appear open to solution at least 
for many significant program classes. 

A related class of program optimizations is based on 
reordering computations in operations on compound 
structures. Any operation on a compound object must 
be defined in terms of primitive operations or its primi­
tive components. Given a sequence of operations on 
compound objects, it is usually possible to reorder the 
underlying sequence of primitive operations to reduce 
some computational resources. Galler and Perlis (see 
[Galler 1970]) discuss in detail the problem of saving the 
storage required for temporaries in matrix operations 
and mention that a variation on their technique can be 
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used to minimize time. It appears possible to generalize 
these results to arbitrary data structures. First, recur­
sion is eliminated from function definitions. Then each 
compound operator is replaced by its definition until 
only primitive operators appear (i.e., the back substitu­
tion optimization mentioned above). Then, program 
loops are merged to carry as many operations as possible 
on each loop. Finally, dependency analysis is used to 
find common sub-expressions and eliminated unneces­
sary temporaries. Any number of ad hoc, type de­
pendent, transformations can be added to this basic 
framework. The basic technique, that of unwinding 
compound operations and then winding them up again 
in a more optional fashion, is broadly applicable. 

Several sets of transformations are concerned with 
effective utilization of the particular host machine(s). 
These are therefore specific to the environment, but no 
less important than their general cousins. The most 
important is that of partitioning the computation 
among several processors. In so doing, the first step is 
to take a conventional sequential program and trans­
form it to a representation which exhibits all the poten­
tial parallelism so that sequencing is dictated only by 
data dependency. The next step is to partition the trans­
formed program among the available processors in such 
fashion that (1) upper bounds on computational re­
sources demanded of each machine are obeyed; (2) 
communication between processors is carried out satis­
factorily along the available data paths and (3) the en­
tire configuration has the desired performance charac­
teristics. Item (2) can be reduced to item (1) by treat­
ing each data path as a processor with its own (perhaps 
small) computational bounds. Item (1) is, of course, the 
heart of the matter. The work of Holt, Saint, and 
Shapiro provides a very promising approach to this and 
has already demonstrated some success in certain re­
stricted applications (see [Shapiro 69]). 

This set of program transformations is only repre­
sentative. Others will be added in time as users of the 
laboratory gain practical experience with and under­
standing of program transformation. However large 
such a collection, it is only a beginning and its exact 
composition is only a secondary issue. lVlore important 
is the problem of determining which transformations to 
use and where, given a program and a set of performance 
specifications. The first step is to refine the perform­
ance measurements so as to determine precisely where 
the specifications are not being met.· Correlating the 
various measurements with program text is straight­
forward. 

Given the program text augmented with resource 
utilization statistics, the next task of the laboratory is 
to find places in need of optimization, find one or more 
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appropriate transformations, verify whether they are 
applicable and apply them. In choosing places to con­
centrate attention the laboratory starts simply by looking 
for the areas with the largest cost relative to that de­
sired. Given these obvious starting places, the key prob­
lem is tracing back from these when necessary to the 
causes, perhaps at some point far removed in the pro­
gram. In this step, and in the choice of transformation 
classes to be attempted, there will be the opportunity 
for explicit guidance by the programmer. If no guidance 
is given, the laboratory will doggedly pursue possible 
hypotheses but the search may be cut dramatically by 
human intervention. 

Even with this assistance, the proposed transforma­
tions must be taken as tentative hypotheses to be ex­
plored. Few transformations always result in improve­
ment. Many optimize one resource at the expense of 
others, while some transformations are of use only for 
certain regions of the data space. Hence, in general, it is 
necessary to continually verify that the transformed 
versions of the program are indeed improvements. 
Again, program analysis coupled with performance 
measurement tools will be employed. 

In summary, the principal functions of the laboratory 
are choosing areas of the program to be optimized, carry­
ing out pattern matching to'determine the applicability 
of various transformations, performing these trans­
formations, and arranging for explicit· guidance by the 
programmer in this process. The laboratory consists of 
a set of components for carrying out these activities in 
concert. 

COMPONENTS OF THE INITIAL LABORATORY 

As we noted previously the laboratory is, essen­
tially, one particular extension of ECL and· that the 
internal representation for programs and data employed 
in ECL will be utilized for programs being manipulated 
(synthesized, transformed, proved to have some prop­
erty, and so on). Here we will describe the several com­
ponents in the initial laboratory-the several ELI 
programs and/or ECL extensions which together con­
stitute the initial laboratory. Before launching into the 
discussion, however, we want to note the influence of 
the work of Hewitt and Winograd on ours; the basic 
components of the laboratory have very much the flavor 
of the linguistic-independent components of Winograd's 
version of Hewitt's PLANNER system. Our discussion 
of the components is quite brief as our intention in this 
paper is to provide an overview of the laboratory and 
the general approach being taken. A detailed discussion 
of the current versions of the components is provided in 
a paper by Spitzen (see [Spitz en 71]). 

Control 

There is a top-level control path* which provides the 
interface between the user and the laboratory. It pro­
vides for input of the program to be manipulated and 
the associated performance criteria, if any. It then ar­
ranges that the program to be manipulated is put into a 
canonical form and sets up a parallel path which pro­
vides the manipulation strategy by calling for the ap­
propriate theorem or theorems to be applied. The con­
trol path then provides for dialogue between the system 
and the user so that the system can request infor­
mation from the user (e.g., verification that certain con­
straints hold in general, test data, and the like). 

Programmable theorem prover 

A "theorem" in the sense this term is used in the sys­
tem consists of a condition which governs the applica­
bility of the theorem, an antecedent, a consequent, 
and a recommendation list. Given some program struc­
ture, an instance of substructure matching the ante­
cedent can be replaced by an equivalent substructure 
corresponding to the consequence so long as the condi­
tion holds. The recommendation list is basically a list of 
predicates which govern the use of other theorems to be 
used in manipulating the structure to match the ante­
cedent in applying this one and it is the careful use of 
this "governor" which permits the theorem proving to 
operate in a practicable time frame. Note that in a very 
strong sense theorems are really programs effecting 
transformations which, through the conditions and 
recommendation lists (arbitrary ELI predicates), can 
establish elaborate control and communication arrange­
ments. 

Data base 

The theorems which constitute the basis for the trans­
formations and manipulations performed by the system 
are housed in a data base. There is a continually grow­
ing static component of the data base which includes 
the "standard" theorems. In addition there may be a 
collection of theorems appropriate to certain particular 
investigations with which we will augment the data base 
at appropriate times. There is also a dynamic component 
which varies as a program is being manipulated. For ex­
ample, If we commence dealing with the arm "p2~e2" 

* ECL provides multiprogramming; "path" is the ECL ter-
minology for a parallel path of control. ~ 



of the conditional expression 

[pf=:::}el; p2=}e2; . . .; pn=}en] 

Then we would add the theorem appropriate to "--, PI" 
to the data base and arrange that it be removed when 
we get to the stage of treating the conditional expres­
sion as a whole in "higher level" manipulation of the 
program structure containing it. 

The data base is quite large and, as various new 
facilities are added to the system, the data base will 
grow. Its size plus the fact that one wants to be able to 
select appropriate theorems (i.e., in accordance with a 
given recommendation list) from the data base effi­
ciently, make it imperative that a certain amount of 
structure be imposed on the data base. Initially this 
structure basically amounts to a collection of "threads" 
through the data base, implemented by a combination 
of list structure, hash, and descriptor coding techniques. 
It is anticipated that getting an efficient structuring of 
the data base as it grows will pose a non-trivial research 
problem which we anticipate being attacked with the 
tools provided by the laboratory itself. 

Pattern Matcher 

The process of applying some theorem to some pro­
gram structure involves matching the parts of the 
antecedent to acceptable corresponding parts of the 
structure; in general, of course, this will involve calls on 
other theorems to manipulate the structure into an 
appropriate format and/or the verification that certain 
conditions maintain. It is the pattern matcher which 
administers this activity; it will make tentative part­
part matches, reject matches or attempt them in new 
ways when subsequent failure to match occurs, and 
so on. 

Backtracking mechanism 

The pattern matcher operates as a non-deterministic 
program in the sense that it makes provisional matches 
which must be "unmatched" and rematched when 
failure occurs to match some subsequent part of the 
antecedent to the program structure being manipulated. 
A backtracking mechanism must therefore be provided 
so that the effects of computations and variable bindings 
can be "undone." The method we use to accomplish 
this is to alter the basic ELI evaluator so that, when 
backtrackable code segments are executed, any change 
to the environment is preceded by recording the appro­
priate modification to the environment which will undo 
the change in the event backtracking is required. 
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Measurement techniques 

In addition to the usual facilities for inserting probes 
to provide measures of utilization of various functions 
and data elements provided in EeL and the usual 
ability to obtain measurements by sampling driven by a 
real-time clock there are two measurement components 
in the system which are less usual. Precise delineation 
of potential inefficiencies sometimes requires very exact 
timing data. Unfortunately it is usually impossible to 
get very fine-grained timing from most contemporary 
machines. Hence, the laboratory includes a machine 
language simulator for its host machine, i.e., a program 
which executes machine code interpretively and gathers 
statistics as requested. This permits programs to be 
run unchanged while collecting very precise data on 
the distribution of program execution time and storage 
requirements. This data, combined with that obtained 
by inserting measurement probes into the program 
permits performance measurements to be made to any 
level of detail. The second measurement component is 
an implementation of the "probability distribution 
computer" described by Nemeth. 

GOALS OF THE LABORATORY 

It must be stressed that the laboratory is intended 
for practical use, for the attainment of useful results 
which would be difficult to obtain without its assistance. 
It is the deliberate intention that one be able to ap­
proach it with a non-trivial program and obtain with it 
a significantly improved version. Such programs will 
include applications programs, system programs such 
as the ELI compiler, as well as modules of the labora­
tory itself. 

It appears that this will be achievable even with the 
simple approaches to be taken in the initial version of 
the laboratory. The use of programmable theorem 
provers and search techniques have made it possible to 
quickly endow the laboratory with considerable ex­
pertise, if not deep insight. On large production pro-

" grams (which commonly are so complex that no one 
really understands their exact behavior) the laboratory 
may be expected to make significant improvements by 
more or less· mechanical means. Such mechanical skill 
is precisely what is required to complement the high 
level programmer. Initially, the laboratory will serve 
as a programmer's assistant, suggesting possible areas 
of improvement and carrying out the transformations 
he chooses, but leaving the creative work to him. Even 
at this level the laboratory may serve better than the 
average junior programmer. Further, the initiallabora-
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tory will serve as a basis for developing more sophisti­
cated control over the choice of transformations to 
be applied. 

A topic which falls out as another application of this 
work is the modification or adaptation of programs. 
Given a program which does a certain job well, it is very 
common that it must be modified to handle a related 
task or work under changed conditions. Usually such 
modifications are done by hand, seldom with entirely 
satisfactory results. Hence, automation of the process is 
attractive. One method which has been occasionally 
proposed for performing this is to construct a system 
which when fed the existing program, deduces how it 
works, and then performs the specified modifications. 
This requires the system to dig the meaning and pur­
pose out of the existing program-an operation which 
is difficult at best and perhaps impractically expensive. 
A solution which shows greater promise is to use the 
laboratory to combine man and machine. If programs 
are developed using the laboratory, then for any 
production program, there is an initial program from 
which it was derived. Given a statement of the new task 
to be accomplished, the programmer can make his 
modifications to the relatively transparent and simple 
initial program. This is still hand labor, but at a much 
higher level. Applying the laboratory to the optimiza­
tion of the modified program results in a production 
program with the desired properties. This puts creative 
work in adapting a program into the hands of the 
programmer while freeing himJrom the drudge work. 

It is anticipated that as the programmer gains 
experience with the system, he will develop his own set 
of optimization techniques. By making it convenient 
for him to add to the data base these transformations 
along with patterns for recognizing potential situations 
for their applications, we allow a certain degree of 
growth in the expertise of the laboratory. Given a clever 
population of users, the laboratory should grow to some 
considerable level of sophistication, at least in areas of 
interest to that user population. This scenario has, of 
course, its limitations. Merely expanding the data base 
would, in time, cause the system. to flounder in a sea of 
possible but irrelevant transformations. Hence growth 
of the system must ultimately depend on significant 
improvements in global strategies, local heuristics, and 
theorem provers. In particular, the need for specialized 
theorem provers will very likely arise. 

At present, it is not clear how to proceed in these 
directions, nor is this surprising. One of the purposes 
of the laboratory is to gain expertise in program manip­
ulation, determine the limitation of current tech­
niques, and advance to the point where the real 
problems can be seen clearly. The initial laboratory is 
a first step, but a significant step, in this direction. 
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Segmentation and optimization of programs from 
cyclic structure analysis 

by JEAN-LOUP BAER and ROBERT CAUGHEY* 

University of·Washington 
Seattle, Washington 

INTRODUCTION 

Modelling of computer programs by directed graphs, 
where the vertices represent the computational tasks 
and the arcs show the flow of control, has been used for 
optimization purposes, 1 ,10 parallel processing evalua­
tion,2,8 and segmentation.7 ,9,13 All these studies are 
mainly based on the fact that a high proportion of the 
execution time of a program is spent in loops. Although 
the cyclic structure of programs can be theoretically 
complex, it has been observed that the nested ness is 
seldom vBry deep.6 Thus if one wants to optimize 
programs written in a high-level language, the detection 
of cycles by the compiler and its use in an optimization 
phase may yield a definite improvement in execution 
time without having to pay too heavily for excess 
compiling time. In this paper we show how a compiler 
could make use of an efficient cycle detection algorithm12 

to model the embeddedness of cycles by an acyclic 
directed graph. The latter can then be used for packing 
purposes in case of a paging or "cache" memory system 
as well as for predicting t he expected number of execu­
tions of a given statement for optimization purposes. 

MODELLING OF FORTRAN PROGRAMS 

For clarity of exposition we present the modelling 
process as a sequence of four phases. However, actions 
of phases 1, 2, and some of 3 are performed concurrently. 
The source program itself is scanned only once. The 
four phases are now described both functionally and 
in terms of the basic data structures. Detailed algorithms 
can be found in Reference 4. 

* Present address: System Services Department, Snohomish 
County, Everett, Washington. 
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Phase 1 

Directed graph model-/ nstruction Sequences 

The basic model is a directed graph G (W, U) where 
W is the set of vertices {WI, W2, .•• , wm } and U is the 
set of ordered pairs (or arcs) Uk = (Wi, Wj). Vertices 
represent computational tasks and arcs show the flow 
of control. Methods to analyze a FORTRAN source 
program and transform it into an equivalent-in terms 
of control-directed graph are now \vell-known. We 
shall follow Russell's approach lO and therefore we 
assume the uniqueness of an initial vertex WI and 
terminal vertex w: as well as connectedness of the graph. 
Appendix I shows the vertices and arcs generated from 
the analysis of the current source statement according 
to its type. Figure 1 gives an example program (exe­
cutable statements only) and its directed graph repre­
sentation. Associated with each vertex Wi is a volume 
attribute Vi which represents the amount of memory 
words required for the machine code generated by the 
translated statement. 

Thus given a source program, the first part of the 
modelling process yields G (W, U) which can also be 
conveniently represented by an m Xm (where m = ! W !) 
Boolean connectivity matrix C,9 and a volume vector 
V(!V!=m). 

For reasons which will become apparent in Phase 3 
we now define the / nstruction Sequences (LS.) of a 
source program. 

Let A be thEY class of all FORTRAN executable 
source statement types which do not have the attribute 
of implicit flow of control* and A its complement with 
respect to the class of FORTRAN executable source 
statements. Let Z = SI, S2, ... , Si, ... , Sn be the 

* I.e., these statements which have as a unique immediate 
successor the next statement in sequence. 
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READ (5,5) K1,Il,I2,13 

IF (K1) 10,20,300 

10 STOP 

20 K1=1 

23 K1 : K1 + 1 

25 Il=Il+1 

IF (Il) 25,30,30 

8 30 12 = 12 + 1 

IF (12) 30,35,35 

10 35 13 = 13 + 1 

11 IF (13) 35,40,40 

12 40 IF «Il+I2+I3) .LT. 15) GO TO 23 

13 DO 4000 I - 1,50 

14 3900 :1(1) = (I*Il + K1) 

15 3995 M(I) ~ 2*M(I) 

16 IF ('1(1) .LT. 25) GO TO 3995 

17 4000 CONTINUE 

If!, IF (K1 - 15) 23,400,400 

19 400 IF (K1 - 50) 300,300,10 

20 300 DO 200 J = 1,10 

21 DO 195 I = K1,50 

22 195 N(I,J) = 2*I/3*J 

23 200 CONTINUE 

24 END 

Figure l-Modelof a FORTRAN program 
(executable statements only) 

finite string of source statements which comprise a 
program, in the order (on ascending index) in which 
they are initially submitted to a translator. An instruc­
tion sequence I k is a non-empty substring of consecutive 
elements of Z written as 

such that: 

(i) SkjEA for 1:::;j~m-1 and SkI is called the 
initial statement of I k 

(ii) SkmEA and Skm is called the terminal statement 
ofh 

(iii) Ik is the substring of Z of maximum length 
which contains Skm. 

Z is partitioned into instruction sequences and can 
now be rewritten as: 

Z' can also be represented by a directed graph 
H (I, Y) where I is the set of vertices Ii representing 
the LS.'s and Yk= (Ii, I j ) is an arcE Y if the terminal 
statement Sim of Ii can transfer explicitly to a statement 
Sjp of I j • This directed graph can also be represented 
by a Boolean connectivity matrix M. 

Given Z the string of source statements, the deter­
mination of the LS.'s and their interconnections is 
easy and not time consuming (Figure 2 displays these 
new structures for the example program of Figure 1). 
It follows the same algorithms as the one used for the 
generation of branch instructions by the compiler. 

Phase 2 

Identify DO-loops and their embedded ness 

In this phase we record the membership of statements 
in DO-loops in the following way. Each DO-loop is 
represented by an m-dimensional Boolean vector, say 
di for the ith DO-loop, such that dik = 1 if the statement 
represented by vertex Wk is in the DO-loop and dik = 0 

11 = (1,2) 

12 = (3) 

13 = (4,5,6,7) 

14 = (8,9) 

16 = (12) 

17 = (13,14,15,16) 

18 = (17,18) 

19 = (19) 

15 = (10,11) 110 = (20,21,22,23,24) 

(a) Instruction Sequences. 

1 2 3 4 5 6 7 8 9 

a 1 1 a a a a 0 a 

a a a 0 a 0 0 a 0 

0 a 1 1 0 a 0 0 a 

a 0 0 1 1 0 0 0 0 

0 0 0 0 1 1 0 0 0 

0 a 1 0 0 0 1 a 0 

a a a 0 a a 1 1 a 

a 0 1 a 0 0 1 a 1 

a 1 a a 0 a a 0 0 

10 0 a a 0 0 a 0 a 0 

(c) Matrix M 

(b) Graph H(I,Y) 

Figure 2-Alternate representations of the example 
FORTRAN program 

10 

1 

1 

a 

0 

a 

0 

0 

a 

1 

0 



otherwise. At the same time, we build a (partial) 
embeddedness Boolean matrix E+ which is such that 
eij+= 1 if DO-loop j is nested within DO-loop i. 

The construction of the d/s and E+ is up to this point 
straightforward and mainly requires the same tech­
niques as those used generally in the compilation of 
DO-loops, that is the maintenance of a stack of cur­
rently active DO-loops and their associated terminating 
labels. Figure 3 shows the d/s and E+ after DO-loop 
processing for the example of Figure 1. 

Phase 3 

Identify the remaining elementary cycles 

A general algorithm to detect the elementary cycles 
in a directed graph has been recently published.12 It is 
based on a path extension technique with each vertex 
of the graph being a potential starting point for a cycle. 
In our case, the searching time of the exhaustive 
detection-a function of the number of vertices and 
arcs in the graph-can be greatly reduced by the 
following two observations. 

(i) Ignore the feedback arcs of the DO-loops since 
the corresponding cycles have already been 
detected. 

Ve rtex Number 

123456789 
11122222 
78901234 

0000000000011110000000 

0000000000000000001110 

0000000 00000000 000 0 1 0 0 

Partial Embeddedness matrix E+ 

Cycles 

1 2 3 4 

" .... 
1 0 0 0 0 u 

>. 
u 

0 0 1 0 

0 0 0 0 

Figure 3-Array D (cycle vertex membership) and matrix E+ 
(cycle embeddedness) after DO-loop processing of the example 

program 
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TABLE I-List of Origin-Destination statements and I. S.'s 

Origin-Destination 

2,3 
2,4 
2,20 
3,24 
7,6 
7,8 
9,8 
9,10 
11,10 
11, 12 
12,5 
16, 15 
18,5 
18, 19 
19,20 
19, 3 

Origin-Destination 

1~ 2 
1,3 
1, 10 
2,10 
3,3 
3,4 
4,4 
4,5 
6,3 
7,7 
8,3 
8,9 
9,10 
9,2 
5,5 
5,6 

(ii) In FORTRAN only a subclass X of statements 
(X CA) can be origin statements of cycles. This 
subclass X corresponds to statement types*: 

GO TO K 
GO TO L, (Kl' K2, ••• , Kp) 
GO TO (Kl' K 2, ••• , Kp), L 
IF (E) K1, K2, K3 
IF (B) S where S is a GO TO statement 

Only statements of type belonging to X can be 
starting points of cycles in G (W, U), and they are 
necessarily terminal statements of 1.S. 'so Thus ,ve are 
going to reduce our cycle search by looking first for 
cycles in H (I, Y) and then transform these into cycles 
of G (W, U). This phase is going to be processed in 
three stages. 

Stage 1. Reduce domain of search of elementary cycles 
of I.S.'s 

A list of paired origin-destination statements, where 
the origin statements are the terminal statements of the 
1.S.'s and the destination statements are those referred 
to by the labels K i, is built during the scanning of the 
source program Z. The forward reference labelling 
problem is dealt with in the same manner as the com­
piler must do for generating code. The corresponding 
list of origin-destination LS.'s is also constructed (cf. 
Table I for our example) . 

* We restrict ourselves to the analysis of main programs or 
subroutines, that is we do not include CALL statements as 
statements which imply transfer of control. 
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I. S. Number 

1 
1 2 3 4 5 6 7 8 9 0 

1 0 1 1 1 1 1 1 1 1 1 

2 0 0 0 0 0 0 0 0 0 1 

3 0 1 1 1 1 1 1 1 1 1 

4 0 1 1 1 1 1 1 1 1 1 

5 0 1 1 1 1 1 1 1 1 1 ,... 
QJ 

§ 6 0 1 1 1 1 1 1 1 1 1 
z . 7 0 1 1 1 1 1 1 1 1 1 
U) . 

8 0 1 1 1 1-1 1 1 1 1 1 1 

9 0 1 0 0 0 0 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 0 

Starter I. S. Number 

3 

4 

5 

6 

7 

8 

Figure 4-Matrix M* and domain of starter I.S.'s 

The domain of· possible starter nodes for the cycle 
detection algorithm could be further reduced as follows. 
Let (h,I j ) be an origin-destination pair of LS.'s. They 
will be part of a same cycle if and only if mk/ = mjk * = 1 
in the reflexive transitive closure M* of the connectivity 
matrix M. If these relations do not hold the origin­
destination pair can be deleted. However, it is debatable 

. if the gain incurred by this deletiori surpasses the cost 
of generating M*, a process of order greater than n2• 

Figure 4 shows M* and the reduced set of LS. starting 
vertices. 

Stage 2. Find elementary cycles of I. S.' s 

The algorithm already referred to12 is used with the 
short-cut of skipping those vertices which are not part 
of the reduced set of possible starting points. Figur~ 5 
lists these cycles. 

Stage 3. Conversion of I.S. cycles to original graph 
cycles (G-cycles) 

Each cycle of LS.'s must be converted into cycles of 
the original graph (G-cycles). It is of course possible 
that a single LS. cycle may yield several G-cycles. 
For example, the LS. : 

Corresponding vertex number 

10 A=B 1 
20 C=D 2 

IF (E) 10,20,30 3 

which has one LS. cycle, namely itself, yields two 
G-cycles {l, 2, 3} and {2, 3}. 

The conversion algorithm may be summarized as 
follows: Let Ci=Ia, Ifj, ... , Iu be an LS. cycle. Re­
calling the definition of an LS. one can write I a = Sa,l, 
Sa ,2, ••• , Sa ,mao All Sa ,ma are part of all G-cycles 
generated by Ci. Let (Sa,ma, Sfj,j) be a paired origin­
destination statement leading from I a to 1(3. Now the 
sets di corresponding to G-cycles are obtained as 
follows: 

1. Initialization step. dio= rJ> (the empty set). 

2. Let a be the index of the first LS. in C i and 13 
the index of the next LS. in sequence (if there is 
only one LS. 13 = a) . 

C
1 

= (3) 

C
2 

= (3,4,5,6) 

C
3 

= (3,4,5,6,7,8) 

C
4 

= (4) 

Cs = (5) 

C
6 

= (7) 

Figure 5-List of cycles of instruction sequences 



3. For each origin-destination pair (Sa.ma, S~.j) do: 
For each dia do: 

dil = diaU {S~.j, ... , S~.m~} 

4. a=~; ~='Y (set to index of next LS.). (If a=u, 
~ is set to the index of the first LS.) 

If a = index of the first LS. then stop; the d/s are the 
last dk~ generated; else go to step 3. Figure 6 shows the 
set of G-cycles generated in the Boolean notation 
adopted in phase 2. 

Phase 4 

Complete and reduce the embeddedness matrix E+ 

We now want to complete E+ which was defined and 
partially built during phase 2. If di and d j are two 
G-cycles in Boolean representation, then letJij=dindj. 
Elements of E+ will now be defined by: 

-IfJi1 = di then eii+= 1, eii+=O (di embedded indj) 

-IfJii= dithen eii+=O, eii+= 1 (di embedded in di ) 

-If Jij~di~dj then eji+ = eij+ = O. 

Since the embeddedness of the DO-loops between 
themselves have already been recorded, these tests are 
done only for the pairs of cycles i, j where 1:::; i:::; n 
(n number of cycles) , k <j :::; n (k number of DO-loops) . 

N ow the E+ matrix can be considered as the prece-
dence matrix of an acyclic directed graph where the 
embeddedness property is the precedence relation, i.e., 
the vertex representing di is a successor of the one 

Vertex Number 

1 
1234567890 

1122222 
8901234 

d
1 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 

d
2 

d
3 

~ d4 
~ 
" ~ d5 

~ d6 

d7 

d
8 

d
9 

000000000000000000001110 

000000000000000000000100 

000001100000000000000000 

00001111111100000000 0000 

000011111111111111000000 

0000000110000000000000 00 

000000000110000000000000 

000000000000001100000000 

Figure 6-Array D (cycle node membership) for all cycles of 
example program 
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1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 1 

2 0 0 1 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 

5 0 0 0 1 0 0 1 1 0 

6 1 0 0 0 1 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 a 0 a 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Figure 7-Embeddedness matrix E and associated graph 

represented by dj if eii+ = 1. In the sequel we shall use 
strict embeddedness which is defined as: di is strictly 
embedded in dj if it is embedded in dj and there exists 
no dk such that di is embedded in dk and dk is embedded 
in dj • In order to find a representation of strict em­
bedded ness one has to find the minimum connectivity 
matrix E such that E+ = U i:l Ei. Solutions to this 
problem can be found in Reference 3, 11. Figure 7 showb 
E for our example program. 

This construction completes our modelling process. 
We now describe some possible applications. 
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TABLE II-Matrix S 

I MAXLEVL USED NAME LEVL DEGREE FATHER 

1 3 0 
2 2 0 
3 2 0 
4 3 0 
5 3 0 
6 3 0 
7 3 0 
8 3 0 
9 3 0 

APPLICATION OF THE MODEL TO PAGING 
AND CACHE MEMORY SYSTEMS 

The model can be used as an aid in packing code in 
pages in such a way that the number of interpage 
transitions due to instructions is reduced in comparison 
with the compiler's usual memory allocation technique. 
Other attempts at solving this problem range from a 
macroscopic approach9 to the analysis of generated 
code.5 We will follow a middle of the road route similar 
in its degree of detail to other studies.7 ,13 We do not 
try in any way to achieve an optimal packing such as 
in Reference 14 which not only requires information 
that the model cannot deliver such as the cost of page 
faulting15 but. which would also take too much com­
puting at compilation time. Our goal is to reduce the 
number of page transitions through easily implementa­
ble algorithms with the understanding that some gross 
assumptions may have to be taken. The basic phi­
losophy is to pack first those statements which are in 
the most nested cycles. This was the purpose of ob­
taining the matrix E. 

We need a few additional definitions. Extending the 
usual relations found in trees, we define the roots of an 
acyclic directed graph to be those vertices which have 
no predecessors. The immediate successors of a vertex 
will be its sons, its immediate predecessors will be its 
fathers, and sons of the same father will be brothers. 
Note that this last relation is transitive only in the case 
of a tree. The level li of a vertex Wi is the length of the 
longest path from a root to Wi. The maximum level 
mli is defined as max(li, lj, ... ,lk) where Wh ... , Wk 
are the successors of Wi. These levels li and mli can be 
computed directly from E+ or by performing a topo­
logical sort on the graph. 

Traversal of the graph 

Our first objective is to traverse the graph in an order 
reflective of the nestedness of cycles. A sort on levels 

1 
2 
3 
4 
5 
6 
7 
8 
9 

2 1 6 
1 1 0 
2 0 2 
3 0 5 
2 3 6 
1 2 0 
3 0 5 
3 0 5 
3 0 1 

li, which satisfies this criterion, is rejected because at 
the same time we want to keep as much as possible the 
image of the structure of the source program. To 
facilitate the traversal, the graph is going to be modified 
into a forest. If in the original graph the vertex Wi had 
more than one father, the one selected to stay is the 
one with greatest maximum level. That is for all 
columns i which have more than one bit set to 1 in 
matrix E, let j be the index such that eji = eki = eli = .•. = 
epi= 1 and mlj=max(mlj, mlk' mll, ... ,mlp). Then set 
all bits of column i to 0, except for eji which is set to 1. 
After such a transformation is completed the levels and 
maximum levels have to be recomputed. The forest 
can now be represented in a tabular form4 (cf. Table II) 
which aids in the' traversal of the forest. This traversal, 
a variation on post-order is defined recursively by: 

1. Order the sons of the root r by descending 
maximum levels in SONSr , say (rl' r2, ... ,rk). 

2. Traverse the sub trees of roots rl, r2, ... , rk in 
that order. When a subtree is composed only of a 
single vertex, its root, the root is then traversed. 

In the tabular form, the field USED is a flag showing 
those vertices which have already been traversed, 
DEGREE is a counter for the sons which have not yet 
been traversed and the other fields are self-explanatory. 
For our example, the algorithm yields {914 7856} and 
{32} for the traversal of the two trees. 

During the traversal of the forest, the volume of each 
individual cycle is computed as follows: Let d i be a 
cycle, vdi its volume, (Wil' Wi2, ... ,Wik) its member5 
and (Vd, Vi2, ... ,Vik) be the volumes of the Wij. Set d 
is the set of vertices which have yet to be traversed 
(initially d= W) and d i is the cycle currently traversed. 
Then if d/ = dind, 

vd i = L: Vii 
wiied. 

and one suppresses from d all vertices belonging to di • 



Assign vertices to pages 

Given i) a page size p, ii) the order in which cycles 
are traversed per the above algorithm, say T= {dil, 
di2, ••• , dik } and iii) their volumes V D = {vdil , Vd i2 , 

... ,Vdik } an algorithm to assign vertices to pages, a 
direct descendant of Lowe's,7 is summarized here. The 
algorithm accesses the cycles in T consecutively left to 
right, assigning as many cycles dij (each cycle in its 
entirety) to a single page as the memory volumes vdij 

permit. By a cycle in its entirety is meant that a cycle 
in its vertex assignment is not permitted to run off the 
end of one page and have following vertices assigned to 
a subsequent page except when the cycle is the initial 
(and hence sole) cycle assigned to the page. Whether 
the cycle is assigned to a page as in the page over-run 
case or in aggregate vertex by vertex as in the former 
case, the assignment is reflected by a merger of graph 
vertices in connectivity matrix C and by the merger of 
memory volumes in the volume vector V (cf. phase 2 
of the second section). 

The algorithm consists of three parts. The first part 
deals with initialization for assigning a new cycle from 
T to pages. The second considers assignments to pages 
when a cycle is known to fit entirely within a page and 
is therefore not assigned to the page on a vertex by 
vertex basis. The third part considers the case when a 
cycle exceeds the length of a page and has its vertices 
assigned to the initial and following pages on a vertex 
by vertex basis. The algorithm terminates when the 
cycles in T have been exhausted. 

A step by step description of the algorithm follows. 
O. Set the current page size cp to O. Set h = O. 

A. [Initialization]. 

1. If h=k (i.e., vector T completely traversed) 
then end. 

2. Let h be the index of the next (initially first) 
cycle in vector T and dj be the Boolean repre­
sentation of this cycle. 

h=h+l; j=T(h). 

3. Let n be an index varying from 1 to m (the 
number of vertices in G). Set n = O. 

4. If cp=O go to step 7. 

5. If CP+Vdh~P (i.e., if the current cycle will not 
go over a page boundary) go to step 11. 

6. Set cp = 0 (Start a new page) . 

7. n=n+1. 

8. If djn = 0 (i.e., vertex n does not belong to cycle 
j) go to step 7. 
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Figure 8-Vertex assignment for example program after first 
packing algorithm 

9. q = n (q temporary variable for last vertex 
traversed) . 

10. If vdh>p (if cycle does not fit entirely in a 
page) go to step 16 (part C) . 

B. [The cycle fits in (remainder of) page]. 

11. cp=cp+vdh ; Vq=Cp (This is part of the merging 
process) . 

12. n=n+1. 
13. If djn = 0 go to step 15. 
14. Vn = O. Merge Wn into Wq (for an explanation of 

merging see below) . 
15. If n=m go to step 1 (i.e., to part A) else go to 

step 12. 

C. [The cycle overflows a page]. 

16. cp=vn. 
17. n=n+1. 
18. If djn = 0 go to step 22. 
19. If Vq+vn>p go to step 21. 
20. Merge Wn into Wq and Vn into Vq; cp=cp+vn; 

Go to step 22. 
21. q=n; cp=vn. 
22. If n=m go to step 1 else go to step 17. 
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TABLE III-Volume Vector for Example Program 

111 1 1 1 1 1 1 122 222 
Vertex 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 

Volume 8 4 2 2 3 3 3 3 3 3 3 5 5 6 5 4 3 4 4 5 5 8 3 2 

The merging process is defined by: 

-To merge Wn into Wq replace qth row of C by the 
logical sum of itself and the nth row of C, and 
replace the qth column of C by the logical sum 
of itself and the nth column of C. Set the nth 
column and row of C to all O's. 

-To merge Vn into Vq replace Vq by vq+vn in the 
memory volume vector V and set Vn to O. 

The remaining task is to assign those nodes which 
are not members of cycles. It is done by following part 
C above, after first initializing both q and n to 1. 

Figure 8 shows the result of packing for p = 8 (a very 
small page size only for illustration purpose) and the 
volume vector of Table III. Although this algorithm 
is crude-and we see below how to improve it-it is 
worthwhile to compare its outcome with what would 
have been obtained by usual compiling techniques. 
Figure 9 shows how the code would be allocated in a 
straightforward manner with vertices allowed to run 
over pages. 

As can be seen the total number of pages required for 
the generated code is smaller in the usual compiler's 
case (7 instead of 10). However, the goal of the packing 
algorithm is to improve the residency of the pages, i.e., 
the locality of the code. In general the number of data 
pages needed for efficient execution is much greater 
than the number of code pages; the packing algorithm 
thus helps in leaving more main memory space to data 
during long bursts of execution. For example, loops 
(W6, W7) (WIO, Wll) and (W22) occupy one page instead 
of two. Moreover, as stated earlier, the packing al­
gorithm can be improved. A first clean-up pass could 
be implemented as follows: 

If after the merging process, Cji = 1 (i.e., pages i and 
j are connected) and Vi+Vj~P (the sum of their 
memory volumes is less than a page), then merge 
Wi into Wj and Vi into Vj. 

In our example, pages 16 and 17 would be merged, 
as well as pages 18 and 19, thus leading to a definite 
improvement in the second part of the main cycle. 

A more sophisticated clean-up pass would be first to 
"squeeze" those elementary cycles which are leaves of 
the forest, by allowing vertices to run over pages. (In 

our example WI6 would be in pages 15 and 16.) Then the 
clean-up pass defined above would be invoked. Figure 
10 shows the results of the improved algorithm. The 
main loop requires now only 8 pages; the number of 
interpage transitions is diminished, and the locality of 
the code is improved. 

EXPECTED NUMBER OF EXECUTIONS OF 
SOURCE STATEMENTS 

The knowledge of the expected number of times a 
given source statement is going to be executed can be 
an important factor in the optimization of high-level 
source programs.6,IO It allows replacement of compiler­
generated code by a tighter hand-coded version in the 

Figure 9-Usual memory allocation by a compiler 
(all pages have volume 8) 



event of an often-repeated statement. In the context 
of the previous section, the traversal of the tree could 
be monitored by the maximum expected number of 
executions, instead of being directed by maximum 
levels, thus leading to a better residency of pages of 
code. 

In this section we show how these numbers can be 
estimated when i) the probabilities q/ of traversing 
the arcs (Wi, Wj) corresponding to paired origin­
destination statements are known, and ii) when the 
mean number of times the feedback arc of a DO-loop 
is set up to be traversed is known. These parameters of 
the source program will have to be "guessed" or instru­
mented. Io In the former case they represent a first pass 
at the analysis of the program and only well-known 
sections of it should be optimized. In the latter, they 
correspond to an "a posteriori" optimization of a 
production run. In both cases, we assume that we have a 

Figure 10~Parking after "squeeze" and "clean-up" passes 
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Markovian process, i.e., the qJ stay invariant each 
time Wi is reached. 

Travel'sal of the directed graph 

The method we outline is an outgrowth of studies 
related to the prediction of performance of multi­
processors.2 •8 Let fi be the expected number of execu­
tions of vertex Wi, Pi its probability of being reached 
from the initial vertex WI when all feedback arcs of the 
graph have been removed. In the case of a stochastic 
cycle, i.e., one which is not a DO-loop, this feedback 
arc is the one corresponding to the last paired origin­
destination statement encountered when transforming 
the LS. cycles to G-cycles, and of probability not equal 
to 1. After normalizing the probabilities of arcs incident 
out of vertices which are origins of feedback arcs, one 
computes the Pi as: 

k 

(1) pi= L pjq/ where Wj (j = 1, ... , k) are the 
j=I 

immediate predecessors of Wi. At initialization 
all fi are set to 1. 

The traversal of the directed graph represented by 
the original embeddedness matrix E is performed aEl 
follows. 

1. Let dI , d2, ••• ,dk be the leaves of the graph. 
Partition these leaves into classes El = {d1 }, 

E 2 = {d2 }, ••• ,Ek = {dk }. 

2. If two classes Ei and E j are such that there 
exists diEEi and djEEj such that dindj~cp, let 
Ei=EiUEJ and suppress E j • 

3. Repeat step 2 until no suppression occurs. 
4. Compute the fi (up to that point) of each 

vertex member of a cycle belonging to one of the 
Ei left after step 3, as explained belmv. 

5. Suppress from E all the leaves and repeat steps 
1 to 4 until all cycles have been treated. 

Steps 1 to 3 are facilitated by the use of the tabular 
representation of the graph. They involve mainly the 
partition of cycles into classes with the equivalence 
relation being "to have a common father with at least 
one member of the class." 

Computation of f/s corresponding to leaf cycles 

Let Ek = {d il , di2 , ••• , dile } be a class as defined 
above. We shall give expressions for the fi of vertex 
members of dij in supposing first that the cycles are at 
their maximum depth of embedded ness. 
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Figure ll-Regular Markov chain (sub case 1 of case 1) 

p 

Case 1. Ek has a unique member di1 = {Wh' ... , Wi, 
... , Wt} where (Wt, Wh) is the feedback arc. 

Let Pi* be computed as in (1) in considering only 
the subgraph corresponding to di1 and Ph = 1. We note 
Pr[wi( j)] as the probability of executing wd and j 
times only. 

Subcase 1. There is no branching out of di1, that is 

there exists no arc (Wi, wi') such that Wi E di1 - {wd 
and W/~di1. 

Let (N -1) be the mean number of times the DO-loop 
has been set up for and p the probability of the feedback 
arc of a stochastic cycle. For a DO-loop: 

N 

ii= Lj Pr[wi( j) ] 
i=1 

and 

But 

Pr[w;(j) J~ C) p<*i(l-p,*)N-;, 

Hence: 

N (N-l) = N Pi* L Pi*i-1 (1- p/) (N-1)-(i-1) 
i=1 j-1 

or 
h=Npi*=ihPi*. 

For a stochastic cycle: the process can be considered 
as a regular Markov chain as shown in Figure l1.a. by 
introducing an extra arc of probability 1. Now if P is 
the regular transition matrix, (Ilh' ... , IIi, ... , lIt, lIe) 
the limiting probability vector, it is known that the 
mean first passage time to return to a given state is 
mii= l/Ili. In our case, mee= l/Ilee represents the mean 
number of steps, and h = IIi/lIe. 

If one is interested only in ih, ii, it, the graph is 
equivalent to the one in Figure l1.b. whose transition 
matrix is: 

o 0 o 1 o 

o 0 o 1 o 

p 0 o o 1-p 

1 0 o o o 
and since IIi = p/IIh, then ii = P/ih. Now ih could be 
computed by the ratio Ilh/lle but directly one can see 
that: 

Sub case 2. There is some branching out of total 



probability l-Q where Q=Pt*. In the DO-loop case: 

Pr[Wh(j)J=Qi-1(I-Q) (j=I, ... ,N-l); 

Pr[wh(N)J=QN. 

Hence 

Now 

Pr[wi(k)] = i: Pr[wh( j) ] (j) p/k(I-Pi*) i-k 
i=k k 

(k= 1, ... ,N) 
and 

N 

Ji= L: k Pr[wi(k) ] 
k=l 

i: Pr[wh(k) ] tj (~) Pi*i(1-Pi*)k-i 
k=l 3=1) 

N 

=p/ L: k Pr[wh(k)] • 
k=l 

k (X-I) ~. Pi*i-1 (1- p/) (k-1)-(j-1) 
3=1 )-1 

N 

=Pi* L: k Pr[wh(k) ]=P/Jh. 
k=l 

In the stochastic case, the computation of Jh corre­
sponds to the Markov chain of Figure 12 of transition 

p 

1 

Figure 12-Regular Markov chain (subcase 2 of case 1) 
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p 

1 

, 
p G 

t2 

Figure 13-Regular Markov chain (subcase 1 of case 2) 

matrix 

which yields 

010 0 

o 0 Q l-Q 

p 0 0 I-p 

100 0 

1 
Jh= l-Qp 

Analysis similar to subcase 1 would yield Ji = Pi*jh. 
In summary for this first case, the computation of the 
Ji involve only the computation of the Pi* and of the 
Jh as given above. 

Case 2. Ek has more than one member. 
Subcase 1. All cycles are stochastic. 
Again we have recourse to the ::.vrarkov chain ap­

proach. Of interest are the Ji of the heads and tails of 
the cycles. A typical example is shown in Figure 12 of 
transition matrix; 

o 1 0 0 0 

o 0 1 0 0 

p 0 0 I-p 0 

o p' 0 0 I-p' 

1 0 0 0 o 
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(a) 

which yields 

and 

(b) 

Figure 14-Subcase 2 of case 2 

p 

fh1= 1+ (l-p) (I-p') , 

1 
fh2=ft1= (l-p) (I-p') 

1 
ft2= -1-

' -p 

p 

1 

Subcase 2. One member of Ek is a DO-loop (there 
can be no more than one due to the Syntax of 
FORTRAN). 

Consider again Figure 13 but suppose now that the 
second cycle is a DO-loop. It could be possible by using 
methods of renewal theory to determine the fi in this 
case. However we can still use the Markov chain 

approach. To do so an N -folding of the structure must 
be performed as shown in Figure 14.a. To obtain fh2 
andft2 a reduction as in Figure 14.b. is performed giving 
a transition matrix 

p I-p 0 0 

p 0 I-p 0 

p o 

1 o 

which yields 

1 
fh1= --­

(l-p)N' 

o 

o 

I-p 

o 

1- (l-p)N 

p(l-p)N 

andft1=fh2,ft2= (l-p)fh2 as in subcase 1. 
If for both cases 1 and 2, the cycles are not embedded 

in any other cycle, the fi are multiplied by Ph the 
probability of reaching the first head. If they are 
embedded in other cycles, the fi computed at the next 
level will be multiplied by those just obtained until all 
cycles have been treated. 

CONCLUSION 

In this paper we have presented a model of Fortran 
source programs with particular emphasis on the cyclic 
structure. Applications of the model to segmentation 
and optimization have been introduced. Algorithms 
needed to extract information from the high-level 
language in order to build the model have been given. 
A packing algorithm, whose goal is to reduce the 
number of interpage transitions in a paging or cache 
memory system, has been presented along with its 
application to an example program. The cyclic structure 
of the program has also been used to compute the 
expected number of executions of each statement of the 
source program. 

The results of the packing algorithm, which is meant 
to increase the locality of the generated code, could also 
be used in paging mechanisms with anticipatory 
control. The expected numbers of executions could 
serve in the packing of data into pages, the data with 
high correlation being allocated in the same pages. This 
latter problem needs more investigation and it is in this 



direction that extensions of the model and new al­
gorithms should prove useful. 
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APPENDIX I 

Vertices and arcs generated by the graph modeling process. 
Notation: Wi current vertex number; Wi+! next (sequential) vertex number; Wn vertex corresponding to source 

statement of label n; Wz terminal vertex. 

STATEMENT 

GOTOn 
GO TO (nl,n2, ... ,nk),j 
GO TO j, (nl,n2, ... ,nk) 
IF (e) nl,n2,nS 
IF (e) S 

(a) If S is not a GO TO RETURN 
or STOP 

(b) If S is a GO TO RETURN or 
STOP 

DO n I = M1,M2,M3 
CONTINUE 
PAUSE 
RETURN 
STOP 
READ (a,b,END = nl,ERR = n2)list 
WRITE (a,b)list 
ENDFILE 
REWIND 
REWIND 
BACKSPACE 
Arith. Stats. 
END 

VERTEX GENERATED 

Wi,Wi+1 

Wi 

Wi 

Wi 

Wi 

Wi 

Wi 

Wi 

Wi 

Wi 

Wi 

Wi 

Wi 

Wi 

Wz 

ARCS GENERATED 

(Wi,Wn) 

(Wi,Wnl),(Wi,Wn2), ••• ,(Wi,Wnk) 

(Wi,Wnl),(Wi,Wn2), ••• ,(Wi,Wnk) 

(w i, Wnl), (w i, W n2), (w i, wns) 

(w i, W i+1), (w i, W i+2) 

(Wi,Wi+l) 

(W i, W i+I), (Wn, W i+l) 
(Wi,Wi+l) 

(Wi,Wi+l) 

(Wi,W z) 

(Wi,W z) 

(W i, W i+1), (W i, Wnl), (W i, W n2) 

(Wi,Wi+!) 

(Wi,Wi+l) 

(W i,W i+!) 

(Wi,Wi+l) 

(Wi,Wi+l) 



The interplay of computer science and 
large scale scientific calculations 

by KENT K. CURTIS 

National Science Foundation 
Washington, D.C. 

The history of computing has been characterized by 
the statement that what the manufacturer makes, the 
customer takes. To the extent that this is true, it is not 
only an interesting and perceptive comment on history 
but also a testimonial to the remarkable nature of the 
sequential, stored program, electronic computer. If 
that invention had not fit so well from the beginning 
to a wide variety of interesting problems, the develop­
ment of hardware and software systems could not have 
proceeded as independently of scientific motivation 
as it did. Of course, scientific requirements have in­
fluenced systems design, but the prominent parameters 
such as speed or memory size could be understood 
without detailed knowledge of scientific problems or 
programs and the parameters which might depend 
upon the structure of programs could be ignored. 

It is fortunate that that was true. There were im­
portant problems to solve in physics, chemistry, 
meteorology, etc. We could work on those without 
delay and let systems design take care of itself, with 
ad hoc software adjustments when things became 
intolerable. Computers worked so well there was no 
apparent need for guidance by scientists of system 
design. Better design might make an incremental 
difference but that increment was not sorely missed 
and barely worth an incremental effort. 

Meanwhile, computer development followed an 
internal dynamic of its own. It was influenced by the 
fact that scientific requirements provided a ready 
market for computers which were big and fast, but 
the general purpose computer was a useful paradigm 
and rapid advancement of electronics technology kept 
many problems at bay. Computer engineers and 
businessmen could do their own thing in their own way, 
with unusual freedom. The computers they built have 
reflected principally their own genius in taking ad­
vantage of technological opportunity, and that, happily, 
has been sufficient. 

In making these comments, let me note that they 
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refer to the machines which have until now dominated 
scientific calculation. Other designs which attempt to 
reflect some additional measure of understandi.ng of 
scientific calculations have been considered and some 
are of substantial current interest. Pipe-line systems 
and the ILLIAC IV, are among those which come to 
mind, but none of them has yet had opportunity to 
prove its value. Even they, however, are the result of 
adding only one more global observation to the design 
criteria, the observation that many scientific calcula­
tions have the common property that they involve 
the redundant use of identical operation sequences on 
ordered sets of data. Hence, their appearance and 
history does not vitiate the force of the earlier observa­
tion. On the contrary, they extend its force to the near 
future. 

They do, however, raise several interesting points. 
First, the principal ideas of architecture underlying 
each of the machines which are now being physically 
realized are approxi.mately ten years old. Still, these 
machines are only now being delivered and experience 
suggests that it will be some time yet until the systems 
will have been stabilized sufficiently and used suf­
ficiently to be able to make a definitive evaluation of 
them from experience. This is a long gestation period. 
It suggests that we should not expect breakthroughs 
in large scale scientific computing due to new ideas in 
machine architecture in a short time scale. The ma­
chines which are now coming to life may be substantial 
contributors to scientific computing ten years from 
now, if they prove out, but it is unlikely that machines 
which are still on the drawing board will contribute 
until later . 

It also suggests that unless we believe we already 
have discovered the only important concepts in machine 
organization (which is possible but would be most 
remarkable, if true) we should be very interested in 
reducing the time span from idea to realization. Ideas 
in machine organization spring from an environment 
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of experience to meet a perceived need. They need 
testing to evaluate them. If the need is really important 
it will probably persist until an answer is found. But, 
on the other hand, if the need is important we would 
rather not wait ten years. This line of thought argues 
for research in such areas as description languages 
which can describe complex systems and be translated 
to a design and fabrication process and it argues for 
support by the scientific community for such research. 
I would like to return to this point later. 

Second, a "paper machine" has very little weight. 
At an early stage in the development of the machine 
which is becoming ILLIAC IV, I spent some time with 
several people who were active in hydrodynamics and 
meteorological research to see what basis for estimating 
performance could be established from analyses of the 
actual codes which were of interest in those fields. My 
question was, to what extent does the parallelism which 
is available in this design offer an effective improve­
ment in performance, considering the detailed struc­
ture of the computing algorithms, data management, 
and I/O processes that are used in these problems? I 
thought I understood how to do that kind of analysis, 
at least in part, including modifying the codes for 
parallel processing, but I did not know the codes. I 
hoped that someone who knew the codes could be 
motivated to undertake some analysis. I. was im­
pressed with the degree of interest in the machine and 
the lack of interest in attempting any analysis. I found 
a uniform response that if the machine existed, they 
would try it because it seemed intuitively attractive. 
No one was willing to attempt an analysis of his pro­
grams, however, with a view to justifying construction 
of the machine or influencing its design. In all fairness, 
they did not know how to do it and neither did I. The 
problem is harder and more subtle than I thought. The 
question remains open and, indeed, I still do not know 
how to find an answer with assurance except by ex­
tended experience. Responsible people still hold an 
honest difference of opinion. Fortunately, the con­
tinued development of that machine did not require 
the active support and involvement of the scientific 
community it was intended to serve. Technological 
opportunity supported by intuition and some analysis 
has been sufficient. The experience suggests, however, 
that there exists only a weak coupling between the 
community of natural scientists and the community 
of computer engineers. It also affirms the need to test 
new ideas in machine design by actual construction of 
machines and evaluation in a user environment. 

Another interesting point which these machines have 
emphasized is that more than one schema may be 
applied to the solution of most problems and different 
computer architectures may favor different schema. 

This seems obvious but it required the actual develop­
ment of parallel and pipe-line machines to stimulate 
such rethinking of problem formulation and algorithms. 
N ow this offers a rich field of research for numerical 
analysts and computer scientists, where results may 
be of direct interest to scientists. I personally believe 
that this is a profoundly significant development which 
may portend the appearance of a new degree of in­
fluence by computers and computer science in our 
conceptualization of the scientific problems we attempt 
to solve. More immediately, however, it means that 
definitive evaluation of new ideas in computer archi­
tecture can only be made after good algorithms for 
those architectures are devised. Is this backwards? 
Should not the analysis of algorithms influence design? 
Is this not another example of weak coupling between 
communities with allied interests? Fortunately, we are 
beginning to make progress on the theory of algorithms 
which offers hope of benefit to both scientific computing 
and computer design. 

Let us return, now, to the remarkable success of 
sequential computers in large scale scientific computing. 
If one considers the spectrum of activities which now 
comprises large scale scientific calculation one can 
observe a number of common features. 

(1) The conceptual theory upon which the computa­
tions are based was firmly established before the 
invention of computers. That theory had been 
well verified using experiments and calculations 
which could be and were conducted without 
computers, providing a solid basis for faith 
that large investments of effort and money in 
computing would not be wasted. 

High energy physics might be considered to 
be one outstanding exception to this since con­
ceptual theory in that field is being developed 
during the age of computers. If one considers 
the actual computing being done, however, the 
distinction disappears. The large-scale computing 
is in analysis of data from experiments which are 
patterned in their design and analysis after 
particle physics concepts that were well es­
tablished before computers were applied. Orders 
of magnitude less computation is used in theo­
retical investigation exploring the conceptual 
understanding of high energy physics. No theory 
commands sufficient faith to justify a larger 
investment of time and money. 

(2) The conceptual theories are all expressible in 
well formed mathematical or statistical models. 

(3) Based on the conceptual paradigms, it is possible 
to visualize, without using computers, interesting 
problems which can be solved with computers. 
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(4) Such problems can be solved, to a sufficiently 
good approximation to be interesting, using 
sequential machines operating for reasonable 
lengths of time. 

(5) These problems enjoy a high national priority 
giving them access to the large amounts of 
money and effort which have been required for 
their study. 

If you think about it, this is an interesting set of 
properties. It suggests the roles which have been played 
in fact by scientific motivation, technological op­
portunity, and public support in determining the 
course of development of large scale scientific com­
puting. It provides a basis for understanding why 
scientific progress and the development of computer 
technology could be so vigorous, so symbiotic, and yet 
so independent. It provides a rationale for the observa­
tion that scientific inquiry has adopted the technology 
provided rather than leading or strongly cooperating 
in its development. At the same time, it points to 
certain limits, which have been observed by the course 
of events, in fact, on the regions of success in scientific 
computing. If one may have faith in continuity, it 
suggests some features which can be expected of de­
velopments in the near future. 

One interesting observation which derives from this 
set of characteristics is that although computing has 
profoundly changed the style and methodology of 
research in some fields, although it has opened nmv 
questions for serious consideration, there has been no 
departure from already established concepts. Com­
puting has not yet altered our paradigms of nature in 
a fundamental way. This is not surprising-the time 
constant for developing fundamental physical theory 
is much longer than the history of computers-but it 
indicates that we should not expect the short time 
scales associated with the development of technology 
to be reflected in any obvious way, if at all, in the rate 
we revise our fundamental underst9,nding of nature. It 
also invites the question of whether computing should 
be expected to ever become an essential component of 
conceptualization. Are there interesting phenomena 
which cannot be described within the framework of 
mathematical or statistical models? Are there impor­
tant questions to be posed which do not yield to 
analysis by sequential procedures? What would it 
mean to include a program operating in time as an 
essential element in our description of a model, as we 
now include time-dependent equations? It is an in­
teresting conjecture. Considerations of real-time sys­
tems are suggestive. 

Before going on, let us examine some possible in­
ferences which may be drawn from the preceding 

characterization of large scale scientific computing. 
Certainly it is true that national priorities have strongly 
influenced the choice of fields of investigation and 
hence the visible progress. These priorities are changing 
and efforts in large scale computation in fields other 
than the physical sciences will receive more encourage­
ment. Fields which have the property that they can 
take advantage of existing technology, have well 
posed questions based on well formulated mathe­
matical paradigms, and have a sufficiently large com­
munity of interested and talented scientists who are be­
ginning to emerge as partners with the physical sciences 
in large scale computing. The National Science Foun­
dation is playing a role in this through its interest in 
the applications of computers to research in the natural 
sciences, in social sciences, and in applied research. 
One harbinger of change is the establishment of the 
Computer Research Center for Economics and lVlanage­
ment Science by the National Bureau of Economic 
Research, Inc. with NSF support. We intend to take 
advantage of other opportunities as they arise. 

If we note, again, that it has taken a decade to de­
velop the new machines which are now appearing and 
that it will be some time, yet, before they can be 
adequately evaluated we may guess that the new fields 
which will join the ranks of large scale scientific com­
puting in the next decade can be discerned now. They 
are not many. Few disciplines enjoy the advantages 
which the physical sciences have of almost universally 
accepted, well established paradigms which adapt well 
to existing computer technology. Advances in theory 
might accelerate the entry of one field or another in 
unexpected ways but advances in technology are un­
likely to do so within a ten year time frame. I, myself, 
am not aware of many well formed problems embedded 
in widely accepted theory which are only awaiting a 
technological breakthrough to be solved. Even if they 
exist, it will take time to translate new ideas in tech­
nology into effective research application. The ideas 
must first be converted into actually realized tools, a 
task that may take more than ten years itself if we ac­
cept prior experience as a guide. The application of these 
tools must then be developed. Although there is over­
lap in these activities, a reasonable expectation would 
be that in ten years time we will be able to guess some 
still in the future impacts we do not now discern but 
the fully active members of the large scale computing 
fraternity which will then exist are already recog­
nizable today as having accepted theories which are 
describable by mathematical or statistical models 
amenable to solution by sequential machines. The 
potential new members are distinguished from the 
present members primarily by the fact that they are 
only now adopting the mathematical methodology of 
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the physical sciences and by the fact they they do not 
yet enjoy high national priority status. Technology 
notwithstanding, ten years is a short time in . the de­
velopment of human thought. Even quantum theory 
took much longer to evolve. 

Another feature which emerges from considering 
this set of properties is the prevalence in successful 
scientific computing of certain mathematical or statis­
tical models. Not only were the conceptual theories 
well established before computers entered the scene 
but the models used to describe those concepts and the 
approaches taken to solve them were also well estab­
lished. For example, finite difference approximations 
of partial differential equations. We have always 
quickly exhausted the capacity of the machines we had 
to solve those problems in that way but we have not 
become frustrated because technology advanced rapidly 
enough to keep the game interesting. We have made 
substantial advances in discovering faster, more ef­
ficient algorithms for carrying out these processes and 
in understanding convergence and stability but basically 
we have worked, not only in the same conceptual but 
also in the same procedural framework that was com­
mon with desk calculators. (l\10nte Carlo techniques 
might be thought to be an exception. I think not. As 
with many things, computers made those already es­
tablished techniques more effective.) 

Now a new line of thought is beginning to emerge. 
I am aware of it in meteorology but it may be present 
elsewhere. Computers have enabled us to undertake 
"ab initio" calculations which could never be ap­
proached before. (Indeed, some chemists now believe 
that their theory is so sound and their computing 
techniques so accurate that they can place as much 
faith in the results of a calculation of a possible molecule 
as they can in an experiment. They have some sub­
stantial basis, as is evidenced by the story of the noble 
gas compounds but it reflects an interesting shift in 
attitude.) This ability has enabled us to undertake 
prediction with an accuracy never before possible and 
the long range weather forecasting which has become 
part of our daily lives is an outstanding result. But, 
perhaps we are beginning to push the limit of that 
ability using standard techniques. The predictive 
power of a given mathematical model rests ultimately 
upon the completeness and accuracy of the physical 
data we can provide even if the model is in principle 
perfect and we have infinite computing power. At some 
point, decreasing the size of the mesh or increasing the 
number of layers in a three dimensional atmospheric 
model multiplies the computational steps required 
without yielding a commensurate increas3 in useful 
results. It has been suggested that in atmospheric 
circulation problems, computers may be bringing that 

limit within sight. A couple of weeks may be a limit 
beyond which the model diverges from reality because 
of limitations in physics, not computing. 

This observation is suggestive. The problem has been 
recognized before and some computer scientists have 
studied significance arithmetic schemes to provide 
continuous knowledge of the significance of quantities 
throughout a calculation. This work has not yet entered 
into practical applicatjon but interest may revive in it 
as we find ourselves pushing the limits of data accuracy 
more frequently. If true, it will offer a rich field for 
research relevant to computer users. 

But the observation is also interesting in another 
dimension. I t would be surprising if a conceptual 
theory can find mathematical expression in only one 
model or if that model can be solved in only one way. 
It would also be surprising if we have already chosen 
the best model for all situations. In atmospheric cir­
culation, some of the questions one wants to raise may 
be answerable from a turbulence model which is sta­
tistical in nature and leads to a different computational 
problem. This could be a better way to obtain some 
results than solving the general field equations. 

This phenomena is not new. Scientists have always 
reformulated models and changed approximations 
when they were unable to make further progress with 
one particular line of attack. Instead, the last twenty 
years have been unusual. Computers have increased the 
power of certain traditional lines of attack so much 
that we are only now approaching their limits. As we 
reach those limits, more attention may be paid once 
again to alternatives and to the real significance of the 
numbers we compute. 

Finally, this set of characteristics of successful 
scientific computing can be helpful in anticipating the 
near term impact of new developments. They suggest 
that the most likely effect of technology will be to 
help scientists do better the things they already know 
how to do, perhaps, even stronger, the things they are 
already doing. Before discussing specifics here, how­
ever, it is necessary to make note of a new current 
which is beginning to influence the computing environ­
ment. While scientists and computer manufacturers 
each followed their own independent but mutually 
reenforcing interests, a third community, the com­
munity of computer scientists, was gradually emerging. 
This is the community whose imagination is captured 
by the intrinsic interest of complexity, systems, arid 
computers and it is largely populated by bright young 
people who grew up with computers as a background. 
To the extent that computers have broken tradition, 
these people have the advantage of growing up with 
fewer ties to the old traditions. This community is nQw 
taking shape and beginning to find things to say which 
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have relevance to both scientific calculation and 
computer design. 

Neither the computer manufacturers nor the com­
puter users have had much interest in computer 
science. They have been preoccupied with technology 
and have strongly flavored the definition of the term 
"computer science" with their own interests. For this 
reason it may be necessary to define more precisely 
what I mean. To some degree, one man's science may 
be another man's technology and neither can live in 
good health ",ithout the other. This is especially true 
if one looks at the actual occupations of people who 
call themselves scientists, the things they really do 
with their time and energy. The term science, however, 
has a commonly accepted meaning which involves the 
discovery and formulation of generalizations or prin­
ciples that can be expressed in models describing phe­
nomena. Computing has focussed attention on 
phenomena which are as old as man but which have 
been taken for granted; phenomena concerning in­
formation, complexity, and the processes for organizing, 
describing, and analyzing. Computer science is ad­
dressing itself to these phenomena. Its success will have 
meaning for all who are concerned with computers. 

The conduct of computer science research is also 
interesting. There is reason to believe that it must be, 
at least in part, essentially complex and involve the 
concerted effort of research teams. Professor Jack 
Schwartz, of New York University, has used an 
analogy which I find fruitful. He notes that mathe­
matics is a solitary occupation which can be compared 
to diamond mining. One digs through large quantities 
of dross but in the end one finds a jewel which is small, 
beautiful, and can be easily admired by all who have 
eyes to see. Computer science, on the other hand, is 
comparable to coal mining. One handles comparable 
or greater quantities of material but none of it can be 
thrown away. Everything must be preserved for use 
and the process is intrinsically complex. This does not 
preclude generalization and the discovery of principles 
but it does say something about the process of finding 
them and about the description of them which gives 
them meaning. 

With this preamble, let us return to the considera­
tion of new technology. There are several things which 
come immediately to mind. They cannot really be 
separated-each influences the others-but you can 
construct your own feedback loops. 

(1) Machine architecture 

This has already been discussed. The new architec­
tural ideas which may affect large scale scientific 
computation within ten years are already being built 

in hardware. The long lead times involved make it 
almost certain that the impact of other ideas will not 
be realized in that time frame. New contributions 
inspired by the machines now being built will increase 
rapidly as those machines actually become available, 
however, and will influence their use. These will be 
in the areas of problem formulation, analysis of al­
gorithms, data management schemata, operating sys­
tems, languages, and file management. I hope these 
machines will be available for computer science re­
search. I think they cannot be properly evaluated 
without it. 

(2) Solid state memory 

It appears likely that we will soon have memories 
available which are comparable in cost to present core 
memories but comparable in speed to logic. This will 
change one of the parameters of machine design which 
has been nearly constant throughout the history of 
computers, the ratio of memory time to logic time, 
from about 100: 1 to about 1: 1. It would be most 
surprising if this does not have some effect. Program­
ming would seem to gain a new degree of freedom. One 
possible effect may be more effective specialization of 
machine function without specialization of machine 
design. Floating point arithmetic might be programmed 
again, not wired, for example, to give greater flexibility 
of word size and significance arithmetic may have a 
better chance for effective implementation. 

On the other hand, the forces influencing change 
are numerous, subtle, and complex. It is very difficult 
to forecast but fascinating to watch as events unfold. 
The foregoing statements assume that it is easier to 
program than to build machines. But one can also 
imagine ways in which this same memory development, 
with proper inspiration and motivation, might lead to 
simplifying the fabrication process. Modular building 
blocks for machines and systems of machines might 
then become part of our standard repertoire. 

(3) Algorithms 

This is an area where computer science will give us 
an undisputed benefit. Theoretical limits on the speed 
of algorithms will provide measures against which 
to compare performance and will inspire improvement. 
Analysis and classification of algorithms will begin to 
give formal structure to programs and guides to opti­
mize design of both programs and machines. From this 
area will come the indispensable tools for understanding 
the information processes which are possible for us to 
use in solving problems. 
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The benefit will be felt, not only in increased per­
formance on our present problems, which may be 
significant or not, but in providing us with constructive 
procedures for thinking about the information processes 
appropriate for our problems. It may seem facetious to 
suggest that the science of algorithms will usurp the 
role of calculus and numerical analysis as the primary 
tools for description and problem solving. It certainly 
is premature. But I will be interested to see what our 
attitude is about this at the end of this decade. 

(4) Languages 

In the short history of large scale scientific computing 
we have relied primarily upon one language, FOR­
TRAN, and have accepted its limitations in the interest 
of pursuing the scientific problems at hand. Again, it 
has been the case that other languages migh t provide 
an incremental gain but that has not been worth an 
incremental effort by scientists to learn, to use, or to 
develop. Improvements have been made and will con­
tinue. Computer scientists are developing automatic 
code optimization procedures which may help per­
formance and, perhaps, debugging. Monitoring schemes 
and performance measurement studies are making it 
possible to do time analysis of programs to increase the 
efficiency of codes. Factors of two, three, ten, or some­
times fifty improvement result. But with respect to 
learning languages, the scientific community has been 
conserva tive. 

N ow we may be reaching another kind of limit. 
Programming is a human effort involving a long chain 
of people and events before a complete program can 
be made to work satisfactorily. Programming time 
and the irreducible error rate at each step of the process 
places a practical limit on the growth of complexity of 
programs, generally by making the cost or time re­
quired to achieve a certain degree of complexity greater 
than we can, or want to invest. In spite of large pro­
gramming investments and outstanding successes we 
are all aware of these limitations, and have had the 
experience of thinking of interesting programs which 
we were unwilling or unable to write. More significantly, 
some of the programs we have already constructed 
are maximally complex for our resources. FORTRAN 
is becoming a restraint that can be felt. 

It is clear that this restraint can be relaxed since 
this is an area in which computer science has made 
progress since FORTRAN was developed. Iverson's 
APL, for example, is indicative as is Schwartz' SETL. 
In still another direction, Hearn's REDUCE is building 
a record of accomplishment. Within a decade, scientists 
will be multilingual and have greater freedom for 
scientific research as a consequence. 

Another problem in the general area of languages 
which computer science is attacking is the problem of 
transportability of programs from one computing en­
vironment to another. Gradually, the structure of 
programs, compilers, and operating systems is be­
coming clear. We are learning how to isolate the es­
sentially machine dependent portions of codes, and to 
bootstrap a system with minimum reprogramming 
effort. The benefits of this development are already 
being felt in economy of programming effort when 
changing machines. Ultimately, it may make an im­
portant contribution to scientific communication by 
making it feasible to exchange codes. 

(5) Communications 

This may make the most significant change in our 
daily working environment and seems to have large 
momentum, with stimulation from many sources. The 
National Bureau for Economics Research Center, 
which I mentioned earlier, is being estabHshed with 
remote operation in mind from its inception. So is the 
CDC-7600 installation at Berkeley for high energy 
physics. ILLIAC IV, at Ames, will soon follow and it 

_ seems likely that other centers for specialized disciplines 
with planned remote operation will soon appear. 

The trend seems natural and inevitable. Research 
computing involves not only a computing machine but 
also a corpus of appropriate programs and an operating 
policy favorable to the work. Finally, and perhaps most 
importantly, it involves a group of scientists and sup­
port staff which can work well together and com­
municate freely to develop the research methodology. 
The success of this organization for research has been 
demonstrated in the national laboratories. It is not 
surprising that it carries over to computing with com­
munications providing the means. 

At the same time, this mode of operation is a de­
parture from the organization of research computing 
which developed during the fifties and sixties when 
each institution built the local, general purpose com­
puting capability which would best satisfy its overall 
staff requirements within the limits of its resources. 
This change requires an adjustment by all parties 
concerned and the transition will take time to ac­
complish. It will be interesting to see what changes in 
our working environment and relationships result. 

These are several technological changes that may 
affect scientific computing in the near future. Others 
should be included, also. The availability of large data 
files, improvement in man-machine interaction, progress 
in data representation (including the question of what 
data should be stored and what should be recon­
structed), and others will have a significant impact. 
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Yet each of these seems likely to have effects which 
are rather specific to particular fields of research, in 
the near term, and little influence common to all fields. 
Color graphics may be an exception. 

One other project, which NSF is undertaking, should 
also be mentioned. That is a cooperative effort among 
several universities and national laboratories to analyze, 
certify, and document standard subroutines. The 
resulting library should give us greater basis for con­
fidence in results and less trauma in carrying out 
research programs involving computing. 

Before closing, I would like to mention the problem 
of publication. Scientific computing has labored under 
a handicap because it has not been possible to publish 
programs. A number of factors are relevant but I am 
not sure of their causal ordering. 

(1) Attitude 

Programming has been considered necessary but 
menial even though it has been the principal occupa­
tion of many scientists in terms of time and energy. 

(2) Language 

Mathematics has a language which is concise and 
makes the intellectual content clear. Often, the best 
description of a FORTRAN program is the program 
itself which is neither concise nor clear. 

(3) Utility 

A mathematical analysis of a theory or experiment 
can be universally understood, generalized, and used. 

A program is typically obscure, specific, and almost 
universally useless. 

The belittling attitude toward programming, which 
is another carry-over of tradition, has certainly in­
hibited any attempt to solve the problem but failure 
to overcome the other hurdles does not encourage a 
change in attitude. It is a classical example of an 
impasse, one which natural scientists will not solve 
within the framework of their own disciplines. 

It may be that computer science will make an im­
portant contribution here by developing the basis for 
describing and communicating programs in a really 
useful and general way. If that results, the benefit to 
science of improved communication may be great. It 
is interesting, though, that the path to this accomplish­
ment will have been through byways such as automata 
theory, formal languages, perhaps set theory, the study 
of algorithms, and the structure of machines which 
have almost no discernible relevance to physical science. 

We have seen that although progress in large scale 
scientific computing has been surprisingly rapid, it 
has also been bound by tradition. We have also seen 
that there is a long time constant in developing and 
absorbing technology. Both of these facts tend to 
become obscured by the activity around us but to­
gether they will continue to shape the near term future. 
At the same time, a new influence is emerging through 
the development of computer science which may pro­
vide the means to relax the constraints of tradition and 
expand both our conceptual and procedural horizons. 
The time scale for fundamental change, if it occurs, 
can be expected to be long but a decade may reveal 
the strength of the trend. It will be interesting to watch. 





Computer architectllre and very large prohlems* 
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For the purposes of this paper, "very large problems" 
are defined by two properties: (1) There is an effectively 
unlimited amount of physics and of spatial detail 
which it would be useful to include if practical; and (2) 
the calculation must be completed in a limited number 
of hours. The best example is perhaps the global weather 
problem. We will obviously never put in all the energy 
sources or all the topography and we must obviously 
calculate faster than real time. 

Such problems need big machines in the sense of 
operating as rapidly as possible on large numbers of 
variables which describe or pertain to a single region of 
space. It is the aim of this paper to consider questions 
of computer architecture in this context. 

The questions of primary interest are (1) what 
computer architecture is best for such problems today, 
and (2) what architecture may be best ten years from 
now. These questions will not, in fact, be answered. 
The following comments may, however, indicate why 
the first question is unanswerable and help others in a 
search for the answer to the second. 

To keep the problem within a reasonable scope, it will 
be assumed as a boundary condition that the cost per 
unit of arithmetic of the ideal computer for large 
problems must not be substantially greater than the 
cost per unit of arithmetic of, say, an IBM 360/195 or 
a CDC 7600. This assumption is intended to exclude an 
architecture which offers a factor of n in speed if the cost 
is up by a factor of, say, 3n. This admittedly excludes 
an interesting area; if, for example, it becomes necessary 
to control Los Angeles air traffic by computer and the 
best available computer is too slow by a factor of three, 
then it would certainly be interesting to know whether 
the necessary computer could be built for a cost up 
by a factor of nine. Nonetheless, the restricted question 
would appear to be of sufficient interest, since many 

* This work performed under the auspices of the U. S. Atomic 
Energy Commission. 
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large problems, though important, command only 
limited funds. 

Let us start by considering the role of logic elements. 
They differ in cost, speed, size, power dissipation, 
sensitivity, and reliability. In many cases, there are 
inherent trade-offs among these properties. Let us 
imagine an omniscient computer designer who has in 
mind all possible computer architectures-no, make 
that all possible computer designs-and who has full 
knowledge of all available logic elements. For all 
possible designs implemented with all available types 
of element, he wants to find that combination giving the 
maximum speed, subject only to the restrictions that 
speed-to-cost ratio be not much higher than what is 
now available and that the computer have a mean time 
to failure of many hours. 

He would immediately realize that the problem is not 
well defined. He would ask what kind of calculation he is 
to maximize the speed of, and be told, "Large problems, 
as defined above." Noting that such problems have 
"large numbers of variables," he would fold into his 
task the consideration of the various kinds of memories 
available. He would then come up against the following 
major architectural problem. 

Define access time as the time which must elapse 
between a decision to fetch an operand from a given 
address and the arrival of that operand at the desired 
function unit. Then, for all large-memory technologies 
today, the access time is long compared to the achiev­
able average instruction execution time. (In other 
words, you can't win by rebuilding the IBM 704 with 
modern components.) What can be done? There 
appear to be only two things to do. First, one can try to 
minimize the number of operand fetches required during 
the solution of the given problem. Second, one can over­
lap the fetching of operands, both with each other and 
with computation. 

It is interesting to ask whether these two things are 
in conflict with each other. For machines with internal 
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addressable registers, good coders (and compilers) 
exploit the first; by clever use of the registers, they try 
to minimize the number of times a given operand is 
fetched. For the upcoming vector machines, on the 
other hand, good coders will try to exploit the second; 
they will maximize overlap by favoring the vector 
commands, which stream operands from memory as 
fast as the memories and memory buses permit. 

Is there, then, a conflict or not? There is a conflict 
only so long as the restriction on gate count (which may 
come from cost, size, power, or reliability) prevents us 
from having the best of both worlds. Here is precisely 
where the question gets so sticky. Are we discussing 
today's practical problems, or are we looking for funda­
mentals? This matter will be touched on again below. 

In passing, it might be noted that this problem of 
long access time cannot be solved merely by develop­
ment of a very fast memory, because transmission times 
for address and data would still be long. It is no help 
to postulate a general scaling down of the whole com­
puter, so that all function units can be very close to the 
memory, because this will scale down the instruction 
execution time as well. A very restricted solution is 
suggested in the Appendix, but just for fun, since it 
certainly cannot be achieved within the next ten years. 
The long access time should probably be accepted as a 
fact of life. 

At this point, our omniscient designer might note 
that, while memory access times are inherently long, it is 
relatively easy to achieve high bandwidth by a variety 
of methods. He might then pause to consider the 
methods appropriate to various architectures and note 
advantages and disadvantages. 

The first technique uses a memory word which is two 
or more machine words in length. In all plausible situa­
tions, the number is a power of two and the machine 
words have consecutive effective addresses. For a 
given memory technology, this increases potential 
bandwidth as long as the read time increases more 
slowly than the size of the memory word. Whether or 
not it increases realized bandwidth depends on the mean 
number of useful machine words which are acquired 
by a fetch of a memory word. The technique is obviously 
appropriate for instruction fetching and for feeding 
streams of consecutive operands to a vector machine. 
With many independent memory boxes (see next 
paragraph), the technique is· also quite powerful for 
most "naturally occurring" codes, if the boxes have fast 
registers to hold the last memory word fetched, or in the 
presence of a "cache" memory as in the IBM 360/85 
and 195. 

The second technique uses interleaving of many 

independent memory boxes. We may assume with no 
loss of generality that the number of boxes is a power 
of two and that they are interleaved on the low order 
bits of the memory word addresses. This technique is 
also obviously appropriate for feeding streams of 
consecutive operands to a vector machine. Let us 
examine the behavior of such a memory for a sequence 
of fetches from random addresses; for simplicity, assume 
there is only one machine word per memory word. 
Suppose we have an infinite list of random addresses, 
a clock, and the logic to pass one address per cycle 
to the appropriate memory box. If the order in which 
the fetches get accomplished is irrelevant (and if we 
have sufficient logic), then our steady state will either 
be one fetch per clock cycle or else all boxes working to 
capacity, depending on whether the clock is relatively 
slow or relatively fast compared to the memory cycle 
time. In either event, that steady state will constitute 
maximum available data rate. 

If our list has precedence relations (as it certainly 
must when we mix in stores as well as fetches), or if we 
do not have facilities to queue up an arbitrarily ~ong 
list, or if we do not have the logic to scan an arbitrarily 
long list in one clock cycle, then we wHl have conflicts 
and loss of data rate. It is probably not fruitful to 
derive results for random addresses, since there is a 
great deal of correlation in real cases. 

It is worth noting that additional processors may be 
able to share a memory "for free" whenever a single 
processor leaves most boxes idle most of the time. Such 
idleness could be because of a relatively slow clock cycle 
or very many boxes, or it could be because of too many 
precedence relations in the work of a single processor 
(assuming that multiple processors have no, or at 
least negligible, precedence relations among each other). 

The third technique uses separate memories serving 
separate processors. This is the technique of the 
ILLIAC IV, where each memory-processor pair works 
on a separate portion of the large problem. The potential 
bandwidth is simply the product of the number of 
such pairs and the bandwidth of an individual pair. 
The realized bandwidth is less by the mean fraction of 
processors doing useful work. 

By this time, our designer, being merely omniscient 
and not divine, has developed a headache. He returns 
to his consideration of logic elements, having in mind 
that there are several ways to get whatever bandwidth 
he needs from memory. He takes a quick look at the 
possibility of using the best of everything. He imagines 
a design of eight super-processors with independent 
instruction streams, where each super-processor consists 
of 64 slave processors, each combining the arithmetic 



capabilities of a '7600 with vector streaming capabilities. 
Before bothering to add up the price, he sees that the 
mean time between failures will be a few minutes. 

Concluding, then, that he must compromise, that he 
may use only a subset of the techniques which enhance 
speed for certain kinds of work, he realizes that his 
problem is still not well defined. He calls in a friend who 
knows all about programming, numerical analysis, and 
applied mathematics. He asks for guidance on the fun­
damental arithmetic and data flow requirements of the 
large problems under consideration. 

Unfortunately, his friend points out two difficulties. 
First of all, there are trade-offs between the amounts of 
arithmetic and the amounts of· data flow, at both the 
programming and mathematical levels. Second, the 
properties of any important computer which may come 
into existence will themselves influence the develop­
ment of mathematical techniques. 

The second point is brushed aside, and a new prob­
lem, this time well defined, is stated as follows. For all 
possible computer designs, implemented with all 
available types of element and applied to today's large 
problems with all well-known mathematical methods, 
which combination of design, implementation, and 
calculational method gives the fastest solution, subject 
again to cost and reliability restrictions? 

Perhaps these gentlemen are busy somewhere 
solving this well defined problem. Unfortunately, they 
have not been heard from, and the problem is too 
difficult for ordinary mortals. What should be done? 

What actually has been done in recent years is as 
follows. Various designers have chosen some medium­
sized area in the design-implementation space, looked 
for a local optimum with respect to some set of pieces of 
problems, and proceeded to create a computer. During 
the creation time, mathematicians have made some 
exploration of the calculational method (and program­
ming technique) space by analysis and simulation. 
After creation (if successful), programmers can be 
expected to find quite rapidly the actual optimum with 
respect to programming technique; over the years, the 
mathematicians will also move us steadily toward the 
optimum with respect to calculational method. In this 
way, points are located empirically in the space of 
interest, namely the design-implementation-method 
space. 

It is time now to look more specifically at the present 
state of affairs. Consider the approximately 16 year 
interval between the IBM 701 and the CDC 7600. A 
typical large problem ran for about ten hours on the 
701; a typical large problem runs for about ten hours 
on the 7600. The ratio of work being done is perhaps 
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1000; the cost ratio is perhaps five, leaving an improve­
ment factor of 200. Most of this factor, which amounts 
to 40 percent per year, comes from raw component 
speed. The rest comes from improved design (architec­
ture, if you wish), including floating point arithmetic, 
index register~, parallel input-output, sophisticated 
arithmetic engines, and, finally, parallelism among 
instruction decoding, addressing, data flow, and 
arithmetic. Most of what came from improved design 
was again due to improved component technology, 
being obvious enough in principle but requiring large 
component counts which, in turn, required cheap, small, 
reliable components. For the large problems, not very 
much at all, up through the 7600, came from what we 
would now like to call really new architectural concepts, 
like vector arithmetic, multi-processors, or parallel 
processors. 

The reason why architecture has apparently played 
so small a role, to date, for large problems is precisely 
that 40 percent per year is very big. If implementation 
of a substantially new architecture requires a 50 percent 
increase in cost and a two year delay, one is giving 
away a factor of three to begin with. Furthermore, if 
the architecture moves us away from the optimum in 
method space (i.e., if new methods and/or reprogram­
ming is required), one gives away a further factor; 
it is generally considered that at least a factor of four 
must be anticipated in order to motivate a substantial 
change in method or program for a large problem. 

To say this again in other words: As long as 40 percent 
per year improvement keeps coining along "for free," 
the short term needs of the large problems under consid­
eration here do not motivate a substantial architectural 
change unless the anticipated speed improvement is 
substantial. "Substantial" means a factor of four in 
speed-to-cost over the competition after correcting 
for delivery date at 40 percent per year, compounded. 

There are, nonetheless, motivations. The first is the 
need to shift onto a more rapidly rising curve, if there is 
one, even if one takes an initial loss to do so. If routine 
improvements will come at a greater rate with some new 
architecture than with old architectures, then the short 
term loss from making the transition will eventually be 
overbalanced. 

The second and more important motivation is the 
need to explore the design-implementation space in 
order to get ready for the time, which must come 
sooner or later, when nothing approaching 40 percent 
per year will be available in the implementation direc­
tion. The trouble is knowing where to explore, and 
how much to spend on such exploration. 

To begin with, it must be noted that the manufac-
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turers will continue to explore, through actual construc­
tion, architectures which look profitable. Although the 
nature of the expanding computer market is such that 
architectures will not look profitable if they are only 
good for large problems of the type considered here, 
some light will nonetheless be shed on our question 
of the best machine for such problems. It will not be 
shed optimally, but it will be shed, in some sense, for 
free. 

There is a key difference in the importance of time 
between the commercial interest and the computer 
science interest. In the fullness of time, it will make no 
significant difference to computer science whether 
something was achieved a year or two earlier or later. 
But it can make quite a substantial difference to the 
company which achieves it first. 

All in all, this author sees no valid basis for criticizing 
the nature of the action within the private sector. On 
the other hand, it will be appropriate from time to time 
for the Government to underwrite exploration of 
important areas where the chance for profit is too far off 
to attract private industry. Some comments may be in 
order on how such exploration should take place. The 
particular question of interest to this author is whether 
the exploration should rely on simulation or on machine 
construction. 

Some years ago it was argued plausibly that the 
effective speed, for real large problems, of a new 
architecture could only be determined by implementing 
that architecture in a real computer as big and fast as 
anything else available. The argument was that only 
then would the appropriate people be motivated to 
optimize methods and programming. This may well 
have been true some years ago, but it is probably not 
true now. Two relevant things have increased in the 
last few years, namely the ability to do simulation at 
reasonable cost and the number of unemployed 
scientists. 

CONCLUSION 

To find the best computer, one must explore the space 
of computer design, componentry, mathematical 
method, and, programming technique. For a given 
computer design (or, at least, architecture), there has 
been substantial progress from improved componentry. 
This progress will continue for some time, but not 
forever. There has also been substantial progress from 
improved methods and programming techniques. This 
progress will also continue for some time, quite possibly 
forever. 

On the other hand, one cannot say that, for a given 

componentry, there has been or is about to be substan­
tial progress from improved architecture. Part of the 
reason is that the 40 percent per year of progress which 
has been available without architectural change puts 
a handicap on any development which requires more 
time (because it is breaking new ground) between 
choice of components and delivery. The rest of the 
reason must be that no new architecture has 
been invented which offers an order of magnitude 
improvement. 

Some day, the rate of increase of component speeds 
must become small. At that time, architectural changes 
which give small improvements in performance will be 
profitable. In this area, it seems safe to assume that 
exploration by industry will be adequate. 

If, on the other hand, as seems likely, the practical 
limit on gate count goes up by several orders of magni­
tude, substantial improvement will be available from 
architectural changes, and only from architectural 
changes. 

It is on this basis of very large gate count that archi­
tectural exploration will be needed, in the opinion of the 
author. If such exploration is to be carried out bel'ore 
the large gate counts are actually available, it must of 
course be done by simulation. The right time to begin 
is probably about ten years before the results are 
needed. Is that today? Was it, perhaps, a few years 
ago? 

APPENDIX 

If a memory technology came about which could 
give one function unit very fast access to all the words 
in a large memory, if there were an architecture with a 
crucial need for such very fast access from n function 
units, if such access to a small (e.g., register) memory 
were already in hand, and if the memory technology in 
question were so cheap that one could afford n-fold 
memory redundancy, then one might consider the 
following. 

Let each function unit have its own memory, and 
let each memory start out with identical contents. 
Define two types of storing, A and B. A Type A store 
is the ordinary type, in which, logically, the old value 
of some variable is instantly replaced by the new 
value. A Type B store goes only to "empty" cell (i.e, 
it replaces dead, or garbage, information) and the 
information is not going to be refetchable for a long 
time. Then require all problems to restrict Type A 
stores to the small memory and make only Type B 
stores to the large memory. 

Many readers will lose interest at this point; there 



are, nonetheless, many large problems which fit these 
rules. What is proposed, obviously, is that Type B 
stores be propagated from memory to memory at 
leisure. The whole thing would likely be of interest only 
if this propagation came from a natural diffusion 
inherent in the physics of the memory. For example, 
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imagine that the binary storage element is a cell in a 
long filament. The filament is stable with all its cells 
zero or all its cells one. If any cell is changed, the 
change propagates along the filament in both directions. 
Each function unit gets at all the filaments at some 
convenient station along their length. 





Scientific applications of computers in the '70s 

by M. STUART LYNN 

Rice University 
Houston, Texas 

It is still fashionable to predict that what happens 
in the future of computing will be a glorified extension 
of what has happened in the past. Thus, the last dec­
ade has seen an explosion in all uses of computers 
and therefore, so the fashion would dictate, this ex­
plosion must necessarily continue if the faith is not 
to be shaken. 

There is no doubt that exciting new ways of putting 
computers to work will be found. This writer is in no 
better position than anyone else to forecast what these 
will be. It will, however, be the main thesis of this 
discussion that the explosive rate of growth will not 
continue, particularly in the area of scientific applica­
tions, but that the emphasis will be on making known 
applications work, and work in a more meaningful 
environment. 

GOLDFIELDS 

The gold-rush of the sixties is over-this period was 
characterized by taking a field of man's endeavor, any 
field, multiplying it by three and attempting to auto­
mate it, independent of whether or not such automa­
tion could in any way be justified. Support was easily 
available for anything and, as such practically every 
field of man's interest was a candidate for computer 
application. The fact that reality has fallen short of 
promise has left a skeptical, if not nasty, taste in many 
mouths. It is probably true, however, that we have 
been left with a more realistic perspective as to the 
meaningful uses of computers and, even more impor­
tantly, the limitations of such usage. 

The gap between promise and reality is, for example, 
evident in application areas dependent upon modelling 
or simulation. Ten years ago it was customary to insist 
that we were on the verge of modelling the world and 
its component parts to fifteen decimal places; all that 
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was required was another substantial injection of 
federal or other support to achieve the necessary 
breakthrough. In application after application a 
similar pattern was followed: early promise with highly 
simplified models indicated great things to come, only 
to be followed in time with the limitations of reality, 
as the complexities of highly nonlinear or otherwise 
complex problems and indeterminate data circum­
scribed the bounds of possibility. The debris left be­
hind in many of the goldfields became depressingly 
familiar. 

N ow we no longer attempt fifteen decimal places. 
We talk instead of provoking lines of thought which 
might not otherwise have occurred. This is probably a 
healthy trend, although it is perhaps unfortunate that 
we are still not learning from the past in some newer 
application areas. 

INDUSTRY TRENDS 

In addition to the effects of left-over skepticism, 
trends in the computer industry will also mitigate 
against a continuation of the applications explosion. 
It is certainly highly probable that the current com­
puter overcapacity in this country, when combined 
with the decreasing cost/performance curve of com­
puter systems, will cause considerable pressure on the 
industry to underwrite nmv applications as a means 
of supporting continued expansion of the industry. 
However: 

• I t is likely that the most acceptable applications 
will be those whose economic pay-off is readily 
justifiable in the short-term, in view of past man­
agement experiences and of the current economic 
climate. This would tend not to favor scientific 
applications. 
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• The effects of unbundling have already moved 
the onus of applications research and development 
more than ever on to the end-user. This will 
continue. Whereas this has little impact on the 
traditional user of computers, it reduces the pros­
pects of important uses of computers materializing 
among new user classes. 

• The increasing pressure for rapid economic justifi­
cation lessens the changes of serendipity yielding 
new applications. The principal opportunities for 
serendipity will continue to move back to the 
universities; this is probably not a bad thing, ex­
cept that universities are not always in the best 
position to judge user needs over the long-term. 

WHAT WILL HAPPEN? 

This writer suggests that the following are likely to 
be characteristic of scientific applications of the next 
decade: 

(1) The areas of application familiar today are 
unlikely to change substantially. The relative 
emphasis between areas is, however, likely to 
change as a reflection of society's changing 
priorities, as has already been observable over 
the past three years. Thus, for example, as a 
reflection of NASA's changing priorities, the 
use of computers in support of this nation's 
activities in space will shift toward the many 
possibilities involved in applications relating to 
the Earth Resources Program, a shift that has 
already begun to take place. Again by way of 
example, the ability to simulate ever more 
complex molecules and chemical reactions will 
have important applications in the petroleum, 
chemical and pharmaceutical industries. 

(2) Basis technological developments in support of 
applications will not mature at anywhere near 
the pace of the sixties. The emphasis will shift 
toward making fuller use of existing technolo­
gies and in making them support each other. 
Thus, for example, the concern of the sixties for 
speed and compactness in algorithmic processes 
will have diminished importance in the complex 
environments of present and future operating 
systems and as the cost of computing continues 
to decrease. On the other hand, the unnatural 

boundaries between such areas as numerical 
analysis, mathematical programming, computa­
tional statistics, signal analysis, pattern recogni­
tion and control theory will continue to become 
less well-defined. 

(3) There will be more emphasis on total systems 
implementation of known applications so that 
they are economically (or otherwise) useful to 
the end-user. This will include careful explora­
tion of computing environments in order to 
minimize overall costs and to maximize, inter 
alia, user productivity and convenience. In this 
context there will continue to be an increasing 
emphasis upon reliable systems. Substantial 
investment in research and development of 
scientific computer applications will be closely 
geared to their proven practicality and utility 
in society as a whole. 

(4) Basic methodologies already well understood 
in established application areas will be brought 
to bear upon newer areas. Examples of this are 
to be found in the electric power industry and 
in water estuarial modelling where only too 
often the simulation techniques currently used 
are primitive by comparison with what has 
been developed in other application areas. 

(5) The computer will continue to be brought to 
bear, only with ever increasing emphasis, in 
making the scientific research process itself 
more efficient. Advances in the technology of 
interfacing with computers will become suffi­
ciently reliable and efficient that the use of such 
technology will become widespread (many 
scientists use computers today no differently 
than they did ten years ago, in spite of the 
changes that have taken place). The ability to 
interact efficiently with large data bases, the 
growth of extensible languages, the develop­
·ment of special processors configurable by the 
user to meet his particular requirements, are 
examples of technologies which will have an 
impact upon ways in which scientists use com­
puters. 

This appraisal is not intended to be pessimistic. 
Within the above confines, the opportunities for using 
computers in exciting ways should be as great, if not 
greater, than ever before. The challenge, however, is 
one of turning more of the promises of the past decade 
in to accepted reality. 



The functions and elements of a training system 

by B. A. JONES 

Bankers Trust Company 
New York, New York 

"From a systems point of view, the design of an 
operation which can successfully carry out the training 
function becomes a problem of creating a system to 
accomplish a given end result or objective. In the case 
of training, this end result is to effect a group of planned 
and predetermined behavior changes in the or­
ganization.' '1 

The following are five basic functions that I feel are 
essential for an effective training system that will allow 
you to effect that group of predetermined behavior 
changes: 

I. Training Analysis 
II. Educational Consulting 

III. Training System Support 
IV. Public Relations 
V. Management 

The elements of each of these functions become the 
procedures necessary for the successful operation of the 
entire training system. To better understand these five 
basic functions it is necessary to look at their elements. 

The training analysis function (Figure 1) and its 
elements is the critical activity in determining training 
requirements. 

We begin the analysis by gathering valid data. That 
is, in terms of performance, what is it you want the 
trainee to do that he is not now doing, or what is it you 
want him to do better? Determine whether these are 
basic skills and knowledge he should possess or whether 
they are supplemental skills and knowledge that will 
upgrade his proficiency. This may determine the priority 
of training. 

The second element in the training analysis function 
is to address performance standards by conducting a 
deficiency analysis. At this point the following deter­
minations must be made: 

1. Is this a training problem? 
2. Is this a feedback problem? 
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3. Is this an attitude problem? 

4. Is this due to a lack of resources? 

5. Is this due to a lack of reinforcement? 

6. Is this a procedures problem? 

When this element of the training analysis has been 
completed, the suggested solution to the initial request 
or desired end result may be made. If the suggested 
solution is to develop a training curriculum, the third 
element in the training analysis, that of stating the 
terminal behaviors, begins. 

Once this has been accomplished, the design of the 
training curriculum proceeds. It is at this point that 
the cost of training, the length of training, the media, 
the method of evaluation, may be determined. 

The implementation and evaluation of the training 
curriculum may end the analysis function. If the desired 
end result was not obtained, it may be due to a bad 
analysis or a poor design. Whichever is the case, a 
reiteration through the process is essential. If the de­
sired end result has been met, the final element is to 
maintain the material. That is, if it is a one time only 
curriculum, it is placed in a history file. If it is an on­
going curriculum, it is kept up-to-date. 

When the suggested solution, the second element, is 
not the design of a training curriculum, the Educational 
Consulting function becomes crucial. Figure 2 illustrates 
the elements of this function. It differs from the train­
ing analysis in that the training person acts only as an 
advisor, i.e., he can suggest solutions but is not ac­
countable for implementation or evaluation. Figure 3 
lists some of the skills and knowledge necessary for 
successfully performing the consultation function. The 
questions asked during the follow-up emphasize the 
advisory capacity of the consultant. 

The third function of the training system, Training 
System Support, is basically an administrative and 
maintenance activity. However, the support is essential 
for a training division if it is to effectively serve and 

/ 
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Figure I-Training analysis function 

assist its users. The elements of this function are 
exhaustless, but three of these elements are vital. 

Record keeping provides an historical reference for 
each student and aids in defining what courses he 
must yet complete in terms of his career development. 
Record keeping is of great importance also in pre par-
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Figure 2-Consultation function 

Sell 
Interview 
Problem Solving 
Advise 
Help 
Expertise in training 
Communication 
Analysis 
Suggestions 
Persuade 
Confident 
Confidentiality 
Patience 
Sensitivity 

Follow-up 
-did you decide? 
-what did you decide? 
-were you 'successful? 
-may I help you? 

Figure 3-Consultation skills and knowledges 

Course 
Name, __ _ Date __________ _ 

Title____________ Phone _________ _ 
Uptown 

Department _________ Downtown 

Division _________ _ 

Supervisor's signature __________________ _ 

Current Responsibilities: _________________ _ 

The following information is helpful to the course instructors and 
they would appreciate your cooperation in supplying it. 

EXPERIENCE 

Number of years/months in any Data Processing Function: 

Programmer ________ _ 

Systems Analyst ______ _ 

Other (please state) __________________ _ 

EDUCATION 

Check highest Degree and indicate major: 

High School ______ --'-__ Undergraduate ______ _ 

Graduate __________ Ph.D. _________ _ 

Major __________ _ 

Figure 4-Systems analysis and design-Enrollment form 



ing a cost per student figure, developing and justifying 
a yearly budget, and forecasting resources. Figure 4 
illustrates such a form. 

Equipment maintenance is necessary for an effective 
and efficient training facility. It doesn't matter if the 
facility has only a one person training staff, a conference 
room, and an overhead projector, or is a large scale 
multi-media facility with a full-time training staff. 
Calvin R. Gould, put it this way: 

A national meeting of professional communica­
tors was ending its second day with a banquet 
that featured a learned and distinguished 
individual. Before the banquet, the speaker's 
assistant set up a pair of 35mm projectors 
and a screen. This person would be the pro­
jectionist and would work from a cued copy 
of the speech. While this practice requires 
that the speaker read his material, it is more 
effective than asking for each slide, and if well 
rehearsed, can be professionally done. The 
audience quite properly expected a worthwhile 
message from the speaker, a vice president 
of a large manufacturing company. They 
weren't to be denied. His initial remarks, 
charging the audience with their responsibility 
to world communications, proved he was going 
to be a dynamic speaker. As the first slide 
was projected the house lights went off right 
on cue. Everything was working like clock­
work, even the pause that followed the first 
slide seemed effective and timely . . . except 
it seemed to be longer than necessary .. , 
really too long. Finally the audience, the 
projectionist, and the speaker all seemed to 
realize simultaneously that the speaker's 
lectern light went out with the house lights. 
The fifteen minutes interruption required to 
recover from this unfortunate situation was 
enough to seriously damage the communica­
tions effectiveness of this presentation. I was 
in the audience, and I have long forgotten 
the message.2 

A schedule for the maintenance of equipment must 
be established, fully documented and enforced. It should 
include timetables for the changing of bulbs, the clean­
ing of equipment, periodic maintenance checks, etc. 

Inventory control is important, since in the majority 
of installations the training division has equipment that 
can be borrowed by other departments. The unavail­
ability of equipment can often lead to the cancellation 
of a class. The availability of existing equipment should 
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DESCRIPTION QUAN- CONDI- AVAIL-
TITY TION ABILITY 

SLIDE PROJECTORS 3 GOOD YES 

16MM PROJECTORS GOOD NO 

16MM CAMERA (BOLEX) 1 GOOD NO 

VIDEOCORDER (1/1 & 2") 3 GOOD 31" only 

VIDEO CAMERA 1 SATIS- YES 
FAC-
TORY 

T.V. MONITORS 5 GOOD 3 only 

MARK IV 1 GOOD NO 

CASSETTE PLAYER 2 GOOD YES 

HEADPHONE SETS 4 GOOD NO 

3M FOIL MAKER 1 GOOD YES 

3M OVERHEAD PRO- 1 SATIS- YES 
JECTOR FAC-

TORY 

PORTABLE SCREENS GOOD YES 

6 FOOT MIC GOOD NO 

NECK MIC 1 GOOD NO 

MARK V GOOD NO 

35MM CAMERA 1 REPAIR NO 

MP-3 CAMERA GOOD NO 

Figure 5-Inventory and status report 

be documented by an inventory and status report 
form. Figure 5 illustrates the form used at Bankers 
Trust. 

The Public Relations function has two distinct ele-
ments. Within the organization, communication is with 
users of data processing training. The promotion of 
in-house courses and the selling of services are necessary 
in order to establish and maintain credibility. The 
external element is, on the one hand, to let the rest of 
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.1 
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Figure 6-Management function planning sub-function 

the world know what your organization is doing, and, on 
the other, to make sure that you yourself are not re-inventing 
the wheel. 

The fifth function, that activity which permits the 
combination of time, people, and money to efficiently 
achieve the desired end result, is the Management func­
tion. It has four major elements: Planning, Organizing, 
Leading, and Controlling. Within each element are 
specific activities. 

Since most data processing training staffs are not 

expert in management philosophy or management de­
velopment, yet find it necessary to manage a training 
system, I offer the following descriptions of the four 
elements in the management function from Louis A. 
Allen, president of Louis A. Allen Associates, Inc. 

1. Planning 
"Planning is the work a manager does to master 
the future. Planning requires that a manager 
think before acting. In the process of doing this, 
he will map out beforehand what he expects to 
accomplish, how he can best do it, and the limits 
of cost and other factors that are significant. 
The principles of planning stress the importance 
of current decisions in limiting our potential 
range of action in the future. 
They point out that the further we project a 
plan into the future, the more unstable and un­
dependable it becomes. A key principle empha­
sizes the tendency of people to resist changes. 
Resistance to change can be overcome primarily 
by providing for participation and communica­
tion in the planning process. Plans are considered 
in terms of the specific activities of forecasting, 
establishing objectives, establishing programs, 
scheduling programs, allocating resources, set­
ting policies, and establishing procedures." 3 

Figure 6 illustrates how our training staff at 
Bankers Trust interprets this element. 

II. Organizing 
"Organizing is the work a manager does to ar­
range and relate the work to be performed so that 
it can be carried out most effectively by people. 
An organization is not people but the mecha­
nism arranged to enable people to work most 
effectively together. An organization chart is 
helpful but the chart itself is not the work of 

Figure 7-E.D.P. training division 
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organizing, for this is how one insures that the 
most work is accomplished by the fewest people 
at the least cost." 4 

Figure 7 illustrates the organization of our training 
division. 

III. Leading 
"Leading is the work a manager performs to get 
people to take required action. Leading is the 
energizing function that makes planning, con­
trol, and organizing possible. In studying what it 
takes to lead, we find that there is no one best 
management personality. The proper blend of 
authoritarian and democratic leadership know­
ingly applied is best. The specific activities 
within this function are decision making, com­
munications motivating people, selecting people, 
and the development of people. We are at the 
present time within our element of control. A lot 
of work has yet to be accomplished so that these 
two elements of management will relate directly 
to our responsibilities."s 

IV. Controlling 
"Controlling is the work a manager does to assess 
and regulate work in progress and completed. 
The control is the manager's means of checking 
up. 
While control by personal observation is often 
necessary, the most desirable method is control 
by exception. Here the principle of Least Cause 
and the principle of Point of Control are im­
portant to ensure that the greatest amount of 
control is applied where it will do the most good. 
The significant activities inherent in good control 
are establishing performance standards, per­
formance measuring, performance evaluating, 
and performance correcting." 6 

It is apparent that, due to the sheer length of the 
process, a training staff of more than one is desirable. 
However, given that the training needs are clearly de­
fined and not too abundant, and that time and money 
are available, such a process can be implemented ef­
fectively by a minimal staff. To a great extent, this is 
due to the increasing availability of vendor-supplied 
training materials, and also to new, multi-media tech­
niques for its presentation. 

To properly select media that will meet training ob­
jectives, one must understand the advantages and dis­
advantages of each. The most commonly used (and 
misused) media are the spoken and written word. 
Several studies have indicated that we retain only 20 
percent of what we hear. It has also been cited that the 
average student possesses a reading level of eighth grade 
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or lower. Therefore, it is necessary for the trainer to 
know his students' abilities and to adjust his communi­
cation methods accordingly. 

The studies on learning further suggests that we re­
tain 80 percent of what we see and as much as 95 
percent of what we both hear and see. Thus, it appears 
that a lecture supported with various media would 
allow us to satisfy our objectives in the most efficient 
and effective manner. 

It has been my experience, being fortunate enough to 
have access to a very sophisticated multi-media train­
ing facility, that the integration of various media into 
our training system has accomplished several things: 

1. This integration makes use of two or more senses 
and 

2. More easily establishes a relationship between 
the unknown and the known. 

3. Often, visuals can save teaching time because 
they add to the student's ability to arouse and 
retain interest in the subject. 

4. Visuals tend to create a sense of involvement and 
partici pa tion. 

5. When color is used in visuals, the retention rate 
is vastly increased. 

There are certain obvious drawbacks when a training 
facility is heavily involved with the use of audio/visuals. 
I have stated earlier that the record keeping function is 
essential in the smooth and effective operation of a 
training facility; I would like to emphasize this im­
portance when using audio/visual media. The hardware 
required for the use of audio/visuals must be main­
tained as "Operational" at all times. It is most desirable 
to have backup for each piece of equipment you are 
using; the consequences are self-evident. 

Staff resources must often be increased to support a 
multi-media facility, e.g., for maintenance and ad.minis­
tration. However, once standards and procedures are 
developed for maintaining and scheduling equipment, 
the advantages one can attain from the use of multi­
media are considerable. 

In summary, when selecting media for communi­
cating to the Jearner, consider the following procedures: 

1. Determine your training objectives first, then 
determine the means whereby you can convey 
them to the student. 

2. Consider the physical constraints; how will they 
affect the media you have selected? How many 
students will you have at one time? Where will 
they be trained? 
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3. Determine as best you can the collective back­
grounds and abilities of your students, and 
which media will have the greatest appeal and 
effectiveness for them. 

4. Examine carefully the economics of the ideal 
system, i.e., look carefully at the cost of 
alternatives. 

SUMMARY 

A Training System (the process) is a methodology with 
established functions, procedures, and activities one 
can follow to effectively and efficiently achieve a de­
sired result. 

A properly evaluated multi-media system, when well 
maintained, will improve the learner's ability to compre­
hend and retain the training supplied. This will allow 
the training division to accomplish its objective, that 
of giving the user of its services what he wants, when 
and where he wants it. 
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Planning data processing education 
to meet job requirements 
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The greatest single expenditure that a data processing 
organization has today is for its human resource. This 
has been dramatically illustrated in several well-known 
studies. The cost of human resources continues to rise 
in data processing. Computers and systems are be­
coming more -and more complex. It has become ex­
tremely difficult for programmers and analysts to 
know all the essential things about a system. This is 
especially true with the large, widespread telepro­
cessing networks. This complexity of sytems is forcing 
more and more specialization in computer technology. 
At the same time, small computer staffs find that al­
though a few staff members may know all that is 
required to support a system, it is frequently difficult 
to identify job responsibilities in such a way that 
maximum efficiency can be attained for the benefit of 
the business. 

Most data processing organizations have major 
effects on their parent company's ability to meet the 
needs of its business. It becomes of vital importance, 
therefore, that the data processing or information 
systems department, as they are frequently called, 
be managed as efficiently as possible providing the 
business support to its parent company in the most 
optimum fashion. Obviously, the management of any 
data processing department is an important key factor 
in its success. In this day and age of national economic 
lull and austerity moves in business to get more for 
the dollar spent, it has become even more important 
that management exercise its very best judgment at 
all times to run the data processing department more 
as a business and not just as a support function. In 
other words, have as valid justification that the money 
spent is worth what is being gained from the output. 

There is another extremely important factor to 
consider in maintaining a high efficiency level in a 
data processing organization. This factor is the utiliza­
tion of the staff employees or the bulk of the human 
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resource. If the data processing staff is selected and 
trained to meet the requirements and needs of the 
business of the parent company, then a data pro­
cessing organization has gone a long way toward solving 
efficiency problems not to mention personnel problems 
and potential large cost savings that can be gained. 

The staff human resource portion of a data processing 
organization is the one addressed in this paper. More 
specifically, ways of defining and structuring data 
processing skills and job responsibilities are explained. 
Approaches are included on ways of defining an educa­
tion program to provide the knowledge and skills that 
may not currently exist in the skills mix of the data 
processing staff. 

Keeping in mind that all the other key factors of 
operating an efficient, productive data processing 
organization have not been forgotten, concentrate 
for a moment on how we might go about putting some 
form and rationale to human resource selection and 
training. 

One of the most effective ways of relating data 
processing skills requirements, and in turn DP educa­
tion, to a data processing organization is to start with 
the process being used to develop and implement data 
processing products. Relating skill requirements to the 
process is especially effective because the process is 
normally a well established one with which most 
company management are familiar both inside and 
outside the DP organization. Since the DP process is 
the mainstream around which the majority of all 
other DP activities in a department revolve, it is most 
likely a well defined and valid process. If the DP 
department is just being organized or for some other 
reason the process to be used is not well defined, then 
first things should be first-the process should be 
clearly resolved and defined. 

The major steps of the DP process will vary from 
one DP organization to another and, of course, from 



60 Spring Joint Computer Conference, 1972 

Step Example 1 Example 2 Example 3 Example 4 Example 5 

I Study Concept Evaluate Determine Function Application Analysis 
II Design Definition Concept Develop System Design Synthesis 

III Develop Develop Definition Data Collection Feasibility Validation 
IV Install Acquisition Develop Consider Alternatives System Design 
V Operational Operation Select Solution Development & Test 

VI Formulate System Installation 
VII Review Operation 

VIII Test Maintenance 
IX Install 
X Measure 

Figure I-DP process steps 

one company to another. This is expected and even 
desired if the organization is being primarily tailored 
to meet the needs of the parent company's business. 

Figure 1 shows a selection of DP processes chosen 
from the DP organization of several companies in the 
United States. It can be seen, as was just mentioned, 
that the steps in the processes do vary. It is interesting, 
however, to notice that in spite of variations in the 
steps of the process and that some of the steps are 
called by different names with essentially the same 
meaning, that there is a thread of commonality through 
all the processes. There are some process steps that are 
common to all data processing organizations regardless 
of size, complexity, systems types, or structure. Three 
of these common steps are design, install, and maintain. 

It is important that the major steps of the process be 
clearly defined in any given DP organization where the 
human resources are being studied. Once this is done a 
framework is established around which the human 
resource requirements can be structured. The process 

APPLI CATI ON ANALYS I S 

DES I GN SYNTHES I S 

FEASIBILITY VALIDATION I----Design 

SYSTEM DESIGN 
---1-

DEVELOPMENT & TESTING 

INSTALLATION I------Install 

OPERATION -----'IJI-- Maintain 
MAINTENANCE 

Figure 2-The process 

shown in Figure 2 has been selected for the purpose 
of illustrating how we can go about relating the human 
resource requirements to a DP process. 

Considering the common thread through the pro­
esses again-design, install, and maintain-these gen­
eral terms can now be expanded into the selected 
process. 

Before we go further in skills requirements struc­
turing, we must make sure that each step of the process 
is defined well enough so that there is no miscommuni­
cation. I have attached the following definitions to each 
step of this process. Keep in mind that there is no hing 
fixed about the process and the associated definitions 
that are being used in this example. Although, according 
to surveys made, this is one of the more common 
processes, the steps and definitions may be different 
for various DP organizations. 

So that we may continue our analysis, here are the 
definitions that will be used. 

Process Steps 

I. Applications Analysis 
II. Design Synthesis 

III. Feasibility Validation 
IV. System Design 
V. Development and Testing 

VI. Installation 
VII. Operation 

VIII. Maintenance 

Definitions 

I. Applications Analysis 

This first step includes defining the problem, 
analyzing and documenting the existing system, 
describing the processing, defining output and 
performance requirements, estimating the value 
of what is required, and developing and present-



ing the initial specifications to management 
for their review and concurrence. 

II. Design Synthesis 

This step includes establishing project planning 
and control, checking and refining the systems 
requirements and initial specifications, develop­
ing preliminary design alternatives and selecting 
a solution that is most economically feasible 
and best meets the requirements specified 
(with supporting analysis from Feasibility 
Validation). The system solution is then pro­
posed to management where a decision must 
be made whether to proceed into System Design 
or consider alternative solutions. 

III. Feasibility Validation 

This includes the processing testing the per­
formance, technical feasibility and validity of 
design alternatives or existing solutions by 
creating prototypes, models or through simula­
tion. Major cost and performance improve­
ments can be made possible by the application 
of standard solutions and generalized program 
designs already available. Adaptations of ex­
isting systems or generalized programs may be 
entirely adequate solutions; therefore, no further 
design work would be required. 

APPLICATION ANALYSIS 

DESIGN SYNTHESIS 

FEAS I BI LITY VALIDATION 

SYSTEM DESIGN 

DEVELOPMENT & TESTING 

I NSTALLA TI ON 

OPERATION 

MAINTENANCE 

Application 
Development 

System 
Support Operations 

I 
I 
• 

Fi~ure 3-The process expanded 
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Basic I ntermediate Advance 

APPLICATION ANALYSIS 

Ski"s{~ 
DES I GN SYNTHES I S 

Ski"S{~ 
FEASIBILITY VALIDATION 

Skills{ .. 
SYSTEM DESIGN 

Ski"S{~ 
DEVELOPMENT & TEST I NG 

SkillS{ .• 

Figure 4-Application development 

IV. System Design 

This step includes planning and designing the 
details of the systems solution using the output 
from Design Synthesis and the feasibility model, 
selecting hardware and software, developing the 
new procedures and test plan, and identifying 
each program. 

V. Development and Testing 

Here the process is completed and proved by 
translating the system and program specifica­
tions into machine-readable code, testing and 
debugging this code and documenting each 
program module. 

VI. Installation 

This step includes converting data files, trans­
actions, software and hardware used by the 
existing system to meet the requirements of the 
new system. 
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TITLE: 
SENIOR ASSOCIATE PROGRAMMER, DEVELOPMENT. 

GENERAL CONCEPT: 
AN ACTIVE MEMBER OF AN INTERNAL DATA PROCESSING SYSTEM APPLICATION TEAM, RESPONSIBLE FOR 
DEFINING PROBLEMS, PROPOSING SOLUTIONS, DEVELOPING AND TESTING THOSE SOLUTIONS. 
HE IS QUALIFIED TO SPECIALIZE IN THE AREA OF PROGRAM MODULE DEVELOPMENT. 

SPECIFIC RESPONSIBILITIES: 
(1) THE PRECISE DEFINITION OF PROGRAM MODULES (INPUT, TRANSFORMATION, AND OUTPUT) WHICH 

WILL IMPLEMENT THE SYSTEM DESCRIBED IN SYSTEM DESIGN. 
(2) THE DOCUMENTATION, FLOWCHARTING AND CODING OF THE MODULES SPECIFIED. 

COMMUNICATES WITH: 
TESTING SPECIALIST FOR RESULTS OF MODULE AND SYSTEM TESTS. 
SYSTEM DESIGN SPECIALIST TO REQUEST MODIFICATION OF SYSTEM SPECIFICATIONS, IF THEY ARE FOUND 

UNCLEAR. 
MANAGER TO REPORT PROGRESS AND RECEIVE ASSIGNMENTS. 

APPROPRIATE TOOLS, TECHNIQUES AND SKILLS: 
ADVANCED PL/l 
MODULAR PROGRAM DESIGN 
PROGRAMMING TECHNIQUES 
OPERATING SYSTEMS INTERFACE 

PROMOTION POSSIBILITIES: 
STAFF PROGRAMMER, DEVELOPMENT AND TESTING 
SENIOR ASSOCIATE PROGRAMMER, SYSTEM DESIGN 

Figure 5-Job description 

VII. Operation 

This step includes running the designed and 
tested system (or application) on the computer. 

VIII. Maintenance 

This includes the maintenance of the software 
systems programs and applications programs, 
e.g., changes, extensions, and optimization. 

There are specific skills, tools and techniques that 
must be known and applied to accomplish each of the 
steps in this process. If the organization is a large one, a 
staff member might specialize in one or two of these 
steps and be required to master a smaller number of 
tools, but be able to apply these with considerable 
expertise. A small DP organization would not have a 
requirement for such extensive expertise; the staff 
member may, therefore, be skilled enough to perform 
several of the steps in the process to a much less level 
of complexity. 

At this point the DP organization functions and job 
responsibilities can be related to the process that has 
been described. The organization functions can be 

identified as being three maIn segments of activity: 

1. Application Development 
2. System Support 
3. Operations 

Figure 3 shows how these organizational functions can 
be related to the process. Notice the overlap among the 
functions. For example, the system support function 
overlaps the application development function in the 
development and test step and installation step of the 
process. In large installations where a high degree of 
specialization may exist, these overlaps indicate the 
points where responsibilities are passed from one 
person or group to another. It is extremely crucial 
that these key points of communication are identified 
and the responsible staff members are made aware that 
this "passing of the baton" so to speak, is an important 
part of their responsibility. It is equally important 
that they be adequately trained to carry out these 
tasks with great efficiency. 

Now take another cut at the same process from the 
individual staff member point of view. For the purpose 
of analyzing how this might be done, consider the appli­
cations development function alone for a minute. The 
staff working within this function of a DP organization 



Responsibilities / Skills 
(Be Able To:) 

Application Analysis 

Analyze existing system/applications 
Document system 
Define system requirements 
Development and present initial specifications 

Design Synthesis 

Refine initial specification 
Develop conceptual solutions-design alternatives 
Identify and select known/existing solutions 
Specify details of each design alternative 
Estimate development, conversion, installation and operating 

costs 
Test and evaluate alternatives and select best solution 
Present proposed system solution 

Feasibility Validation 

Create and test prototype systems 
Construct and analyze or simulate models 
Compare prototype or model to required systems performance 

Systems Design 

Development systems design work plan 
Document system in detail 
Design forms and reports 
Finalize record and file requirements 
Define data editing and validation rules 
Select final hardware configuration and software 
Document controls, audit trails, back-up procedure 
Write new and revise old procedures 
Plan system test and prepare test data 
Prepare computer operations work flow 
Document computer flow and identify each program 

Development and Testing 

Define program modules 
Flowchart, code and document program modules 
Design and implement program module tests 
Implement system tests specification in system design 
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Technical Strength Definitions 

o has no knowledge 
1 understands capability and applicability 
2 can use technique effectively 
3 can maintain, modify and create new features 
4 can synthesize and evaluate to reduce or eliminate analysis, 

machine runs, development or tests based on his wide 
knowledge of alternatives and depth of experience. 

Figure 6-Programmer/analyst in application development environment 

is made up for the most part of one of three types of 
personnel: analysts, programmers, and managers. The 
analysts are known as systems, application or program 
in most cases. The analysts' job responsibilifes can 
range across the analysis, synthesis, validation, and 
design of DP systems and applications. Programmers 
are generally of two primary types, applications 
and systems. Applications programmers program 
and test primarily business applications whereas sys­
tem programmers program primarily control and 
system applications. There are a wide range of job 
responsibilities performed by programmers at all 

levels of complexity. The managers referred to here are 
technical managers. It is important to identify the job 
responsibilities of higher management along with all 
the other members of the organization but higher 
managements' job responsibilities are broader, less 
technical, and more administrative. For this rea­
son they have been excluded in the sample being 
used in this paper. The technical manager is one who 
has direct supervision over a small staff of program­
mers or analysts and is able to understand technical 
detail, at least within his assigned responsibilit·es. 

There are numerous titles for programmers and 
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RESPONSIBILITY (SKILLS) 
(BE ABLE TO:) 

APPLICATION ANALYSIS 
ANALYZE EXISTING SYSTEM/APPLICATIONS 
DOCUMENT SYSTEM 
DEFINE SYSTEM REQUIREMENTS 
DEVELOP & PRESENT INITIAL SPECIFICATIONS 

DESIGN SYNTHESIS 
REFINE INITIAL SPECIFICATION 
DEVELOP CONCEPTUAL SOLUTIONS-DESIGN 

ALTERNATIVES 
IDENTIFY AND SELECT KNOWN/EXISTING SOLUTIONS 
SPECIFY DETAILS OF EACH DESIGN ALTERNATIVE 

BASIC INTERMEDIATE ADVANCED 

ESTIMATE DEVELOPMENT,CONVERSION, INSTALLATION 
AND OPERATION COSTS 

TEST AND EVALUATE ALTERNATIVES AND SELECT 
BEST SOLUTION 

PRESENT PROPOSED SYSTEM SOLUTION 

FEASIBILITY VALIDATION 
CREATE AND TEST PROTOTYPE SYSTEMS 
CONSTRUCT AND ANALYZE OR SIMULATE MODELS 
COMPARE PROTOTYPE OR MODEL TO REQUIRED SYSTEMS 

PERFORMANCE 

SYSTEM DESIGN 
DEVELOPMENT SYSTEM DESIGN WORK PLAN 0 1 2 3 4 4 
DOCUMENT SYSTEM IN DETAIL 0 2 3 4 4 4 
DESIGN FORMS AND REPORTS 1 2 3 4 4 4 
FIN ALIZE RECORD AMD REQUIREMENTS 1 2 3 4 4 4 
DEFINE DATA EDITING AND VALIDATION RULES 0 2 3 3 4 4 
SELECT FINAL HARDWARE CONFIGURATION AND 

SOFTWARE 0 2 3 3 4 4 
DOCUMENT CONTROLS, AUDIT TRAILS BACK-UP 

PROCEDURE 0 1 2 3 4 4 
WRITE NEW AND REVISE OLD PROCEDURES 1 2 3 4 4 4 
PLAN SYSTEM TEST AND PREPARE TEST DATA 0 2 2 3 4 4 
PREPARE COMPUTER OPERATIONS WORK FLOW 1 2 3 3 4 4 
DOCUMENT COMPUTER FLOW AND IDENTIFY EACH 

PROGRAM 1 2 3 4 4 4 

DEVELOPMENT AND TESTING 
DEFINE PROGRAM MODULES 
FLOWCHART, CODE AND DOCUMENT PROGRAM MODULES 
DESIGN AND IMPLEMENT PROGRAM MODULE TESTS 
IMPLEMENT SYSTEM TESTS SPECIFICATION IN SYSTEM 

DESIGN 

Figure 7-Programmer/analyst in application development environment responsibility (skills) matrix 

analysts. It is best, of course, to define job levels using 
the titles of a given DP organization. In Figure 4, the 
levels-basic, intermediate, and advanced,-have been 
used to relate job levels to the process. The bar graphs 
under these levels give an indication of the approximate 
average level required to perform the job responsibilities 
in the corresponding process steps. For example, most 
senior staff personnel have had experience and/or 
training in development and testing before advancing 

to more senior positions in either systems design, 
feasibility validation, or design synthesis. This type 
of structuring forms a rather neat array of potential 
career paths. 

Job levels, titles, and major responsibilities are 
traditionally structured into a job description. Job 
descriptions can range in form from the one sheet 
summary shown in Figure 5 to very detailed descrip­
tions. In all cases, it is worthwhile specifying the 



Planning Data Processing Education 65 

Basic In termediate Advanced 

System Design 
.-----------------------------------------------------------------------------------------------------------------------, 
: Develop system design work plan 0 1 2 3 4 4 : 
: Document system in detail 0 2 3 4 4 4 : 
: Design forms and reports 1 2 3 4 4 4 : 
: Finalize record and file requirements 1 2 3 4 4 4 : 
: Define data editing and validation rules 0 2 3 3 .:i 4 
J ______________________________________________________________________________________________________________________ _ 

Select final hardware configuration and software 
Document controls, audit trails, back-up procedure 
Write new and revise old procedures 
Plan system test and prepare test data 
Prepare computer operations work flow 
Document computer flow and identify each program 

Technical Strength Definitions 

o has no knowledge 
1 understands capability and applicability 
2 can use technique effectively 
3 can maintain, modify and create new features 

0 
0 
1 
0 
1 
1 

2 3 3 4 4 
1 2 3 4 4 
2 3 4 4 4 
2 2 3 4 4 
2 3 3 4 4 
2 3 4 4 4 

4 can synthesize and evaluate to reduce or eliminate analysis, machine runs, development or tests based on his wide knowledge of alterna­
tives and depth of experience. 

Figure 8-Programmer/analysts-Responsibility matrix expanded 

knowledge and skills required as well as promotion 
possibilities. This information is valuable to manage­
ment both in utilizing the employees best talents and 
planning for his career advancement. 

A further expansion is necessary of the knowledge 
and skills required to do the jobs within each step of the 
process. If some type of job analysis has not been per­
formed on the data processing organization in question, 
then now is the time. What the job involves, the com­
plexity of the technical level, the associated responsi­
bilities, and, last but not least, the knowledge and 
skill level required to do the job all must be defined to 
fulfill the requirements specifed in the steps of the 
process. Much of this information can be structured 
on the job description summary sheet that was just 
described. 

Job analysis should be done by professionals who have 
had experience in making such analysis. This type of 
study is usually performed for a fee by an outside 
consultant. If the consultant is carefully chosen the 
results will be well worth the money but be sure that he 
has extensive data processing expertise on his staff to 
participate in the analysis. Also make sure that his 
analysis is going to be provided to you in a form that 
fits your needs and is tailored to the process in your 
organization. 

There are many good approaches to job analysis 
Most of them involve some type of general experience 
questionnaire and the observation and interview of 

selected employees doing their job. It is important to 
make sure that the employees have a good underst' nd­
ing of what is being done and why job related questions 
are being asked. Employees quickly become skeptical 
and concerned when a lot of questions are asked about 
their job and how it is performed. The cooperation 
given by the staff in programs such as this will be 
much better and with a more positive attitude if the 
reasons are first clearly explained. 

Under each of the process steps the major skills, 
actions, and knowledge are identified that are impor­
tant in accomplishing the step in the DP organization. 
Try to refine these major items as much as possible so 
they will be concise yet descriptive of the responsibility. 
Sometimes it is difficult to express all the items purely 
in the terms of skills. For this reason be practical and 
realistic about the results by using a mixture of skills, 
actions, and knowledge. This approach seems to render 
a better level of definition. 

Figure 6 shows how this expansion can be accom­
plished. Keep in mind that we are talking about the 
application development function of the DP organiza­
tion and the associated programmer and analyst staff. 
For this reason the expansion shown is for the first five 
steps of the process. 

The technical strength definitions below show how 
knowledge levels can be identified. Once again these 
definitions should be prepared with the requirements of 
the organization in mind. There must be an adequate 
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range in the knowledge levels. With programmers and 
analysts it is especially desirable to be able to identify 
whether they can explain a concept and apply it as well. 

Technical Strength Definitions 

o has no knowledge 
1 understands capability and applicability 
2 can use technique effectively 
3 can maintain, modify and create new features 
4 can synthesize and evaluate to reduce or 

eliminate analysis, machine runs, develop­
ment or tests based on his wide knowledge of 
alternatives and depth of experience. 

You will notice that these levels are primarily for 
programmers and analysts so that we may continue 
to expand our definition of the application develop­
ment function. 

All the data that is needed to put together a summary 
skills matrix of a selected DP organization should now 
be available. The data includes: 

1. Definition of the steps in the DP process to meet 
the needs of the business. 

2. Definitions of job responsibilities to meet the 
process requirements. 

3. Association of these job responsibilities with 
defined jobs. 

4. Identification of the level and possibly the title 
of each of the defined jobs. 

5. List of the major relevant skills, actions, and 
knowledge to meet the defined job responsi­
bilities. 

6. Define the strength levels of the skills and 
knowledge requirements. 

A summary skills matrix can now be constructed by 
inserting the strength indicators required for each 
defined activity of each process step. The strength 
indicators are placed in the appropriate job title or 
level column. 

Figure 7 shows how the technical strength indicators 
are added to the System Design step of the process. 
The strength level definition and the job level to which 
it is associated is determined primarily from the 
data obtained as a result of the job analysis and survey 
of the staff's skills. 

When the summary skills matrix is constructed for 
all members of the DP organization, it becomes an 
invaluable management tool in planning and obtaining 

the required skill mix. The skills matrix also acts as a 
key index in planning tailored education for the staff. 
This can lead to significant savings in education 
expenses to a company. 

Using the summary skills matrix and data from the 
job analysis and knowledge surveys, a trained industrial 
educator can determine what additional knowledge and 
skills are needed to enhance that already possessed by 
the staff. The identification of the missing skills and 
knowledge is the foundation on which future training 

Name: 
Business System Design 

Duration: 
Five days 

Audience: 
Those with the responsibility for the detailed design of a 

business system. 

Prerequisites: 
Experience in program development and testing or successful 

completion of the development and testing curriculum. 

Objectives: 
Upon successful completion of this course, the student will be 

able to: 
Develop cost estimates and a work plan for scheduling and 

controlling the work through the design phase. 
Define the record content, file organization, storage require­

ments and access methods. 
Define data editing and validation rules, controls and audit 

trails. 
Design the necessary forms and reports. 
Complete the detailed documentation of the system, specifying 

the input, output, processing and file requirements of each 
program. 

Prepare the systems test plan. 

Topics * 
Systems design cost estimating planning 

and scheduling 
Detailed record design, file organization 

and access method specification 
Editing, validation, controls and audit trails 
Forms and reports design 
Procedure writing 
Systems test planning, test data and file 

preparation 
Program specification and documentation 
Estimating programming development time 
Case study 

Total 

Hours 

2 

4 
2 
2 
2 

4 
4 
2 
8 

30 

* These topics teach to the 2 and 3 technical strength levels. 

Figure 9-Course specification 



can be based. Much of this needed training can be 
accomplished on the job or through self-study. Some 
of it will require more formal classroom education. 
In any case, the education will be tailored toward the 
business needs and requirements since it is based on 
a foundation geared toward that same goal. 

Regardless of whether the training program required 
is going to be developed in-house or contracted out to 
an education company or computer manufacturing 
company, it is good to have at least a general specifica­
tion of the type of training needed. 

Using the related job responsibilities boxed in on 
Figure 8, a training specification can be written. 
Job responsibilities that are related should be clustered 
together so that eventually a series of topics or modules 
can be defined to teach the relevant subjects. Related 
topics, in turn, are normally grouped together to form 
a course. 

The course specification shown in Figure 9 is one 
designed to teach to the 2 and 3 strength level on all the 
job responsibilities boxed in Figure 8. Notice that the 
course specification identifies the most pertinent facts 
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about the training needed. The audience, prerequisites 
and a clear definition of the objectives are the most 
important items. Individual topics that make up the 
course and the approximate duration of each can be 
included when they are needed. The purpose for using 
a duration on each topic is to give some indication of the 
depth that topic covers. 

I said at the beginning of this paper that surveys show 
that the greatest expenditure that a data processing 
organization has is for its human resource. Actually it is 
the knowledge that is being purchased. This statement 
applies equally as well to most all human resource 
requirements in industry. In Peter F. Drucker's 
recent book, The Age of Discontinuity, he treats knowl­
edge as one of the four discontinuities. Mr. Drucker 
says, "Knowledge, during the last few decades, has 
become the central capital, cost center and the crucial 
resource of the economy." 

Since knowledge is a very valuable and expensive 
commodity it should be treated as such. Planned 
education according to the needs of a business will 
impart knowledge where and when it is required. 





Modular training-A new emphasis 

by ROGER w. KLEFFMAN 

United Air Lines 
Englewood, Colorado 

INTRODUCTION 

During 1970 and early 1971, United Air Lines and IBM 
implemented a PARS-based (Programmed Airline 
Reservations System) reservations system. This system 
is written in Assembly Language Coding for the IBM 
360/65. The software is special purpose, dedicated 
to providing very fast response to remote airline reserva­
tions inquiries including: schedules and availability 
between cities, passenger name data, and related 
information. At the start of the project, there were 
virtually no United personnel with PARS experience, 
and the implementation phase included the develop­
ment of a comprehensive training program. The 
principle objectives of this program, over and above 
that of preparing United programmers and operators 
for participation in the project, included the capability 
to be completely self-sufficient for PARS training at 
United, the ability to administer training as personnel 
became available to the project, and the desire to 
maintain a minimal staff of professional trainers. 

To achieve these objectives 12 special courses were 
developed using the guidelines described as modular 
training. These courses, developed by IBM for United, 
were according to specific guidelines and standards. 
The standards emphasize that courses should be 
developed in short, self-contained parts, bring the 
student into direct contact with source information 
and use other media (e.g., video tapes, audjo tapes) 
slides) to amplify material being presented to the 
student. This assists the student in advancing at an 
individual pace, and encourages self-sufficiency. 

The basis for this paper is that an in-house training 
program can be developed which is self-sufficient. The 
need for outside training may exist for course develop­
ment. However, generally development can be ac­
complished by line personnel with technical competance 
designing training courses in accordance with well­
defined 'standards and objectives. Once developed, it is 
possible to administer the training on an "as needed" 
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basis, and to accomplish training on second or third 
shift, or even on a part-time basis. 

The balance of the paper presents the details relating 
to this particular project. This includes principles of 
course development, course descriptions, and the 
required training sequence for positions on the project. 
It should be stressed that no really new principles or 
techniques are offered, only a new emphasis or applying 
some old methods (and not so old, such as v:deo 
modules) is advocated here. 

MODULAR TRAINING 

Modular training is the term used by United to 
describe training in terms of courses divided into 
specified units. A course is defined as: a set of objectives 
that should be achieved by a target audience together 
with training material, a time duration for the course, 
and a plan for accomplishing the training. Training 
courses are tutorial for programmers and operators on 
this project in that training is viewed as the transfer 
of information necessary for the student to carry out 
job responsibilities in a defined area. This is in contrast 
to training in a seminar environment by means of 
exchange of ideas among participants. Under the 
modular approach, the responsibilities for programming 
and computer operator positions have been keyed to the 
courses. Each position has an identified sequence of 
training courses through which a student progresses 
prior to full-time work assignment. 

Under this modular training approach, each course is 
admjnistered to a student by an advisor, an experienced 
person with successful completion of the course or with 
extensive experience within that area. The governing 
elements of the course are a student guide and an 
advisor's guide. 

The student guide is a document which coordinates 
the student's progression through training materjal. 
It is designed to give the student the information 
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o 
Figure I-Student guide 

nec~ssary for a thorough understanding of the subject, 
as Illustrated by Figure 1. 

The intent of the student guide is to direct the 
student through applicable training material in a given 
order. This includes readings in references not con­
t~ined. in the guide itself (technical manuals, profes­
SIOnal J~urnals), or viewing video tapes (including local 
productIOns keyed to specific elements of the project), 
as well as utilizing the guide itself for tutorial material. 

In particular the video tapes are a valuable means 
for producing training material. Use of video tapes is 
to deve' op standard, lecture-type modules and elim­
i~ates the requirement for an instructor to repeatedly 
gIve the same stand up lectures. Video is also useful in 
explaining standards and procedures, which can be 
presented to the student as dictated by students re­
sponsibilities to the project. The advisor, however, 
must always be available to answer questions or ex­
change dialogue with the student on the basis of the 
information in the video tape. 

By design the student guide cannot and does not 
function alone as a self-sufficient course, such as in 
p:ogrammed instruction. The advisor is a necessary and 
VItal part of the course in modular training. 

The format of the student guide includes: 

A. Introductory Section 

1. Course description and intended audience. 
2. Course objectives. 
3. Prerequisite training and/or related 

experience. 
4. Recommended duration of the course. 
5. Advisor/student relationship. 

B. Reference Material 
This section identifies all other manuals and 
documents needed in the course. 

C. Detailed Assignments 
This section presents the series of steps which 
lead the student through the material. It includes 
reading assignments, identifies lectures, desig­
nates participation in workshops, and tests to 
determine how well the student is learning and 
applying the material. In courses involving 
programming, actual coding experience is ac­
complished by assignments which are processed 
on the computer. 

A history log is maintained for each course containing 
questions raised by students during the course. This 
information is used to develop additional explanatory 
material, quizzes, or more detailed references to aid the 
student in acquiring a better understanding of the 
subject. 

COURSE ADVISOR 

The second key element in modular training is the 
Course Advisor. By design the course can be admin­
istered to a single person, to a formal class of students , 
or to several students who have started the course at 
different times. Except for formal classes, the advisor 
performs this roll on a part time basis. As a result, line 
programmers can function as advisors as well as having 
normal job responsibilities. 

Under United's approach, only one person devotes a 
full-time effort as the advisor for basic courses, and line 
programmers act as advisors for advanced courses. 
Each manager furnishes the advisor for advanced 
courses for students who will receive assignments in 
that manager's area. Only senior, experienced personnel 
are used as advisors. This represents one of their job 
responsibilities, and is a means of providing further 
experience in the management aspects of dealing with 
people. 

The advisor has three primary responsibilities: 

1. To serve as a point of reference for any questions 
the student may have on the course material. 
The advisor may not be able to answer every 
question, and may have to get the answer from 
another source. In any case, the response is on a 
timely basis. 

2. To administer quizzes and exams to the student 
as required in the course sequence. The results 
are always reviewed with the student to insure 
complete understanding. 



3. To emphasize the most pertinent parts of the 
course relative to the student's work area, and to 
evaluate the student's understanding of the 
course. Here, the advisor's function is to tailor 
the course to the student's needs. The advisor 
takes the initiative in discussing the important 
aspects of the course instead of passively waiting 
for the student to ask questions. By probing the 
student's thought process the advisor can fill in 
any areas of weakness and correct misunder­
standing. Normally, the advisor spends 7i to Y2 
of the student's assigned course time, depending 
on the advisor's familiarity with the course and 
the extent of the student questions. For example, 
if a student is training on a half-time basis, the 
advisor can expect to spend VB to 7i of that time 
in an advisory capacity. The advisor also pro­
vides up-to-date technical information on the 
system, which minimizes the problems associated 
with technical obsolescence of training material. 

CAREER PATHS AND COURSE PROGRESSION 

The U nited PARS project provides training for 
programmers, data base personnel and computer 
operator personnel. This section describes each job and 
the training sequence required. 

There are seven areas of programming responsibility: 

1. Application Programmer 
Develops programs in a real-time environment 
which accomplish the airline reservations func­
tions. These include display of airline schedules, 
availability of seats inventory control, flight 
information, and programmatic exchange of 
information with other airline reservations 
systems. Programming is done in ALC, the 
assembly language used for coding on the IBM 
360 series. 

2. Schedule Change Programming 
Includes an understanding of batch processing 
as well as real-time programming, and has 
significant impact on many system data records. 
These include modifications to flight schedule 
information and development of information 
used to reaccommodate passengers. Program­
ming in ALC under DOS and OS is included. 

3. System Support Programmer 
Has responsibility for the generation and 
maintenance of systems, both OS and DOS, 
PARS off-line support, together with file 
maintenance and management reports. Program­
ming languages include P LjI and FORTRAN. 
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4. Control Program Programmer 
Has assignments in inputj output for disk and 
tape, CPU scheduling, queue processing for input, 
ready and deferred lists, interrupt handling and 
on-line data collection. 

5. Communications Programmer 
Is involved with control and coordination of 
communications between remote sites with 
CRT terminals as well as with the other com­
puter systems. There is heavy involvement 
with hardware such as IBM 2703, WE201B 
modems or equivalent, IBM 2948, and the IBM 
2915 or equivalents. 

6. Performance Evaluation Programmer 
Analyzes the PARS system performance by 
measuring and interpreting system character­
istics including inputj output message size, 
program core residency time and execution 
time, file accesses and queueing. Simulates the 
system by means of model(s) and predicts 
system performance relative to proposed 
modification. 

7. Coverage Programmer 
Has primary responsibility for the diagnosis 
and immediate correction of on-line software 
malfunctions, as well as monitoring on-line 
system software integrity. Programming oc­
cupies a relatively sm9,ll amount of time. 

Two Data Base jobs pertain to information records 
in both the on-line and off-line systems. Programming 
experience is not required for these jobs: 

1. Data Base Specialist 
Has the responsibility for the integrity of all 
passenger information in the on-line system. 
This can involve restructing parts of the data 
base as a result of airline rescheduling as well as 
corrections to erroneous on-line information. 

2. Data Base Coordinator 
Has responsibility for maintaining airline sched­
ule information, pilot data information and 
communications tables. These are processed in 
the off-line system. 

Computer Operations involves three tasks: 

1. Data Control Clerk 
Receives and monitors off-line processing jobs, 
maintains tape and disk libraries, and JCL card 
decks for off-line jobs. 

2. Computer Equipment Operator 
Operates all equipment in the off-line-system 
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COMPUTING SYSTEMS FUNDAMENTALS 
INTRODUCTION TO S/360 Rl 
ASSEMBLER LANGUAGE CODING R2 
SYSTEM OPERATOR TRAINING-DOS 
INTRODUCTION TO OS 
SYSTEM OPERATOR TRAINING-OS 
OS AnV ANCED TRAINING 
DOS/OS JOB CONTROL LANGUAGE 

TOTAL TRAINING DAYS 
FOR REQUIRED COURSES 15 

PARS SYSTEM DESCRIPTION R3 
APPLICATIONS PROGRAM R4 
AIRLINE PROGRAMMER ENVIRONMENT RS 
AIRLINE CONTROL PROGRAM 

FUNDAMENTALS 
AIRLINE CONTROL PROGRAM 

INTERNAL.~ 

SCHEDULE CHANGE-INPUT DATA 
PREPARATION 

OFF-LINE SCHEDULE CHANGE 
ON-LINE SCHEDULE CHANGE 
COMMUNICATIONS 
'DATA COLLECTION 
DATA BASE MANAGEMENT 
SYSTEM OPERATOR TRAINING 
TOTAL TRAINING DAYS 
FOR REQUIRED COURSES 25 
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D = Desirable 
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*Not required for all System Support Programmers 

Figure 2-Career path training sequence 
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and assists in monitoring the on-line system 
activities. 

system configuration, and applies corrective 
action for hardware failures. 

3. Console Operator 
Has responsibility for operating the hardware 
in the on-line system. Monitors and controls 

The training required for these positions is sum­
marized in Figure 2. IBM/360 training is also shown 



in presenting the training progressions. The total train­
ing days associated with the IBM/360 training and the 
PARS training identify the time needed before an 
individual is ready to accomplish productive work. 

For example, a programmer with no 360 computer 
background would require both IBM/360 and PARS 
training. For applications programming, 40 training 
days would be required. If the programmer already had 
IBM/360 experience and no PARS experience, 25 
training days would be required. The description of 
PARS training courses is given in the Appendix. Both 
the training results and the training duration are good 
as evidenced by high comprehension rate and mininal 
training period. 

SUMMARY 

As a part of the implementation of a PARS system, 
United Air Lines has developed a comprehensive 
training program using the modular method with 
three objectives: 

1. United is self-sufficient for PARS training 
(N ote: PARS training requires IBM 360 knowl­

edge as a prerequisite). 

2. Training is administered as people are available. 

3. Training is accomplished with a minimal 
professional training staff. 

Twelve courses were developed to achieve these 
objectives for the different job responsibilities within 
the project. More than sixty students were successfully 
trained with this method. 

An advisor is a key element in administering modular 
training. The advisor is responsible for tailoring the 
basic course to reflect the content of the student's 
assigned area, and to monitor the student's progress. 
Drawn from the line organization, the advisor is pro­
ficient in the assigned area and monitors the student's 
progress by answering questions, administering quizzes, 
and probing the student's understanding of the subiAp.t 
matter. 

Modular training with professionally competent 
personnel acting as advisors eliminates the need for 
formal classes, and training can be administered on an 
"as availa;ble" basis, although a class can easily be 
accommodated with this method. In addition, the 
advisors have line responsibilities and thus the need 
for a large, dedicated training staff is eliminated. 
Currently, at United one person has full-time basic 
training responsibility for the 70-80 project program­
ming staff. 
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Advanced training advisors are furnished by the area 
to which the student is assigned. 

Generally only senior persons are advisors and 
represent a part of the responsibilities of a senior 
position. Being an advisor usually affords first exposure 
to working with people in a management mode, which is 
good experience if further advancement along super­
visory lines is desired. 

In particular, however, it was found that: 

1. An advisor is indispensable to the program, and 
cannot be passive. The advisor must actively 
monitor and encourage the student's progress. 
Experience has shown this method has favorable 
results. 

2. Prior to starting the training, there should be a 
review meeting between the student, the assigned 
manager and the advisor. The review will include 
the sequence and duration of the courses for the 
student, the approximate expected progress 
(relative to whether the student will be in 
training full-time or part-time), and the role and 
responsibility of the advisor(s). 

3. Practical problems, and quizzes which reflect the 
course objectives are essential, especially for 
programming courses. A simulation of the real 
environment is necessary for coding and de­
bugging problems. The course content must be 
tutorial and serve as a transition into the work 
environment. 

4. Insofar as possible, training, especially the 
advanced training, should be on a part-time 
basis. This gives the student a better opportunity 
to assimilate the many new concepts and 
terminology as training exposes them. In fact, 
terminology is a major factor on this project, 
because the student is not only using EDP 
terms, but also the special vocabularies asso­
ciated with airlines and with the PARS system. 

5. Update of course content caused by system 
change is best accomplished by line personnel. 
In this case they act as advisors but without 
students, and have the responsibility for up­
dating the applicable course content. 

6. The student guide/advisor functions best in a 
non-development environment. In a totally 
developmental environment, scheduling is a 
problem. Estimates of required program develop­
ment time always seem to neglect factors which 
were not expected to occur (sickness, machine 
downtime, etc.) In either case, the line must be 
staffed to accomplish both programming and 
training requirements. 
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Overall, modular training has worked reasonably well 
for the United Airlines PARS project. The primary 
objectives have been satisfied by a minimal professional 
training staff and utilization of line personnel in the 
training function. The advisory responsibility takes 
time, however, and an advisor's schedule must include 
time for training in addition to normal line responsibil­
ities if modular training is to function properly. 

This same method should also be able to work for 
other projects. A student guide need not necessarily 
be a reference unto itself, it may be a series of references 
to other manuals, documents, video tape, et al. Video 
tapes, in particular, afford the means of augumenting 
course material and making it available for training 
around the clock. There currently exists a dearth of 
organized information and material which can be used 
to construct a course. There is no prophet for rewriting a 
document which can be used in its present format with 
directions as to applicability. Both the student guide 
and the advisor furnish this direction to the material 
and provide tailoring specific to requirements. 

APPENDIX A 

Course descriptions 

This Appendix presents a description of the 12 
courses that were developed at United Air Lines. 
These specific courses are applicable only to a relatively 
small group of PARS users. 

It should be noted that because the courses are 
tutorial, quizzes form an important part of the course, 
being geared to the course objectives. The student is 
expected to achieve certain defined objectives, and the 
quiz results represent, in part, how well the material 
has been learned, as well as performance evaluation. 

Training in PARS requires a knowledge of the IBM 
360 hardware and Assembly Language Coding (ALC). 
These are prerequisites for all the PARS Programming 
Courses. Commercial video taped courses, augmented 
by material particular to United's needs, satisfy these 
requirements. 

The PARS courses are divided into two sets; a basic 
set which all programmers attend, and the advanced 
courses, which are attended on an "as needed" basis. 
The first three courses listed below are the members 
of the basic set; all others belong to the advanced set 
for programming except the operator course, which 
is independent. Sixteen video tapes have been produced 
by United to augment the basic PARS training. These 
were produced based on an evaluation of the informa­
tion in the history log, an invaluable tool for developing 

training modules such as programming techniques, 
project procedures, and the like. In addition, the video 
modules are always available to the student on an 
around the clock basis, thus helping to free training 
from the prime shift dependency. 

1. PARS System Description-3 days 
This course presents the basic PARS hardware 
and software descriptions, as well as concepts and 
terminology associated with the airline industry 
as well as PARS system. Emphasis is placed on 
providing the fundamental information concepts 
and terminology needed in other courses. 

2. Applications Programs-5 days 
This course presents the functions of all PARS 
application program packages including pro­
grams within each package, and describes the 
data records required by each program explaining 
how these records are accessed and data is 
manipulated. It relates airline reservations agent 
actions and needs to the manipulation of the 
applications programs and the data records. 

3. Airlines Programmer Environment-17 days 
This course is divided into three major areas 
corresponding to the types of programmer activi­
ties in this real-time PARS environment: 

1. Program Development 
The availability and use of programmers tools 
such as: entry control block, macros, and 
conventions. 

2. Program Maintenance 
The PARS Program Library System, the 
steps involved in entering programs, the 
inputs necessary for program maintenance. 

3. Program Testing 
The concepts and procedures used in testing, 
in generating test inputs and in interpreting 
test results. 

The course environment is designed to resemble, 
as closely as possible, the expected environment 
in the development group. The subjects dis­
cussed at length are those dealing directly with 
the job of application programming. 
Upon completion, the student is capable of pro­
ductive assignment in applications programming 
within the PARS environment. 

4. ACP Fundamentals-5 days 
This course introduces the programming t.ech­
niques such as queuing, priorities, message 
flows, and related items used by the Control 
Program. 



Upon completion the student is able to relate 
the functions of the ACP program to his present 
assignment. 

S. ACP Internals-IS days 
Airline Control Program Internals is concerned 
with program listing level discussion, by topic, 
of each of the functional units of the airline CPo 
This includes communications, hardware input/ 
output, and services and facilities provided to 
application programs. 
Upon completion the student is prepared to 
accept assignment in any functional area of the 
Control Program. The student will lack only 
what can be gained through experience. 

6. Schedule Change Input Data Preparation-3 
days 

Editing and validation of modified schedule 
information is the main objective of this course. 
Upon completion the student is able to prepare 
the input data required for Off-line Schedule 
Change. 

7. Off-Line Schedule Change-S days 
Topics covered include concepts of off-line sched­
ule change; off-line schedule change input and 
processing, and a detailed analysis of the off-line 
schedule change programs. 

Upcn completion the student is able to com­
municate in the language of schedule change 
with non-programmers and other PARS Appli­
cation Programmers, use to use the appropriate 
documents to extract the details of the schedule 
change programs assigned as the student's re­
sponsibility. 

8. On-Line Schedule Change-S days 
This course presents the functions of all the 
on-line schedule change programs, defines the 
data records affected by the on-line schedule 
change and describes how they are affected, 
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explains the four logic phases of the on-line 
schedule change, and relates the programs and 
data records involved to each phase. 

9. Communications-S days 
This course presents PARS Communications in 
general, and specifically as applied in United's 
PARS System. This system exchanges com­
munications with two other United Air Lines 
On-line Computer Systems. In addition PARS 
Communications is covered from the functional 
level to a detailed program level which describes 
the interrelationship of the programs, tables 
and data records involved. 

10. Data Collection-S days 
This course describes the functions of the Data 
Collection Programs and defines the facilities 
provided by these programs, explaining how 
system, file, program and message variables are 
collected on-line, and reduced off-line. It identi­
fies listing variables which are out of line from 
data collection reports and determines from 
these variables how system performance can 
be improved. 

11. Data Base Management-20 days 
Data Base Management covers four major file 
support functions and data base generation. 
These include: Pool Directory Generatbn and 
Maintenance, Recoup, Capture/Restore, Fixed 
File Reorganization and System Test Compiler. 

12. System Operator Training-S days 
This course describes, in general terms, a typical 
PARS hardware configuration and the PARS 
software system. In addition performance of the 
following operator tasks is explained: program 
library maintenance and update, testing, system 
load, all other off-line and on-line operator 
activities, interpretation of error messages, and 
use of functional messages appropriate to a 
given job. 





Computer training, present and future 

by GORDON A. SMITH 

Jet Propulsion Laboratory 
Pasadena, California 

INTRODUCTION 

Before beginning this discussion, I would like to make 
a few remarks concerning the Jet Propulsion Labora­
tory (JPL). The Jet Propulsion Laboratory is respon­
sible to the National Aeronautics and Space Adminis­
tration (NASA) for unmanned missions in deep space. 
A worldwide tracking network encompasses Goldstone, 
California; Madrid, Spain; Johannesburg, South Africa; 
and Woomera and Tidbinbilla, Australia. In addition 
to the deep space missions, there are a great number of 
scientifically oriented projects throughout JPL. The 
Laboratory has approximately 4,100 employees, as well 
as some support contractor personnel. 

All levels of personnel in JPL, as well as contractor 
operations personnel, are involved with the educational 
programs, starting with "Introduction to Computing" 
through management training in the data processing 
field. 

Within almost every government organization, and 
certainly within every NASA facility, a considerable 
workload rests within the administrative and financial 
operations. These are nonscientific endeavors which 
hopefully will lead toward improved management in­
formation system controls. A commercial enterprise, 
financial operations organization has a number of 
similarities. 

To begin with, I have prejudices against classrooms 
of stand-up instruction only, or classrooms of video­
taped lecturers only, or instruction in any single me­
dium. Therefore, I will spend a few moments reviewing 
some of the products of educational firms today leading 
toward altmultimedia approach to the education and 
training of commercial programmers, systems analysts, 
or obviously, into some of the scientific fields. 

Let me cite a few examples of ideas that have come 
out of some commercial firms. For instance, there is one 
firm in Ohio that has developed a course titled "ADP 
Terminology." This course consists of 16 audio tape 
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cassettes and a small workbook for those who want to 
become familiar with data processing terms. One of the 
major banks in Arizona has required its 132 branch 
managers to review this course while traveling to and 
from work. It is also an excellent device to augment 
stand-up instruction for a new student. Several firms 
today have canned video-taped courses along with 
workbooks as a self-instructional means to replace the 
very widespread utilization of PI or programmed in­
struction textbooks. To my way of thinking, there is 
nothing more borjng, and less motivating, than sitting 
down with a workbook, and saying I am going to learn 
by myself and teach myself something, whether it is 
data processing or any other area of interest. 

Another firm, in addition to its video taped courses in 
basic computer programming-COBOL, FORTRAN, 
and so forth-has a considerable library of animated 
motion picture films, along with associated workbooks 
and other materials as a self-teaching means in support 
of standardized automatic data processing (ADP) 
curricula. Some of the films are excellent, and, in some 
cases, we have utilized them to augment our classroom 
course "Introduction to Computer Technology." A 
firm in Illinois has developed a systems analysis course, 
as well as courses in operating systems (OS) with a 
thorough interaction between video tape, audio tapes, 
and workbooks-none of the media being used for more 
than 15 minutes at a time. There is a constant transfer 
from one medium to another which provides not only 
motivation but reinforcement. More of the physical 
senses are used in the absorption of educational ma­
terial. Of course, motion picture films are also used; 
films themselves are a bit more cumbersome, but if 
intermixed with other media, may become a viable 
means of instructional transfer. 

I believe that audio tapes, video tapes, motion pic­
ture films, and animated cartoons can effectively. be 
used in a learning carrel. A carrel is nothing more than 
an enlarged desk with various devices in it; one can 
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Figure I-JPL training carrel 

instruct himself at his own speed, and hopefully, im­
prove his motivation if he has a goal in mind (see 
Figure 1). This type of self-instruction is extremely 
worthwhile if it is also reinforced by a senior pro­
grammer or analyst. The multimedia approach will 
create greater motivation. 

For a moment, let's look at the benefits. In classroom 
training, the teacher is usually -")sponsible for main­
taining a norm at the average class level. Very often 
the faster student becomes quite bored because he is 
ahead of the group, whereas the slower student is hav­
ing a problem keeping up, and thus becomes rather dis­
couraged. Most schools in the data processing field re­
quire the student to write, run, and debug test programs 
on whatever type of equipment that school may possess. 
There is a danger at times if the "school" has only the 
equipment of one manufacturer and is not able to pro­
vide good classroom direction where students can effec­
tively learn the differences between equipment of vari­
ous manufacturers-either small-scale computers or 
large-scaJe systems. 

A list of the computer courses available at the Jet 
Propulsion Laboratory, along with the computer selec­
tion procedure, is given in Appendix A; a set of com­
puter-related job descriptions from the Computer 
Education Directory published by Edutronics Systems 
International, Inc., Los Angeles, Calif., is presented in 
AppendixB. 

COMPUTER-ASSISTED INSTRUCTION 

Computer-assisted instruction, or CAl, is a relatively 
new medium to augment the other media I have dis­
cussed; however, I am certain all of us will be influenced 
by it over the next few years. I feel we are missing a 
very worthwhile and cost-effective tool. Helen Lakin 
at the University of Wisconsin noted there are 1,264 
program descriptions in the publication Index to 
Computer-Assisted Instruction. These descriptions are 
from sources in the United States, Canada, Europe, 
and Japan, representing elementary and secondary 
school systems, colleges, and universities that have 
complete CAl courses for credit. As an example, the 
University of Southern California recently instituted a 
complete course in Programming Language I by CAl 
for three units of credit. Many universities are using 
CAl as a self-teaching method very successfully for 
both direct teaching and remedial education. In none 
of these situations does it mean that there is not a 
teacher available to answer questions or at least to 
cover the highlights that may be misunderstood. In the 
government area, certainly throughout the Department 
of Defense, there are any number of programs that are 
offshoots of simulation programs as well as specific 
courses in CAL Many of the programs, however, are 
tailormade to the particular command or to the 
organization. 

I t is extremely important that data processing or­
ganizations thoroughly evaluate available software 
systems in today's market, whether they are proprie­
tary or in the public domain. For the programmer or 
systems analyst, where it can be shown to be cost­
effective, there is no better system than one with im­
mediate feedback. From a motivational standpoint, 
the one-to-one relationship without outside distraction 
can be made a very viable and successful means of 
instruction in this field. It seems strange that there are 
not more schools or private firms teaching program­
ming, systems analysis, or data processing management 
on a computer terminal. 

Briefly, from the principal title of the session, let's 
consider the capability of the computer in CAL In 
August 1970, a test project was instituted in the Com­
munications Electronics School Battalion at the Marine 
Corps Recruit Depot in San Diego, California. Twelve 
terminals were connected by data link to a UNIVAC 
1108 computer some 75 miles away. A stand-up class 
was run concurrently with the CAl classes. Individuals 
were psychologically matched, and each student pro­
ceeded through the course of instruction at his own 
pace. Of considerable importance, the Marine instruc­
tors wrote their own courses for the computer after 



only two weeks of instruction from the manufacturer. A 
system of positive or negative reinforcement of learning 
experience was presented to the student immediately. 
The immediate benefits of the teaching experience were 
the objectivity, data collection and reduction, and 
standardization of instruction. Cathode ray tube termi­
nals were employed. The results demonstrated sub­
stantially increased learning in the CAl class; and 
subsequent to the test, far greater retention was 
achieved. This demonstration has convinced Head­
quarters Marine Corps to initiate formal schools in 
CAl at the Marine Corps Station at Twenty-Nine 
Palms, California. Sixty terminals will be employed, 
course time will be reduced by 20 percent, and instruc­
tor requirements by 75 percent of instructor manpower. 

In the universities, there is a strong tendency to tie 
CAl courses with other portions of the curricula. There 
is a major tendency, of course, to deal primarily with 
the fields of scientific uses of the computer, or, in other 
words, its applications to physics, chemistry, biology, 
genetics, etc., rather than to the straight business ap­
proaches; however, some universjties are improving 
their curricula, from computer programming on into 
the area of management information systems. There is 
an excellent marriage between business management 
and the tools the computer can provide. 

GOVERNMENT USE OF COMPUTERS 

The government was the first major user of com­
puters, in the late 1940s and early 1950s. Commercial 
data processing centers have become increasingly 
widespread. Subsequent to unbundling, the govern­
ment agencies developed their own schools and separate 
series of grades within the Civil Service Commission 
to handle the various levels of computer programmers 
and systems analysts. One of the problems of govern­
ment, as well as of all large business operations, is fre~ 
quently a lack of communication among similar services 
and organizations. The Office of Management and 
Budgets in Washington is examining improvements in 
communication among similar elements of government, 
where both can utilize the same software, hardware, or 
systems approaches. Where there is coordination among 
government entities, cost savings are very substantial. 
Due to a low turnover, many large government entities 
also realize that their management personnel, as well as 
their programming personnel do not effectively utilize 
the tools available today. 

Many of the leading computer manufacturers empha­
size more now than before the need for improved 
management training) which, in a sense, goes beyond 
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the scope of this present paper. However, when speak­
ing of education for computer programmers and systems 
analysts, we must consider the people who are directing 
the needs for this education and training. These needs 
definitely stem, and should stem, from a better under­
standing by management of their own specific needs. 
When management understands these needs and can 
define them, then indeed they will do a much better 
job in hiring personnel. This will establish the type of 
training curricula these personnel should have had be­
fore being hired. 

As a lesson from the government's interest in this 
field, communicating between commercial firms possess­
ing similar interests can assist industry in setting 
standards or norms of personnel. In Appendix B are a 
number of what I feel to be excellent definitions of 
programmers and systems analysts. There is a need 
throughout the United States today for an improve­
ment in semantics of all facets of ADP terminology in 
the entire field. Pers::mnel firms should seek for a com­
mon understanding, thus setting some type of definition 
of various grades of programmers for the systems 
analysts. In large industries, of course, these have been 
indicated. However, they vary considerably from in­
dustry to industry. By an improvement in definition, 
understanding, and attainment, the individuals in this 
field should become more professional in their 
community. 

THE IMPORTANCE OF PRETESTS 

Obviously, any paper may reflect the bias of the 
individual writing that paper, who may promote those 
things that are the most successful in improving his 
responsibilities. Both with beginning programmers or 
systems analysts, or with those who wish to enter this 
field, I am a firm believer in computer pretests. Large 
schools have pretests of one type or another. However, 
when they are sel1ing courses, their pretests may not 
be as restrictive as a pretest would be within my organi­
zation or within other organizations depending upon a 
profit motive. 

Pretests can aid in determining a person's ability to 
absorb a particular instructional level. He takes the 
test, analyzes the test himself, and, from the results, he 
himself should be mature enough to state whether he 
has the ability to go ahead as a computer programmer, 
as a systems analyst, or in some other field of data 
processing, or whether his capability in fact rests some­
where else, and not in the ADP field at all. Many of 
the personnel with whom I have been associated who 
have taken these pretests have suddenly decided they 
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should not take FORTRAN or COBOL, but rather 
should go back into a program we have titled "Introduc­
tion to Computers," or, in other words, the basic 
groundwork-"What is a computer, what does it do, 
how does it operate, how does it function, and what are 
the various fields to which it could be applied?" The 
next step (shown in Figure A-I) analyzes his particular 
functional responsibilities, and, from there, determines 
the type of course toward which he should direct him­
self: in other words, what computing system should he 
be addressing? This last step is extremely important, 
since a person who is completely educated in one type 
of equipment, and then is thrown into another organi­
zation with an entirely different type of equipment, 
normally has some problems adjusting. This can be 
prevented if his training is directed toward the type of 
equipment he is going to use in the first place. Within 
an organization, a person's immediate supervisor is re­
sponsible for determining whether company time should 
be devoted to such courses or whether the individual 
would improve himself by taking courses outside of his 
office hours. 

FUTURE DEVELOPMENTS 

Let's consider some probable areas where changes in 
technology should considerably influence ADP educa­
tion in the next decade. Increasing capability in the 
multiprogramming aspects of large-scale computers will 
permit a more economical approach toward computer­
assisted instruction. Initially, however, it should be 
treated primarily as an augmentation or reinforcement 
of courses rather than as the stand-alone desire of some 
CAl enthusiasts. There will be an increasing need for 
studies into the motivational aspects of all levels of 
individuals, whether students are from grammar 
schools or high schools, or are personnel in government 
or industry. 

According to the ETV Newsletter of July 26,1971, as 
an example of the future development (and one that 
I believe will be widespread some years from now), 
the MITRE Corporation of Bedford, Massachusetts, is 
conducting a feasibility study utilizing TV ICAI 
through cable TV distribution. In this instance, both 
the voice and the stiH pictures are transmitted via 
microwave and on cable TV to homes equipped with 
special terminal and TV set combinations. The com­
pany is using its time-shared interactive computer­
controlled information television (TICCIT) system to 
display selective material on individual TV sets. Thus, 
600 TV sets can receive separate information provided 
by the computer at a typical rate of one frame every 10 

seconds. The viewer is then in a position to communi­
cate back to the computer through a 12-button tele­
phone. The overall software for the system is designed 
under the sponsorship of the National Science Founda­
tion, which can provide individualized educational 
courses for home and school use. Over courses that 
have a broad-scale interest in the future, therefore, it is 
quite likely that up to 10,000 TV sets in one local area 
could conceivably be tied into one major system with 
a number of different programs being selectively 
addressed. 

Microcomputers of the future, costing as low as 
$2 to $3 K with keyboard and tape cassette units and a 
small TV light display, could be utilized by a number 
of commercial and governmental operations where 
specific instruction is required. * I believe the cassette 
will playa large part in the future. 

Along with educational programs, we consider the 
terminal hardware development. Keyboards have 
varied from the standard typewriter keyboard to color­
coded keys for some special studies. It is possible the 
lightweight, touch-sensitive surfaces instead of key­
boards may be utilized. Common phrases that could 
have a general application to a number of educational 
uses may be designed into either system. 

Pictorial or handwritten input may be one area of 
the future, as well as the very early development of 
voice input (Culler Harrison, Inc., in Goleta, Cali­
fornia, and the Bell Telephone Labs), and, lastly, one 
I am certain a number of you have seen demonstrated, 
the plasma array terminals developed by Dr. Donald 
L. Bitzer of the University of Illinois in conjunction 
with Owens Illinois Glass Co. As some of you may re­
call, the view plate which replaces the video tube con­
sists of three layers of glass with gold wires and an 
X/Y axis, imbedded in an electrolyte containing neon 
gas. The dots of stimulated neon gas, 3600 per square 
inch, may display pictures without computer regenera­
tion, allowing both the computer and the user to modify 
the display. A number of these terminals are presently 
in manufacture by The Magnavox Co. for the Uni­
versity. I feel this type of approach ~rill contribute a 
great deal to the ability of fairJy small computers hav­
ing a capability to relate through educational systems 
to a number of terminals. 

The software field also has a major impact upon the 
future of education and training to systems analysts 
and programming personnel, in that language capa-

* F. W. Blackwell, The Probable State of Computer Technology by 
1980, With Some Implications for Education, P-4693 R, The Rand 
Corporation, Santa Monica, Calif., Sept. 1971. 



bility should certainly be on higher level than it is at 
present, including switchablemicroprograms, very 
large memories, associative memories, and other vari­
ables at an economical cost which could contribute 
considerably to a multi-user access. In a sense, with the 
technological changes, both in hardware and software, 
the aspect of the present programmer training should 
change markedly from the existing languages and the 
present direction. One of the interesting fallouts in 
teaching FORTRAN to a group of high school students 
on the West Coast recently resulted in improved ability 
of the students in their other courses. Apparently 
there is some relationship to the logical display of 
FORTRAN which overlapped into an improved under­
standing by these students in other subjects within 
their curricula. 

Another aspect of the future is the multitude of 
libraries of application programs available to all facets 
of industry, government, and the educational commu­
nity. With improved library maintenance and cross 
correlation, hopefully, many users of the future will 
be prevented from "reinventing the wheel" concept, 
and will be forced to thoroughly review the application 
programs available before they attempt to develop 
training programs on their own. Therefore, extenE?ive 
markets exist for personnel to improve the develop­
ment of such a compendium. Along with these applica­
tion programs, however, and one of the aspects that is 
not as thoroughly covered today, is that of computer 
costs associated with each application program. This 
type of data will definitely have to be included in any 
compendium of library programs (similar to COSMIC, * 
which is operated today) . 

In communications, I feel many of us have seen 
limitations in our present telephone equipment; how­
ever, in the near future, firms similar to DATRAN, 
whose microwave towers will be completely devoted to 
data processing centers throughout the United States, 
as well as improvements in our present communication 
equipment and satellite interface, will aid considerably 
in the more economical aspects of computing, as well as 
the education and training in a CAl approach through­
out major time-sharing networks. 

In summary, there will be a considerable change in 
programming languages, major changes in terminals 
and hardware equipment, and a greater interest and 
acceptance of computers. 

* The Computer Software Management and Information Center 
(COSMIC) is maintained for NASA by the University of Georgia 
and provides a national data bank of software programs devel­
oped and debugged by government agencies and in the public 
domain. 
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RECOMMENDATIONS 

For the educational, governmental, or business or­
ganization involved with its own educational develop­
ment, it is essential to seek a multimedia mode of 
educating personnel. Do not rely on self-instructional 
manuals for the individual to develop an ability on his 
own. Upon completion of internal or external schooling, 
maintain an open view to periodic reinforcement of 
whatever course the individual attends. 

Whenever possible, seek or have developed pretests 
to determine the level of investment your organization 
would make with the individual. It is normally wiser 
to allow management personnel the prerogative for self­
correcting to determine their level of instruction. I feel 
that senior and middle management are too often ne­
glected in the general concepts of computer technology. 

Be aware of the developments in the university and 
governmental areas in education and training as they 
may very often be obtained without cost to your or­
ganization. The NASA data bank (COSMIC) is an 
example of this. 

Lastly, in returning to the major subject of this 
session, that of training of commercial programmers 
and systems analysts, a thorough review of the com­
mercial school, in addition to the very excellent training 
offered by the major computer manufacturers, should 
be made. University or high school evening classes very 
often may be an economical advantage in this evalua­
tion. Maintain an awareness of the development of 
CAl as it is being used in grammar schools, secondary 
schools, and universities. Most important of all, to the 
prospective programmer or analyst, be aware of the 
"state of the art" changes to prevent ccmplacency. 
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APPENDIX A-COMPUTER COURSES AT 
THE JET PROPULSION LABORATORY , 
CALIFORNIA INSTITUTE OF TECHNOLOGY 

GENERAL INFORMATION 

Definition of terms 

Pretest. These are self-administered, self-graded tests 
whose purpose is to help the individual determine that 
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ARE YOU 
A SCF 
USER? 

NO IBM COURSES 

YES SCFPROGRAM 
LIBRARY 

Figure A-I-JPL computer course selector 

the course is correct and that the individual is neither 
underpowered nor overpowered for the course material. 
The pretest also provides a general feeling of course 
content. 

Time distribution charts 

Each pie chart indicates the approximate distribu­
tion of the total time of the course required both in 
and out of class. The symbol "I" refers to Instruction, 
"P" refers to Participation, and "H" refers to 
Homework. 

Certification 

Certificates of completion are issued and recorded in 
the personnel file. They are based either upon atten-

dance or upon the demonstration of proficiency in the 
techniques or skills taught. 

Survey 

The courses were developed in response to the major 
needs expressed and measured through the Training 
Needs Survey. 

Schematic 

A diagram of the courses available is shown III 

Figure A-l. 

INTRODUCTION TO COMPUTERS 

For Whom: 

Prerequisites: 
Description: 

Objectives: 

Text Provided: 
Pretest: 
Time Distribution: 

Those with little or no knowledge 
of computers. Quota limited. 
None. 
Description and explanation of 
computer purposes, parts and func­
tions, computer languages, pro­
gramming concepts, and the com­
puters at JPL. 
To gain a general understanding of 
computer-related technology and 
terminology. 
Handouts. 
Recommended. 

Instruction: Lectures with audio­
visuals. 
Participation: Discussion. 
Homework: Simple problem 
assignments. 



Schedule: Four 2-hour sessions; 2 weeks. A 
new class to be held each month 
during the year. 

PROGRAMMING FUNDAMENTALS 

For Whom: 

Prerequisites: 
Description: 

Objec#ves: 

Text Provided: 
Pretest: 
Time Distribution: 

Schedule: 

Those with no computer program­
ming background who plan to take 
other courses in computer lan­
guages. Quota limited. 
None. 
Introduction to computer pro­
gramming, its logic, elements, 
terminology, and procedures. Pre­
view of FORTRAN, COBOL, and 
X-BASIC. 
To gain general awareness of com­
puter programming concepts and 
languages. 
None. 
Recommended. 

Instruction: Live and video-taped 
lectures. 
Participation: Discussion. 
Homework : None. 
Four 2-hour sessions; 2 weeks. 
Classes to be held each month dur­
ing the fiscal year. 

FORTRAN FUNDAMENTALS 

For Whom: Beginning FORTRAN program­
mers who will use the Scientific 
Computing Facility. Quota limited. 
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Prerequisites: 

Description: 

"Programming 
course. 

Fundamentals" 

Introduction to the elements of 
FORTRAN and the methods of 
writing programs in it. This course 
includes several illustrative prob­
lem assignments. 

Objectives: To gain ability to write simple 
programs in FORTRAN. 

Text Provided: FORTRAN IV primer-class 
notes. 

Pretest: Recommended. 

Time Distribution: 

Schedule: 

FORTRAN V 

For Whom: 

Prerequisites: 

Instruction: Video-taped lectures. 
Participation: Discussion. 
Homework: Problem assignments. 

Twelve 2-hour sessions; 6 weeks. 
Classes to be given on a bimonthly 
basis. 

Scientific Computing Facility 
users. Quota limited. 

FORTRAN Fundamentals and 
"Beginning EXEC-8" courses and 
experience using the UNIVAC 
1108. 
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Description: 

Objectives: 

Text Provided: 

Pretest: 

Time Distribution: 

Schedule: 

Review of FORTRAN Funda­
mentals. Explanation of more ex­
tensive capabilities of FORTRAN 
for advanced programming tech­
nology. 

To gain ability to write sophisti­
cated programs in FORTRAN. 

FORTRAN V Reference manual. 

Recommended. 

Instruction: Lectures. 
Participation: Discussion. 
Homework: Program assignments. 

Ten 2-hour sessions; 3 Y2 weeks. 
Six to eight classes per fiscal year. 

BEGINNING COBOL 

For Whom: 

Prerequisites: 

Description: 

Objectives: 

Those who will use the Adminis­
trative Computing Facilities. 
Quota limited. 

"Programming Fundamentals" 
and "Introduction to Computers" 
courses or equivalent. 

Introduction to the elements of 
COBOL and methods of writing 
programs. Several illustrative 
problem assignments are included. 

To gain ability to write simple 
programs in COBOL. 

Instructor: 

Text Provided: 

Pretest: 

Time Distribution: 

Schedule: 

Self-study program with group 
discussion. 

1108 ANS COBOL-Programmers 
Reference Manual. 

None. 

Instruction: Discussion leader and 
films. 
Participation : Self-study. 
Homework: Simple problem as­
signments. 

Four hours self-study approxi­
mately, plus 1-hour group discus­
sion per week; 7 weeks. Four 
classes per year scheduled. 

BEGINNING EXEC-8 CONTROL LANGUAGE 

For Whom: 

Prerequisites: 

Description: 

Beginning users of the Scientific 
Computing Facility. Quota limited. 

Ability to use X-BASIC, FOR­
TRAN, or COBOL. 

"Introduction to EXEC-8," the 
Command Language of the 
UNIVAC 1108 System. Prepara­
tion of run streams, compilation of 
programs, assignment and manip­
ulation of files. 



Objectives: 

Text Provided: 

Pretest: 

Time Distribution: 

Schedule: 

To gain ability to prepare simple 
jobs for running on the UNIVAC 
1108. 

EXEC-8 Student Handbook. 

None. 

Instruction: Lecture. 
Participation: Discussion. 
Homework: None. 

Four 1 Y2 hour sessions; 2 weeks; 
classes to be held each month. 

EXEC-8 CONTROL LANGUAGE 

For Whom: 

Prerequisites: 

Description: 

Objectives: 

Scientific Computing Facility 
users. 

Extensive experience with the SCF 
computer system. 

Explanation of the full capabilities 
of the EXEC-8 Control Language, 
system file formats, and program­
ming debugging aids and methods. 

To gain ability to prepare jobs for 
the UNIVAC 1108, utilizing the 
full capabilities of the system 
available to higher level language 
programmers. 
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Text Provided: 

Pretest: 

Time Distribution: 

Schedule: 

EXEC-8 OPERATING SYS­
TEMS-Programmers Reference 
Manual. 

Recommended. 

Instruction: Lecture. 
Partici pation: Discussion. 
Homework: Problem assignments. 

Ten 2-hour sessions; 5 weeks; four 
classes/year. 

TEXT EDITOR FOR THE UNIVAC 1108 

For Whom: 

Prerequisites: 

Description: 

Objectives: 

Text Provided: 

Pretest: 

Scientific Computing Facility users 
with access to conventional termi­
nals. Quota limited. 

"Beginning EXEC-8 Control Lan­
guage" course and experience In 
use of conversational terminals. 

Explanation of features of the 
UNIVAC 1108, Text Editor and its 
use at· demand terminals, creating 
and modifying data or files. 

To gain ability to utilize more 
powerful and convenient methods 
of manipulating Source Files from 
conversational terminals. 

Text Editor. 

None. 
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Time Distribution: 

Schedule: 

Instruction: Lecture. 
Participation: Discussion. 
Homework: None. 
Five 2-hour sessions; 272 weeks; 
two classes/year. 

ADDITIONAL COVERAGE IN ADP 
COURSE CAPABILITY 

1. Systems Analysis and Design Course: This is a 
30-hour course of self-study, utilizing textual, 
audio, and video media (no single medium over 
15 minutes at one specific period). It is an ex­
tensive, self-study program to develop skills in 
systems work for data processing personnel 
(DELTAK, Schiller Park, Illinois). 

2. ADP Terminology: This is a course completely 
in audio, on audio tapes for personnel who wish 
to become familiar with data processing termi­
nology. One of the recommendations for taking 
this course is to utilize a tape unit in a car going 
to and from work, listening and repeating the 
words, as well as the explanation following. This 
course was developed by a firm in Ohio, and is 
being utilized throughout the United States 
(DYNAPHONICS, Dayton, Ohio). 

3. JPL/OS: The operating system for IBM's 
360/75 computers. This program is completely 
on video tape for self-instruction or reinforce­
ment, primarily to be used by the computer 
personnel having advanced knowledge of com­
puter programs. 

4. FORTRAN Fundamentals: In addition to the 
classroom presentation, this course can also be 
taken on a self-instructional basis by video tape. 

5. Additional Courses: Additional courses are given 
in integrated circuit design, computer-aided cir­
cuit analysis, integrated circuit application, 
speed reading, telephone practice, computer 
concepts, and techniques, utilizing audio/video 
(animation) program, and \\'orkbooks on vari­
ous subjects in the computer field in self-study 
mode, self-study audio cassette/\vorkbook in 
BASIC, FORTRAN, and a computer tech­
nology course put out by the AIAA discussing 
computer technology media in the next decade. 

APPENDIX B-COMPUTER-RELATED 
OCCUPATIONAL DESCRIPTIOXS*© 

OCCUPATIONAL DESCRIPTIONS 

The occupations described on the following pages are 
considered to be the basic occupations most directly 
concerned with electronic computing. These occupa­
tions, however, are still fluid. 

Hiring requirements and qualifications for employ­
ment have not yet been fully standardized. As a conse­
quence, a certain amount of overlap and duplication of 
job duties and responsibilities will be noted among the 
various occupational descriptions. The occupational 
data, however, were assembled from many different 
sources and are a reflection of the existing situation. 
Since the data reflect the occupational situation as it 
exists in varied localities and establishments, the de­
scriptions must be considered as cOIp.posites of jobs, 
and cannot be expected to coincide exactly with any 
job in a specific organization. It will be necessary, 
therefore, to adapt descriptions to fit individual jobs 
before they can be used with complete accuracy. 

The job descriptions are arranged in seniority order 
of their main titles. The wording of the title that ap­
pears at the head of each description is a reflection of 
common usage. Other titles, by which the job is known, 
also appear at the head of each description in small 
type. Between the main and alternate titles appears 
the code number which identifies the job within the 
present classification structure of the U.S. DICTION­
ARy OF OCCUPATIONAL TITLES. 

The narrative portion of each job description is ar­
ranged as follows: 

Occupational Definition-Thi~ provides a brief de­
scription of the duties involved in a particular occupa-

* © Edutronics Systems International, Inc., 1969 (Reprinted, 
with permission, from Computer Education Directory, Edutronics 
Systems International, Inc., Los Angeles, California, 1969.) 



tion. It provides an understandjng of the tasks that are 
performed, and the skills and knowledge that are neces­
sary to the performance of those tasks. 

Education, Training, and Experience-This section 
provides an indication of the amount of education and 
the level of training and experience usually required by 
management for employment in the occupation. As 
previously mentioned, the various occupations and the 
qualifications are not standardized, and considerable 
variation exists among employers as to required educa­
tion, training, and experience. However, an attempt 
was made to indicate the range of such hiring 
requirements. 

Special Characteristics-This section provides some 
estimate of the worker trait requirements pertinent to 
the specific occupations. I t has long been believed 
that the ability of an individual to adjust to specific 
types of work situations is as significant as the educa­
tion and training qualifications he brings to the occupa­
tion. This seems particularly significant when dealing 
with a group of relatively new occupations. Conse­
quent]y, judgments have been in terms of a number of 
components consisting of aptitudes, interests, tempera­
ments, physical activities, and environmental condi­
tions to which individual workers have to adjust. 

A ptitudes-These are the specific capacities or abili­
ties required of an individual in order to facilitate the 
learning of some task or duty. This component is made 
up of 11 specific aptitude factors, and is a modification 
of the aptitudes contained in the General Aptitude 
Test Battery developed in the U.S. Emp]oyment 
Service. Those aptitudes were selected which seem to be 
significant in the occupation and were identified in terms 
of specific work situations. The factor of intel1igence, 
however, was not rated because of the difficulty in 
writing meaningful descriptive statements. 

I nterests-This component is defined as a preference 
for a particular type of work experience. It consists of 
five pairs of bipolar factors, arranged so that a prefer­
ence for one factor in a pair generally indicates a lack 
of interest in the other factor in the pair. Those factors 
were identified which seemed to be significant to the 
job in question, and were identified in terms of specific 
worker situations. 

Temperaments-The temperament component con­
sists of 12 factors defined in terms of specific work 
situations that suggest different temperament trait re­
quirements. Each work situation describes a type of 
activity that demands a different adjustment on the 
part of individual workers. Those temperament factors 
were selected that appeared to be significant in the 
occupation, and were identified in terms of specific 
work duties. 
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Physical Activities and Environmental Conditions­
This refers to (a) the physical activities required to be 
met by the worker; and (b) the physical surroundings 
which make specific demands upon a worker's physical 
capacities. There are six physical activities factors and 
seven environmental conditions factors. Those factors 
were selected that were significant in the occupation in 
the sense that they met established criteria for success­
ful performance. 

MANAGER, DATA PROCESSING-(169.168), 
DIRECTOR, DATA PROCESSING 

Occupational definition 

Directs and coordinates planning and production 
activities of electronic data processing division. Con­
sults with management to define boundaries and priori­
ties of tentative projects, discusses equipment acquisi­
tions, determines specific information requirements of 
management, scientists, or engineers, and allocates 
operating time of computer systems. Confers with de­
partment heads involved with proposed projects to 
ensure cooperation and further defines nature of project. 
Consults with SYSTEMS ENGINEER, ELEC­
TRONIC DATA PROCESSING to define equip­
ment needs. Reviews project feasibility studies. Estab­
lishes work standards. Assigns, schedules, and reviews 
work. Interprets policies, purposes, and goals of organi­
zation to subordinates. Prepares progress reports to 
inform management of project development and 
deviation from predicted goals. Contracts with manage­
ment specialists or technical personnel to solve prob­
lems. Revises computer operating schedule to introduce 
new program testing and operating runs. Reviews 
reports of computer and peripheral equipment produc­
tion, malfunction, and maintenance to ascertain costs 
and plan operating changes within his department. 
Analyzes data requirements and flow to recommend 
reorganization or departmental realignment within the 
company. Participates in decisions concerning personnel 
staffing and promotions within electronic data process­
ing departments. Directs training of subordinates. 
Prepares proposals and solicits purchases of analysis, 
programming, and computer services from outside 
firms. 

Education, training, and experience 

Two years of formal post-high school training in data 
processing with courses in business. administration and 
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accounting or engineering, or equivalent practical ex­
perience is necessary for small computer installations. 
College graduation with major in one or more of the 
above fields is preferred for large installations. Experi­
ence in systems analysis, programming, and computer 
operations is desirable. In installations offering more 
sophisticated services, such as operations research and 
engineering simulation, a college mathematics major 
coupled with experience listed above is desirable. 

Special characteristics 

Aptitudes: 

Verbal ability to translate technical terminology into 
terms understandable to management and department 
heads. 

Numerical ability to apply knowledge of linear or 
differential equations in evaluating work of department, 
preparing reports and proposals for management, and 
selling services to outside users. 

Spatial ability to read engineering drawings, charts, 
and diagrams; to understand presentations, proposed 
solutions, and progress reports of business or engineer­
ing problems. 

Form perception to see pertinent detail in drawing 
charts, diagrams, and other presentations. 

Clerical perception to detect and avoid errors in 
reading and preparing reports. 

Interests: 

An interest in scientific and technical subjects to cope 
with wide range of technical and scientific problems 
processed through computer. 

A preference for business contacts with people in 
directing activities of computer department and to sell 
ideas or services. 

Temperaments: 

Must be able to direct, control, and plan the opera­
tions of the division, bringing together knowledge of 
operations and information needs of departments, such 
as accounting, purchasing, engineering, sales, and in­
ventory control. 

Required to deal with people such as management, 
department heads, and manufacturers' representatives 
to exchange information and ideas, discuss equipment 
and their uses, elicit information from departments, 
and to answer inquiries from department heads. 

Ability to influence management and department 
heads to enlist their support for acceptance, expansion, 

and sophistication of computer systems; and ability to 
sell excess computer time and services to outside clients. 

Required to make judgmental decisions concerning 
equipment needs, scope of assignments, allocation of 
computer time, and organization of departments. 

Required to make decisions based on factual data to 
evaluate progress or success of computerized projects. 

Physical Activities and Environment: 

Work is sedentary. 
Occasionally walks to various departments and 

offices; stands during conferences and discussions with 
management, department heads, and supervisor of 
computer operations. 

Talking and hearing required in conferences and dur­
ing exchanges of information. 

N ear visual acuity and accommodation required for 
reading reports and charts. 

Work is performed inside. 

PROJECT DIRECTOR, BUSINESS DATA 
PROCESSING (020.168), BUSINESS-SYSTEMS 
COORDINATOR; LEAD ANALYST; 
PROGRAM MANAGER; PROJECT 
PLANNER; SENIOR SYSTEMS ANALYST, 
BUSINESS 

Occupational definition 

Plans, directs, and reviews business electronic data­
processing projects, coordinates planning, testing, and 
operating phases to complete project with maximum 
balance of planning and equipment time, man hours 
and new equipment expenditures. Prepares project 
feasibility and progress reports. Confers with depart­
ment heads who provide input and use output data to 
define content and format. Schedules and assigns duties 
to OPERATIONS RESEARCH ANALYSTS based 
on evaluation of their knowledge of specific disciplines. 
Coordinates activities of workers performing successive 
phases of problem analysis, solution outlining, solution 
detailing, program coding, testing, and debugging 
(error elimination). Reviews output data and related 
reports, applying knowledge of systems, procedures, 
methods, and data requirements of management and 
other output users to ensure adherence to predeter­
mined standards and devise techniques for improved 
performance on similar future projects. Directs revision 
of continuous control project to adapt it to new data 
requirements or improve operations by using new 
techniques or equipment. 



Education, training, and experience 

A bachelor's or master's degree in business adminis­
tration, with extensive course content in accounting and 
mathematics or statistics often is required. Employers 
frequently waive academic training requirements for 
currently employed workers with extensive systems 
analysis, design and followup responsibility in elec­
tronic data processing, and supervisory experience in 
tabulating-machine departments. Employers frequently 
require a degree or equivalent experience either in in­
dustrial engineering, or the engineering discipline most 
directly related to their manufacturing processes, when 
expanding business data processing to an integrated 
system that includes production forecasting, planning, 
and control. 

Background knowledge and experience usually in­
clude a minimum of one to three years' experience in 
systems analysis and concurrent familiarization with 
structure, work flow requirements, and standards of the 
employing organization. 

Current trend is toward greater mathematical sophis­
tication than previously expected of workers at this 
level. The need for advanced mathematics becomes 
more urgent as computer applications become involved 
not only with normal business data-processing, but also 
with the involved problems of operations research. 

Special characteristics 

Aptitudes: 
Verbal ability to elicit information and discuss proj­

ect intentions, problems and progress, and to prepare 
reports. 

Numerical ability to analyze problems and develop 
systems statements in form capable of being pro­
grammed. Mathematics varies from arithmetic and 
algebra for simple, single-purpose systems design to 
differential equations and mathematical statistics for 
complex systems involving optimization, simulation, or 
forecasting. 

Spatial ability to develop, interpret, or integrate 
operational workflow diagrams and charts. 

Clerical perception to recognize pertinent detail and 
avoid perceptual errors when working with verbal 
material, which often is in highly contracted and 
conventionalized form. 

Interests: 

A preference for prestige-type activities, and for 
business contact with others to participate in confer­
ences with management, advise and inform others re-
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gar ding the potentialities, limitations, and alternative 
methods of data processing, supervise analysts and 
coordinate their activities. 

A preference for activities that are technical in nature 
to read and keep informed of computer development 
and) new or more refined systems and procedures 
techniques. 

Temperaments: 
Ability to perform a variety of duties involving fre­

quent change, ranging from direct involvement in 
problem analysis to coordination of subsequent work 
processes until each project is operational. 

Must be able to direct and plan an entire area of 
work activity, assigning subordinates on the basis of 
knowledge of individual specializations and abilities, 
and control activities through personal contact and 
reports. 

Must be able to deal with people jn nonsupervisory 
situations requiring considerable tact, to secure co­
operation from management and all personnel affected 
by project. 

Required to make decisions on a judgmental basis 
when supervising others and developing approaches to 
problems on basis of past experience. Evaluates fixed 
cost, time, manpower allocation, and output specifica­
tions to judge efficiency of project development and 
operation. 

Required to make decjsions based on factual data, as 
in planning proposed system around capabilities and 
limitations of a specific computer system. 

Physical Activities and Environment: 
Work is sedentary, with occasional standing and 

walking required. 
Occasionally lifts and carries books, charts, diagrams, 

and other records seldom exceeding 10 pounds. 
Talking and hearing to discuss problems and progress. 
N ear visual acuity to work with reports, charts, and 

diagrams and other printed or written records. 
Work is performed inside. 

SYSTEMS ANALYST, BUSINESS DATA 
PROCESSING-(012.168) , COMMERCIAL­
SYSTEMS ANALYST AND DESIGNER; 
DATA-METHODS ANALYST; SYSTEMS 
AND PROCEDURES ANALYST, BUSINESS 
DATA PROCESSING 

Occupational definition 

Analyzes business problems, such as development of 
integrated production, inventory control and cost 
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analysis, to refine its formulation and convert it to 
programmable form for application to electronic data 
processing system. Confers with PROJECT DIREC­
TOR, BUSINESS DATA PROCESSING and depart­
ment heads of units involved to ascertain specific out­
put requirements, such as types of breakouts, degree of 
data summarization, and format for management re­
ports. Confers with personnel of operating units to de­
vise plans for obtaining and standardizing input data. 
Studies current, or develops new systems and pro­
cedures to devise workflow sequence. Analyzes alterna­
tive means of deriving input data to select most feasible 
and economical method. Develops process flow charts 
or diagrams in outlined and then in detailed form for 
programming, indicating external verification points, 
such as audit trial printouts. May work as member of 
team, applying specialized knowledge to one phase of 
project development. May coordinate activities of team 
members. May direct preparation of programs. 

Education, training, and experience 

College graduation with courses in business admin­
istration and accounting usually is required for entrants 
without prior experience in data processing. Some 
employers, while requiring a college degree, do not re­
quire a specific major or course content. A successful 
college record is regarded as proof of ability to reason 
logically which is considered more important for suc­
cessful performance than knowledge of techniques ac­
quired in any specific area. Many employers waive the 
formal education requirements for those workers em­
ployed in their establishments who have had several 
years' manual and machine systems experience prior to 
computer conversion. Business programmers without a 
college degree can, through experience, acquire a back­
ground in business systems and procedures and may 
thereby advance into systems analysis. Currently, the 
trend is to require a knowledge of advanced mathe­
matics because of the rapidly increasing sophistication 
of business systems. Continuing education, through 
specialized courses, self-study, and participation in 
activities of professional associations, is the rule rather 
than the exception in this occupation, as in all higher 
level occupations related to the computer. 

Special characteristics 

Aptitudes: 
Verbal ability to discuss problems and progress, pre­

pare reports, and make annotations for graphic repre­
sentations of work. 

Numerical ability to select from alternatives to de-

velop optimum system, procedures and methods. 
Mathematical investigation of such factors as variation 
in volume of input data, and frequency of appearance of 
exceptions to normal \vorkflow in processing is often 
necessary. Level of mathematics varied from business 
arithmetic and algebra to differential equations. 

Spatial ability to visualize, prepare, and review two­
dimensional graphic representations of \vorkflow. 

Form perception to identify nonverbal symbols on 
records such as block diagrams and flow charts. 

Clerical perception to avoid perceptual errors and 
recognize pertinent detail in the recording and identify­
ing of letters and numbers that often occur in abbrevi­
ated or acronymic combinations. 

Interests: 
A preference for activities that are technical and 

analytical, and those that are abstract and creative in 
nature to devise new or to modify standardized com­
puter-oriented systems to meet the specific needs of an 
organization. 

Temperaments: 
Ability to confer with personnel from other depart­

ments, develop flow charts, devise workflow sequence, 
and prepare reports. 

Required to deal with people in conference and 
interview situations. 

Required to make judgmental decisions to select 
from alternatives when devising optimal system. 

Required to make decisions on basis of factual data 
to design system within machine capability. 

Physical Activities and Environment: 
Work is sedentary, with occasional standing and 

walking. Occasional handling of source documents, 
books, charts, and other records that seldom exceed 
10 pounds. 

Talking and hearing to discuss and confer with man­
agement and technical personnel. 

N ear visual acuity to prepare and review workflow 
charts and diagrams. 

Work is performed inside. 

OPERATIONS RESEARCH ANALYST­
(020.088), MANAGEMENT-OPERATIONS 
ANALYST; OPERATIONS ANALYST 

Occupational definition 

Formulates mathematical model of management 
problems by application of advanced mathematics and 
research methods to provide quantitative basis for 
planning, forecasting, and making decisions. Analyzes 



problems in terms of management information require­
ments. Studies problem, such as selecting from com­
petitive proposals a plan that affords maximum proba­
bility of profit or effectiveness in relation to cost or 
risk. Prepares mathematical model of problem area in 
form of one or several equations that relate constants 
and variables, restrictions, alternatives, conflicting ob­
jectives, and their numerical parameters. Gathers, 
relates, and identifies data with variables in model by 
applying personal judgment and mathematical tests. 
Specifies manipulative and computational methods to 
be applied to formulations and refers to data processing 
division for solving equations, programming, and 
processing. Reviews operations and testing of model to 
ensure adequacy or determine need for reformulation. 
Prepares written, nontechnical reports to management, 
indicating problem solution or range of possible alterna­
tives in rank of desirability and probability of success 
when there is no single solution. Writes followup reports, 
evaluating effectiveness of research implementation. 
May specialize in research and preparation of contract 
proposals specifying the competence of an organization 
to perform research, development, or production work. 
May develop and apply time and cost networks, such as 
Program Evaluation and Review Technique (PERT), 
to plan and control large-scale business projects. May 
work in areas associated with engineering, as when 
analyzing and evaluating alternative physical systems, 
such as production processes, in terms of effectiveness 
and cost. May work alone or as member of a team. 

Education, training, and experience 

College degree with emphasis on advanced mathe­
matics and statistics is usually the minimum educa­
tiona] requirement. A combination of advanced degrees 
in mathematics and business administration is especially 
desirable. A doctorate in mathematics is frequently 
required. Specific training in operations research at the 
graduate level is rapidly becoming a standardized re­
quirement, as more schools offer courses in this inter­
disciplinary occupational area. Many workers have ac­
quired the necessary background in mathematics 
through education and experience in engineering and 
the physical sciences, and knowledge of specialized 
techniques through self-study and participation in 
activities of professional organizations. 

Special characteristics 

Aptitudes: 
Verbal ability to understand techn1cal languages of 

various professional disciplines such as engineering and 
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accounting, to give oral reports and to prepare written 
reports on results of research in lay terminology to 
management. 

Numerical ability to understand and work with such 
mathematical specializations as game, queuing, and 
probability theory, and statistical inference to prepare 
formulations, specify manipulative methods and evalu­
ate effectiveness. 

Spatial ability to prepare and interpret charts, dia­
grams, graphs, and maps. 

Clerical perception to recognize pertinent detail in 
compilation and analysis of statistical data, and to 
avoid perceptual errors in working with higher forms of 
mathematics. 

Interests: 

A preference for activities that are technical in nature 
to apply analytical, experimental, and quantitative 
techniques in the solution of management problems 
such as long-range forecasting, planning, and control. 

Interests in devising mathematical equations, analyz­
ing the methods used for their manipulation, and evalu­
ating their practical effectiveness. 

Temperaments: 

Requires ability to perform a variety of tasks related 
to the solution of various problems on all departmental 
levels. This involves conversing in several professional 
disciplines with personnel at all operating levels to 
gather and relate data and opinions relevant to prob­
lem under study. 

Must possess ability to make judgmental decisions 
such as probability of continuity or change in condi­
tions, and assign arbitrary weights and values to prob­
lem factors when conventional statistical methods are 
not applicable. 

Must possess ability to make decisions based on 
verifiable data, such as tabular records of previous or­
ganizational experience. 

Physical Activities and Environment: 

Work is sedentary, and occasionally involves lifting 
and carrying books, ledgers, and statistical tabulations 
seldom exceeding 10 pounds. 

Talking and hearing to discuss organization goals and 
priorities with management and acquire data pertinent 
to the problem from other organizational personnel. 

N ear visual acuity to read and work with a variety 
of data from many sources, and to refer to texts and 
technical papers. 

Work is performed inside. 
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CHIEF PROGRAMMER, BUSINESS-(020.168) , 
COORDINATOR, COMPUTER 
PROGRAMMING; LEAD PROGRAMMER 

Occupational definition 

Plans, schedules, and directs preparation of programs 
to process business data by electronic data processing 
equipment. Consults with managerial and systems 
analysis personnel to clarify program intent, indicate 
problems, suggest changes and determine extent of 
automatic programming and coding techniques to use. 
Assigns, coordinates, and reviews work of programming 
personnel. Develops own programs and routines from 
workflow charts or diagrams. Consolidates segments of 
program into complete sequence of terms and symbols. 
Breaks down program and input data for successive 
computer passes, depending on such factors as computer 
storage capacity and speed, extent of peripheral equip­
ment, and intended use of output data. Analyzes test 
runs on computer to correct or direct correction of 
coded program and input data. Revises or directs re­
vision of existing programs to increase operating effi­
ciency or adapt to new requirements. Compiles docu­
mentation of program development and subsequent 
revisions. Trains subordinates in programming and 
program coding. Prescribes standards of terminology 
and symbology to simplify interpretation of programs. 
Collaborates with computer manufacturers and other 
users to develop new programming methods. Prepares 
records and reports. 

Education, training, and experience 

Graduation from a technical school or college with 
training in business administration, computer pro­
gramming, data processing mathematics, logic, and 
statistics is the usual educational requirement. Usually, 
a minimum of two years' experience in programming 
for same or similar computer system, on broadscope 
and complex projects is required. Experience should 
indicate knowledge of organization structure and work­
flow, and also reflect proven ability to supervise others 
and coordinate work activities of the group supervised 
with that of other organizational units. 

Special characteristics 

Aptitudes: 
Verbal ability to present oral and written reports and 

recommendations and to read technical literature about 
changes in techniques and equipment. 

Numerical ability to program at level of linear and 
Boolean algebra (logic) to minimize expensive pro­
gramming and debugging time. Mathematics at level of 
differential equations and probability theory frequently 
required when an organization is developing or using 
sophisticated, integrated management information and 
forecasting systems. 

Spatial ability to interpret systems statement, de­
velop general and detailed computer flow charts, and 
prepare block diagrams that indicate hardware 
configuration. 

Form perception to see pertinent detail in charts, 
diagrams, and code sheets composed of symbols. 

Clerical perception to refer to manuals and written 
instructions and to review own work. This requires 
accurate identification of numbers, letters, words, and 
acronyms as well as ability to grasp general content. 

Interests: 

A preference for activities that are technical in nature 
to apply mathematics and logic in converting proposed 
business systems to computer-processable form. 

Temperaments: 

Ability to perform a variety of duties, covering prob­
lems from different but related areas of business activity 
such as production and inventory control, and sales 
analysis. 

Must be able to direct, control, and plan development 
of business data processing programs that will meet 
current and future needs. This involves direction of 
activities, such as program testing and revising, and 
coordination of all phases of business programming 
activities to meet schedules. 

Required to deal with subordinates for purposes of 
control and coordination, and with systems analysis 
and management personnel to resolve questions of in­
tent and programming difficulties. 

Required to make judgmental decisions based on ex­
perience to assign personnel and select and apply 
techniques that will produce least cost, fastest, or most 
flexible programs. 

Required to make decisions based on factual data to 
evaluate adequacy of completed program by comparing 
program, test and operating· runs with prescribed 
standards of terminology, and time. 

Physical Activities and Environment: 

Work is sedentary. Lifts and carries source and out­
put data, books, charts, and diagrams seldom exceeding 
10 pounds. 



Stands, walks, talks, and hears in instructiDnal and 
conference situations. 

N ear visual acuity to prepare, integrate, or modify 
complex programs, using a variety of charts, diagrams, 
and handbooks. 

Work is performed inside. 

PROGRAMMER, ENGINEERING AND 
SCIENTIFIC-(020.188), PROGRAMMER, 
TECHNICAL 

Occupational definition 

Converts scientific, engineering, and other technical 
problem formulations to format processable by com­
puter. Resolves symbolic formulations, prepares logical 
flow charts and block diagrams, and encodes resolvent 
equations for processing by applying knowledge of ad­
vanced mathematics, such as differential equations 
and numerical analysis, and understanding of computer 
capabilities and limitations. Confers with engineering 
and other technical personnel to resolve problems of 
intent, inaccuracy, or feasibility of computer processing. 
Observes or operates computer during testing or pro­
cessing runs to analyze and correct programming and 
coding errors. Reviews results of computer runs with 
interested technical personnel to determine necessity 
for modifications and rerun. Develops new subroutines 
for a specific area of application, or expands on applica­
bility of current general programs, such as FORTRAN, 
to simplify statement, programming, or coding of 
future problems. May supervise other programming 
personnel. May specialize in single area of application, 
such as numerical control, to develop processors that 
permit programming for contour-controlled machine 
tools in source-oriented language. 

Education, training, and experience 

College degree with major in mathematics or en­
gineering is usually the minimum educational require­
ment. A master's degree or doctorate in mathematics or 
engineering is a common requirement where analysis or 
programming is extremely complex or where work 
duties involve basic research in mathematics or pro­
gramming. From two to four years of on-the-job train­
ing, with gradually decreasing amounts of supervision 
and with increasingly complex work assignments, are 
regarded as necessary for the worker to become familiar 
with at least one class of computer, programming lan­
guage, and applications area. Short (one to four weeks) 
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training sessions are given by employers and computer 
manufacturers to provide basic training and (later) 
specialized training. Current trends toward simplifica­
tion of programming languages and greater applicability 
of generalized programs, and requirement of basic 
computer orientation and programming courses for 
college degree in physical sciences or engineering will 
reduce on-the-job training time. 

Special characteristics 

Aptitudes: 

Verbal ability to discuss problems and equipment 
requirements with other technical personnel, to prepare 
computer flow charts, written records, reports, and 
recommendations and to read technical publications. 

Numerical ability to interpret mathematical formu­
lation, to select from alternative computational meth­
ods, to frame program within limitations of the com­
puter to be used, prepare logical flow charts and dia­
grams, to convert program steps to coded computer 
instructions, and to review work. Level of mathematics 
may vary from arithmetic and algebra to advanced 
differential equations in the course of writing a single 
program, and may also include applications of numerical 
analysis. 

Spatial ability to prepare logical flow charts specify­
ing sequences of operating instructions and flow of data 
through computer system, to design input and output 
forms, and to interpret detailed drawings, diagrams, 
and other graphic data. 

Form perception to see pertinent detail in charts, 
diagrams, and drawings, and distinguish symbols in 
subject matter areas such as physics and electrical 
engineering. 

Clerical perception to avoid perceptual errors in re­
cording of alphanumeric and special symbologies. 

Motor coordination to operate calculator or 
computer. 

Interests: 

A preference for activities technical in nature to use 
mathematics to reduce formulations to computer­
processable form. 

Temperaments: 

Required to make decisions on a judgmental basis, 
using past experience and knowledge to select best 
method of programming and coding a problem and 
thereby avoiding costly, time-consuming analyses of 
alternate techniques. 

Required to make factual decisions, such as evalua-
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tion of program accuracy by computer acceptance, 
presence of error messages or obvious output distortions. 

Must be able to conform to accepted standards and 
techniques in developing and testing programs, and in 
writing instructions for digital-computer operator. 

Physical Activities and Environment: 

Work is sedentary, requiring occasional lifting and 
carrying of source data, books, charts and diagrams 
seldom exceeding 10 pounds. 

Talking and hearing to confer and collaborate with 
other technical personnel. 

N ear visual acuity to prepare logical flow charts 
from lengthy mathematical statements of problem, and 
to convert program steps to coded computer 
instructions. 

Work is performed inside. 

PROGRAMMER, BUSINESS-(020.188) , 
DIGITAL-COMPUTER PROGRAMMER 

Occupational definition 

Converts symbolic statement of business problems to 
detailed logical flow charts for coding into computer 
language. Analyzes all or part of workflow chart or 
diagram representing business problem by applying 
knowledge of computer capabilities, subject matter, 
algebra, and symbolic logic to develop sequence of pro­
gram steps. Confers with supervisor and representatives 
of departments concerned with program, to resolve 
questions of program intent, output requirements, input 
data acquisition, extent of automatic programming and 
coding use and modification, and inclusion of internal 
checks and controls. Writes detailed, logical flow chart 
in symbolic form to represent work order of data to be 
processed by the computer system, and describe input, 
output, arithmetic, and logical operations involved. 
Converts detailed, logical flow chart to language pro­
cessable by computer (PROGRAMMER, DETAIL). 
Devises sample input data to provide test of program 
adequacy. Prepares block diagrams to specify equip­
ment configuration. Observes or operates computer to 
test coded program, using actual or sample input data. 
Corrects program error by such methods as altering 
program steps and sequence. Prepares written instruc­
tions (run book) to guide operating personnel during 
production runs. Analyzes} reviews, and rewrites pro­
grams to increase operating efficiency or adapt to new 
requirements. Compiles documentation of program de­
velopment and subsequent revisions.· May specialize in 
writing programs for one make and type of computer. 

Education, training, and experience 

Minimum requirements are high school graduation 
with six months to two years of technical training in 
computer operations and in general principks of pro­
gramming and coding, or equivalent job experience in 
these areas. Current trend is to hire college graduates 
for promotional potential with training in accounting, 
business administration, and mathematics, and provide 
them with a year of on-the-job training to qualify 
them for programming. In installations concerned with 
the application of the computer to more complex areas 
such as market research and statistical forecasting, a 
college degree in mathematics is preferred. 

Special characteristics 

Aptitudes: 

Must possess verbal ability to understand and ana­
lyze oral or written statements concerning a variety of 
business problems and to discuss them with others. 

Must possess numerical ability to interpret workflow 
charts, program problems, and understand machine 
logic. Level of mathematics varies from arithmetic and 
algebra for simple business data processing problems to 
differential equations and mathematical statistics for 
involved problems such as forecasting or optimization. 

Must possess spatial ability to interpret diagram­
matic representations of workflow, and to visualize flow 
of data through computer system to prepare computer 
block diagrams and logical flow charts. 

Must possess form perception to see pertinent detail 
in symbols when reading, interpreting, or preparing 
charts, diagrams, and code sheets. 

Clerical perception to detect errors in letters, words, 
and numbers recorded on charts, diagrams, and code 
sheets. 

Interests: 

An interest in activities technical in nature to effec­
tively analyze problems, and to design logical flmv 
charts and block diagrams. 

An interest in activities that are carried out in relation 
to processes, techniques, and machines to plan sequence 
steps, to prepare instructions, and to test programs. 

Temperaments: 

Required to make judgmental decisions to plan 
logical sequence of steps and prepare logical flow chart 
for a project, keeping in mind capacities and limitations 
of computer and integrated machine units. 

Must be able to conform to accepted standards and 



techniques in developing and testing programs, and 
writing instructions for computer operators to follow. 

Physical Activities and Environment: 
Work is sedentary, requiring occasional lifting and 

carrying of such items as source materials, run books, 
and documentations seldom exceeding 10 pounds. 

Talking and hearing to communicate with systems, 
program coding, and operating personnel. 

N ear visual acuity and accommodation required to 
review statistical data and interpret charts and 
diagrams. 

Work is performed inside. 

PROGRAMMER, DETAIL-(219.388), 
JUNIOR PROGRAMMER; PROGRAM 
CODER 

Occupational definition 

Selects symbols from coding system peculiar to make 
or model of digital computer and applies them to suc­
cessive steps of completed program for conversion to 
machine-processable instructions. Reads and interprets 
sequence of alphabetic, numeric, or special characters 
from handbook or memory for each program step to 
translate it into machine language or pseudo (symbolic) 
code that can be converted by computer processor into 
machine instructions. Records symbols on worksheet 
for transfer to punchcards or machine input tape. 
Marks code sheet to indicate relationship of code to 
program steps to simplify debugging of program. Con­
fers with programming personnel to clarify intent 
of program steps. Usually works as understudy to 
PROGRAMMER, BUSINESS performing such addi­
tional tasks as converting flow charts and diagrams of 
simple problems from rough to finished form, or making 
minor changes in established programs to adapt them 
to new requirements. 

Education, training, and experience 

Must be high school graduate. Some training in pro­
gramming, coding, and computer operations at tech­
nical school level is desirable. Experience in computer 
operations is preferred, but six months of job experience, 
most often in a clerical capacity, to become familiar 
with company operations, workflow, standards, and 
terminology is the minimum requirement. One to four 
weeks classroom training in coding for specific com­
puter is usually provided by employer or computer 
manufacturer. Some employers favor college graduates 
in order to enhance the worker's promotion potential. 
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Special characteristics 

Aptitudes: 

Verbal ability to recognize programming and coding 
language consisting of abbreviated words, grouping of 
numbers, symbols, or mnemonics. 

Numerical ability to convert decimal numbers to 
binary or other number systems. 

Form perception to recognize and remember graphic 
symbols (arrangement of lines and curves). 

Clerical perception to select from handbooks codes 
acceptable to computer, which involves accurate identi­
fication and recording of numbers, letters, and words. 

Interests: 

A preference for activities of a routine, concrete and 
organized manner to code programs, using standardized 
codes. 

Temperaments: 

Ability to perform repetitive tasks according to set 
procedures, to refer to source books for symbologies and 
select appropriate codes for each detailed step in pro­
gram. Steps may number into the thousands. 

Required to work to precise and established standards 
of accuracy in recognition of steps of detailed program 
and in selecting and recording codes. Any mistake can 
introduce error into programs and either prevent 
processing or distort output of program when processed. 

Physical Activities and Environment: 
Work is sedentary. Work sheets and code books sel­

dome exceed five pounds. 
Continuously handles pencils, work sheets, and code 

books while interpreting program steps, finding repre­
sentative coding, and posting codes to work sheets. 

N ear visual acuity to select correct alphabetical, 
numerical, or special symbols to convert detailed pro­
gram to machine-processable form. 

Work is performed inside. 

SUPERVISOR, COMPUTER OPERATIONS­
(213.138), CHIEF CONSOLE OPERATOR; 
SENIOR CONSOLE OPERATOR; 
SUPERVISOR, DATA PROCESSING; 
SUPERVISOR, ELECTRONIC DATA 
PROCESSING 

Occupational definition 

Supervises and coordinates activities of workers who 
operate electronic data processing machines. Assigns 
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personnel and schedules workflow to facilitate produc­
tion. Directs training or trains personnel in operation of 
computers and peripheral and off-line auxiliary equip­
ment. Works with programming personnel in testing 
new and revised programs. Develops operating methods 
to process data, such as devising wiring diagrams for 
peripheral equipment control panels, and making minor 
changes in canned (standardized) programs or routines 
to modify output content or format. Directs insertion 
of program instructions and input data into computer, 
and observes operations. Aids operators in locating and 
overcoming error conditions. Makes minor program 
and input data revisions through computer console to 
maintain operations. Notifies programming and main­
tenance personnel if unable to locate and correct cause 
of error or failure. Revises operating schedule to adjust 
for delays. Prepares or reviews records and reports of 
production, operating, and down-time. Recommends 
changes in programs, routines, and quality control 
standards. Consults with MANAGER, ELECTRONIC 
DATA PROCESSING about problems, such as in­
cluding new program testing and operating runs in 
schedule and arranging for preventive maintenance 
time. Coordinates flow of work between shifts to assure 
continuity. May supervise personnel engaged in key­
punching, data typing, and tabulating. 

Education, training, and experience 

High school graduation is the minimum requirement. 
Usually a minimum of one to three years' experience in 
operating computers, peripheral, and off-line equipment 
is required. A familiarization with programming and 
coding techniques usually gained through experience in 
computer operation or a course in programming are 
additional prerequisites. However, a two-year post-high 
school training course in electronic data processing 
may reduce experience requirements. Training in busi­
ness administration, mathematics, and accounting is 
regarded as particularly desirable. Some employers re­
quire a college degree, particularly in large installations 
where work duties are largely administrative, and also 
in order to enhance the worker's promotion potential. 
Experience in supervising personnel is desirable. 

Special characteristics 

Aptitudes: 

Verbal ability to train and supervise subordinates, 
confer with other supervisory and technical personnel, 
and prepare records and oral or written reports. 

Numerical ability to level of arithmetic and algebra 
to cope with error or stoppage situations in computer 
operations; to plan operating changes; and to prepare 
variety of reports, often on a daily basis such as revision 
of average time requirements for processing data or cost 
allocations to departmental users. 

Spatial and form perception to prepare wiring dia­
grams, wire control panels for peripheral machines, and 
operate equipment. 

Clerical perception to review records of production, 
operating and down-time, and recognize pertinent detail 
in computer printout dumps. 

Interests: 

A preference for business contact with others to con­
fer with management, technical personnel, suppliers of 
input data, and users of computer output, and to super­
vise and train subordinates. 

A preference for activities that are technical in nature 
to keep informed of new techniques for operation of 
current machines. 

Temperaments: 

Ability to perform a variety of tasks subject to fre­
quent change, such as training and assigning personnel, 
accommodating changes in production schedules to 
meet priority runs, maintaining records, and develop­
ing new operating procedures. 

Must be able to direct, control, and plan the activities 
of computer operators, satellite input-output computer 
operators, on-line and off-line peripheral equipment 
operators, and tape librarians. 

Required to deal with people such as other depart­
mental supervisors to resolve problems concerned with 
the scheduling, adequacy, and accuracy of input data. 

Required to make decisions on a judgmental basis to 
set up work assignments that make maximum use of 
workers' knowledge and ability, and most effective and 
economical use of computers and peripheral equipment. 

Required to make decisions on a factual basis when 
developing schedules for processing programs, relating 
such factors as date of program receipt, priorityassign­
ment, estimated run time, and available computer time. 
Compares output requirements against available equip­
ment, and existing programs, routines, wiring diagrams, 
and control panels to determine need for developing or 
modifying operational methods, or altering operating 
schedule. 

Physical Activities and Environment: 

Work is light, requiring frequent standing and walk­
ing and occasional lifting and handling of reels of tape, 



decks of punchcards, and control panels weighing up to 
20 pounds. 

Talking and hearing to give oral instructions, assign 
work, and train personnel. Confers with management 
and others, discussing such items as budget require­
ments and staffing, machine capability, and production 
problems. 

N ear visual acuity to frequently analyze records, pre­
pare reports, study program run books, and read 
technical literature. 

Work is performed inside. 

COMPUTER OPERATOR-(213.382), 
COMPUTER OPERATOR; CONSOLE 
OPERATOR 

Occupational definition 

Monitors and controls electronic digital computer to 
process business, scientific, engineering, or other data, 
according to operating instructions. Sets control 
switches on computer and peripheral equipment, such 
as external memory, data communicating, synchroniz­
ing, input, and output recording or display devices, to 
integrate and operate equipment according to program, 
routines, subroutines, and data requirements specified 
in written operating instructions. Selects and loads in­
put and output units with materials, such as tapes or 
punchcards and printout forms, for operating runs, or 
oversees operators of peripheral equipment who per­
form these functions. Moves switches to clear system 
and start operation of equipment. Observes machines 
and control panel on computer console for error lights, 
verification printouts and error messages, and machine 
stoppage or faulty output. Types alternate commands 
into computer console, according to predetermined in­
structions, to correct error or failure and resume opera­
tions. Notifies supervisor of errors or equipment stop­
page. Clears unit at end of operating run and reviews 
schedule to determine next assignment. Records oper­
ating and down-time. Wires control panels of peripheral 
equipment. May control computer to provide input or 
output service for another computer under instructions 
from operator of that unit. 

Education, training, and experience 

A high school education meets the minimum educa­
tional requirements of some employers, but an increas­
ing number of employers are demanding an additional 
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several months to two years of technical school training 
in data processing. This training usually includes such 
courses as data processing mathematics, accounting, 
business practices, elementary programming, and opera­
tion of computers, peripheral equipment, and tabulat­
ing machines. 

The employer or computer manufacturer usually 
provides one to three weeks of formal instruction for 
the specific computer system the worker will operate. 
Length of subsequent on-the-job training and experi­
ence required to achieve adequate performance ranges 
from a few months to one year because computer sys­
tems and equipment vary in complexity and need for 
operator intervention. Except in small units, a mini­
mum of three to six months prior experience in opera­
tion of peripheral equipment frequently is required. 

Special characteristics 

Aptitudes: 

Verbal ability to comprehend technical language of 
operating instructions and equipment manuals and to 
explain clearly any operating problems and difficulties 
in interpreting program intent. 

Numerical ability at level of arithmetic to prepare 
operating records, time computer runs, and adhere to 
fixed operating schedule. While not always an operator 
requirement, an understanding of data processing 
mathematics (the number systems used, algebra and 
logic) is almost essential to discuss operating difficulties 
with programming personnel, and to progress from 
routine production runs to the testing of new programs. 

Spatial perception to wire control panels for periph­
eral equipment. 

Form perception to identify flaws in input and output 
materials. 

Clerical perception to avoid perceptual errors in pre­
paring operating records, and to recognize alphabetic, 
numeric, and mnemonic symbols. 

Motor coordination, to rapidly set up machines and 
to move keys and switches to quickJy correct errors or 
stoppages. 

Interests: 

A preference for working with machines and processes 
to continuously operate and monitor the equipment 
that comprises the computer system. 

Interest in activities of concrete and organized 
nature to operate machines according to specific and 
detailed instructions. 
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Temperaments: 

Work situation requires ability to perform a variety 
of work tasks subject to frequent change in the simul­
taneous operation of a console and a variety of periph­
eral equipment, the integration of which varies from 
program to program, or even during a single operating 
run, and which demands rapid transfer of attention 
from one piece of equipment to another. 

Accuracy required to operate system effectively and 
minimize down-time and rescheduling of runs. Care­
lessness in following written and oral instructions can 
cause extensive rebuilding of program or input data, or 
even lead to irrecoverable loss of data. 

Physical Activities and Environment: 

Work is light. Lifts, carries, and positions tape reels, 
punchcard decks, output forms, and control panels sel­
dom exceeding 20 pounds. 

Stands and walks frequently when loading and 
monitoring machines. 

Reaches for and fingers switches and keys on console 
and peripheral machines. Wires control panels, loads 
and removes input and output materials. 

Talking and hearing to frequently exchange informa­
tion concerning program and system requirements with 
other workers and to receive or give instructions. 

N ear visual acuity and . accommodation to follow 
detailed operating log, monitor computer and peripheral 
machines for signs of malfunction, and analyze console 
messages or high-speed printer output for cause of 
error or stoppage. 

Color vision to distinguish between colored wires 
when wiring control panels, to identify color-coded 
cards or forms and to monitor colored display lights if 
used. 

Work is performed inside. 

COMPUTER-PERIPHERAL-EQUIPMENT 
OPERATOR-(213.382), ASSISTANT 
CONSOLE OPERATOR; TAPE HANDLER 

Occupational definition 

Operates on-line or off-line peripheral machines, 
according to instructions, to transfer data from one 
form to another, print output, and read data into and 
out of digital computer. Mounts and positions ma­
terials, such as reels of magnetic or paper tape onto 
spindles, decks of cards in hoppers, bank checks in 
magnetic ink reader-sorter, notices in optical scanner, 
or output forms and carriage tape in printing devices. 

Sets guides, keys, and switches according to oral in­
structions or run book to prepare equipment for opera­
tion. Selects specified wired control panels or wires 
panels according to diagrams and inserts them into 
machines. Presses switches to start off-line machines, 
such as card-tape converters, or to interconnect on-line 
equipment, such as tape or card computer input and 
output devices, and high-speed printer or other output 
recorder. Observes materials for creases, tears, or 
printing defects and watches machines and error lights 
to detect machine malfunction. Removes faulty ma­
terials and notifies supervisor of machine stoppage or 
error. Unloads and labels card or tape input and output 
and places them in storage or routes them to library. 
Separates and sorts printed output forms, using decol­
lator, to prepare them for distribution. May operate 
tabulating machines, such as sorters and collators. 

Education, training, and experience 

High school graduate. Post-high school training in 
operation of electronic or electromechanical data 
processing equipment is desirable. Employers frequently 
regard worker as understudy to computer operators 
and apply same education and aptitude standards to 
them. 

Special characteristics 

Aptitudes: 

Verbal ability to read written instructions and hand­
books and to communicate with supervisor about 
operating functions. 

Spatial ability to follow diagrams to wire control 
panels, position and thread tapes onto spindles or posi­
tion decks of cards1.n hoppers. 

Clerical perception to identify and record, without 
error, data such as dates, program numbers, depart­
ments, and routings on forms. 

Motor coordination and finger and manual dexterity 
to load and unload machines quickly and minimize 
down-time, to thread ribbons of tape over guides and 
through rollers, and to handle cards and tapes deftly 
without bending, tearing, or otherwise damaging them. 

Interests: 

An interest in activities concerned with machines, 
processes, and techniques to operate various machines. 
Preference for activities of a routine and organized 
nature to follow well-defined instructions for any of 
several different machines. 



Temperaments: 
Worker must be adept at performing a variety of 

tasks requiring frequent change to operate a number of 
machines in varying combinations and sequences. 

When operating peripheral equipment, must adhere 
to established standards for accuracy, such as observ­
ing printer output forms for defects in alinement, 
spacing, margin, and overprinting. Immediate response 
to indication of error in operation of peripheral equip­
ment is vital. 

Physical Activities and Environment: 

Work is light, involving frequent standing and walk­
ing when operating machines and lifting and carrying 
tapes, cards, and forms not exceeding 20 pounds. 

Reaches, handles, and fingers to mount tapes onto 
spindles, position decks of cards in hoppers, and thread 
tape through guides and rollers of peripheral units or 
wire control panels. 

N ear visual acuity to read labels on reels, to wire 
plug boards from diagrams, to scan printout for error, 
and to read operating instructions and handbooks. 

Color vision to distinguish between various colors of 
wires to ensure correct wiring of control panels. 

Work is performed inside. 

CODING CLERK-(219.388) 

Occupational definition 

Converts routine items of information obtained from 
records and reports into codes for processing by data­
typing or key-punch units, using predetermined coding 
systems. Manually records alphabetic, alphanumeric, 
or numeric codes in prescribed sequence on worksheet 
or margin of source document for transfer to punch­
cards or machine input tape. May be designated ac­
cording to trade name of computer system as CODING 
CLERK, UNIVAC; IBM CODER. 

Education, training, and experience 

High school graduation usually is required. Training 
of a day or two in a classroom situation or under the 
direction of an experienced worker usually is provided 
by the employer. Achievement of adequate speed, and 
particularly the development of a high degree of ac­
curacy, takes from one to three months. Achievement 
of speed involves memorization of many of the codes. 
Familiarization with standard business terminology and 
abbreviations, and with special conventions used by 
the employer can reduce the time necessary to achieve 
adequate performance. 
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Special characteristics 

Aptitudes: 
Verbal ability to understand written and oral instruc­

tions, business terms, abbreviations, and mnemonic 
contractions, and to explain difficulties to supervisor. 

Clerical perception to scan and extract pertinent de­
tail from source documents, and to avoid and detect 
perceptual errors. 

Interests: 
A preference for activities of a routine, concrete, 

organized nature to code according to a predetermined, 
standardized system. 

Temperaments: 
Work activities are repetitive and short cycle in 

nature. Converts each item into the equivalent code in 
the allowable time cycle of a few seconds. 

Must follow specific instructions to convert items to 
their coded equivalents which are indexed in tables or 
handbooks. 

Physical Activities and Environment: 
Work is sedentary. Reaches for, lifts, and handles 

handbooks, papers, and forms seldom exceeding five 
pounds. 

N ear visual acuity to read and convert items to 
codes. 

Work is performed inside. 

TAPE LIBRARIAN-(223.387) 

Occupational definition 

Classifies, catalogs, and maintains library of magnetic 
or punched paper tape or decks of magnetic cards or 
punchcards used for electronic data processing pur­
poses. Classifies and catalogs material according to con­
tent purpose of program, routine or subroutine, and 
date on which generated. Assigns code conforming with 
standardized system. Prepares index cards for file 
reference. Stores materials and records according to 
classification and catalog number. Issues materials and 
maintains charge-out records. Inspects returned tapes 
or cards and notifies supervisor if worn or damaged. 
May maintain files of program developmental records 
and operating instructions (run books). May operate 
key-punch to replace defective punchcards and produce 
data cards to identify punchcard decks. May work in 
computer room performing such tasks as loading and 
removing printout forms, reels of tape, and decks of 
cards from machines. 
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Education, training, and experience 

High school graduate, preferably with commercial 
background. Three to six months experience as catalog 
clerk, file clerk, mail clerk, or messenger with the com­
pany is desirable. 

Special characteristics 

Aptitudes: 

Verbal ability to read information on labels describ­
ing contents of decks of cards and reels of tape and read 
catalogs that contain standardized codes and 
ab breviations. 

Numerical ability to count, add, and subtract num­
bers to perform inventory functions. 

Clerical perception to note pertinent detail on labels, 
cards, or work schedules, and in code books to detect 
error and avoid misinterpretation. 

Interests: 

A preference for working with things and objects, 
following routine and organized patterns to classify, 
catalog, store, and fill requests for cards and tapes. 

Temperaments: 

Follows specific instructions and established pro­
cedures to receive, store, issue, and purge materials. 

Physical Activities and Environment: 

Work is light, involving frequent standing and walk­
ing to carry reels of tapes or trays and drawers of cards 
weighing less than 20 pounds between desk, handtruck, 
file cabinets, and racks. 

Reaches for and handles tapes and cards to store 
them. 

N ear visual acuity to read and assign identification 
symbols and inspect materials for damage. 

Work is performed inside. 

KEY-PUNCH OPERATOR-(213.582), 
CARD-PUNCH OPERATOR; PRINTING­
CARD-PUNCH OPERATOR; 
PRINTING-PUNCH OPERATOR 

Occupational definition 

Operates alphabetic and numeric key-punch ma­
chine, similar in operation to electric typewriter, to 
transcribe data from source material onto punchcards 
and to reproduce prepunched data. Attaches skip bar 

to machine and previously punched program card 
around machine drum to control duplication and spac­
ing of constant data. Loads machine with decks of 
punchcards. Moves switches and depresses keys to 
select automatic or manual duplication and spacing, 
selects alphabetic or numeric punching, and transfers 
cards through machine stations. Depresses keys to 
transcribe new data in prescribed sequence from source 
material into perforations on card. Inserts previously 
punched card into card gage to verify registration of 
punches. Observes machine to detect faulty feeding, 
positioning, ejecting, duplicating, skipping, punching, 
or other mechanical malfunctions and notifies super­
visor. Removes jammed cards, using prying knife. May 
tend machines that automatically sort, merge, or 
match punchcards into specified groups. May key­
punch numerical data only and be designated KEY­
PUNCH OPERATOR, NUMERIC. 

Education, training, and experience 

High school graduate preferred with demonstrated 
proficiency in typing on standard or electric typewriter. 
High school or business school training in key-punch 
operation is desirable. Frequently, one week of training 
is provided by employer or manufacturer of equipment. 

Special. characteristics 

Aptitudes: 

Verbal ability to understand oral and written in­
structions, such as manufacturers' operating manuals, 
and to Jearn operation of machine. 

Clerical perception to perceive pertinent detail in 
tabular material consisting of combinations of letters 
and numbers, and avoid perceptual error in transferring 
this data to punchcards. 

Motor coordination to read work sheets and simul­
taneously operate keyboard of approximately 40 keys 
to punch data on cards. 

Finger dexterity to move switches on machine. 

Interests: 

Preference for organized and routine activities to 
transfer data onto punchcards. 

Temperaments: 

Must be able to perform repetitive duties of operat­
ing key-punch machine. 

Ability to follow specific instructions and set pro­
cedures to transfer data onto punchcards. 



Required to work to precise and established standards 
of accuracy to key-punch data at high rate of speed. 

Physical Activities and Environment: 
Work is sedentary with infrequent lifting of decks of 

cards when loading machine. 
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Reaches for and handles code sheets, business records, 
and decks of cards; fingers switches and keys to operate 
machine. 

N ear visual acuity to read copy when key-punch­
ing. 

Work is performed inside. 





The future of minicomputer programming 

by D. J. WAKS and A. B. KRONENBERG 

A pplied Data Research, Inc. 
Princeton, New Jersey 

"Here is Edward Bear, coming downstairs now, 
bump, bump, bump, on the back of his head, 
behind Christopher Robin. It is, as far as he 
knows, the only way of coming downstairs, but 
sometimes he feels that there really is another 
way, if only he could stop bumping for a moment 
and think of it. And then he feels that perhaps 
there isn't." 

Beginning of Winnie-the-Pooh, A. A. Milne 

INTRODUCTION 

The minicomputer syndrome 

The programming of minicomputers to date has 
resembled Pooh Bear coming downstairs because 
although we feel that there really is another way, we 
rarely stop bumping. Programmers for small computers 
have long exhibited what we call "the minicomputer 
syndrome", which is a very low expectation of program 
support and facilities on a minicomputer and a lack of 
appreciation of the hardware and software tools one can 
employ to attack and solve a programming problem. 

l\iinicomputers came on the market when it was first 
realized that small general-purpose stored-program 
computers could be competitive with complex hard­
wired systems built from general-purpose logic modules. 
Not at all surprisingly, the manufacturers of logic 
m?~ules quickly became the leading developers of 
mmIComputers. Since the programming process was 
viewed as an unfortunately necessary step in making 
the mini behave like the hard-wired system it was 
replacing, very little general-purpose programming 
support was provided with the minis. Thus the . . ' 
mmIComputer syndrome-the belief that primitive 
computers require primitive programming support-was 
born virtually at the same time as the mini itself. 

Computer manufacturers have fostered this syndrome 
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by typically providing little general-purpose software* 
with their minis. Although manufacturers have re­
cently attempted to provide reasonable program-crea­
tion software, the majority of available assemblers still 
lack such de8irable features as macros, conditional 
assembly, literals, and multiple location counters. 
Program-execution software for most small computers is 
often so weak that the user usually is left to write his 
own disk handler, communications package, or real-time 
executive. Even in cases where a manufacturer does 
provide such software, it usually requires a configuration 
that is uneconomically large. 

The manufacturers' software planners seem to 
exhibit the minicomputer syndrome more than many 
of their customers. They continue to design separate, 
single-application monitors apparently assuming that 
the user will employ his mini only for real-time applica­
tions, file processing, communications, or report writing. 
Thus, the user who wants a single monitor system to 
support some combination or all of these must either 
adapt a manufacturer-supplied monitor or build one 
from scratch. 

This lack of coherent manufacturer software support 
has also been characterized by a lack of standardization 
and conventions or standardization of poor or unwork­
able conventions in the software. This in turn has led 
to a proliferation of software to dismay any ecologist. 
For example, how many different assemblers now exist 
for the DEC PDP-8 family? We were able to count a 
baker's dozen in two minutes of trying; there must be 
an equal number we didn't think of or don't know about. 

Finally, this lack of standards and conventions has 
resulted in incompatibility from one user to another. 
Software modules created for one user's executive and 
assembler can be neither assembled nor run at another 
user's site. We have been involved in more than one 

* General-purpose software can be classified as either program­
creation software (text/file editors, language processors), or 
program-execution software (monitors, device drivers, real-time 
executives). 
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project requiring that a program be manually trans­
literated from one dialect for a computer to another. 

What is a minicomputer? 

The paper is intended to describe programming for 
minicomputers. What do we mean by "minicomputer"? 

Let us begin by characterizing the small computer as 
having: 

(a) A short word and register length, always 18 bits 
or less; a small computer, therefore cannot 
perform single-precision floating-point arithmetic 
through either the hardware or software. 

(b) A main memory provided in modules of 8K words 
or less (typically 4K words). 

(c) An instruction set and, commonly, its addressing 
mode which are restricted, usually having a 
rather short operation code field in its machine­
language structure. 

One more characteristic is required to define what we 
mean by a mini: if a machine passes the test for a small 
computer, and you can't ordinarily buy it without an 
ASR Teletype ®, it is a mini. If you can't ordinarily buy 
it without a card reader, it isn't a mini, it's just a small 
computer. 

The virtual machine and the extensible machine 

Let us digress for a moment and define some useful 
concepts we will refer to throughout the remainder of 
this paper. The concept of the "extended machine" was 
first propounded by Holt and Turanski;1 we will use the 
term "virtual machine" interchangeably with extended 
machine. Here we are using the term "virtual" in its 
dictionary2 sense: "Virtual, apparent, as contrasted 
with actual or absolute." That is, the virtual or 
extended machine is what the computer user, on some 
level, sees and uses. Another way of saying this is to 
describe it as the set of primitives with which he must 
work. Watson3 defines a "virtual processor" in a 
timesharing system in a similar way. The "virtual 
memory" concept in paged computers is a similar 
derivation. 

As it is, the computer user rarely sees or uses the 
"actual or absolute" machine. To do so, he would have 
to write all his code in machine language. Language 
processors, executive systems, device drivers, et al., are 
all extensions to the machine which substantially affect 

® Teletype, a registered trademark of the Teletype Corporation. 

the user's view of the machine. For instance, a mInI­
computer with a disk operating system appears to be a 
very different machine from one with only paper-tape­
oriented software. A mini with a manufacturer-provided 
real-time executive appears to be a very different 
machine from one without it to the user with a data 
acquisition and reduction problem. In this sense, then, 
all available software and hardware options act as real 
extensions to the "actual" machine. 

When certain types of extensions are preplanned into 
the computer hardware and software design, the 
resultant machine is considered "extensible"-to the 
extent that such extensions are planned. We characterize 
these extensions as being expansions of primitives on 
three distinct levels: the hardware or "firmware" level; 
the system software level; and the applications software 
level. On each level, the user can implement new 
extensions, typically visible at the next higher level 
(further away from the hardware) although sometimes 
available at the same level. 

The first and lowest level of extensibility is at the 
hardware or firmware level. By hardware extensibility, 
we mean the ability to add new operation codes, 
typically for I/O but also for CPU purposes. Thus, 
a supervisor call facility was added to a PDP-8 four 
years ago to provide for user-supervisor communication 
in a real-time system for TV control room automation. 
This form of extensibility is designed-in, and en­
couraged, although only rarely used to augment CPU 
primitives. By firmware extensibility, we mean exten­
sions through modifications or additions to microcode 
on those computers (such as all machines in the Inter­
data family) which have a two-level (micro and user) 
programming structure. 6 This ability to modify or 
augment the instruction repertoire of the machine is a 
powerful way, albeit rarely exploited, to extend the 
machine at the lowest level; the new primitives thus 
created are fully comparable to the original instructions 
of the actual machine. 

The second level of extensibility is at the software level 
through creation of system software. By system software, 
we mean such obvious extensions as operating systems, 
device drivers and interrupt handlers, and any program­
creation software, especially language processors, which 
can drastically change the primitives available to the 
end user. Planned extensibility at this level implies such 
hardware features as: 

(a) A user mode/supervisor mode distinction, pro­
viding a trap of some kind against the execution 
of . reserved instructions in user mode, and 
providing some kind of "supervisor call" facility. 

(b) An approach to I/O on the hardware level which 



provides for substantial compatibility of the I/O 
mechanisms from device to device, particularly 
with respect to interrupts and status information. 

(c) Some method for extended address mapping 
which . provides for hardware protection and 
relocation, thus relieving the mini user of his 
worst problem-severe limitations on addressing. 

The third and highest level of extensibility is on the 
user software level. Planned extensibility provides the 
end user with the capability of augmenting the apparent 
set of primitives he uses in writing his programs. Such 
long-used techniques as subroutines and macros both 
constitute expansions of primitives, particularly when 
used together, e.g., a macro used to generate a calling 
sequence for a subroutine which performs some complex 
function. 

lVIany sophisticated programmers for minis, particu­
larly those coming from a large-computer background, 
habitually define large numbers of macros to provide 
extended primitives comparable to those found in the 
actual instruction set on large machines. In this way, 
the experienced programmer of a minicomputer views 
the problem of programming a mini as being no different 
from that for a large computer, effectively countering 
the purveyors of the "minicomputer syndrome" by 
using the same techniques, approaches, and skills 
developed for large computers. The manufacturer can 
plan for extensibility on this level by providing the user 
with macro features in the assembler and by providing 
flexible hardware and software techniques for invoking 
subroutines. 

Let us close this introduction by noting that each 
layer of extension, although providing a new set of 
primitives to the next higher level, may also reduce the 
original set of primitives available on that level. A set of 
device drivers for I/O handling, once defined, usually 
prevents the user from writing code to use a new I/O 
device in a substantially different way from that 
standardized by the drivers added as extensions; he also 
loses, in the process, any capability of doing I/O 
operations himself, since attempts to do so are trapped 
by the hardware. 

Additionally, a Basic system-editor, compiler, and 
operating system combined-gives the Basic user a 
different and more powerful set of primitives than he 
has in assembly language, but deprives him of the 
ability to perform operations in assembly language, even 
though this might be far preferable for some aspects of a 
given problem. Thus, the extended machine may look to 
the user quite different from the original machine, with 
some primitives added and others deleted, at the 
extender's discretion. 
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The remainder of this paper is devoted to describing 
many kinds of extensions which we see occurring now 
and in the future. Since this paper is principally about 
software, we will concentrate on extensions to the 
second and third levels. However, we feel that current 
hardware developments will encourage software-like 
extensions at even the lowest level, and we will discuss 
these implications also. Hopefully, viewing the mini­
computer as more closely related to the large-scale 
computer than the hard-wired controllers it was 
originally designed to replace will lead to alleviating the 
underlying symptoms of the minicomputer syndrome. 

THE MINI AS A GENERAL-PURPOSE 
COMPUTER 

We will first discuss the minicomputer as it may be 
viewed by the applications programmer in the future. To 
do this, we will first examine a significant difference in 
the evolution of larger computer software as opposed to 
minicomputer software. 

Both scales of computers developed from the same 
base: machine-language programs loaded into memory 
via manually produced media (cards or paper tape) 
followed by console debugging with the user setting 
switches and reading lights on the computer. In the 
history of large computers, the first executive systems 
were batch monitors, which were quite widely developed 
by 1960. These batch monitors provided for submitting 
"jobs" on decks of cards to the computer center where 
they were eventually entered into the "job stream" and 
run. All programming and debugging tools developed 
for large computers during most of the 1960s were 
oriented to batch operation; and today virtually all 
operating systems for today's large computers are 
optimized for batch processing. Nearly all commercial 
programming, and most university programming, is 
today done using batch monitors on computers including 
the IBNI 360 and 370, the Univac 1108, and the CDC 
6600 and 7600. Recently, a trend has started toward 
providing some sort of support for interactive program­
ming, debugging, and program execution. Except for 
several large computers explicitly designed for inter­
active operation in time-shared applications (specifi­
cally the XDS 940 and the DECsystem-10, both 
produced by companies previously known for minis), 
the machines were originally designed for batch 
operation and modified in both hardware and software 
to support interactive operation. The IB::vr 360/67 is a 
modification to the 360/65, the Honeywell (GE) 645 to 
the 635, the Spectra 70/46 to the 70/45. These machines 
seem to have been grudgingly provided by the manu-
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facturers to meet what they saw as a small, uneconomi­
cal, but prestigious market; none of them provide 
nearly as good interactive operation as machines and 
software designed to be interactive from the beginning. 
In particular, a system like the DECsystem-l0 can 
provide program interaction with the user on a 
character-by-character basis through the user's tele­
typewriter; no machine based on a 2741-type terminal 
can possibly do so, since the terminal and its supporting 
computer-based interfaces are designed to operate 
strictly on a half-duplex, line-at-a-time basis. But· the 
trend would appear to be toward expanded interactive 
and conversational uses of large computers, particularly 
as management information systems make terminal 
access to data bases desirable in real time. 

l\1:inicomputer programming started in the same way 
as the large computers. Paper tape was the primary I/O 
medium, read in by an ASR-33 Teletype ®, with the 
computer console used for all debugging. Since mini­
computers cost so much less than large computers, there 
was much less pressure to get away from consofe 
debugging, particularly as it was recognized as being a 
very cost-effective tool for a competent programmer. 
When it became clear that it was possible to create 
software tools to facilitate debugging, it was natural to 
use the Teletype®, which was there anyway (recalling 
our definition of a minicomputer), as the I/O device 
around which to design the "monitor." The first 
interactive programs for minicomputers, using the 
"console teletypewriter" to provide interaction with the 
user, were symbolic editors and debugging tools 
(particularly DDT,7 a debugging system produced at 
MIT for the PDP-I). Many other interactive systems 
for minis are described in an earlier paper by one of the 
authors.8 Interactive systems of all kinds are common 
today on virtually all minicomputers. In addition to 
symbolic editors and debugging ,systems, there are 
full-scale Basic systems for one or several users on many 
minis; several minis have Disk Operating Systems 
designed for conversational control from the console 
teletypewriter, single-user and multi-user interpretive 
systems derived from JOSS ® running on one or more 
terminals. etc. 

N ow that minicomputer configurations often include 
peripherals, such as mass storage on removable disk 
packs, card readers, line printers, magnetic tapes, 
formerly found only on large computers, we see a trend 
toward the use of batch operating systems on mini­
computers. Such systems, typically based on RPG 
and/ or Fortran as higher-level languages, are closely 

® JOSS, a registered trademark of the RAND Corporation. 

modeled after large-machine batch systems. The 
resulting virtual machine thus looks almost, if not com­
pletely, like the virtual machines erected on larger-machine 
bases. A user programming in Fortran or RPG, both 
relatively standardized languages, cannot tell, when he 
submits a deck and gets back his reports, whether it was 
run on a large computer or on a mini (except, perhaps, 
by the size of the bill!). 

Thus, large computers and minis are becoming more 
and more alike-at least from the point of view of the 
applications programmer. The authors hope that the 
significant advantages of interaction between the user 
and the computer, so prominent in the development of 
minicomputer software, will not be disregarded by the 
mini manufacturers in their seemingly headlong rush to 
"me-too" compatibility with larger computers and their 
batch operating systems. 

THE MINICOl\1:PUTER EXTENSION 
SPECIALIST 

Until now, the people who have played the largest 
role in extending minicomputers have been the system 
software designers and implementors and the hardware 
engineers. We feel that the systems software designers 
will have an increasing role as extension specialists in the 
future by becoming knowledgeable in hardware 
techniques. 

Hardware/software extensibility 

Already, the manufacturers of minis are providing 
richer instruction sets and more designed-in extensi­
bility in their newer computers. As an example, the 
DEC PDP-II provides a rich instruction set, a novel 
I/O structure, and virtually a complete elimination of 
the addressing problem which once plagued most minis. 
The Interdata System.s 70 and 80 provide substantial 
encouragement for the user to employ microprogram­
ming to extend the base machine, i.e., to produce 
firmware. Almost all new minis provide modular 
packaging, in which a hardware function, to add a new 
primitive, can be easily wired on a single module and 
plugged into the machine. 

We see the continued growth of microprogrammed 
processors, built around Read-Only Memories (ROM's), 
as being in the vanguard of user-extensible machines. 
The newest hardware facilities include Programmable 
ROM's (PROM's) which can be written by the user on 
his site; Erasable PROM's-·which can be manually 



erased after being written; and Writable RO~VI's (slow 
write cycle compared to read, intended to be written 
relatively infrequently), sometimes called "Read-:\Iostly 
Memories" (or Rl\1:l\l's). All of these lead us to see a 
trend toward making this form of extensibility available 
by design, rather than by accident. 

Thus, the extension specialist win be encouraged to 
work on all levels of extensibility. He will be able to add 
firmware in the form of lower level programming 
(microprogramming) or as pre-wired primitives which 
he can literally plug in as new functions (as on the 
GRI-909 family). Writable ROM's promise additional 
extensibility, even providing the systems programmer 
with the ability to optimize the instruction set for each 
application by loading a writable ROlVI from his system 
initialization code. Thus, he might choose an instruction 
set built around four-bit decimal numbers to run Cobol 
or RPG programs, one featuring binary floating point oli 
multiple-precision numbers for Fortran or Algol, one 
with extensive byte manipulation for Snobol, and one 
with primitive expression evaluation for PL/I. 

Systems programmers will become more competent 
at lower-level extension work, either by the firmware 
being brought closer to the user in the form of writable 
ROM's, or by the software designer being cross-trained 
in hardware techniques. For many minicomputer 
systems programmers, an oscilloscope is a familiar tool 
in debugging complicated programs and systems. Every 
sign indicates a growing encouragement for the systems 
programmer to create his own desired environment 
through extensibility. The DEC PDP-16 carries this to 
its logical extreme by letting the user build his own 
computer from a pre-determined set of modules using 
software tools to aid the design and implementation 
process. 

Thus, we predict that the systems designer of the 
future will increasingly be at home in both cultures­
hardware and software. 

Programming automation systems 

We also see a substantial growth and extension to 
what we call "programming automation systems"­
techniques that provide the programmer with computer 
aids in the programming process. 9 All programming 
systems are designed to help the programmer through 
the critical loop of program development, i.e., program 
modification, language processing, debugging, and back 
to modification. Thus, systems such as Basic and 
JOSS ® provide for complete control over the critical 
loop within the context of a single system with a single 
language used to control all three functions. On 
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minicomputers, symbolic editors, language processors 
and debugging aids are provided to "automate" these 
three steps. For the systems programmer working on 
logically complex and large programs, however, the 
minicomputer does not really provide an optimum 
environment. Unless it provides bulk storage and a line 
printer, it is not well suited to editing and assembly. 
Unless it has a console much better designed than most 
mini consoles, it is also not particularly well suited to 
debugging (and the newest consoles are even less useful 
f or debugging). Thus, there seems to be a trend toward 
the use of larger computers, particularly time-shared 
systems, for supporting programming automation 
systems designed to support smaller machines. A large­
machine-based editor and assembler can do a lot to 
facilitate the creation of programs, particularly since 
the assembler does not have to be restricted in either the 
features or the number of symbols which can be 
accommodated. A good simulator, designed for de­
bugging, can significantly improve the productivity of a 
programmer by providing him with the necessary tools 
to debug a program without the limitations of the 
smaller machine. The authors have invested quite some 
time over the last few years investigating this ap­
proach;10 several other organizations have also done so, 
with some success. Several new computers, notably the 
GRI-909 and the IB:\1 System 7, accentuate this trend; 
they are only supported by larger host computers; the 
actual machines are configured only to run programs, 
not to create them. 

For years, systems programmers for small machines 
have felt, like Pooh Bear, that there must be a better 
way than assembly language to write programs for 
small machines. The so-called "implementation lan­
guages" have been in use for some time on larger 
computers; languages such as AED,l1 BLISS,12 PL/I and 
ESPOL13 have been used to create systems software, 
including compilers and operating systems, for large 
computers. We regard it as unlikely that implementation 
languages will soon be operational on minicomputers, 
due to their high initial cost and inefficiency of generated 
code. (Only if substantial computer time is invested in 
optimizing time and space will minis be able to support 
such implementation languages.) We do feel that the 
trend toward using larger computers to support minis 
will continue, and that it will soon be possible for 
systems programmers to use large-computer-based 
implementation language processors and debugging 
systems as accepted tools of the trade. Already a 
compiler for the BLISS language, an implementation 
language developed at Carnegie-:\lellon originally for 
the DEC system-IO, has been produced to generate code 
for the PDP-II on the DEC system-IO. 



108 Spring Joint Computer Conference, 1972 

THE MINI AS A BASE FOR DEDICATED 
SYSTEMS 

Over the past five years (which represents virtually 
the entire history of the minicomputer in terms of 
number installed), there has been a noticeable shift in 
the hardware/software tradeoffs in pricing and using 
minicomputers in dedicated system applications. Several 
people have long maintained that the price of the 
software for a dedicated system should, as a rule of 
thumb, equal the price of the hardware. Although 
apparently true four years ago, this cannot possibly be 
true today. Hardware costs of minicomputer main­
frames and memories have been decreasing exponen­
tially at an apparent rate of about 25 percent a year, 
while software costs have been slowly rising, at the rate 
of inflation. Thus, if the hardware/software cost ratio 
was around 1/1 four years ago, it is more like 1/2.5 
today, and the gap is steadily widening. 

All of the extensibility promised by recent hardware 
developments, including the modular construction of 
the new machines and the increasing use of ROM's, 
should have an accelerating affect on the applications of 
minis to dedicated systems, steadily reducing the cost 
of the hardware required for a given task. 

We see implementation languages beginning to 
relieve the trend toward higher software costs and hope 
they will continue to do so in the future. But we see 
problems in the high cost of training existing program­
mers to use implementation languages, the lack of 
acceptance by lower-level programmers, and general 
questions arising as to whether such languages and 
compilers really appropriately solve more difficult 
problems (such as those that are space and/or time 
critical) . 

We predict that in the next few years the current 
problems regarding implementation languages will be 
vigorously attacked on several fronts, and we feel 
reasonably certain that they will be increasingly used in 
dedicated systems, particularly those which are neither 
space nor time critical. For critical systems, we feel that 
some time will be required before compilers for imple­
mentation languages, and indeed the languages them­
selves, are improved and tested to the point that they 
can be of real value. 

Several people, including one of the authors, have 
used interpretive languages to simplify the construction 
of dedicated systems. In this technique, an existing 
interpreter, for a language such as ESp4 or FOCAL,15 is 
modified so as to minimize the core requirements for the 
interpreter by removing unwanted features and adding 
additional ones. The resulting extended machine is thus 
an ESI machine, or a FOCAL machine; the user 

program in the higher level language is stored in 
memory and executed completely interpretively. John 
C. Alderman, in a paper presently in manuscript form, 
has referred to such languages as "plastic languages", in 
the sense that the systems programmer, in designing the 
dedicated system, can modify the interpreter for the 
language, and thereby change the virtual machine, in 
much the same way as writable ROM's can be used. 
Indeed, the two approaches can easily be combined; one 
could wire the interpreter in an ROM and plug it into 
the computer, thus creating an unalterable virtual 
machine for FOCAL or ESI. 

It should be noted that the use of the "plastic 
language" technique is limited to those systems which 
are not time critical, since the interpretive nature of 
program execution makes the resulting virtual machine 
relatively slow. One of the authors has been quite 
successful in applying this technique to a proprietary 
dedicated system, where its advantages are quite 
significant particularly regarding ease of modification 
of the higher-level application code. 

SUMMARY AND SOME SPECULATIONS 

In closing, we would like to summarize a few points 
made earlier, and to exercise our license to speculate a 
little on the near future of minicomputers. 

First, the user of minicomputers for the solution 
of general-purpose applications in data processing, 
scientific programming, or engineering, will find mini­
computers increasingly indistinguishable from larger 
computers. With luck, he will not find that interactive 
control, which now distinguishes most minis from larger 
systems, has been thrown out in the wash. 

Second, the cost/performance ratio of minicomputer 
hardware will continue to improve at the same rate as it 
has over the last five years. 

Third, the minicomputer user will continue to 
receive the benefits of cost/performance ratios through 
decreases in cost for the same, or slightly improved, 
performance while the large computer user will generally 
continue to receive more performance at the same cost. 

Fourth, and as a consequence of the above, all 
applications of minicomputers will become increasingly 
more economical. Thus, many applications which are 
not performed on minis today, or many which are not 
done on computers at all, will utilize minis in the near 
future as prices continue to drop. 

It might be argued that time sharing could just as 
easily be used in the future to solve problems which do 
not use computers at all now. It is undoubtedly the case 
that time sharing will continue to be used for those 



problems which require its unique assets, i.e., essentially 
as much processor time, as much I/O, as much core and 
disk space as required, when you need it, purchased on 
an "as you use it" basis. But even at the most favorable 
rates available today, time sharing is much more 
expensive than using a mini. The lowest price we know 
of for time sharing is about $8 an hour for as much time 
as you can use, though this is on a relatively small 
system with quite heavy loading and a lot of contention. 

On the other hand, even at today's prices, a mini can 
be bought for $5000. If this is written off over three 
years, and used 40 hours a week, an effective price of 
only about one dollar an hour can be approximated. 
A few years from now, this should drop to around 25 
cents an hour. 

We see the possibility of people providing a variety of 
"plug-in packages" for popular minis, quite likely 
software provided in the disguise of ROM hardware to 
provide the supplier with proprietary protection, 
product standardization, and integrity against un­
authorized user changes. Some of these standard plug-in 
packages might be: 

(a) The CO GO virtual machine for the civil 
engineer. 

(b) The JOSS@ virtual machine for the engineer and 
statistician, replacing today's electronic desk 
calculators. 

(c) The small business virtual machine, providing 
the retailer with a small machine capable of 
performing routine bookkeeping. 

(d) The homemaker virtual machine, providing the 
busy housewife with a menu planner, household 
controller, alarm system, and checkbook 
balancer. 

In conclusion, if the designers and product planners 
of minis think more clearly on what minis can do in 
both program creation and program execution, we may 
see an end to the minicomputer syndrome. 
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"He nodded and went out ... and in a moment I 
heard Winnie-the-Pooh-bump, bump, bump­
going up the stairs behind him." 

Ending of Winnie-the-Pooh, A. A. Milne 
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The current state of minicomputer software 

by JOSEPH F. OSSANNA 

Bell Telephone Laboratories, Inc. 
Murray Hill, New Jersey 

INTRODUCTION 

Noone who has watched the spectacular growth of 
the minicomputer industry needs to be told that people 
are finding new small computer applications at an 
astonishing rate. Undoubtedly there are many reasons 
for this striking increase in minicomputer utilization. 
Certainly one reason is the increasing sophistication 
of minicomputer software. This paper will summarize 
the development of this sophistication, and will try 
to characterize its present state. Minicomputer hard­
ware evolution will be discussed because of its effect 
on minicomputer software evolution. The range of 
minicomputer uses and users will be characterized 
along with their varying software organizations. Com­
mentary on techniques of minicomputer software 
development is included. A number of examples of 
both past and present minicomputer software systems 
are presented. 

MINICOMPUTER HARDWARE 

A minicomputer is a "minicomputer" by nature of 
its hardware which is relatively simple, physically 
small, and comparatively inexpensive. This is ac­
counted for by the following general characteristics 
compared to the "ordinary" large computer. 

• Shorter word length 
• Smaller memories 
• Fewer and simpler instructions 
• $impler input/output capabilities 
• Minimal features 
• Fewer peripherals 

In addition to the above, limited software support by 
the manufacturer and lower marketing costs have 
contributed to the lower price of the minicomputer. 
Wordlengths range from 8 to 24 bits with 16 bits being 
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the most common in currently available machines. The 
range of memory sizes available in a typical current 
machine is from 4K words (K = 1024) to 32K words. 
Basic instruction sets typically lack multiply and 
divide, decimal and floating-point arithmetic, ar­
bitrary shifting, and fancy character string manipula­
tion. Although minicomputer memories are smaller 
than those of large machines, the memory cycle times 
frequently are similar, with the result that computing 
speeds are similar in applications where a smaller word 
size and the absence of some types of arithmetic are 
not a factor. Basic input/output structures usually 
employ a single time-shared bus with limited device ad­
dressing and with limited parallelism during data trans­
fer. Features such as memory protection, relocation, 
and segmentation are usually nonstandard or unavail­
able. Often few fast registers are included. The selec­
tion of peripherals standardly interfaced to a given 
machine typically has been limited. In the past, the 
only reliable peripherals available have been expensive 
ones originally designed for the larger computer systems. 

To some extent, what has just been said above is 
becoming less true with time. The spectacular ad­
vances in integrated circuit technology in recent years 
have resulted in dramatic price declines. Core memory 
and peripherals have also become less expensive. The 
price of a basic system consisting of the central pro­
cessor (cpu), 4KX16 bits of core memory, and a Model 
33ASR teletypewriter has dropped from about $25,000 
in 1966 to about $8,000 in 1971.1 The circuit tech­
nologyadvances have also made increased system 
capability economically attractive. The following 
amendments to the list of minicomputer characteristics 
are presently apropos. 

• Instruction sets improving; fast multiply, divide, 
and floating-point optionally available. More and 
better addressing modes being designed. 

• Memory protection, relocation, and segmentation 
becoming optionally available. 
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• Larger sets of fast general registers becoming 
common. 

• New bus concepts are providing better input/ 
output structures. 

• Priority interrupt structures and interrupt vectors 
are becoming standard. 

• Smaller and well designed peripherals are available 
at reasonable cost. 

• Less expensive disk storage is becoming available 
in sizes commensurate with small machines. 

Manufacturers have achieved this and are providing 
increased software support without noticeably stem­
ming the price decline. 

These recent improvements in small machine archi­
tecture have attracted more sophisticated applica­
tions and more sophisticated systems designers. The 
advent of inexpensive disk storage is probably the most 
important occurrence influencing minicomputer soft­
ware evolution. 

A tabular summary of currently available mini­
computers and their characteristics can be found in 
Reference 2. Similar information along with projections 
of the future of the minicomputer industry are given 
in Reference 1. 

MINICOMPUTER USES AND USERS 

Most minicomputer systems consist of a general­
purpose small machine configured in a way suitable for 
some particular application. Tailoring the size and 
complexity of a system to the requirements of a par­
ticular job can result in an economy of specialization 
that outweighs the economy of scale of using a part 
of a larger machine.3 ,4 Accordingly, one would expect 
the range of applications to break down in a way that 
reflects this economic bias. Auerbach1 reports that in 
1970 minicomputer dollar sales were divided as follows. 

45% Industrial and process control. 
3% Peripheral control (COM, OCR, line printers, 

etc.). 
20% Communications control (concentrators, 

switching) . 
10% Computations. 
22% Data acquisition and reduction. 

Process control and data acquisition often involve 
intimate connection to distributed sensors or laboratory 
instruments. This is often infeasible for centrally 
located large machines, especially when coupled with 
the necessity for rapid control by the user and his pro­
gram. 

In a survey conducted within Bell Laboratories in 
the Spring of 1971 of approximately 200 minicomputer 
systems the following usage breakdown was reported. 

31 % Computerized testing of equipment and 
devices. 

19% Data acquisition and reduction. 
18% General-purpose computing, some with data 

acquisition. 
15% Peripheral control (plotters, cameras, dis­

plays, unit-record equipment). 
9% Intelligent graphic terminals and interactive 

graphic systems; general-purpose graphic­
oriented computing. 

7% Process control. 

It is possible to observe different software organiza­
tions across these various types of users. Some of the 
differences are clearly due to the nature of the applica­
tions. Many are due to the nature of available software 
support, to the software experience of the programmers 
involved, and to hardware limitations. In the next 
section these differences are characterized. 

SOFTWARE ASPECTS 

The choice of a software organization for a mini­
computer system can profoundly affect hardware re­
quirements, general efficiency, the range of applica­
tions, extensibility, and the ease of software main­
tenance and modification. The best organization in a 
particular case depends on which considerations are 
paramount. Other considerations include the following. 

• Are the application programs to be run under an 
operating system? 

• Is there to be on-line secondary storage? 
• Are there crucial real-time response requirements? 
• Are there to be multiple simultaneous users? 
• Is the system to be self-supporting-i.e., can the 

application programs be developed and maintained 
on the system? 

• Is there a justification or need for core protection, 
relocation, or some sort of virtual memory? 

An "operating system" is a collection of basic and fre­
quently used utility programs essential for convenient 
and efficient use of a machine. For many people this 
loose definition means the sum of all the programs they 
use that were written by someone else and consequently 
not easily modified. lVlost minicomputer operating 
systems are simple and basic compared to those used 



on large machines. The most basic form of operating 
system consists of programs to perform physical in­
put/output and handle code and/or format conversion 
of the transmitted data, and a program to bring the 
user's program into core and give control to it. If the 
minimization of core usage is paramount, the generality 
of even a basic operating system may need to be fore­
gone and only the absolutely necessary input/output 
programming be included directly in the user's program. 
Such inclusion of operating system functions in ap­
plication programs is not uncommon on small machines. 

If the same machine is to be used to develop the 
user's programs, other support programs are needed. 
An editor is needed to create and modify the user's 
source text (unless he is doing it manually, for example 
using cards). An assembler or compiler is needed to 
translate this source text into executable machine code. 
Optionally a debugger is useful for analyzing program 
troubles. Operationally, the first two are run like user 
programs, and the latter is usually combined with the 
user program if needed. 

If there is justification for on-line random-access 
secondary storage such as a disk or drum, a different 
perspective is possible. The less frequently used por­
tions of any operating system and of the user's program 
need not be permanently core resident, and core re­
quirements can be minimized without foregoing the 
convenience and generality of an operating system. 
Further, support programs like those mentioned above 
can be stored on disk for handy use (by disk will 
usually be meant any such secondary device). Addi­
tional support in the form of libraries of user and utility 
programs can be easily kept along with a binder pro­
gram that can search libraries and combine collections 
of program modules into executable units. Greater 
convenience is obtained when the operating system 
provides organized access to the disk by means of some 
sort of a file system. A well designed file system is 
usually the foundation of the better general-purpose 
operating systems. 

Real-time response requirements can have strong 
implications for software system design. By real-time 
we do not here mean the requirements of controlling 
conventional peripherals such as disks, tapes, unit­
record equipment, or most communication lines. In 
these cases a too-slow response usually causes retries 
and degrades efficiency but is not ordinarily fatal. 
What is meant are the response requirements of con­
trolling such things as a steel rolling mill, a linear ac­
celerator, or an oil refinery. Industrial process control 
systems typically receive a variety of external stimuli 
requiring a wide range of response times. This neces­
sitates a hierarchical priority structure for the inter-
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ruption and execution of programs. When there is 
more than a few such programs the scheduling can be­
come quite complex. Operating systems for such situa­
tions are usually different than general-purpose ones; 
process control systems are discussed later. Data ac­
quisition systems and communications control systems 
can have real-time response probJems, if peaks can 
occur that would temporarily tax their processing 
capacity and it is important that no data be lost. 

Unlike a process control system which supervises 
known external processes with generally known chari 
acteristics, a multi-user system such as a general-pur­
pose time-sharing system faces user submitted tasks 
of more-or-less unknown characteristics. For example, 
resources such as processor time, core space, and file 
system space demanded by the user processes vary 
dynamically, and the system generally must schedule 
adaptively and enforce various limits on resource 
utilization. Even if a minicomputer system is eco­
nomically justified when wholly committed to some 
application, a multi-user capability can permit soft­
ware development to take place while the main ap­
plication is running. An example of a multi-user system 
is given later. 

Core protection is a hardware feature that enables 
the operating system to make sensitive regions of core 
storage inaccessible, thereby protecting those regions 
from damage by being written or preventing informa­
tion from being read. This feature is uncommon in 
minicomputer systems that operate with debugged 
programs, but is usually mandatory in multi-user 
systems that permit users to write and execute arbi­
trary programs. Relocation is a hardware feature that 
permits a program to be loaded at any convenient 
place in core memory, and to be moved (while inter­
rupted) to another place. This feature can be a great 
asset to, for example, a process control system trying 
to juggle a myriad of different sized programs between 
disk and core. Virtual memory5 is a concept where a 
program can think it has more core than it really has 
or even than there is. 

RETROSPECTION 

When one looks at the minicomputer systems being 
used in the early 1960s one sees minimal hardware with 
typically no disk storage and minimal software sup­
port in the form of operating systems, compilers, 
editors, etc. The temptation was therefore great to 
make use of the nearest computer center with its big 
machine, big disk, and varied software support. 

One of the first minicomputer applications that the 
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author came in contact with at Bell Laboratories circa 
1964 was an experimental remote graphical display 
system called GRAPHIC-1.6 The hardware consisted 
of a Digital Equipment Corporation (DEC) PDP5 
computer with 4K X 12 bits of core, a modified DEC 
Type 340 display scope, a 4KX36 bit display memory, 
a light pen, Model 33ASR teletypewriter, and a card 
reader. In addition there was a high-speed connection 
to the direct data channel of a nearby IBM 7094. 
Support software consisted of an assembler and post­
processor to assemble, merge, and link relocatable 
programs to form executable units for the PDP5, a 
display material assembler, and a library of input/ 
output and inter-computer communication programs. 
These support programs ran on the 7094 and produced 
cards that were read into the PDP5. End users of the 
system could write in a higher-level graphical language 
called GRIN6 which also ran on the 7094, and could 
use the system to submit a regular batch job to the 
7094. This dependence on the local big machine was a 
natural yielding to the temptation to do software de­
velopment in a convenient environment. 

GRAPHIC-27, a successor system to the one above, 
emerged in 1967 and is notable for its relatively so­
phisticated software. It is implemented on a DEC 
PDP9 computer with 8K X 18 bits of core, a fast fixed­
head disk, display, light pen, fast paper tape reader/ 
punch, and a dial-up 2000 bit/sec link to the local big 
machine. As in the preceding case all the software for 
the PDP9 was written using support programs on the 
local computing center large machine, a Honeywell 
Information Systems 635. The end user is provided 
with a graphical programming language called GRIN-27 

and an assembler, both of which run on the 635. In the 
next version of the system these will run on the PDP9 
itself. GRIN-2 provides the ability to control the man­
machine interaction, to create and edit graphical data 
structures, and to control the display. The system may 
be used in a stand-alone mode or it may be connected 
to the 635 and used in a mode where programs executing 
in the 635 send over programs or data on demand to 
the PDP9. One of the more interesting aspects of the 
software in this system is that it provides a form of 
virtual memory to the user program. To do this, each 
user's program and data is broken up into blocks which 
are assigned unique identification numbers (IDs). All 
references between blocks are in terms of this ID and 
an offset within the block. When a block is referenced 
it is retrieved from disk or possibly from the big ma­
chine. Only the currently needed blocks are actually in 
core at a given time. The user is relatively free from 
worrying about the size of core; one user application 
program consists of nearly 60K PDP9 words. 

Another example is a small laboratory computer 
system used for the acquisition and reduction of data 
from a spectrometer. It originally consisted of a DEC 
PDP8 with 4K X 12 bits of core, a Model 33ASR tele­
typewriter, a DEC Model 34D display, a home-made 
analog-to-digital converter, an extended arithmetic 
element, and interfaces to laboratory equipment. The 
user wrote his own application software in a few months 
using a DEC supplied editor and assembler on the 
PDP8 itself. Both user and support programs were 
stored on paper tape and had be be loaded using the 
reader on the 33ASR. How long does it take to read 
4K X 12 bits at the rate of 10 8-bit characters per sec­
ond? This user eventually got 128K X 12 bit drum pri­
marily to facilitate the acquisition of more data than 
would fit into core. He now uses a DEC supplied disk­
based operating system for program development and 
to run his application. This system is typical of quite 
a few minicomputer systems within Bell Laboratories. 

A more recent (1968) example of a laboratory com­
puter system designed for self-service by a variety of 
users at Bell Laboratories is described in Reference 8. 
The hardware consists of a Honeywell DDP224 with 
floating-point instructions, 32K X24 bits of core, two 
disk drives for 2.4 million word removable disk packs, 
magnetic tape, a card reader, analog-to-digital and 
digital-to-analog converters primarily for speech and 
music, a console typewriter, various graphical input 
and output devices, and miscellaneous devices such as 
a piano keyboard. Extensive software support is pro­
vided for the user in the form of a simple disk operating 
system with utilities for all the various devices, an 
assembler, a Fortran compiler, an editor, a loader, and 
a large library of useful programs. A simple file system 
is provided along with disk utilities for physical disk 
accessing. Disk conflicts are avoided by informal agree­
ments and by many users having their own disk packs. 
The operating system will bring whatever program the 
user wants into core from disk but the user must manu­
ally transfer control to its starting location. This 
machine has been very successfully used by more than 
a dozen users for various research projects. A main 
drawback is the necessity for users to sign up for time 
on the machine, and a limited multi-user capability 
would undoubtedly be welcome. The system is much 
like a user-operated batch processing system. Even 
though some of the applications involve real-time 
response and are demanding of the processor, such 
tasks as file editing and compiling could go on at a 
lower priority or be done concurrently with less de­
manding tasks. Such an ability would require a better 
file system for user isolation and some scheme for ro­
tating user programs through or sharing core. In this 



system, such additions would be tantamount to a 
complete redesign. 

INTROSPECTION 

Just as in the case of software design evolution on 
big machines, the evolution of software on small 
machines has not been homogeneous throughout the 
field. The inertia inherent in the use of successful soft­
ware can last for times comparable to the current age 
of the minicomputer era. Most of the systems described 
earlier are still working. There probably isn't any 
early software design or development techniques that 
isn't still being practiced today. The major impetus 
for software design improvement comes from the intro­
duction of more advanced machines and from the 
infusion of fresh software techniciar s. Attracted by 
the newer small machines and often experienced on 
big ones, these fresh workers are beginning to achieve 
on the minicomputer a decree of software design 
sophistication previously seen only on larger machines. 

In the next section an attempt will be made to char­
acterize minicomputer software currently in common 
use and to describe some forefront efforts. 

CURRENT EXAMPLES 

Industrial process control 

All indications are that this field will be one of the 
largest users of minicomputers.l Work in this field, not 
all involving minicomputers, is relatively extensively 
documented.9,lO As indicated previously, process control 
applications 'often involve a wide range of real-time 
response requirements. Control algorithms involve the 
operation of complex multi-loop negative feedback 
systems. Most systems involve two forms of control: 
direct digital control in which the computer directly 
controls process variables; and supervisory control 
in which the computer sets the operating points of 
otherwise independent analog controllers. The response 
required in direct digital control ranges from milli­
seconds to seconds, while that required for supervisory 
control ranges from seconds to minutes. In addition, 
there is usually an overall optimizing and adaptive 
control function that slowly modifies the control 
algorithms. On top of this response time hierarchy can 
be management information and long-term scheduling 
functions involving delays measured in days or weeks. 
Direct digital control tasks are usually many in number 
but relatively simple while supervisory control tasks 
are fewer in number but relatively complex. 
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The number of task-oriented programs is usually 
sufficiently large that economy dictates that they not 
all be core resident; thus programs need to be brought 
into core when needed. The existence of the shorter 
real-time requirements as well as the desire for rea­
sonable efficiency dictates that several programs reside 
simultaneously in core. Thus a process control system 
takes on the appearance of a multi-programmed time­
sharing system. In contrast with time-sharing systems, 
the scheduling of the execution and interruption of 
programs is more complex in process control systems.lO 

The relative priority of programs is typically dependent 
on process conditions, operator intervention, and even 
such things as the time of day. While the general tech­
nique is to respond to hardware interrupts and place 
programs into execution priority queues, provision 
must usually be made for certain high priority pro­
grams to purge certain other low priority programs 
from queues and for low priority programs to inhibit 
their interruption at certain critical times. Some sort 
of organized provision is required for the interlocking 
of shared data bases. Although most of the program­
ming is done in assembly language and in Fortran, a 
number of process control oriented languages have 
been developed and used.ll The process control field 
has in some ways reached a greater level of sophisti­
cation than other fields of application. 

Communications control 

This field includes communication line concentrators 
and controllers used as communication front-ends for 
large computer systems, as nodes in communication 
networks, and as message switching centers. The latter 
application requires secondary storage while the others 
do not. Data line concentration and control can usually 
be done less expensively and more flexibly with a mini­
computer than with wired hardware controllers. 

An example of a minicomputer front-end is the line 
concentrator used to interface varied terminal equip­
ment to the Michigan Time-Sharing System.l2 This 
system was experimental and its hardware complement 
is not necessarily optimized. It consists of a DEC 
PDP8 with 12KX12 bit of core memory, a Model 
33ASR teletypewriter, a high-speed paper tape reader/ 
punch (to facilitate software development), an ex­
tended arithmetic element, an interface to the local 
IBM 360/67's multiplexor channel, and interfaces to 
standard telephone data sets operating at all the 
standard speeds. The lower speed interfaces are bit 
buffered and the faster ones are character buffered. 
The system performs a limited form of terminal type 
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identification of low speed asynchronous typewriter 
terminals and handles a variety of IBM and tele­
typewriter terminals. Because the speed of operation of 
each line is program controlled, statistical sharing of 
the access lines reduces the required number of tele­
phone ports. The system-terminal interface is better 
human engineered than that obtained using standard 
IBJ\;I hardware line controllers. Full duplex operation 
of teletypewriters is standard and read-ahead of the 
terminal keyboard is provided.13 

While such a system is less complex than many pro­
cess control systems, the bit and/or character comple­
tion interrupt rate is high and the responding programs 
can't dawdle. The low number of distinct tasks com­
bined with the high task rate dictates that the software 
all be core resident. The system described above was 
equipped to serve 16 low speed asynchronous lines and 
4 voice grade synchronous lines; however, a system 
of this kind more typically can serve between 32 and 
64 low speed lines along with several voice grade lines. 

Paper tape operating systems 

The above heading may overdignify the collection 
of software that it refers to, but this kind of software 
support is one the oldest and is still common. If one 
has a typical basic minicomputer configuration con­
sisting of a processor, 4K words of core, and a tele­
typewriter with paper tape handling, one either does 
his software development using support programs 
stored on paper tape or uses some other machine for 
development and reserves the basic machine to run 
the application. The main drawback with paper tape 
based support is the slow rate of reading and punching 
paper tape. This drawback can be largely mitigated 
by adding a high speed reader/punch. Surprisingly 
enough, the convenience of working on your own 
machine and the fact that a cycle of editing, assembling, 
and reloading may be shorter than the time required 
to travel to and wait on the local computer center, may 
make the use of a paper tape operating system feasible. 
Of course, access to a good time-sharing system with 
the right kind of program support or to another ma­
chine like yours but better equipped is probably prefer­
able. 

An example of a current paper tape system in DEC's 
paper tape software for the PDP11.14 It provides an 
absolute loader for reading in all programs, a reasonable 
text editor, an assembler, floating-point simulation, a 
math package, a collection of input/output utilities, 
and an octal debugger. The editor is used to create 
and edit programs at the teletypewriter; during editing, 

the old copy of the source is read off paper tape a block 
at a time, edited, and then punched. Assembling a 
program consists of reading in the assembler, feeding 
the source program to the assembler twice, and re­
ceiving an executable object copy of your program from 
the punch. Your program can then be tried by loading 
it; after loading the loader will transfer control to it 
automatically. If it works, fine; if not the octal debugger 
can be loaded into vacant core (if any) and used to poke 
around in the remnants. All of this is or is not as awk­
ward as it seems depending on the alternatives open 
to you. With enough core a simple core resident oper­
ating system containing all the support programs with 
some core left for the user would be even more con­
venient; the additional cost is comparable to the cost 
of the smaller disks. 

Disk operating systems 

It has been observed several times previously that 
the addition of disk storage to a minicomputer system 
makes a world of difference. Even the simplest disk­
based operating system greatly magnifies the con­
venience of working on your own machine, which be­
comes like using a one-user time-sharing system. ::Vlulti­
user systems are possible and desirable and are dis­
cussed later. Much of what is possible with disk is 
possible in a slower more restricted way using ran­
domly accessible magnetic tapes such as DEC's 
DECtape,15 or even small tape cartridges. 

An example of a recently available (circa 1968) disk 
operating system for a machine that has been around 
in some form for awhile is the PS/8 operating system 
for the PDP8 family of machines. 16 It requires 8K words 
of core and a disk or DECtape. 

Another example is DEC's disk operating system for 
the PDP11.I7 It requires at least 8K words of core, a 
small disk augmented by DECtape, or a larger disk, 
a high speed paper tape reader/punch, and a console 
typewriter. The support software includes a command 
interpreter, a reasonable text editor, an assembler, a 
Fortran compiler, an octal debugger, a file utility 
package, floating-point simulation, a math package, 
and a linker to combine programs. The operating system 
provides a reasonable file system and does input/output 
for the user. Core is divided into five regions: a small 
region at the bottom containing the interrupt vectors 
which indicate the location of interrupt handling pro­
grams; next a small area for the resident monitor; an 
area for the user program at the top of core; below that 
the stack (where parameters are stored temporarily 
during the transfer of control between programs); and 



a free area divided into blocks and used for buffers, 
temporary tables, and device drivers brought into core. 

To invoke a system support program such as the 
editor or a user program written to run under the 
system, the user types a request on the console key­
board which can include information about which 
input and output devices are to be used during the run. 
User programs can be used interactively and can be 
interrupted for debugging. 

Multi-user time-sharing systems 

It is an accepted fact nowadays that the time-shared 
use of a computer is one of the more effective ways of 
increasing the productivity of a group of users in need 
of computing service. The advantages of "working on 
your own machine" are effectively extended to the 
whole group at once. A multi-user system is inherently 
more complex than a single user one; it is necessary 
to multiprogram and/or swap user programs between 
disk and core and to keep track of everyone's input/ 
output and machine conditions. It is helpful too, if 
users can be prevented from injuring each other and 
the system. 

We shall present here, as an example of a multiuser 
system, a system recently developed (primarily by 

. K. L. Thompson) at Bell Laboratories which is felt 
to be at the forefront of minicomputer software design. 
This system utilizes a DEC PDPll/20 computer with 
12KX16 bits of core storage, a 60 cycle clock, a 256K 
work fixed-head disk, a disk drive for 1.2 million word 
disk cartridges, a dual DECtape drive, 8 low speed 
asynchronous line interfaces for remote typewriters, 
and a little-used paper tape reader/punch. 

Core is divided into an 8K word/region containing 
the totally core resident operating system and a 4K 
word region for the user program and his stack. The 
system space includes about 2K used for a pool of 
dynamically allocated buffers. The operating system 
maintains an excellent file system, creates and manages 
user processes executing core images), does input/ 
output for the user, and performs all scheduling func­
tions. Scheduling is by placing ready-to-run users on 
one of three queues, depending on whether the user 
has interacted (has just typed an action character on 
his console), some pending input/output has completed, 
or the user has run out of time allotted for execution. 
All users are swapped between the fixed-head disk and 
the same region of core. 

The main feature of this system is a versatile, con­
venient file system with complete integration between 
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disk files and all input/output devices. There are three 
kinds of files; ordinary disk files, directories, and 
special files representing physical devices. A directory 
is like an ordinary file except that only the system can 
modify it. The file system is a tree structured hierarchy 
originating at a root directory. Any type of file can 
occur at any level. Files have names of eight of fewer 
characters. At any given time a user process is associated 
with a particular current directory. When the user 
program wishes to open or create a file, it gives the 
system the file name of a file in the current directory 
or it gives a path name which either specifies the ab­
solute location in the tree or the location relative to 
the current directory. If the reference is successful, the 
system returns a file identification number to be used 
for future references. File system protection consists 
of associating with the file at time of creation the name 
of the creator and permitting him to specify whether 
he and others can read and write the file. Files are 
formatless and are regarded as strings of 8-bit bytes. 

Another feature of the system is the ability to initiate 
asynchronously executing processes from within a 
program or from command level. Commands are nor­
mally terminated with semicolons or new-lines; the 
command interpreter creates a process to execute the 
command and waits for its completion. If the command 
is terminated instead by an ampersand, the same thing 
occurs except that the command interpreter doesn't 
wait. Argument strings typed with a command are 
made available to the program by placing them on 
the stack. 

The name of any executable program can be used 
as a command. The name is first searched for in the 
current directory and if that fails it is then searched 
for in a system library. A myriad of commands are 
available including those for listing directories, mov­
ing, copying, and deleting files, changing the owner 
and mode of a file, and changing the current directory. 
Other programs available include a context text editor, 
an assembler, a symbolic debugger, a linking loader, a 
dialect of Basic, Fortran, a text formatter, games such 
as chess, and various experimental languages. 

The system operates 24 hours a day, seven days a 
week. A user community of about a dozen people access 
the machine regularly although it is not a service of­
fering. The group that owns the machine uses it heavily 
for preparing documentation using the editor and text 
formatter. The maximum of eight simultaneous users 
(limited by the number of lines) does not tax the 
machine's capacity. Because of the lack of core pro­
tection, any user can write, assemble, and run a pro­
gram that could damage the system and cause a system 
crash. However, since most users use debugged pro-
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grams like the editor or text formatter, and because 
those few who develop new programs are careful, sur­
prisingly few crashes occur. A future version of this 
operating system will be developed for a version of the I 

PDP11 having core protection and relocation. 

Virtual memory systems 

One of the more interesting areas in minicomputer 
software is the use of virtual memory to manage the 
core and secondary storage of a small machine. A 
system in an earlier example, GRAPHIC-2, supported 
a form of virtual memory without the use of special 
hardware. Another similar example is a small time­
sharing system on a Honeywell DDP51618• A different 
example involves the use of hardware assisted segmenta­
tion and paging on a specially modified Interdata 
Model 319• 

CONCLUSIONS 

There has been a decided evolution toward greater 
sophistication in the design and use of minicomputer 
software during the relatively short years of the mini­
computer era, although many of the earlier methods 
are still in use. A major force toward software improve­
ment has been the introduction of new and better 
machines and the advent to relatively inexpensive 
disk storage. The expanding minicomputer field has 
benefited from the attraction of fresh software design 
talent often with large machine experience. Some 
recent forefront efforts are yielding minicomputer 
operating systems with features previously found only 
on large machine systems. 
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INTRODUCTION 

Advancing technology and declining costs have led to 
a sharp increase in the number and variety of small 
computers in use. Because small computers are readily 
suited for many real-time applications, a great deal 
of work has been directed toward simplifying the inter­
face between the computer and its peripherals. Hard­
ware interrupting capability and a specially designed 
I/O bus are required for peripheral device interfacing 
in a real-time environment and such things as direct 
memory access, data channels, and multilevel hardware 
and software interrupt capability are common. These 
machines tend to be parallel, synchronous computers 
with a relatively simple architecture. 

In a real-time environment, fault detection can be of 
major importance. Much of the past work has been 
directed toward the design of additional hardware, 
internal to the computer, which allows critical feedback 
loops to be controlled and often inserts special registers 
for the maintenance task.1- 4 These techniques require 
that the maintenance circuitry be designed concur­
rently with the computer itself and have access to 
components internal to the computer. Many problems 
can arise from attempting to modify an existing com­
puter. For example, critical timing and gate fan-out 
can be disturbed, and most warranties become void 
if unauthorized modifications are made to a computer. 

Other techniques cannot be used for real-time fault 
detection because they require manual intervention, 
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excessive storage, noncontiguous memory locations 
or excessive execution time.5-7 Much of the previous 
work attempts to locate faults as well as detect them. 
While fault location is desirable, it is more expensive 
and requires much more time and storage than fault 
detection. Many applications do not require fault lo­
cation. It may be more feasible to either interrupt the 
task or perform the task manually during the diagnosis 
and repair interval; the most important thing is to 
recognize that the computer may be performing the 
task incorrectly. 

An earlier technique attempted to simulate each 
instruction using different instructions and comparing 
the simulation result with the actual result. 7 This 
technique requires that the computer be somewhat 
operational and that it be capable of comparing the 
two results. A means is needed for determining that 
the test routine is executed periodically. 

In this paper, we propose a real-time fault detection 
scheme for small computers which is effective for faults 
in the central processor unit (CPU), core memory and 
I/O bus. It requires an external monitor which is 
simple, inexpensive, and interfaces to the computer's 
I/O bus just as any other peripheral device. The monitor 
periodically triggers a program interrupt, causing the 
computer to execute a predefine test routine. During 
the course of the routine's execution, several key bit 
configurations are transmitted to the monitor. If the 
computer fails to respond or if the bit configuration 
does not match the one that is expected, then the 
computer is assumed to be faulty and the device may 
either cause a power down or sound an alarm. 

The proposed technique compares favorably to the 
previously referenced techniques in fault detection. 
Certain faults will not be detected, however, because 
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Figure I-Typical computer architecture 

internal modification to the computer is not allowed. 
In the past, real-time fault detection has carried a price 
tag comparable to the cost of the computer itself. A 
major advantage of this technique is that its low cost 
makes a great deal of fault detection possible in appli­
cations which would not previously have been cost 
effective. The fact that the technique assumes that no 
modification may be made to the computer means that 
many existing systems could make use of the method 
without extensive modifications. 

COMPUTER ARCHITECTURE 

The proposed fault detection method may be used 
with a variety of small computers, all of which are very 
similar in architecture. Included in this class of com­
puters are such machines as Digital Equipment Cor­
poration's PDP-8, PDP-9/15; Hewlett-Packard's HP-
2100; Honeywell's DDP-516; Data General's Nova-
1200 and N ova-800; Xerox Data System's Sigma-3; 
and Hitachi's HITAC-10. All of these are parallel, 
synchronous machines with hardware interrupt and 
I/O bus. 

Figure 1 shows a block diagram of a typical small 
computer. The program counter (PC) contains the 
address of the next instruction to be executed. The 
memory buffer register CMB) serves as temporary storage 
for information being written into and read from 
memory. The address of the memory cell to be accessed 
is placed in the memory address register (MA). The 
decoded contents of the instruction register (IR) controls 
the instruction sequencer. Other registers commonly 
found are an accumulator (AC), general purpose registers 
(GPR), an arithmetic register (AR) and an index register 
(IX). Most small machines make use of some subset of 
these registers. 

Most of the logic functions are performed in the 
general purpose logic unit (ADR). A pulse on the hard­
ware interrupt lead will cause the instruction sequencer 
to save the appropriate registers and to begin executing 
a different program. 

ADDITIONAL HARDWARE REQUIREMENTS 

This section explains the function of each portion 
of the block diagram for the monitor hardware shown 
in Figure 2. 

The DEVICE SELECT modules (DS1 and DS2) 
are basically an array of AND gates which allow the 
peripheral device control signals and data signals to 
pass only when the proper device select code is present 
on the device select bus. This allows several peripheral 
devices to share the same I/O bus without interfering 
with one another. Three device codes are required, 
XX, XX, and YY. It is desirable to have one device 
code (XX), which is the complement of the other to 
verify that each bit of the device select bus can be set 
to both logical states. 

Device codes XX and YY cause the WIRED 
REGISTER to be gated onto the Input Bus. The 
WIRED REGISTER is constructed simply by at­
taching alternate bits to a voltage representing a logical 
one and the remaining bits to logical zero. When 
device code YY is selected, the "DEVICE = YY" 
lead is enabled causing the contents of the WIRED 
REGISTER to be complemented before being placed 
on the Input Bus. Reading from both device XX and 
device YY causes both a 1 and a 0 to be read from each 
bit position. Many computers determine the status of 
a peripheral device by executing an instruction which 
causes the next instruction to be skipped if a status 
FF is set. By executing this instruction with device 
code XX the BUSY/IDLE FF will appear to be busy; 
if device code YY is used, the "DEVICE = YY" lead 
causes the FF to appear to be idle. In this way the 
device status testing feature may be checked. 

Device code XX is used when outputting bit con­
figurations to the monitor for comparison to the 
expected value. The INTERRUPT TIMER is simply 
a monostable FF which, after an appropriate delay, 
will cause a program interrupt to be sent to the com­
puter and at the same time sets a FF, which enables 
the RESPONSE TIMER. The testing frequency is 
set by adjusting the monostable's delay time. 

The RESPONSE TIMER is used to determine that 
the computer is taking too long to respond and may be 
"lost." If the RESPONSE TIlVIER is not reset or 
disabled before it "times out," an OVERTIME signal 
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Figure 2-Block diagram for monitor hardware 

is generated, indicating that a fault has been detected. 
A circuit to perform the RESPONSE TIMER function 
is shown in Figure 3. 

The ADDRESS COUNTER is simply a cyclic 
counter designed to count modulo N, where N is the 
number of responses expected during a normal test. 
When the counter resets, a DONE signal is generated 
which disables the RESPONSE TIMER and resets 
the INTERRUPT TIMER. The ADDRESS 

OVERTIME 

Figure 3-Response timer 

COUNTER is incremented after each output from the 
computer to sequentially address the contents of the 
read-only memory (ROM). The ROM need not be 
large and may be built economically from a diode 
array. 

The respDnse from the computer and the expected 
response, read from the ROM, are both buffered and 
compared by the MATCH LOGIC. When enabled, 
the MATCH LOGIC basically OR's together each bit 
of the XOR of the two buffers to produce the MIS­
MATCH signal. An OUTPUT READY signal from 
the computer is used to load the BUFFER, enable the 
MATCH LOGIC, reset the RESPONSE TIMER, and 
incremEnt the ADDRESS COUNTER, all after ap­
propriate delays. 

If either a MISMATCH or an OVERTIME signal 
is produced, the FAULT FF is set. This inhibits any 
further output to the monitor, thus preserving the 
contents of the ADDRESS COUNTER and the two 
buffers as an aid for the diagnosis of the fault. 
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The FAULT signal may be used in whatever way 
seems appropriate; it may stop the computer, sound an 
alarm, or trigger an interrupt to call some form of self­
diagnosis program, which may attempt to actually 
locate the fault. 

All circuits may be built using conventional methods 
and commercially available logic gates. The total cost 
of the hardware components is estimated at approxi­
mately $250. 

GENERAL GUIDELINES 

Small computers seldom have a large amount of 
core memory, often as little as 4,000 words. Often, 
external storage is limited to paper tape, which re­
quires manual intervention to be read. In order for a 
real-time fault detection scheme to be useful in these 
circumstances, its memory requirements should be 
small enough to allow it to remain resident in a very 
small core memory and still leave room for the system 
programs. 

A large number of faults are severe enough to either 
stop execution or at least to make sequential instruc­
tion execution impossible. No additional effort need 
be made to detect such a fault; the resulting failure 
to produce the required sequence of responses will 
cause the fault to be detected. However, faults which 
affect only a single bit position of a bus or register can 
be among the most troublesome. This type of fault 
may allow execution to continue, perhaps indefinitely, 
without an indication the fault exists. 

Certain portions of the computer are very difficult 
to check under the assumed restrictions. Input-Output 
leads, other than those used by the monitor, cannot 
be checked without adding more hardware for each 
set of leads. Such Input-Output leads include Direct 
Memory Access, Data Channel, Console Controls, and 
special device channels. These devices usually appear 
as a data bus input which cannot be controlled. It can, 
however, be determined that none of these inputs is 
stuck at a one level as this would always cause the 
output of the bus to be one. 

The instruction control circuitry cannot be checked 
directly. There are no instructions which access most 
of the control leads. Therefore, the correct operation 
of a control lead can only be determined by checking 
conditions caused by that lead, such as the comple­
menting of a register. A thorough check of the control 
circuitry, under the given constraints, would be 
lengthy. It can, however, be determined that most of 
the gating signals can be produced. This can be done 
by executing every instruction type and checking to 

see that the proper data transfers have taken place. 
This method would intuitively seem to be very effec­
tive and can be accomplished in a short period of time. 

Because the test routine is periodically required to 
change the contents of memory locations outside of its 
own boundaries, the interrupt facility must be disabled 
during the executio:l of the test. This is necessary to 
insure that all locations are restored before control is 
released by the test routine. Since it is undesirable to 
lock out high-priority tasks for a long period of time, 
the execution time of the routine should either be very 
short or the routine should be segmented to allow the 
servicing of high-priority tasks. 

There are a number of ways to cause the external 
monitor to recognize that a fault has occurred. One 
of the most reliable ways is to design the test in such 
a way that the computer will output an unexpected 
bit configuration in the event of a fault. This technique 
is demonstrated by the following example. The ac­
cumulator is first loaded with a bit pattern A and then 
caused to skip over an instruction which would place 
A on the I/O bus. After the skip, the AC was changed 
to a pattern B and output to the monitor. If the skip 
did not occur, pattern A would have been output and 
would not have matched the expected pattern B. 

Another method is to cause the program to "loop" 
in the event of an error. The normal sequence of output 
bit patterns will then cease and the monitor will recog­
nize the cessation of response as an indication of a 
fault. Use of these techniques reduces the read-only 
memory requirements for the monitor. 

TESTING TECHNIQUES 

This section describes several techniques, which 
may be used to test the various computer components. 

Registers 

Registers in parallel synchronous machines com­
monly resemble the configuration in Figure 4. Although 
the actual circuitry may vary, the function is very 

A 

Figure 4-Flip-flop 



simple and well defined. When lead C becomes enabled, 
the information on lead A (usually a major bus) is 
gated into the FF. When lead C is disabled, the FF 
retains the state of lead A. A variation of this type of 
register requires a fourth lead which clears the register 
prior to the enabling of lead C which then OR's the 
state of lead A into the FF. Verification that each bit 
of a register can be set to both logical states completes 
a functional test of the FF. A single possibility 
remains-a stuck at 1 fault on lead C. This fault is very 
severe because lead C is common to every bit of the 
register. Having lead C stuck at 1 would cause lead A 
to be fed directly into the FF and would totally in­
capacitate the register. In most cases the state of lead 
A changes many times between the setting and the 
reading of a register, thereby, destroying the original 
contents. If this does not happen automatically, an 
effort should be made to cause it to happen. 

To check a programmable register, such as the ac­
cumulator, the register is first loaded with a bit con­
figuration. The contents of the register are then output 
through the I/O bus to the external monitor. The 
programmable register is then loaded with the comple­
ment of the first bit configuration and its contents 
again output to the monitor. This procedure also 
checks the I/O bus drivers, and the outputs of each 
bus between the accumulator and the I/O bus. 

Not all of the registers generally used in small 
machines are directly accessible under program control. 
In these cases a variety of techniques must be used in 
order to infer that the register can be set and read 
correctly. Five such registers were described in the 
introduction. 

One of these registers is the arithmetic register (AR). 
Because the contents of the general purpose registers 
is commonly stored into AR so that AR may be used 
as the operand, many tests of the general purpose 
registers require the data flow to pass through AR, 
testing it at the same time. This commonly happens 
in the output instruction itself, meaning that no extra 
effort is required to check AR. 

The second nonprogrammable register is the memory 
buffer (MB). This register is used to contain the data 
word core memory read-write operations; it must be 
capable of being set and cleared in order to correctly 
access core memory. If two complementary words can 
be read from memory, then the MB is operative. 

The third nonprogrammable register is the instruc­
tion register (IR) which contains the OP code. This 
register is different from the above registers in that its 
contents are never gated to a point at which it could be 
displayed. In this case a set of instructions may be 
selected in such a way that together they incorporate 
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both logical states for each bit. If it can be verified 
that each of these operations can be performed suc­
cessfully, then it may be assumed that IR is operative. 

The fourth nonprogrammable register is the memory 
address register (MA). This register is tested in the 
following manner: the contents of the sequence of 
addresses (0, 1, 2,4, 8, ... ,2n-\ where n is the number 
of bits in MA, is saved in a test routine buffer area in 
real core for future restoration. Second, two comple­
mentary flags X and X are written into location 0 
and read back. The flag X is left in location O. Another 
flag (Y) is then written into each of the other n loca­
tions. If, after the n write operations, the contents of 
location 0 is still X, then the MA register is operative 
and the n + 1 locations used for this test should be 
restored. To see this, assume that a bit (A) of MA is 
stuck at either 1 or O. This is not to say that bit A is 
the only inoperative bit, but only one of possibly sev­
eral. In this case, when an attempt is made to write 
into location 0, the flag will actually be written into 
another location (B). (If every faulty bit is stuck at 0, 
then B =0.) Later when an attempt is made to write 
into location 2A , this data will also be written into 
location B, overwriting the original flag. In general, 
location B will be overwritten once for every inopera­
tive bit in MA. When an attempt is made to read from 
location 0, the overwritten contents of location B will 
be returned, which will no longer be the flag originally 
placed there. It should also be noted that a fault in the 
address decoding circuitry or the memory itself cannot . 
mask a fault in the MA. 

The fifth nonprogrammable register, the program 
counter (PC), may be tested in much the same way as 
the MA register. The first flag to be written into loca­
tion 0 is the binary configuration of a "JUMP TO A" 
instruction. Into the remaining n locations is written 
a "JUMP TO B" instruction. After the MA register 
has been checked, a transfer is made to location O. 
This causes the PC to be loaded with a binary zero 
and the "JUMP TO A" instruction there to be exe­
cuted. At location A, a signal is made to the monitoring 
unit that the transfer was successful and the contents 
of location 0 are changed to a "JUMP TO C" instruc­
tion. The code at location C will cause the program to 
loop, or output an unexpected word which will cause 
an error conditipn to arise. The test routine then pro­
ceeds to transfer to each of the locations 1,2,3 ... 2n- 1• 

Each transfer should cause a return to location B, 
which simply continues the sequence. However, as 
with the MA register, if any bit of the PC is inoperative, 
then the "JUMP TO C" instruction will be executed 
and an error condition generated. 

All of the above registers are found in most com-
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logical state. This can be done by gating both a 1 and 
1 a 0 onto the bus from every AND gate. 

2--'L-~ 

3---1 
4--""1-__ 

5-----I-~ 

6 --""'L ___ 

Figure 5-Bus structure 
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puters and the methods described are generally ap­
plicable. 

In the methods for checking MA and PC, it is im­
portant to insure that addresses 0, 1, 2, ... 2n - 1 do not 
lie in critical parts of the test routine. This is simply a 
matter of convenience; if this restriction is undesirable, 
a slightly more general algorithm can be used to allow 
complete freedom in the location of the test routine. 
Since all of the n + 1 locations lie in the first 2n loca­
tions, the program could be loaded anywhere in the 
second half of the memory. 

Databu8 

A computer data bus typically consists of some varia­
tion of the circuit shown in Figure 5. Although there 
are many ways to implement this function, using dif­
ferent types of logic gates, nearly all faults will behave 
as though one of the leads numbered 1-10 has become 
frozen at one logical state. Certain varieties of logic 
allow the OR function to be accomplished simply by 
tying the outputs of gates A, B, and C together. This 
arrangement also satisfies the above statement. One 
input of each AND gate is usually common to all bit 
positions and functions as a gating lead for transferring 
data onto the bus. 

A data bus may often be directly accessible to a 
number of peripheral devices for such features as 
direct memory access or a data channel. When this 
happens, one or more of the AND gates in Figure 5 
may have inputs which cannot be controlled without 
interfering with certain of the peripheral devices. There 
will, therefore, be a few of the AND gates which will 
not be checked. 

For the remaining AND gates, the objective is to 
verify that each input and output can assume either 

Control circuitry 

Unlike a data bus or a register, the circuitry which 
controls the gating and timing for the instruction exe­
cution is neither simple in function nor standard in 
design. 

The approach taken here is to include segments of 
code in the test routine which will exercise each in­
struction and check to see that it is performed cor­
rectly. This thoroughly tests the instruction decoder 
by providing it with all possible inputs. The control 
circuitry is the most difficult part of the computer to 
check because there is virtually no means of direct 
communication between this circuitry and the I/O 
bus. All tests must be made by performing an operation 
and verifying that the correct operations have taken 
place. It is possible, however, that something totally 
unexpected may happen in addition to normal opera­
tion of the instruction. To detect a fault such as this 
would require an extensive test for every instruction. 
There is no method known, at present, which would 
produce such a test using only the I/O bus with no 
hardware modifications to the computer. If such a 
method were available, it is likely that the storage re­
quirement and execution time would limit its useful­
ness for a real-time environment. Fortunately, faults 
which occur in the control circuitry are usually quite 
severe and grossly affect the instruction execution. 
Therefore, a thorough exercising of each instruction 
appears to be the best approach to this problem and 
may be relied upon to detect the majority of such 
faults. 

The length of the test can be reduced by studying 
logic diagrams in an attempt to find sections of logic 
used by more than one instruction. In some computers, 
for example, indirect addressing is handled by the 
same microinstruction cycle in every instruction. It 
would not be necessary, therefore, to test indirect 
addressing with each instruction. 

Correct operation of certain instructions may be 
assumed if execution of the test routine is not possible 
without them. For example, it may be assumed that 
the JUMP instruction is operative because the first 
instruction executed after a hardware interrupt is a 
JUMP to the routine which is to handle the interrupt. 

Although the approach used in this case is largely 
intuitive, if a little time is spent familiarizing oneself 
with the computer's logic and timing, the number of 



faults which can escape detection can be greatly re­
duced. 

Logic function and condition logic 

Most Boolean operations may be easily tested by 
exhaustion of their respective truth tables. 

As a general rule, small computers have a ripple­
carry adder. Because the circuitry is simpler, this form 
of adder is easier to check than one using carry-Iook­
ahead. To check an adder, it is necessary to verify 
that each bit position can both generate and sink a 
carry. Both of these tests may be made simultaneously 
for all bits by adding a word of alternating ones and 
zeros to itself (252528+252528) and then adding that 
same word's complement to itself (525258+525258). 

It is also necessary to verify that each bit position can 
propagate a carry. This is accomplished by adding 1 to 
777778. Adding 777778+ 777778 verifies that every bit 
position can simultaneously generate and sink a carry. 
The remainder of the truth table may be verified by 
adding 000008+000008, 777778+000008, and 000008+ 
777778. 

It is desirable to consult the logic drawings in order 
to determine how to test the overflow and conditional 
transfer logic. Although the implementation of this 
logic varies between machines, it is quite straight­
forward and simple to check. 

Core memory 

The core memory is, perhaps, the functional element 
which will fail most frequently. This may be attributed 
to the requirement for high-power circuits operating 
under closer tolerances than the conventional logic 
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Figure 6-Core memory bit slice 
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gates used in the rest of the computer. Many faults 
which occur in a core memory are the type which may 
be present for a long time before being discovered, such 
as a fault which affects only a rarely used part of mem­
ory. The ability to read and write at every address 
does not mean that the memory is free from faults; a 
faulty address decoder may read or write at two loca­
tions simultaneously. 

Small computers commonly use a 2-1/2D arrange­
ment for the memory address decoding.8 This method 
relies on a coincidence of current on an X-axis lead and 
a Y-axis lead to select a core to be written or read. To 
do this the address bits are divided into two fields, 
which independently control the X and Y current 
drivers. In addition, each of these fields is further di­
vided into two subfields. For example, if there are n 
bits in the field which selects the Y lead, then half of 
these bits will select one of 2110/2 current sources; the 
other half will select one of 2110/2 current sinks. Since 
every source is connected to every sink, the independ­
ent selection of one source and one sink selects one of 
the 2110 Y-axis leads. Different sources and sinks are 
used for the read and write operations. 

Figure 6 depicts the addressing scheme for a 16-word 
memory requiring a 4-bit MA. Only a single bit posi­
tion of the memory word is shown. Other bits of the 
same word are selected by replicating the Y-axis 
drivers for each bit position as shown in Figure 7. 

During the write cycle, only the Y-axis drivers cor­
responding to bits which are to be set to 1 will be en­
abled. Because the read and write operations require 
currents in opposite directions, separate drivers are 
required for each of these operations. This means that 
a fault may affect the read operation and not the wri~e 
operation and vice versa. 

The test procedure for checking the address decoder 
is to select one of the four subfields, having length m, 
to be checked first. The contents of each of the 2m 

locations obtained by selecting all combinations of 
these m bits and holding the remaining bits constant 



126 Spring Joint Computer Conference, 1972 

are stored in a buffer area. Each of the 2m locations 
is then set to zero. Into one of the locations is written 
a word of all ones. Each of the remaining locations is 
checked to see that its contents is still zero. The orig­
inallocation is then checked and cleared. This process 
is repeated for each of the 2m locations. Upon comple­
tion of .the test, the contents of the locations are re­
stored and the test is repeated for each of the remain­
ing three subfields. 

To justify this test, assume that one of the input 
leads to a read current source were stuck at O. This 
would mean that at least one bit in the set of test words 
could not be read as a one and would be detected by 
the test. It is also possible that an input to a write 
current source could be stuck at O. Because of a core 
memory's destructive read-out, the corresponding bit, 
or bits, could be read once and then never rewritten 
as a 1. Again, at least one bit of the set of test words 
would be stuck at 0 and the fault would be detected. 

Suppose now that an input to a read current source 
were stuck at 1. This means that one of the 2m ad­
dresses will select two read current sources at the same 
time, dividing the read current. The result will now 
depend upon the tolerances of the memory. The divided 
currents may not be sufficient to cause a core to switch. 
At least one test bit would then appear to be stuck at 
o and the fault would be detected. The divided cur­
rents may, however, each be sufficient to switch a core. 
During its execution, the test will cause a 1 to be 
written by using lead A. Later, when an attempt is 
made to read a 0 by using lead B, lead A will also be 
selected and a 1 will be read. Similarly, an input to a 
write current source may be stuck at 1. If the resulting 
split in the write current is insufficient to switch a core, 
the inability to write into certain test locations will be 
detected as before. If each half of the divided current 
is sufficient to switch a core, the writing of a 1 into some 
location C will also write a 1 into some location D. This 
extra 1 will be detected when location D is checked 
for a O. Because this test is considerably longer than 
the previous tests, it may be desirable to partition the 
test. A very natural partition would be to check each 
group of current sources separately. 

The only way to check individual cores in the mem­
ory is to read and write using every location. Although 
this must be a lengthy test, some time saving can be 
realized if the locations are checked by reading a word 
and writing its complement back into the same loca­
tion. If the complement can be read back, the word is 
good. This method makes use of whatever is already 
in the memory location and, therefore, saves the time 
which would have been required to save the contents 
to the location and initialize the location. This test is 

normally not included in the test program because of 
the time required for its execution. 

SUMMARY 

This procedure has been applied to a DEC PDP-9 
computer with two 8K core memory modules. The test 
routine requires 550 words of core memory and a maxi­
mum of 8 milliseconds per pass. The time needed to 
test the core memory increases with the size of the 
memory itself; but, by segmenting the test so that only 
a portion of the core is checked during each pass, it is 
possible to increase the memory size without increasing 
the amount of time required for a pass. All tests of the 
CPU itself are made each pass, but 12 passes are re­
quired to completely test the memory. The hardware 
monitor requires 58 words of read-only memory and 
solely determines the frequency at which the tests 
are made. This frequency may be adjusted according 
to the work load on the computer. 

This technique would seem to have many applica­
tions on small machines which have previously avoided 
fault detection because of the cost or the need to make 
hardware changes to the computer. 
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INTRODUCTION 

Successful software development requires that the 
product be accepted, that schedules are met, and that 
costs are acceptable. The number of software develop­
ment efforts that do not meet one or more of these 
criteria is large. Conversely, there are many examples 
of successful development. The total number and 
variety of considerations that affect the probability 
of success is so large as to be beyond the scope of any 
individual paper. There is one important element of 
software development that appears to have been 
somewhat overlooked, however, and is the subject of 
this paper. 

This paper presents the thesis that the probability 
of software development success is much increased by: 
(1) a proper separation of responsibility within the 
project organization, combined with; (2) extensive 
formal procedures; the combination of the two pro­
viding a system of checks and balances that gives 
continuous, accurate visibility of project status. 

A general project organization is presented here 
that is felt to be widely applicable, and that achieves 
the required set of checks and balances. The formal 
procedures required to enforce the organizational 
division are not described completely or in detail, but 
examples are given. 

It is felt that viable commercial products will only 
rarely be successfully developed with project organiza­
tions that do not provide some equivalent to the checks 
and balances approach described here. It can be 
argued that superior products may be developed at 
less cost and more quickly by small expert groups 
carrying the project from inception to completion. The 
technical contributions possible from such an approach 
cannot be denied, but the need still exists to place 
these contributions in an environment that assures 
their control. It should be noted that control need not 

129 

be exercised as a function that unduly limits imagina­
tion. The intent of control is to assure that considera­
tions of product function, cost and schedule remain 
clearly visible, and that decisions made which signif­
icantly affect such considerations are made consciously, 
with the effect of such decisions having received due 
consideration. Concerning the time at which control 
should be initiated, it is felt that "control begins when 
the first germ of an idea for a project appears in the 
organization-a discernible effort which will require an 
expenditure of organizational resources (human effort, 
time, money, physical resources) and lead to an organi­
zational objective."l References 2 and 3 contain related 
reading not totally in accord with the above view. 

There are, of course, many problems of software 
production other than those related to project manage­
ment that can prevent the end product from being 
successful, such as: a faulty or unknown product defini­
tion; badly estimated product life; too rapid a develop­
ment speed; major design problems; poor staffing; and 
inappropriate marketing (see also Sections III and 
IV of Reference 4). Good management can in many 
cases, however, assist in minimizing such problems by 
providing early visibility of the product and its prob­
lems, and by providing an environment allowing timely 
remedial action. 

Prior to continuing with the body of this paper, one 
reference is particularly recommended for project 
planners. This reference, by Bemer,5 contains an ex­
tremely comprehensive and useful "Checklist for 
Planning Software System Production." Reference 4, 
also by Bemer, is further recommended reading. 

MAJOR PROBLEMS IN SOFTWARE 
DEVELOPMENT 

This section describes the problem areas that are 
felt to be historically most common. The problems 
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described in this section are felt to be significantly 
reduced by the organization and procedures later 
described. 

In the most general sense, the two major problem 
classes are: 

Those that make the customer unhappy; and 
Those that make the developer unhappy. 

Problems in the above two classes might also be 
classified as follows: 

Unsatisfactory product 
Schedule delays 
Excessive costs 

The above problem classes clearly are interactive, as 
schedule problems lead to cost problems, an unsatis­
factory product leads to remedial action (cost, sched­
ule), etc. Thus the division is to some degree artificial, 
but is useful for descriptive purposes. 

The above three classes of problems will now be 
discussed in more detail. 

Unsatisfactory Product 

The major causes of user dissatisfaction with the 
product are: 

1. Too Many Bugs 
2. Instability 
3. Unsatisfactory Performance 

1. Too Many Bugs 

The reasons for an excessively high number of bugs 
are many, including: (1) over-complex initial design; 
(2) implementation not consistent with initial design; 
(3) inappropriate implementation; and (4) uncontrolled 
evolution. These points are elaborated upon below. 

The design may be so complex that the system in 
fact cannot be debugged. This complexity can be 
introduced in a number of. ways. The initial design 
concept may, for example, unduly require complex 
module interactions, extensive time-dependent char­
acteristics, multiple and non-obvious uses of the same 
information by many parts of the system, etc. 

Complexity can be introduced during modifications 
following initial design if the initial implementors, or 
the next generation of designers and implementors, 
either cannot understand the initial design, cannot 

make it work, or the initial design is simply unsatis­
factory in some way. In such instances an approach 
sometimes followed is to "program around the prob­
lem", leading to further problems in all areas of system 
performance, including possibly the undoing of some 
important initial design concept unknowingly. 

A further cause of program complexity is due to the 
excessively "sophisticated," "elegant," "clever," or 
"efficient" programmer. Most, if not all, . systems 
operating today have sections that either never will 
work quite properly or, if they do, dare not be modified 
to meet new requirements, due to their initial imple­
mentation by a programmer with one of the above 
attributes. 

Poor implementation is a very common source of 
bugs. The cost of finding and repairing problems caused 
by poor implementation is so large as to make it quite 
clear that proper project staffing, detail design reviews, 
and strictly enforced unit test requirements are of 
extreme importance. 

A situation leading to the existence of a continually 
high bug rate sometimes occurs when a product un­
dergoes an evolution process in which new features are 
introduced simultaneously with ongoing maintenance. 
In such instances, synchronization between new features 
and bug fixes becomes a problem. An approach some­
times encountered under these conditions is to create a 
"safe" local environment by minimizing dependencies 
upon other parts of the system, even to the extent of 
creating duplicate or similar local tables, functions, etc. 
The problems in future maintenance and modifications 
are obvious. 

2. Instability 

The term "stability" will be used here to charac­
terize the degree to which a job, once entered into the 
system, will terminate only due to a user error, and 
further, the effect of the user error is minimal (e.g., 
execution terminated, but files created to that time 
are not lost). If a user's program frequently must be 
rerun due to problems not of his own making, or if 
the severity of the problem is not consistent with the 
severity and probability of the error, then the system 
may be said to be "unstable." 

Instability was not a problem in the days prior to 
multi-programming, as only one job was generally lost, 
and a rerun usually was successful. In multi-program­
ming batch systems even extreme instability could be 
tolerated (and was) for a while, as a rerun often worked. 
In time, however, more capable I/O devices such as 
removable disks became available, with the attendant 
need for extensive support software. The major stability 



problem then became one of file creation and retention. 
This problem remains in many systems. 

With the advent of real-time and time-sharing systems, 
stability has become much more important. In such 
systems there are, typically, from 20 to 100 users 
simultaneously somewhere in the processing cycle (in 
core with the CPU, in core, swapped, etc.). Losing the 
execution state, and possibly the files, of this many 
programs, or of critical programs, is extremely serious. 

The most significant factors affecting a system's 
stability are the complexity of design and implemen­
tation, and the degree of attention paid by designers 
and implementors to automatic system recovery. Even 
good automatic recovery techniques cannot overcome 
problems inherent in an over-complex system. 

3. Unsatisfactory Performance 

The performance of a system may be unsatisfactory 
to the users. The performance of most batch systems 
is not so bad that users consider it intolerable, though 
it is still a major concern. The basic algorithms for 
obtaining satisfactory batch throughput are basi­
cally not complex, but as batch systems attempt to 
service an increasingly large community of hardware 
and users, the simplicity possible disappears. Thus, the 
major operating batch systems available vary widely 
in design, and in classes of service performed well. 
Batch systems with performance problems generally 
are troubled with excessive overhead, complexity due 
to the variety of user-types intended to service, dif­
ficulties in core management, and inadequate support 
for large data bases. 

In the time-sharing area there have been notable 
instances where the performance was not what was 
required. A number of reasons exist for performance 
problems in time-sharing systems, for example, the 
basic assumptions were over-ambitious, not well thought 
out, or inadequately scoped (with modeling, for ex­
ample). A more frequently epcountered cause of un­
satisfactory performance in time-sharing systems is the 
attempted retrofitting of a batch system to support 
time-sharing users. 

Schedule delays 

The most frequent cause of a missed schedule is, of 
course, the initial creation of an unrealistic schedule. 
Other reasons, generally related to the first at least 
implicitly, include ill-defined or missing requirements, 
changes in baseline assumptions, the customer inter­
face relation, plus many of the causes of product and 
cost problems as described elsewhere in this section. 

There are frequent instances in which the product 
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was initially ill-defined and underwent a process of 
definition through its development. The conditions 
under which the initial estimates were given often 
change, including such changes in the available re­
sources (money, skill, computer time). Requirements 
to support new hardware previously unenvisioned are 
often introduced. 

The type of customer interface can have a major 
effect upon schedule. The customer interface is defined 
here as that person or persons who define, interpret, 
and control all requirements that come from the 
customer. The customer's relevant technical and 
management experience, maturity, willingness to re­
spond to suggested changes, understanding of problems, 
and readiness to assist in achieving satisfactory me­
chanics of living together, are quite important. In 
particular, it is extremely important that the customer 
not require that all possible "bells and whistles" be 
included in his product. He should be reasonable in 
terms of tradeoffs, where considerable design and 
implementation simplicity can· be gained by providing 
somewhat less function to the user. The customer 
must be convinced that simplified or limited functional 
capabilities will often improve the eventual performance 
and stability, and will increase the ability to add 
future enhancements to the system. 

Excessive costs 

A major software development problem for the 
developer, in addition to user-related problems, IS 

cost. Major causes of cost over-run include: 

1. Schedule Delays 

2. Low Initial Estimates 

3. Staffing Too Rapidly 

4. Staffing With Quantity, Rather Than Quality 

5. Follow-on Costs 

6. Type of Contract 

1. Schedule Delays 

Delayed schedules generally lead to higher cost, 
unless the developer had the foresight to see the 
schedule was unrealistic and staffed according to a 
reasonable schedule. 

2. Low Initial Estimates 

Some excellent techniques for estimating project 
schedules and costs have been presented in the litera-
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ture.6 Persons making schedule and cost estimates 
must previously have been closely involved with 
projects of similar size and complexity. They must 
have accurate cost and progress summaries of the 
previous projects. It is useful to know the original 
estimates for previous projects, and eventual results. 

The value of PERT-type techniques in making 
initial estimates is limited, due to the lack of detail 
concerning the project available at that time. A PERT 
network or the equivalent should be constructed, how­
ever, even if only on a very gross scale, as a means for 
forcing upon the estimators a mildly rigorous frame­
work in which to place their estimates. Of particular 
importance in ~he PERT are, of course, those things 
that frequently lead to schedule problems. Foremost 
among these are a knowledge of: (1) dependencies 
outside the project; (2) the period required for initial 
staffing, defining the organization, and other activities 
required to have the people know what they are sup­
posed to be doing, why, and when; and (3) those major 
activities within the project which may proceed in 
parallel, and which must proceed serially. 

Machine time estimates are almost always under­
estimated, on projects of all sizes, and usually by a 
large factor (two to four). Even when machine time 
estimates are made by reasonable and experienced 
people, they are often made invalid by the eventual 
uncontrolled and wasteful manner in which the com­
puter is used. Even today we find use of "block" or 
"hands-on" time on large, fast machines. Unless 
projects develop techniques for optimal use of com­
puter time, including the support software required 
to remove the need (except in rare cases) for hands-on 
time, problems of cost, geographically separate com­
puter installations, and inability to maintain schedules 
will generally arise. 

Some activities in project development can proceed 
quite nicely in parallel by defining the major interfaces 
early. For example, a compiler can often be developed 
in parallel with an operating system, as its interface 
needs are small. Similarly, applications design and 
coding may often overlap development of the support 
system. 

3. Staffing Too Rapidly 

Staffing a project is an important and complex 
issue. There are never as many good people available 
as a manager would like. A manager is aware that a 
certain general level of manpower will be required to 
do a job, and then the staffing search begins, trying to 
identify people who are available, have relevant ex-

perience and skills, etc. Initial estimates that a project 
will need a certain number of programmers should not 
lead to the addition of "head count" simply to meet 
predictions. In general; projects staff too quickly with 
people anxious to produce code, and not quickly enough 
nor with enough skill with managers and supporting 
staffs (e.g., integration and test activities, described 
later). Programmers are often brought on board in 
order to start doing something before they really know 
what to do. A good generalization is to always have the 
minimum number of programmers possible on a project. 

4. Staffiing With Quantity, Rather Than Quality 

No matter how insensitive, trivial, simple, or straight­
forward a piece of code is to write, it will cost more, 
often much more, if a poor programmer is given the 
job. Sometimes the cost is hidden, perhaps for years, 
but once programs "work" in some sense there is a 
great reluctance to replace them, which tends to ex­
tend the life of some rather poor examples of the pro­
grammer's art. 

In such complex areas as systems or real time soft­
ware, unless there is a very large amount of review 
talent available, people should not be brought onto the 
project unless they are extremely skilled. (It can be 
argued that this statement should be enlarged to in­
clude all types of programming.) 

Relevant experience and resumes of people cannot be 
considered the most important criteria for hiring. Ex­
tensive experience cannot overcome the lack of an 
organized approach, insight, maturity in tradeoffs, 
and a willingness to make very sure that a program 
really works correctly. 

It should not be assumed that key people will be 
available through hiring, or transfer from other parts 
of the company. 

5. Follow-on Costs 

Unrealistic estimates of follow-on costs after the 
first release of a system are often made. Follow-on 
costs may· include maintenance, enhancements due to 
oversights in the initial product (frequently stability 
and performance problems fall into this cateogry), 
user enhancements required to stay competitive, a 
need to support new hardware, etc. The larger a soft­
ware system is the more reluctance there is to replace 
it. Thus the product life may be long, with a fairly 
continuous, and costly, development cycle. 



6. Type of Contract 

The basic types of contracts are cost-plus fee (per­
centage of cost, award, incentive, etc.) and fixed price. 
Virtually any type of contract is satisfactory if the 
contract administrators on both sides are both knowl­
edgeable and reasonable. Cost-plus contracts are felt 
to be superior to fixed price contracts for all cases 
except the (relatively rare) instances in which the 
product, dependencies, etc., actually can be specified 
in great detail. For example, the author has observed 
in some detail a cost-plus contract with highly skilled 
technical and management interfaces, and a fixed price 
contract with a vague contract and inexperienced 
interfaces. The cost-plus contract could have been 
costly, but was not, due to the expertise of the contract 
managers. The fixed price contract in theory limited 
the cost, but in fact, due to extensive requirements 
above the scope of the contract, resulted in contract 
renegotiation, higher cost, schedule problems, ill will, 
and eventual replacement of contract managers on 
both sides. 

There are, of course, instances of cost or product 
problems in cost-plus contracts, if, for example, ex­
pensive and not necessarily talented personnel are 
"dumped" onto the contract for profit and/or con­
venience. A sometimes-encountered problem in fixed 
price contracts is a "buy-in," followed by either mini­
mum possible contract interpretation or change of 
scope. Again, experience and reasonableness on both 
sides is required in order to prevent the contract type 
from perhaps heavily contributing to cost and other 
problems. 

OPTIMAL 'PROJECT ORGANIZATION 

This section describes a general project organiza­
tion that assists in providing a check-and-balance 
relation in a project that will contribute to project 
visibility, control, and other factors important to 
meeting project goals. This organization, and the 
corresponding procedures of which examples are given, 
is felt to have wide applicability, but is not, of course, 
an exact model of any particular project. An organiza­
tion will inevitably be shaped by the job to be done, 
people available, company policies, etc. 

This section discusses the following topics: 

General Project Organization 
Project Managers 
Development Activities 
Integration Activities 
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Figure 1 shows a project organization that it is felt 
is generally applicable for a wide range of development 
projects. Many of the functions shown in this figure 
are not, of course, required precisely as shown in par­
ticular projects, but the major functions implied, or 
their equivalent, are felt to be required in some form 
for projects on the order of five people or more. 

The key element of the figure, and indeed of this 
paper, is the division of responsibility into separate 
functional groups, such as those termed here Develop­
ment, Integration, and Project Test. This division is 
felt to be an absolute necessity. This division must 
occur early enough in the project life so that each 
functional group can adequately prepare. 
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The following sections describe the Development, In­
tegration, and Project Test groups in more detail. The 
general responsibilities of these three groups are: 

Development: Design, write, debug and unit 
test new code. 

Integration: Integrate all code. Be the project 
"bookkeeper.' , 

Project Test: Determine the status of integrated 
code. 

It is critical that people who are developing the prod­
uct not be simultaneously responsible for all the book­
keeping functions, integration of new code, and con­
firmation that the integrated code works. The project 
organization must be such that all groups have strong 
technical people, and receive full support from the 
project manager. Without an appropriate division of 
responsibilities, and a corresponding set of procedures, 
both visibility of true project status and control over 
development are very difficult to achieve. Among the 
typical problems that result are: not knowing what 
code is really in a particular version of the system; and 
a requirement to accept a programmer's statement for 
the status of a module ("90 percent done, only a few 
minor things don't work"). 

Project managers 

The three levels of project management discussed 
here are: 

1. Project Manager 
2. The Project Manager's Manager 
3. First Level of Management Within the Project 

One comment relative to all levels of management 
should be made before going into further details. 
Managers are assigned a responsibility, and must be 
allowed to make decisions within their assigned re­
sponsibility without undue requirements to justify 
their decisions. If a reasonable set of checks and 
balances exists (e.g., Review Boards), and if the 
managers chosen have appropriate experience and 
judgment, then their scope of decision making should 
not be frequently tampered with. Frequently no de­
cision is worse than nearly any timely and moderately 
rational decision. 

1. Project Manager 

The most important single person on a project is 
the project manager. Therefore, choice of this person 

should be made with appropriate care. There are a 
wide variety of attributes that it is desirable to have 
in a project manager, and a set of attributes that if 
they exist in a project manager almost assuredly doom 
the project to failure. 

The project manager must be technically strong 
enough to understand the important technical de­
cisions made by those under him, to ask the rig~t 
questions about those decisions, and to change them 
if needed. In particular, he must be able to cause the 
project to move toward realizable goals, and be able 
to say "no" to impractical ideas, and enforce it. 

The project manager must have both technical and 
managerial maturity. All too often managers are chosen 
on the basis of strong technical skills plus a desire to 
be "promoted." Opposite extremes would be the as­
signment of a weak technical person to a managers role 
because nobody else would put up with the customer 
interface or personnel problems, or because the person 
just happened to be available. 

Another characteristic that must be contained within 
the project manager is a desire to become involved. He 
must manage the project, not simply spend occasional 
time in reviews, believe all that is told him, and dilute 
his activities with marketing for new business or other 
company activities. It is always easier for a manager. 
to assume that since good people are working in a 
certain area, and everyone is working hard, the end 
result will work out all right, and that he need not take 
the time to dig into that area in detail. On reflection, 
it almost always turns out that one or more areas do 
not develop satisfactorily, regardless of the skill of 
those most closely involved. Frequent reviews of de­
sign, implementation, test status, dependency status, 
schedule milestones, etc., by the project manager, are 
required. 

It is not felt to be possible for a project manager to 
be in some sense a "pure" manager, that is, manage 
PERT charts, organization charts, staffing, facilities, 
and so forth, and allow others to make the larger 
technical decisions uninspected. This would rule out 
software project managers whose experience is only 
in other types of work. 

2. The Project Manager' s Manager 

In addition to the project manager being of ap­
propriate technical and supervisory capability, it is 
also critical that his immediate supervisor have relevant 
experience, a set of both common and complementary 
skills, and not be so sure of the project manager that an 
independent check of status and problems is never 



made. Every project manager needs someone review­
ing his major decisions, a person to whom he may 
bring problems and receive real help, and someone to 
just talk to at times in order to remain objective about 
his project. 

3. First Level of Management Within the Project 

A superior project manager can, with appropriate 
organization and procedures, control up to 20-30 
people satisfactorily with a set of managers reporting 
to him that are really "technical task leaders" -strong 
technical people with some supervisory capability, 
each supervising 3-5 people. Above the 20-30 level, 
however, support of full-time supervisory people 
within the project is required. 

Development activities 

Figure 1 shows a number of possible functions to be 
included within development. Many additional or 
different functions exist, of course, for any particular 
project. This is felt to be a reasonable example set, 
however. The particular activities to be described in 
this section are: 

1. Major Development Function 
2. Debugging Tools 
3. Performance Measurement Tools 
4. Dependency Consulting and Problem Diagnosis 

Before beginning a discussion of the above, it should 
be mentioned that this paper does not attempt to 
discuss the merits of such very important development 
considerations as: software specification or implemen­
tation languages; types of debug tools; tradeoffs 
between speed, space, portability, flexibility, cost and 
schedule; the value of formal proofs; etc. The emphasis 
here is on functions that must somewhere be performed, 
not how they are best performed. 

Two characteristics of the development process that 
frequently occur will first be briefly mentioned: the 
effect of design changes during implementation; and 
the occasional need to replace significant design or 
implementation efforts. A great deal of interpretation· 
of the initial high level design takes place during de­
tailed design and implementation. If not carefully 
controlled (via documentation and review) it is possible 
to develop a product substantially different from and/ 
or inferior to that initially intended. 

Occasionally it is realized that a significant mistake 
was made in design or implementation. The tempta-
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tion always exists to "live with it," "fix it up later," 
or "program around it." Generally such approaches 
are a mistake-significant problems must be removed 
when discovered, or at least a plan for their removal 
created and begun. Too often the problems, if put off, 
remain in the system for a long period of time and 
cause far more difficulty than if remedied early. 

1. Major Development Function 

The major development function is, of course, re­
sponsibility for the overall design, detail design, debug, 
checkout, and internal documentation activities re­
quired for product implementation. Worth mentioning 
is the undesirability of fragmenting the responsibility 
for this effort in a manner that results in a manager 
with overall knowledge of the entire development not 
having full control over work for which he is responsible. 

2. Debugging Tools 

The creation of debugging tools is a distinct pro­
gramming task, with substantial requirements to be 
defined, lead time needed for development, etc. In 
general there remains far too much dependence upon 
octal or hexadecimal dumps as the major aid to re­
solving difficult problems. Including appropriate (e.g., 
brief, symbolic) tools in a system initially is generally 
inexpensive; adding them later is quite difficult. 

3. Performance Measurement Tools 

Performance measurement tools must be included 
in development planning. This requirement needs 
planning, lead time, etc. The capture and processing 
of performance information is something that should 
go on very early in a system, but often does not. Ob­
taining early indication of performance problems is 
often critical, however, as their repair can require 
major surgery. 

4. Dependency Consulting and Problem Diagnosis 

Programming projects usually have significant de­
pendencies on areas outside their direct control, for 
example, the hardware employed, support software, 
and communications facilities. Where such dependencies 
exist, it is best to assume that non-trivial problems will 
occur, and place in the project appropriate skills to 
isolate the problems and assist the appropriate support 
group in their removal. Since such problems often arise 
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due to misunderstandings resulting from inadequate 
documentation, or perhaps just a complex dependency, 
the ready availability of consulting assistance within 
the project will be valuable. 

Integration activities 

Put briefly, this group's activities are to provide a 
major portion of the independent control and visibility 
of development activities that is required. The Inte­
gration Group lies or~anizationally between the De­
velopment Group and the Project Test Group. This 
group receives new code from Development; integrates 
the various pieces of new code received from Develop­
ment; performs the bookkeeping tasks on detailed 
status of all changes that have come in; assures proper 
approval levels ; and other similar tasks, prior to passing 
on a new release for testing. 

The control over development resulting from this 
sort of activity is obvious-nothing goes into the 
system unless properly identified and approved, and 
extensive documentation exists should the changes 
need to be altered (or, in extreme cases, removed). The 
visibility provided above an approach which has 
Development personnel alone report on system status 
is a bit less obvious, but critical. Development personnel 
tend to be optimistic about their code, tend to report a 
feature as fully provided even though only part of it 
is done, and to otherwise exhibit human traits. Inte­
grations' job is to be more hard-headed-something 
is done only if the code was turned in, with appropriate 
documentation (e.g., updated internals), and a re­
peatable test sequence (without which the change 
is not accepted). Thus a project manager can know 
exactly what is completed. 

It is becoming more and more common in the industry 
for the integration function to include very strong 
technical people, for such purposes as: (1) providing 
the ability to inspect new code submitted to the system 
for general technical correctness; and (2) identifying 
integration problems well enough to fix some, and if 
not to provide good information to Development 
people. If all the the project technical strength lies 
in other groups, the Integration Group must always 
borrow· technical resources from these other groups, 
which they give up grUdgingly. An intermediate ap­
proach is to assign people from Development to each 
new release, thus providing additional technical muscle 
for integration activities. 

Another important function of the Integration Group 
is to perform some level of initial testing on the product 
in order to assure that the major new functions will 

work together and were integrated properly. Typically 
a small set of regression tests is run by Integration to 
assure that no major regressions have occurred prior 
to approving a new system for more extensive testing. 

In addition to the above principal activities, a num­
ber of other activities may be convenient to include in 
the Integration Group. An item that may come under 
Integration is one that is termed here "scaffolding 
development." In the development of a new project 
it is always required that some subset of the system be 
generated first as an anchor on which the fuller system 
can be developed, that some other system be used as 
a vehicle for creating assemblies, load elements, etc. 
The term "scaffolding" is used to define the set of code 
and procedures that is developed to substitute for 
missing interfaces or missing SUbsystems in order that 
a partial system can run, or that phasing from one 
system to another goes smoothly. 

Enforcement of such standards or requirements 
as linkage and naming conventions and memory utiliza­
tion may also be conveniently performed by Integration. 
Automated tools may help such activities. 

Test activities 

This section describes a series of testing levels, and 
their place in the project organization. A fundamental 
corollary of this section is the now (hopefully) clearly 
established requirement that successful projects must 
include: (1) early creation of test plans, procedures, 
and staff; and (2) one or more groups established for 
testing a product that are organizationally distinct 
from and equal to the Development Group. 

A testing approach that has proved quite successful 
is one in which there are a number of separate and 
distinct test activities, with minimal overlap, each 
fulfilling a needed function. A possible set of testing 
levels, chosen for purpose of example, is the following 
five level set: 

1. Unit Testing by Development programmers. 
These tests show that the new function(s) 
operate in a private environment. Development 
managers must review the unit test plans in 
detail, as a poor job at this level will be very 
costly later. 

2. Integration Tests, including rerunning of some 
of the above unit tests, testing the ability of the 
system to operate without major regression such 
that the next testing phase can concentrate on 
testing new code. 



3. Project Test. This is the major test activity and 
is discussed in more detail below. This group 
runs extensive tests on new systems to confirm 
that new features work. 

4. Regression Test. In addition to testing that new 
features work, one must also ensure that things 
that used to work still do. This may be done 
either within the project (e.g., by Project Test), 
or by an organizationally separate group. The 
regression testing activity differs somewhat from 
Project Test activities in that: (1) the volume of 
testing is larger; (2) the features tested are 
generally more stable than the new features; 
and (3) the regression testing group has more 
lead time, better documentation, etc., than the 
group testing new features, thus need not be 
quite as good "detectives" to determine what 
the new features really are. 

5. Field Test. Regardless of the amount of prior 
test, non-trivial bugs always exist in the final 
release. For this reason a field test should be 
scheduled, in which the new system is mounted 
in one, or a few sites, and watched for a while, 
prior to full release. 

The Project Test Group normally performs the 
following functions: 

1. Test Tool Generation 

2. Test Plan Generation 

3. Test Case Writing 

4. Test Execution 

1. Test Tool Generation 

Test tool generation requires both "hooks" in the 
system, and programs to process and analyze the 
results. To minimize the requirements for support upon 
the Development Group, it is advisable to develop 
test tools that are carefully designed to capture all 
information that is likely to be useful, but impose 
minimum space and complexity requirements upon the 
system. These tools should not be the last functions 
integrated. With early data definition, the required data 
processing programs may be developed in parallel with 
the system. Typical of the test tools that are required 
for development of modern systems are a means to 
easily and repeatedly run large series of programs. For 
example, a common practice is to simulate a large 
number of users in a time-sharing environment, with 
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input coming from precatalogued files rather than 
on-line users, but seen by the system in a very similar 
way. These "prestored" jobs may contain test pro­
grams, a sample of real user programs, or both. Infor­
mation captured from these test tools should record 
such information as is later needed to determine such 
things as response times, if or not the output compares 
on a line-by-line basis to previous runs, and so forth. 

2. Test Plans 

Extensive study of documentation and listings plus 
detailed planning is required to develop a set of test 
plans that may be reasonably executed and analyzed. 
Test plans must include enough detail so test cases are 
not written with dependencies on functions not yet 
integrated. Among the many types of tests that must 
exist are those for testing: functional capabilities; 
stability; performance; fallback (the ability for a sys­
tem to be replaced by an earlier release if it fails); and 
the ability to support various hardware variations, 
including degraded mode operations in which only a 
subset of the hardware is available. 

3. Test Case Generation 

This is a difficult effort to do well if the test programs 
themselves are to: (1) not produce more bugs than 
they find; (2) efficiently and completely implement the 
test specifications; and (3) be self checking to a large 
degree. 

4. Test Execution 

Test execution includes the actual running of the 
tests, creation of files used for later analysis to determine 
if the tests ran properly, documentation of results, 
getting the information back to the Development Group 
and consulting on procedures used, and so forth. With 
automated test tools this effort can be reduced very 
significantly, with only a few people required to test 
features not easily tested automatically. 

Procedures 

The type of procedures required to assist in providing 
project control and visibility may be very large. This 
paper does not attempt to give a detailed set of pro­
cedures. The following list, provided as an example, 
gives information which would be expected to be 
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submitted by all Development programmers when 
their code is ready for Integration. 

System level upon which the changes are based 
System level intended for inclusion of the changes 
Change identification 
Change description 
Listing of the changes 
Card deck (or the equivalent) 
Changed internal documentation 
Changed operational documentation 
Changed external documen tation 
Dependencies upon other changes 
Modules changed 
Copy of the unit test passed to confirm unit 
testing, and instructions for reproducing the test 
results in the integrated system 
Approval signatures 

For an example of support software to aid in imple­
menting procedures of the above type, see the CLEAR 
system description of Reference 7. 

A further example of a procedure usually needed is 
an automated planning aid of some sort. There are a 
number of reasons why a mechanized aid (such as 
PERT) is useful. These include: 

1. A common basis for discussing project status is 
defined. Even if it is not quite everything that 
would be desired, everybody gets used to using 
it, and the shortcomings are overcome. 

2. The mechanical difficulty of experimenting with 
changes in work required, people available, 
slipping dependencies, etc., is much less, as one 
need change merely a few data cards and rerun 
a program to get an initial feel for problems, 
tradeoffs, etc. 

To meet the above objectives, the scheduling aid 
must have a number of attributes, including: (1) the 
output must be prepared by computer, not the local 
art department, as waiting a week to see the latest 
chart makes the whole thing useless; (2) the input 
preparation must be relatively simple; and (3) the 
process must be flexible enough and closely enough 
related to the projects' detailed activities to be a widely 
usable day-to-day planning tool (for example, listings 
should be produced that sort activities by start date, 
end date, person assigned, release version, etc.). 

Staff and general support activities 

There are a variety of activities that must exist 
within either the project or a supporting organization 
that do not always fall neatly into the Development, 
Integration or Project Test Groups. Those discussed 
here are: 

1. Staffing Assistance 
2. Customer Interface and Support 
3. Review Board 
4. Operations Support 
5. Documentation 
6. Status, Cost and Schedule Data Collection, 

Reporting 

1. Staffing Assistance 

In the early days of a project, when many people 
must be interviewed, resumes must be reviewed, and 
so forth, the project manager should not have to (and 
cannot) do all the recruiting for the project. It is also 
felt, however, that this job cannot be delegated com­
pletely to a personnel department. A good personnel 
department can be very valuable by performing such 
activities as obtaining candidate names and performing 
initial screening for quality and relevant experience. 
Technical men on the project must do all detailed 
screening, recruiting and staffing for the project, how­
ever. This is a difficult job to do well, as people range 
from uncommunicative geniuses to imposing charlatans. 
Nevertheless, detailed interviews combined with ex­
tensive checkups of references can assist greatly in 
minimizing the dead wood brought aboard. Realis­
tically, it must be faced that more people must be 
hired than are needed, as some will not work out and 
must be discarded in short order. 

2. Customer Interface and Support 

A major element of the customer interface must, of 
course, be the project manager himself. This is so since 
he alone is responsible for the project, and therefore 
only he (or hjs manager, but hopefully not indepen­
dently) can commit the project. It is often the case, 
however, that there is a need for frequent discussions 
between vadous people within the project and within 
the marketing organization, or other organizations 
working with the project, such that a continuous and 
heavy transmission of information back and forth 
across the project interface must exist. The project 
manager is generally too busy to both perform this 



function and manage the project, so it is wise to set up 
a small group, perhaps one person, reporting to the 
project manager, to provide a continually available 
interface to the customer. This may include such 
customer support functions as assisting in preparation 
of rough external documentation and/ or proposals 
for the customer, looking in advance at conversion 
problems when the system becomes operational, etc. 

A further important role of the customer interface 
may be one of providing appropriate visibility con­
cerning progress and problems. It is fairly easy for a 
project manager and a customer to both be working 
hard and think the other one knows what each is 
doing, but to discover that in fact major differences of 
opinion occur. A good interface can reduce these 
problems. 

3. Review Board 

A review board should be established that includes 
people who are generally not assigned full time to the 
project, but remain cognizant of technical activities 
going on in the project through their continuous par­
ticipation on the board. This board includes senior 
technical people from wherever is appropriate. The 
purpose of this review board is to review major de­
cisions either already made or that must be made before 
going on. This helps assure that all relevant experience 
available is brought to bear. Items reviewed should be 
of both technical and administrative (e.g., cost, sched­
ule) nature. 

4. Operations Support 

Computer operators need someone to call on for help 
occasionally, efficient machine room procedures need 
to be developed that are generally rather different in 
project development from those in a typical production 
shop, etc. 

5. Documentation 

Documentation is always a problem, both where to 
place it organizationally as well as who should do it. 
There is a very wide variety of types of documentation 
to be done, usually far more than is obvious at budget 
time. Among the major types are, of course, the internal 
documentation for the system (usually done in Develop­
ment, with the support from elsewhere). Another ob­
vious type is the external documentation for the user. 
There is also the question of documentation to support 
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people who must run the computer center, documen­
tation for user managers, training documentation, etc. 

One of the major unsolved problems of the computer 
industry is the creation of appropriate documentation, 
at a reasonable cost. It always seems to get done 
eventually, but is always painful to the programming 
staff, and not infrequently to users. 

6. Status, Cost and Schedule Data Collection, Reporting 

Projects sometimes begin with good procedures in 
place for creation of status, cost and schedule collectio n, 
etc., but as time goes on less and less use is made of such 
procedures. A frequent cause is the lack of staff to 
regularly collect and report upon the data collected. 
This can be a substantial job, but if done properly 
provides management with early indications of po­
tential trouble areas. 

SUMMARY 

The proper management of programming projects 
requires means for visibility and control. To know 
what is actually going on in a project, to not have 
critical path activities slip, to head off such difficult-to­
solve problems as memory over-use and slow perfor­
mance, and with all this to meet a tight schedule and 
budget, is a challenge met by few. The primary at­
tributes that must be contained in a project to provide 
good visibility and control are: 

1. Division of responsibility in a manner that gives 
good checks and balances (separate groups for 
Development, Integration and Test). 

2. A large set of procedures, rigidly enforced, that 
supplement the above organization by forcing 
an automatic flow of information. 

3. Managers, supervisors, and task leaders at all 
levels that have good technical judgment, and 
will "dig" to find out the true status of all work. 
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Commercial data processing machines in 
government applications 
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INTRODUCTION 

When a major military weapons system is designed, 
it is often so far ahead of the then current commercial 
technology that special approaches are needed to make 
the system feasible. This has led to the development 
of many special purpose computing systems as com­
ponents of large government procurements. But special 
purpose hardware is often too complex to be built on 
normal schedules; furthermore, the software to go with 
it must be deferred until the special machine is finished. 
The sequential nature of the hardware/software de­
velopment cycle means that any slip in the schedule of 
either element directly affects the total system schedule. 
One obvious way to avoid cost and schedule problems 
due to spec:al purpose computing systems is to sub­
stitute commercially available computng systems for 
them. 

There is a lag of some 3-5 years between the specifi­
cation of a major government application and the 
detailed design of related non-government systems. 
Dur'ng this period, the hardware and software designs 
of the computing industry generally incorporate the 
special characteristics of the government system for 
their standard product line. By the time the govern­
ment system goes into operation, contemporary com­
mercial systems have caught up. Thus, the convergence 
of government and commerc'al needs is leading to 
standard computing systems which meet all but a few 
of the needs of the special military and federal civilian 
applications. In those cases where the commercial system 
is totally responsive to the requirements of the special 
system, it offers sufficient benefits to recommend it in 
preference to special purpose hardware. In other cases 
where the commercial offerings are only partly respon­
sive, there are still significant advantages to the use of 
commercial systems (modified as necessary) to be 
evaluated by the system manager. 
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BENEFITS OF USING COMMERCIAL 
HARDWARE 

Salient benefits 

The benefits of using commercial hardware depend 
on which elements of the system design have the highest 
priority in the mind of the user. For instance, in evalu­
ating commercial data processing alternatives for the 
SAFEGUARD system, the Army l:sted five system 
characteristics in relative order of importance and 
weighted them to emphasize the ranking. Performance, 
including throughput and some aspects of reliability, 
carried 40 percent of the weight. Product Deliverability 
was next in importance, followed closely by Imple­
mentation Risk. Some 10 percent of the weight was 
assigned to Growth Potential and Cost carried a 
nominal 5 percent. Commercial alternatives will score 
very high in the last four characteristics. Will they stand 
up in Performance? Probably, yes. The computing 
performance of general purpose mach'nes has been 
growing by an order of magnitUde every five years. 
There is no sign that the growth will stop. 

The commercial computer approach is strongly 
enhanced by the availability of compatible families. 
This feature of the commercial market was introduced 
in a limited way in 1962. Taking advantage of this, for 
instance, the USAF Command Post Project 473L was 
able to install an IBM 1401 computer very early in the 
system design stage to test out concepts related to disk 
storage and display consoles. Later, as the workload 
on this facility grew, the 1401 was replaced by the 
larger 1410 without substantially altering the system. 
Through the emulation capabilities of the third genera­
tion S/360, some of the original 473L programs could 
still be used after the 1410 reached the limit of its 
utility. Most manufacturers now offer commercial fami­
lies of compatible machines. The same degree of com-
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patibility is seldom offered in the special purpose com­
puter market for simple economic reasons: neither the 
buyer nor the vendor has a cost justification for develop­
ing any features other than those directly applicable to 
the special application. Consequently, there is less 
growth capability in special purpose machines procured 
for military systems than there is in the standard com­
mercial product line of a given manufacturer. 

Referring again to 473L, the use of the 1401 as an 
interim test bed illustrates a common aspect of the 
system development process. In order to make progress 
on the overall system it is important to overlap many 
activities. Programming, as an example, will proceed 
while the hardware is still being built. In 473L it was 
necessary to create a simulator of the Librascope 
L-3055 computer, specially procured for the project. 
The simulator ran on a commercial 709 located in the 
programming facility. By using the simulator, the 
programmers were shielded from delivery delays in 
the L-3055. 

The rigid product test protocols observed by most 
manufacturers further increase the confidence that 
commercial machines will perform according to their 
advertised parameters. The risk, as has occurred on 
special procurements, that a computer will be de­
livered with some of its instruction set still undefined 
and perhaps not included in the circuitry is negligible 
with commerical machines. 

If the performance and reliability of commerc'al 
machines are sufficient to justify their use to the sys­
tems engineers who design the military and federal 
civilian systems, then the software support available 
with the machines should throw the decision well over 
in favor of the commercial product. Sof~ware, which 
includes development aids as well as the deliverable com­
puter programs, has become the most difficult aspect of 
large systems to plan and control. Project management 
is generally unfamiliar with the nature of software and 
lacks the experience to estimate and schedule the pro­
gramming effort accurately; However, since a data 
processing system is a package of hardware and :~dt­
ware, in which the software is the only feature directly 
accessible to the user, the system cannot be completed 
until the software has satisfactorily passed its tests. 
It is specifically in the area of software that commercial 
machines have a marked advantage over special pur­
pose implementations. 

Vendor software, available with the first delivery of 
machines, normally includes a basic operating system 
which controls the hardware function and facilitates 
the preparation and execution of user programs. In 
addition, the vendor supplies a. variety of language 
processors: basic assembly· language for manipulating 

the hardware instruction set, higher level languages 
such as FORTRAN, Algol, COBOL, JOVIAL, and 
PL/1 for application programs, and simulation lan­
guages such GPSS and SIMSCRIPT for building 
models. The higher level languages are easier to use 
than the basic assembly language and speed up the 
development effort. The languages have the added 
benefit that they are easy to learn and can be trans­
f erred from one machine to another with relative ease. 

The advantages of higher level languages are so self­
evident that some have been written to run on special 
purpose processors. But the resources applied by the 
general purpose machine manufacturer to come up 
with a comprehensive efficient high language processor 
are too extensive to be duplicated on each special 
processor. The result is most often a l'mited subset of 
the full language and an inefficient compiler. 

This 1 ast point, when extended to cover additional 
areas of vendor support and product enhancement, 
emphasizes one more significant benefit of commercial 
machines : Commercial systems are usually less expensive 
because they ach"'eve economies of scale inaccessible to 
special products. 

Characteristics of applications of interest 

There are three general classes of government applica­
tions which can be identified according to the stringency 
of their unique requirements: 

Class I-Problems such as inventory manage­
ment, management information systems, finance 
and accounting, etc., which are performed daily 
or less often in an office environment. 

Class II-Problems such as assisting com­
manders in operational situations or controlling 
weapons and space missions. An office environment 
with special security, reliability, and availability 
provisions is required in fixed installations. In­
stallations in aircraft or ships may call for special 
equipment. 

Class III-Problems such as air navigation, 
weapons guidance, or space veh:cle maneuver 
control in an environment in which temperatures 
and other physical parameters can vary widely 
and where the computing element may have to be 
shaped so as to fit into a small space. Reliability 
must be very high and maintenance may be im­
practical once the mission has started. 

Class I problems are normally handled by commercial 
hardware. Class II problems are dominated by the 
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environmental constraints and are normally handled 
by special hardware*. Class II problems, which are 
the primary subject of this paper, present the oppor­
tunity for tradeoffs between special and standard 
hardware. The typical tradeoff to be made is whether 
to place a specially designed machine in an uncontrolled 
field environment or to create a ,spec'ally designed 
controlled environment in which to place a commercial 
machine. The commercial machine approach is most 
appropriate for fixed installations at headquarters 
locations and for transportable facilities in vehicular 
vans and airlift pods. The decision can swing either way 
for ship and submar~ne installations. The airborne 
case will almost always call for special hardware to 
meet space and weight constraints. 

The SAFEG U ARD advanced ballistic missile de­
fense system falls in the second class. So do Air Traffic 
Control and the ground support for the Apollo manned 
space flight system. In each case there is a need for 
large capacity storage, fast computation, versatile 
input/ output devices, communication with other sys­
tems, high availability, and the flexibility to respond 
to changing workload requirements. 

Performance 

No effective measure of computer performance 
has been developed that applies to more than one 
situation; therefore, it is common to describe perform­
ance requirements by the arbitrary value of the in­
struction execution time. The lack of other throughput 
requirements is usually due to the inability of the 
system designers to anticipate the effect on throughput 
of interactions among the programs in the job stream. 
At best, the designers can lay down specifications for 
system throughput based on the real time requirements 
of one critical activity. Most of the complex systems of 
interest to the government involve many related 
activities; e.g., the relations between radar data and 
aircraft tracks and between aircraft tracks and flight 
plans and between aircraft tracks and traffic control 
procedures. The relationships cannot be unravelled so 
that the system design requires all of the computing 
to be done on a single computer configuration t where 
all the related information is available at the same time. 
While it may be useful to categorize machines based 
on a single parameter, selection of a machine for a 
particular application should be based on a more 

* Some Class III problems require so many identical computers 
that economies of scale can be realized. 
t Which may contain multiple OPUs. 

thorough analysis of its capability to handle the 
specifics of the job. The selection of computer hardware 
should be one of the last things done in the design 
phase. Premature selection will force the designers to 
distort the rest of the system to conform to the com­
puter. Problem definition, workload sizing, allowable 
computing overlaps, deferrable computations, absolute 
real-time deadlines, I/O rates, and other job descrip­
tors should be determined first. Then a balanced 
computer configuration can be selected (using a gross 
model for timing and storage evaluation) which will 
do the job. If this policy is followed, the lead time for 
computer delivery will be compressed. 

There are very few performance requirements that 
cannot be handled by off-the-shelf hardware. The per­
formance criteria in which commercial machines exceed 
the capabilities of most special purpose machines in­
clude: 

1. Range of speeds available for a family of central 
processors; 

2. Range of memory capacity for a given processor 
or family of processors; 

3. Number and diversity of input/output devices 
available. 

• card handling equipment 
• printers 
• typewriters and teletypewriter terminals 
• displays and plotters 
• communications adapters 
• tapes 
• disk units 
• drum units 
• on-line sensors and output controllers 
• other computers 

4. number of computer programs available 

• to support the machine operations 
• to support programmers 
• to solve problems 
• to support terminal users 
• to support system analysts 

A characteristic of a commercial product line is the 
way in which the above facilities are coordinated so 
that a large number of possible configurations of the 
system can be used efficiently. In the typical special 
processor whatever support is provided in the way of 
balanced performance or software support is optimized 
around the original problem statement and may be 
somewhat clumsy when used for a variation of the 
problem or for a different problem. 
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The areas in which commercial and special machines 
can be roughly the same include: 

1. Ability to multiprogram (time-share more than 
one program at a time); 

2. Ability to multiprocess (run one problem on 
more than one computer to share the load) ; 

3. Ability to handle real-time inputs; 
4. Ability to connect redundant system elements 

through cross-channel switches; , 
5. Ability to interface with special processors of a 

different type; 
6. Ability to nterface with special input/output 

devices. 

The fact that commercial market requirements have 
grown to include these features makes the standard 
products highly competitive with special machines. 
However. there are performance limitations in many 
commercial machines which can be avoided in special 
machines at the expense of balanced machine operation. 
The areas in which special purpose processors can be 
superior include: 

1. Instantaneous speed of input/output (bits per 
second per channel); 

2. Maximum capacity of I/O channels (bits per 
second for all channels taken together); 

3. Interference between memory cycles and I/O 
cycles; 

4. Ability to do parallel processing (run many 
copies of the same program at once); 

5. Do self-diagnosis and error correction. 

With few exceptions, the special purpose processors 
used in military and federal civilian applications were 
built by the same people who build the commercial 
products. Therefore, there is no technical reason why 
the same capabilities could not be offered by them in 
their standard product line. Their decision not to make 
such products available is an economic decision. 

Software and compatibility 

As mentioned earlier, the computer programs re­
quired to construct and operate a complex system are 
beginning to dominate the project. Not only are the 
costs, as a proportion of project cost, increasing but 
the schedule impact of software development is being 
felt in later operational dates. The larger the program­
ming task is, the more severe the impact is. In order 
to shorten the overall development schedule two steps 

are recommended: 

1. Use existing tested software where applicable. 
2. Build and test programs in parallel with other 

elements of the project. 

These steps are facilitated by the use of commercial 
machjnes because the vendor can supply a library of 
tested support programs. Commercial test machines 
compatible with the proposed operational computer 
can also be obtained. The library of software for com­
mercial machines extends beyond basic operating 
systems, languages, and utilities. Information handling 
systems which assist the user build and maintain files 
as well as query them are offered in versions which stress 
speed of retrieval and versions which provide great 
file handling flexibility at slower speeds. Management 
control support programs can be obtained which 
process project activity network data. Mathematical 
and statistical routines, output display formatters and 
report generators, flowchart programs, and various 
aids to the programmer are also found in vendor 
libraries. * 

The process of programming consists of designing the 
logical set of steps to solve a problem and then coding 
and testing the steps. Both logical design and coding 
are subject to error; the errors, or "bugs" are detected 
by running program segments with test data. As the 
programmer finds and corrects the bugs he then repeats 
the process of design, code and test until his unit of 
programming is correct. Later his unit will be integrated 
with the programs written by others and the group of 
programs will be tested against the system specification. 
Without exception, additional errors will be detected 
at this point. However, it is not clear whether the new 
error is due to a faulty program unit, a faulty test case, 
a machine error, an operator's mistake, or a faulty 
system spec. Therefore, the analysis of the error in­
volves a great deal of trial and error and a lot of ma­
chine time. It is very important that this process be 
carried out on a machine which acts exactly the way the 
final operational system will act if all the errors are to 
be found. Thus, the machine used by the programmers 
for debugging their program units should ideally be 
compatible with the machine in the operational system. 
Programmers need large blocks of uninterrupted 
computer time. Rather than sharing an engineering 
prototype, programmers want their own machine that 
will let them get started on productive work at the 
earliest possible time. 

* Modern libraries include programs from many sources; some are 
available at no charge, others are sold, leased, or licensed. 



Commercial Data Processing Machinoes in Government Applications 145 

Carrying this concept one step further, many pro­
gramming managers are examining methods for in­
creasing programmer productivity bygjving the pro­
grammer better access to a computer and by giving 
him better tools at the computer. The access problem 
is addressed by installing a time-sharing system which 
allows the programmer to do his work at a terminal, 
cutting out the middlemen in the computer facility. * 
The tools question is addressed by providing programs 
to maintain the programmer's library and history files. 
With these tools, the programmer can create test data 
files, program files, and command files so that he can 
invoke a set of commands to execute a set of programs 
against specified test data. He can do this without 
handling any of the input data more than once, saving 
himself a lot of paperwork and a lot of running back 
and forth to the machine room. When the machine 
he is using is compatible with the final operational 
machine, it is a simple matter to transfer the set of 
completed work to the operational system to signify 
that he is done. When the final machine is different, 
there is an extensive requirement for translation, re­
programming, and retesting before the program can 
be accepted for the final system. In other words, the 
compatibility of the support machine with the final 
machine shortens the time and lowers the cost of producing 
a final version of the programming system. 

The benefits of the compatibility concept carryover 
to the operational system in some instances. Several 
government systems have been specified in such a way 
as to have all programming done at a central point. In 
TACFIRE, an Army artillery fire control system, the 
programming was to be done in the U.S. and shipped 
to tactical installations at field locations around the 
world. The programs, written in PL/1, would be 
debugged and tested on a commercial machine in the 
U.S. using a compiler modified so as to create output 
programs in the language of the field machines. Under 
these conditions, it must be assumed that no changes 
of any type were to be made to the programs in the 
field. Such a system is feasible but is more difficult to 
manage than one in which the ability to make a change 
in the field exists. Compatibility between the base 
machine and the field machines would provide that 
option in systems similar to T A CFIRE. 

A considerable advantage of commercial machines 
for the fast startup of a project and for the installation 
of the initial capability lies in the ease of training the 
project staff to use the equipment. The likelihood that 

* For simple debugging, the time-sharing system may look like a 
subset of the operational machine. The use of "virtual machines" 
can eliminate this restriction if required. 

trained personnel can be hired to use commercial 
machines is high and getting hIgher as schools add data 
processing courses to their curricula. The likelihood 
that trained people exist for a special purpose machine 
is nil. Furthermore, the nature of the training for a 
commercial machine is identical to that offered by the 
vendor or any number of independent computer training 
schools. The training program for a special purpose 
processor is almost always unique and may be un­
suitable for teaching institutions. The corollary of the 
training problem is that many people are willing to 
work on a general purpose machine whereas they are 
reluctant to accept employment to work on a unique 
machine. Their reasons are tied to their future career 
plans. Employment history shows that a computer 
engineer or programmer has more opportunities for 
advancement when he is in the main stream of the 
industry that when he is associated with a special 
purpose one-of-a-kind system. 

Hardware and compatibility 

There are several other factors affecting the specifi­
cations of military and federal civilian systems. Some 
are spurious; for instance, it is not unknown for a buyer 
to specify an advanced componentry because it is new­
not because it is essential. This was common during 
the transition from vacuum tubes to transistors. Al­
though such a spec may have been necessary to achieve 
a performance objective, in some situations it simply 
increased the risk of on-time delivery. Other specs are 
more significant because they reduce the system cost 
and reduce the complexity of the system both func­
tionally and operationally. An example is the specifica­
tion of a standard interface for connecting input/ 
output devices to the computer. At the many Air 
Force and NASA ranges, for instance, there was a pro­
liferation of special sensors to track rockets and air­
craft and to process communications from space vehicles 
and from remote tracking stations. Acquired at differ­
ent times for different purposes, the sensors had a 
wide variety of interfaces. Consequently, when it be­
came evident that unified range operations would im­
prove the support provided to all range users, a whole 
new set of "black boxes" had to be acquired to con­
nect the sensors into the common network. In this re­
spect, commercial machines are ahead of the govern­
ment. Standard interfaces that allow off-the-shelf 
equipment of one manufacturer to interface with that 
of another manufacturer are the norm. Vendor speci­
fications of their standard interface in terms of wiring 
diagrams and voltage levels are readily available so 
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that it is reasonably easy to procure peripheral devices 
that meet the standard. This facilitates the use of other 
vendors' devices and permits the attachment of special 
purpose sensor and control devices to the central com­
puter. The result is a capacity for horizontal growth. 

Manufacturers provide for vertical growth by de­
signing a compatible family which includes central 
computers of various speeds. Thus, the IBM 8/360 
line provides for compatible processors (each capable 
of reading the same programs and handling the same 
input/output records) that can handle anywhere from 
5.33 bits per microsecond to 2370.37 bits per micro­
second. While the bits per microsecond do not relate 
directly to performance, they do give a feel for the very 
wide range of capability found in a compatible family. 
Additional vertical growth can be obtained by increasing 
the amount of storage available on the central com­
puter. This contributes to throughput by reducing the 
amount of traffic between the central computer and the 
auxiliary storage devices. Here, too, the range is 
enormous running from a few thousand characters to 
several million characters of storage in the same family. 
An analysis of the combined computational and infor­
mation handling capability of a line such as the 8/360 
shows a ratio of overall performance of 36 X 106 be­
tween the very large 8/360-195 and the very small 
8/360-20. More realistically, there is a range of two 
orders of magnitude in the performance of the Model 
195 versus the Model 65 which would be a typical 
development support machine for the large processor. 

The existence of compatible families of commercial 
machines permits the installation of a small machine 
for which complete software support will be available 
in more or less the same form as the support for a larger 
version of the machine so that the scaffolding developed 
around the small machine is directly transferrable to 
its successor. Thus, maximum use can be made of com­
mercial components early in the schedule without com­
promising the flexibility of the system design. 

Reliability and serviceability 

Under the topic of reliability and serviceability are 
included considerations of availability (is the machine 
ready when requested?), reliability (does the machine 
function correctly?), maintainability (how long does 
it take to service and repair?), and modifiability (how 
easy is it to add a feature to correct a recurrent prob­
lem?). In engineering terms, these characteristics are 
often provided by redundant facilities. In some ma­
chines, the redundancy is built into each box by re­
peating circuits twice or three times. More commonly, 
the system as a whole is redundant with more than 

one processor connected through cross-channel switches 
to multiple copies of the input/output devices. When 
one element fails or deteriorates, it is removed from 
the system for maintenance and the rest of the system 
continues to operate. The level of redundancy is es­
tablished so that the remaining equipment can handle 
the entire application (fail-safe) or some subset of the 
application (fail-soft). In addition, the software is 
designed to permit frequent checkpoints which copy 
the status of the machine so that, if a subsequent error 
occurs, the program can back up to the checkpoint 
and restart with correct data. The time required for 
automatic restart is small compared to the repair time 
of the machine and, in fact, the operator may not even 
notice that an interruption occurred. The ability to do 
these things was developed on special purpose machines 
but is now generally available on all major com­
mercial machines. 

The reliability which is demanded of individual 
units of equipment may exceed the design ljmits of 
commercial hardware. This degree of reliability, how­
ever, may be somewhat unrealistic. Enemy action, 
failure of sensors, or natural catastrophe might cause 
a system failure quite independent of the condition of 
the individual system elements. For instance, suppose 
an air traffic control system were based on data from 
satellite-borne sensors passed to the ground through a 
communications ground station. In principle, one 
ground station would suffice for the system. In practice, 
one ground station is inadequate because it could be 
put out of action by an earthquake, fire, aircraft ac­
cident, broken transmission line, etc. At least two 
ground stations are needed to make the system reliable. 
The additional ground stations could share the system 
workload or could act as backup for the prime station. 
In each station there could be a duplex or multi­
processor computer to increase its availability. Now the 
system as a whole is more likely to work properly than 
if there were only one station regardless of the reliability 
of the individual units in the single ground station. 
Thus, although commercial machines fail to meet the 
initial hardware specs of many special applications, the 
need for these restrictive reliability standards can be 
called into question in those applications where system 
reliability results from good system design. 

Component technology in commercial hardware 
equals or exceeds the performance called for in contem­
porary special hardware. The large volume of the com­
mercial vendors had led to the development of mass 
production techniques for componentry which have a 
high yield at very low cost. The comparable process 
technology for special components would require the 
same initial development expense without the equiva­
lent product base against which to amortize the cost. A 
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related benefit of mass production is that the lifetime in 
the field for a given family of components is quite high. 
This makes it economically feasible for a manufacturer 
to continue to produce spare parts for that component 
family long after new production of the machine is 
terminated. 

The fact that commercial hardware does use pro­
duction quantity components leads to a very high 
degree of standardization with the system. The number 
of different parts used is generally held down to facilitate 
the logistics of resupplying the field maintenance staff. 
A great deal of effort goes into making the system simple 
to maintain: extensive diagnostic aids are provided, 
pluggable replacement assemblies of optimum cost 
(trading off repair versus throwaway) are designed, 
multiple sourcing for parts is planned, training material 
is designed to be explicit yet easy to learn and under­
stand, machines are assembled for easy access to 
components, etc. Commercial machines are built, 
wherever possible, to use standard power sources and 
to place a minimum burden on the user for special 
office conditions or construction. The commercial 
system development cycle includes the preparation 
of training programs for maintenance people as well 
as engineers and programmers. In most cases, a pool of 
experienced maintenance people exists at the time of 
delivery of the first field machine. Similarly, a large 
and adequate stock of spare parts and replacement 
units is placed on the shelf to meet the needs of the users. 
The byproducts of mass production are not obtained 
in special purpose computers. Here, reliability is ob­
tained by more careful parts inspection, by designing 
for larger margins of safety, and by continujng opera­
tion while minor repairs are in progress. The degree of 
reliability achieved approaches that desired as close as 
the buyer's budget permits. The net result is that, in 
area~ of service and reliability, the commercial standard 
is very high and, although not higher than what the 
government buyer wants, it is often a good deal higher 
than what he ends up buying. 

Flexibility 

The use of standards to improve the general purpose 
product could restrict the flexibility of commercial 
systems. Fortunately, this has not occurred. The 
standards normally apply to components and interfaces 
in such a way that system modification is quite easy. 
This can be observed in applications where one aspect 
of the problem must be processed at a much faster rate 
than other aspects. As an example, a communications 
satellite may store data received as it travels around 
the globe and then spew it out all at once when it 

passes over a receiving station near its home base. The 
data must be accepted when the satellite is overhead 
because there will never be another opportunity to 
pick up the message. In this case, commercial machines 
can still be applied as, indeed, they are. A special input 
buffer is required to collect and hold the satellite out­
put; the buffer is a very high speed recorder. Then, at 
computer speed, the buffer transfers the data to the 
computer. In some instances, such as at missile ranges 
where the data stream is to be sampled before it is 
analyzed, the buffer may do a limited amount of data 
screening, editing, and summarizing before transferring 
the stream to the computer. This combination of an 
"intelligent channel" with a computer is a special case 
of the commercial machines' ability to interface with 
special I/O devices. When the input stream exceeds 
the computer capacity for extended periods of time, 
it is necessary to replace the computer with a higher 
speed processor. In practice, this requirement occurs 
with both commercial and special processors; however, 
the replacement is often more practical with com­
mercial machines from compatible families. 

In those problems that call for a parallel processor, 
several options are available. Very few problems are 
so well structured that, at all times, they can be sub­
divided into exactly the same number of identical 
computations. Thus, a machine like the Illiac which 
provides 64 parallel processors may be fully utilized 
only when a 64 part problem is being processed. Most 
problems involve some serial processes in addition to 
the parallel processes. For instance, in a system which 
analyzes seismic data to detect earthquake events, the 
process may start with some housekeeping to set up 
the input record format and allocate some memory 
locations to the results of the analysis. Then, by ap­
plying a transform algorithm to the input data the 
results can be computed and stored in the allocated 
space. The frequency with which the computer is asked 
to compute the transform may be small in the light 
of other jobs to be done in the facility. Therefore, in­
stead of buying a parallel computer, the project man­
ager will consider augmenting a standard commercial 
machine with a low cost Fast Fourier Analyzer box 
that attaches to an input channel of his computer. 
The speed of the FFA is only used for FFA problems; 
the rest of the time it is ignored. 

LIMITATION OF COMMERCIAL HARDWARE 

The advantages listed above are not without limits. 
Several limiting features of commercial machines have 
been mentioned but bear repeating. Others related to 
commercial business practice are also relevant. 
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Environment 

A typical office environment implies a room with air 
conditioning and good janitorial services, plenty of 
enclosed storage space, space for maintenance people, 
etc. Such facilities are often available for military 
systems even when the room is inside a bombproof 
shelter. When the computer is in a properly shielded 
environment, a special effort to "harden" the com­
puter against shock, vibration, fungus, vermin, dirt, 
electromagnetic and nuclear radiation, etc., is redun­
dant. On the other hand, some machines are meant 
to be used on board ships, in jeeps, in aircraft, in re­
mote locations without normal stateside services, etc. 
In these cases, the hardware itself may be designed 
to be protected against the hostile environment. The 
hardening takes the form of specially built components 
which, in general, cost more than those used in com­
mercial products; therefore they are not found in off­
the-shelf equipment except for the machines aimed at 
the process control market (steel mills, paper mills, 
refineries, etc). 

It has been demonstrated many times that com­
mercial hardware can be installed in military vehicles 
so that it can be transported without damage and can 
be operated in the vehicle given an appropriate en­
closure. Transportability requirements are not uni­
form, however, and the degree of transportability 
varies from machine to machine. The most powerful 
machines tend to exceed the floor area of one van. 
Certain general trends have improved the ability of 
the industry to build transportable machines: smaller 
boxes that are easier to place in a vehicle, more liberal 
temperature ranges, etc. These features are evident in 
the reduction of setup time for a commercial machine. 
In the 1950s a week was allowed to assemble a large 
computer and check out the problems that may have 
occurred in the move via padded van from the factory. 
In 1970, a day or two is all that is required with very 
few problems introduced by the transport. When the 
same machine is to be placed in a van-as has been 
done in the Army CS-3 system-some additional pre­
cautions are required. Most of them are mechanical. 
Stiffening of the cabinets and the movable panels in 
the machines may be required to reduce the effects of 
shock and vibration. The whole machine may be 
mounted on shock absorbers to shield it from the en­
vironment. And a short checkout cycle may be added 
to the set-up procedure after the van comes to a stop 
and the machine is turned on. In general, the com­
mercial machine is not operated while the transport is 
moving (except on board ship). 

The input/output devices for the commercial market 

present a more severe problem in transportable sys­
tems. They are primarily mechanical devices with 
sensitive alignment and close tolerances between high 
speed moving parts. They do not stand up as well as 
the electronic computer. It is normal for the project 
manager to substitute militarized I/O devices for the 
commercial products in transportable installations. 
Specially designed disk and tapes have been built for 
this purpose and, by virtue of the standard interface 
concept, can be attached to a variety of computers. A 
transportable system can consist of all off-the-sl:elf 
hardware or a combination of standard processors and 
special peripheral devices. Thus, it is not essential to 
assume that all elements of a military system must be 
hardened. If a commercial machine is the best one for 
the application, it can often be installed in such a way 
as to be protected from the environment. 

When it comes to the third class of applications 
where the environment is so hostile that special hard­
ening is required, the commercial machines are no 
longer feasible. Machines in Class III are usually very 
small both physically and functionally. They are built 
to fit into odd-shaped spaces. They weigh very little. 
Their word sizes and instruction sets are smaller than 
those offered in commercial machines. Their input and 
output devices may bear no resemblance at all to the 
cards, tapes, and disks found in larger information 
handling systems. As an example, the computer in a 
space vehicle may be used only to calculate orbital 
rendezvous parameters or descent speeds and angles. 
Its inputs may be from instruments in the cockpit of 
the capsule; instruments used nowhere else except in 
this particular space mission. Its size may be that of a 
home tape recorder to permit it to fit in the astronaut's 
console. Its memory may be only large enough for a 
single computation; a new computation may require 
reloading of the memory by radio from an earth station. 
The computations it performs may be so well worked 
out in advance that the magnitUdes of all the numbers 
in the computations are known; therefore, there is no 
need for floating point instructions in the repertoire 
of the computer. The programs are probably written 
and optimized in machine language so as to take as 
little memory as possible; therefore, no high level 
language compiler or massive operating system is 
called for. All these features tend to make the general 
purpose capabilities of commercial hardware and soft­
ware unnecessary for the space computer. In fact, the 
bulk represented by the standard features of com­
mercial hardware is undesirable in the space computer. 
On the other hand, it is essential that the space com­
puter work when it is needed. This leads to a high 
degree of redundancy in the design of the system in 
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order to increase the reliability, availability, and fail­
safe characteristics of the system. Since, in the example 
of the space capsule, there is no practical way to main­
tain or repair the computer, it is possible to design the 
computer to be discarded on failure and replaced by a 
spare. Obviously, the priorities for a system of this 
type are quite different from those set for commercial 
computers. These priorities make specialization an 
asset in the third class of application where it is a penalty 
in the other two classes. 

On the other hand, some applications in Class II 
call for the same environment as Class III even though 
they require the functional capabilities of Class II 
machines and programs. Examples are surface and 
undersea naval applications, airborne applications or 
airborne back-up for ground based systems, and long 
duration manned space laboratory missions. Some of 
the applicable specifications might be: 

1. Dimensions - 26" X 48" X 66" for passage 
through watertight hatches 

2. Weight-45# per box for 2-man lift 
3. Temperature and Humidity-operate in shelters 

with interior temperature 60°-90°F, relative 
humidity 15-95 percent, operate for limited 
periods at -65° - + 125°F, non-operating ex­
posure to -80° - + 160°F. 

4. Other-withstand salt, fog, rain, sand and dust, 
sunshine, fungus, high altitude, 5g vibration, 
30g shock, vermin. 

It is not cost effective to design normal commercial 
hardware to withstand these extreme conditions. How­
ever, it is possible to build hardened machines to specs 
that are compatible with commercial machines. This 
will permit the benefits of commercial support in the 
development process to be realized. It may also fa­
cilitate communication between hardened systems and 
normal systems; i.e., a ground based command center 
and its airborne alternate. 

Commercial practice 

The project manager who is convinced that com­
mercial data processing is appropriate for his project 
may find that there are some obstacles to his getting 
what he needs. The practice in the industry is to with­
hold information on advanced developments until the 
machines are fully tested and are ready for public an­
nouncement. Prior to this time, the existence of a 
suitable machine may be unknown to the project 
manager. His best move in these circumstances is to 

make his needs known through an industry briefing. 
Then, by agreeing to protect the proprietary rights 
of the vendors, he can obtain the advanced information 
for use in his decision process. 

There is a tendency for government project managers 
to schedule the system so that they get to install the 
very first machine of a new product line. Although the 
vendor does a very thorough job of factory test, the 
first one or two machines off the production line are 
still liable to have bugs in them. The project manager 
would be better off to downgrade the glamour of the 
first installation and place more weight on the stability 
of the later machines in the production line. 

A commercial machine is suitable for a government 
system when it meets all the requirements of the 
government system. However, the commercial machine 
was designed for a broader market than the single 
government application. It contains many features in 
addition to those needed by the project. There are two 
disadvantages and one advantage to this. The cost of 
the unnecessary features is included in the price of the 
machine. The cost is not restricted to the acquisition 
price of the machine. The added features also take up 
space and use up time in the operational system. This 
disadvantage is offset by the fact that the commercial 
machine is usually much less expensive than the special 
purpose alternative. In some critically timed real-time 
systems, the added features must be removed. This 
problem ties in to the second disadvantage. The more 
features a machine has, the more complex it is and the 
more things that can go wrong with it. The effects of 
complexity are controlled by good system development 
procedures but their impact on operations and main­
tenance cannot be ignored. The advantage of the added 
features found on commercial machines is that the 
programmers can usually find ways to use the features 
to improve the system software. 

There are other features that are generally useful 
in government systems which are seldom found in com­
mercial machines. The average business data processing 
application does not call for them. An example is the 
ability to remove a unit of the computer for service 
without interrupting the computer operation. The 
ability to reconfigure around -a failed unit has been 
provided with some commercial systems but they are 
designed to stop while the unit is removed and then 
restart with some manual intervention to describe 
the new configuration. In systems with enough redun­
dant elements to permit continuous operation there 
is no reason to stop the computer to remove a unit; 
however, special modifications may be needed to 
prevent the computer from automatically stopping 
under these conditions. The modifications essentially 
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place a switch in the hardware that isolates the failed 
unit electronically the same way a switch in the soft­
ware permits the logical rearrangement of boxes. 

When the project manager recognizes the need for 
a modification to the commercial machine there is 
generally no great problem in designing and installing 
the change. However, the industry business practice 
may increase the cost impact of that change. The 
normal maintenance of commercial hardware and 
software has been designed to give maximum service 
at minimum cost. This is achieved by standardizing 
the training and diagnostic aids given the se~vice 
personnel. A corollary of this approach is that the 
serviceman is not well equipped to understand user 
modifications to the hardware or software; therefore, 
his service commitment may be modified or even 
voided by certain types of modifications. The protec­
tion against loss of service is simple; the project manager 
and the service supplier should mutually agree to a 
service agreement which spells out the extent of the 
service commitment and alerts the manager in advance 
of the exposure he has. The reverse of this situation 
may have similar impact. The vendor of commercial 
hardware normally makes engineering changes to the 
machines over a period of years. The purpose of the 
changes is to correct minor problems, facilitate service, 
reduce failure rates, etc. The changes are transparent 
to the user except in cases where the user has modified 
the hardware. The project manager must be prepared 
to trade off the benefits attributed to the engineering 
change against the value of his modification. 

CHARACTERISTICS OF THE DEVELOPMENT 
PROCESS 

The systems included in the second class above are 
dominated by large real-time information handling 
systems-SAGE, Air Traffic Control, SAFEGUARD, 
TACFIRE, Naval Tactical Data System, Marine 
Tactical Data System, Apollo, Orbiting Astronomical 
Observatory, National Military Command System, 
Intelligence Data Handling System, etc. The conse­
quence of size is complexity. There are so many inter­
actions among the elements of a large system that no 
one man has the ability to comprehend and manage 
the total entity. As a consequence, the system is or­
ganized into subsystems and smaller components to 
limit the span of control of each manager to a scope 
that he can handle. The step by step delineation of 
system components changes the focus of attention from 
the system itself to the parts of the system. As a result, 
the structural interactions which define the system 
may not get enough attention to ensure their integrity. 

Project control 

The concept of "change" is basic to system develop­
ment. It is unrealistic for a system manager to assume 
that the objectives established at the outset of a project 
will be unaffected by changes in the environment or in 
the detailed plans fo~' implementing a given function. 
Rather than be crippled by an inflexible plan, the 
manager establishes procedures which permit the 
formal modification of his baseline specification by 
changes which are agreed to by all affected parties. 
Such a set of procedures protects the system against 
arbitrary changes but permits necessary changes. In 
order to be effective, the change control process must 
be able to determine the interactions of each proposed 
change with the rest of the system. 

The government calls the control procedure "con­
figuration management" and provides vendors with 
guidelines for describing the work breakdown and 
keeping track of the base specification. For a large 
system, it takes about ten years to reach the opera­
tional phase of the cycle. Lots of things change during 
that period which can upset earlier commitments. 
Brigadier General W. R. Reed, U.S. Army, suggested 
how serious the problem can be when, after eight years 
of a study and design effort, it was realized that changes 
had occurred in computer technology that had a pro­
found impact on the environment being studied. In 
fact, he estimated that computers improved by a factor 
of ten every 3.8* years. Such an order of magnitude 
improvement required a new definition of the environ­
ment in which the computers were to be used. Gen. 
Reed was talking about the Army tactical fire control 
system, TACFIRE, which in eight years had been 
obsoleted twice before it ever reached the acquisition 
stage until 1968 by which time its specs were again 
being overtaken by new technology. The guideline 
implied by this situation is that computer specs should 
not be frozen early in the system definitjon stage since 
they will probably have to be redone later. 

Postponing the actual computer decision does not 
impede the progress of the system. The data processing 
subsystem can be described in terms of the functional 
and performance characteristics desired. These char­
acteristics can then be incorporated into a model of 
the subsystem which can be exercised to evaluate the 
design concept and predict the performance of the 
actual hardware when it is selected according to the 

* As compared to my estimate of 5 years. The rate of computer 
improvements is hard to determine but remarks by Lowell D. 
Amdahl, president of COMPATA, Inc., at the June 1970 meeting 
of the IEEE computer group indicated that Gen. Reed's figures 
have not changed substantially since 1962. 
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approved design. The model is a computer program 
which can be run on a standard commercial machine. 
(This technique, used with great success in the Apollo 
program, has added value when the computer used to 
exercise the model is compatible with the computer 
ultimately procured for the system. When this is the 
case, parts of the model may be reusable in the ultimate 
system.) 

The model is a design aid and may be thrown away 
after the total system goes into operation. Preferably 
it is retained as the basis for continuing improvement of 
the operational systems. Nevertheless, it is never more 
than a part of the scaffolding required to support the 
system builders. Other parts of the scaffolding for a 
data processing subsystem are test programs and data 
generators; input/output simulators; computer services 
for running engineering problems and debugging pro­
grams; compilers, sorts, and other programs to prepare 
system programs for execution; controlled libraries 
to separate work in process from released work; project 
control administration and analysis (as in PERT); 
and many other activities both technical and mana­
gerial. The optimum environment-from the standpoint 
of pro}ect control, training, cost, and testing-is one in 
which the same computer family is used for all functions 
of control, support, and ultimate operations. The advan­
tage of sticking with one computer family throughout 
the life of the project is that predictable results can be 
achieved on schedule without the distractions posed 
by a new, incompatible machine. 

System development guidelines 

Various guidelines are generally accepted as construc­
tive when dealing with large systems. One such guide­
line attempts to strengthen the system structure with­
out tying the hands of the component developers. It 
calls for the design to be done from the top down. That 
means that the structure of each level of the system is 
designed before the details of the next lower level are 
developed. Top down design is an effective device for 
identifying and controlling the interfaces within the 
system. In addition, this approach minimizes the con­
straints on the component designers because it provides 
them with a set of functional and performance objec­
tives for their area of responsibility without telling 
them how to build their specific "black box". Since 
each element of the system is simply a "black box" to 
the level above it, a different black box with the same 
external characteristics can be substituted for the 
original element without making any other changes 
to the system. This is one reason why it is feasible to 
use a simulated environment during the development 

of a system; simulated black boxes are used until the 
real thing is available. Such design flexibility is es­
sential during the design stages of the system specifi­
cations. 

Phased implementation 

Aware of the need for adapting to changes in the 
system design, the system requirements, and the sys­
tem environment, experienced system managers lay 
out a phasing plan which will reach the final system 
in useful steps. They start with an initial operating 
capability (IOC) to get a minimal capability for meet­
ing operational requirements and to provide an en­
vironment in which to test out the design concepts for 
the operational system. Only by installing an IOC can 
the designers evaluate their ideas against realistic 
man-machine tests and modify the final system to 
overcome the weaknesses observed in the lOCo The 
existence of the IOC often leads to more pervasive 
changes to the system design as well. Considering the 
long lead time for most large systems, the original re­
quirements statement is often out of date when the 
IOC is installed. Top management does not realize this 
until they try to use the lOCo Then they observe that 
some of the things they asked for are not appropriate 
to the problems they face today. In addition, for the 
first time they have an opportunity to observe how the 
data processing system can contribute to their decision 
making functions. This leads them over a period of 
time to restate the functions assigned to the computer 
so as to take advantage of its speed and flexibility. In­
variably, their new definitions of the computer work­
load place more work on the machine and less on the 
user. Therefore, it is normal for the final operational 
system to represent an upward growth from the lOCo 

Recognizing that the IOC is a test vehicle, not the 
ultimate system, it should be installed at the least 
expense but in a form that is easily modified. The 
best way to minimize the cost of the IOC is to acquire 
a commercial computer. In this situation, the original 
design and development costs have been borne by the 
vendor and are distributed equitably among all the 
users of that computer. A special purpose machine in 
the IOC passes all the design and development \costs 
as well as the manufacturing cost along to the single 
buyer. 

The decision to select off-the-shelf hardware for a 
government system affects the balance of the system 
plan. The timing of the decision to use commercial 
data processing equipment should be made in the 
system definition phase of the development cycle. It 
should occur after the overall system design and all 
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of the subsystem functions have been defined and 
before the subsystem component specifications are 
complete. Having decided to use commercial tech­
nology, the actual selection of a machine should be 
deferred until the start of the acquisition phase to 
take advantage of the latest available technology. As 
stated earlier, the system specifications can be written 
around function and performance objectives rather 
that detailed characteristics of the data processor so 
that the delayed procurement does not slow up the 
design process. By selecting a machine that is part of 
a compatible family of computers, the manager can 
allow for future growth requirements. To achieve the 
benefits stated earlier, the manager must verify that 
the compatible family includes basic software packages, 
that the maximum capacity machine in the family is 
large enough to permit substantial vertical growth, and 
that the family has a published standard interface. 

SUMMARY AND CONCLUSION 

Most of the performance and reliability specificat~ons 
for military and federal civilian applications can be 
handled by one or more machines available off-the­
shelf. With minor modifications to their functional 
capability, addition of special I/O boxes, and installa­
tion in suitable enclosures, the commercial machines 
can generally fit all the requirements of ground-based 
application areas. In fact, because of the family char­
acteristics of many commercial machines, they out­
perform the typical special purpose machine with 
respect to growth capability and cost effectiveness. 
The delivery schedules for commercial machines are 
sUbstantially more reliable than those for specially 
engineered equipment. Although the first machine 
delivery off the production line in commercial practice 
may vary from schedule by several months, subsequent 
deliveries are sufficiently certain to permit vendors to 
accept penalty clauses for late delivery as a normal 
business practice. By comparison, special machines 
have been as much as three years late with delays of 
one year from the projected schedule occurring with 
some frequency. The reason for the delays is seldom 
poor workmanship on the part of the builder. Most 
of the time it is due to the fact that changes to the 
machine specs occur during the machine development 
cycle which cause rework and rescheduling. The com­
mercial machines have been fully specified before they 
are announced and before delivery commitments are 
accepted; therefore, the specs are not subject to change 
in the same way. The price of commercial machines is 
more stable than the price of the typical cost-plus 

special machine; again, because of the different impact 
of product changes. More important to the integrity of 
the application, commercial machines have already 
passed stringent product tests before they are an­
nounced for sale. The project manager can have very 
high confidence that a machine that meets his require­
ments on paper will perform properly in fact. He can­
not have the same level of confidence in a special pur­
pose machine since he must commit himself to its 
design specs without any assurance that the machine 
so specified can be built and, if buildable, will perform 
exactly as planned. His ability to predict these things 
at procurement time simply falls far short of his ability 
to predict-and measure-the same things on off-the­
shelf systems. At the same time, he is able to compare 
his requirements to the offerings of several competitive 
vendors in the commercial market in order to select 
the least expensive system for his project. 

Risk reduction is a key advantage in the eyes of the 
project manager. In addition, the advantages in the 
development process are significant. The fact that a 
test cell can be established for the engineers and a 
separate support machine can be set up for the software 
team contributes to shortening the system schedule. 
The testing itself becomes less risky. Because the com­
puter and its vendor software have been extensively 
tested before shipment, the application programmers 
can simplify their test detective work by assuming 
that the commercial data processing subsystem are 
error-free; therefore, errors must lie in the application 
programs or test cases. The assumption will not always 
be valid but the order it imposes on the error analysis 
procedure will speed up the process. In particular, the 
assumption that the various programs in the system 
have been fully debugged directs the attention of the 
test team to the interactions among the components 
where it belongs and away from the internal workings 
of each program unit. 

Since systems are built and used by people, a major 
effort in any system development involves the training 
of the development team and the operational and 
maintenance teams. The earlier the training can start 
the better as long as the material taught is truly repre­
sentative of the final operational system. When using 
commercial machines, the knowledge that the machine 
and its software are well defined permits training in 
this area to begin immediately after the procurement 
decision. Effective training can be procured from a 
variety of sources without the need for structuring a 
permanent educational office in the project. More­
over, the computer time needed for the trainees can 
be obtained on the vendor's machine (which, by 
definition, will be compatible with the project machine) 



Commercial Data Processing Machines in Government Applications 153 

without interfering with the test activities on the 
project machines. 

The project manager concerned with meeting a set 
of operational objectives at minimum cost on a firm 
schedule must minimize the risk associated with each 
element of his system. By specifying commercial data 
processing subsystems he can satisfy his functional and 
performance needs in the large class of command and 
control applications as he has traditionally done in 

administrative applications. He will accomplish this 
with less cost, equal or higher performance in both 
the development cycle and in the operational installa­
tions, simpler logistics, and with much less risk of 
slippage or overrun. A general guideline to follow, 
contrary to past practice, would be that commercial 
data processing should be used in all cases except those 
in lvhich there is a specific obstacle to prevent them from 
doing the job. 
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INTRODUCTION 

Early in the development cycle of a real-time software 
system, the designer must select one or more program­
ming languages to be used in writing the system. 
As shown in Figure 1, there is available today a con­
tinuum of programming languages ranging from 
"high-level" languages like PL/I to "low-level" 
traditional assembly languages. 

At the present time, high-level languages are widely 
used in conventional scientific and commerical software 
production, while low-level languages are widely used 
in the development of real-time systems. The wide 
acceptance of high-level languages in conventional 
applications may be attributed to favorable cost­
performance tradeoff. Given an application whose 
data and program structures can in a reasonable 
straightforward manner be represented in a high-level 
language, use of the high-level language will result 
in conservation of human resources at the expense of 
machine resources. Real-time systems represent a class 
of applications where machine performance becomes a 
critical resource. In this case, factors other than fiscal 
cost of the machine resource become dominant. As a 
consequence, the program and data structure of a real­
time system must be hardware motivated and any pro­
gramming language used to implement such systems 
must allow the programmer to fully exploit the charac­
teristics of the hardware. Since the design of program 
and data structure is hardware-motivated, artificial soft­
ware restrictions, in the form of language limitations, 
are unacceptable. Such considerations have given rise to 
a new type of programming language, called "systems 
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implementation language." The systems implementa­
tion language in effect attempts to represent a range on 
the continuum of programming languages. It permits 
the programmer to readily access and exploit hardware 
features, but allows him to perform the bulk of his cod­
ing by utilizing a less cumbersome higher level language. 
There are several attempts to analyze programming 
languages described in the literature.1,2,3 In the sections 
which follow, an investigation is described in which re­
presentative programs from a phased-array radar real­
time software system are coded in selected programming 
languages. Performance measures are described, results 
tabulated, and conclusions are drawn on the basis of 
these results. This investigation was carried out under 
the sponsorship of the SAFEGUARD System Office 
of the U.S. Army by Brown University,4 the System 
Development Corporation,5 University of Michigan, 6 

and the Westinghouse Corporation.7 

MODUS OPERANDI 

Three exis ting programs developed to con trol the 
phased array radar used in the SAFEGUARD Anti­
Ballistic lVIissile System test program on K wajalein 
Atoll were selected as typical examples of real-time 
software. A functional description including flow charts 
and data sets was prepared for each of these programs 
based upon the actual assembly language code for the 
equivalent function produced for the SAFEGUARD 
data processor. From the supplied functional descrip­
tions, the study participants constructed programs in 
various languages and ran standard sets of test data 
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Figure I-Continuum of programming languages 

for performance measurements. Five languages; PL/1, 
FORTRAN-IV-H, JOVIAL, Brown University's Lan­
guage for System Development (LSD), and IBM 360 
basic assembly language were compared in performance 
runs on IBM 360-67 hardware. FORTRAN-V and 
SLEUTH assembly language were compared on the 
UNIVAC-1108. Of the languages compared, PL/I, 
FORTRAN-IV, and V are selected as representative 
high-level languages, JOVIAL as a precursor of systems 
implementation languages, LSD as systems imple­
mentation language currently being developed, and 
IBM 360 basic assembly language as a baseline for 
performance measurement. 

ALGORITHM DESCRIPTIONS 

GETTASK 

The first· algorithm modelled, G ETT ASK, is a task 
dispatcher for a single task list multi-processor. In the 
system studies, tasks are related in PERT-like networks 
such as the one shown in Figure 2. 

In such a network, the completion of Task #1 allows 
the simultaneous execution (if 3 processors are avail­
able) of Tasks 2, 3, and 4. In general, a given task may 
have any number of predecessor tasks which must be 
completed prior to its running, and a task may have an 
arbitrary number of successors. In the case where more 
than one task is eligible to be run at the same time, a 
priority scheme is used to assign a task to a processor. 

The implementation of such a precedence network is 
achieved by use of absolute enablement bits (AEBs) 
and conditional enablement bits (CEBs). Associated 
with each task is a CEB word, an AEB, and a successor 
list. Each element in a successor list contains a pointer 
to another task's CEB word and a mask to be logically 
ORed with the CEB word. In the example above, the 
successor list for Task #1 would contain pointers to 
Tasks #2, #3, and #4. Each CEB in a CEB word corre­
sponds to a unique precedence condition. For example, 
the CEB word for Task #5 in the above network would 

have one bit to be set upon completion of Task #2 and 
another upon completion of Task #3. Each time the 
logical OR is performed, a check is made to see if all 
CEBs are set to 1, and if so, the AEB for the corre­
sponding task is set to 1, indicating that the task is 
ready for dispatching. The system is general enough 
to allow enablement of tasks as a funct.ion of time or 
system conditions by allowing certain dedicated bits 
to be set only by the operating system. 

EXLIGEN 

The second algorithm modelled, EXLIGEN, is a 
portion of a radar control program execution list 
generator which converts requests for radar trans­
missions, according to time and type, into a fast access 
execution list format for later processing. Scheduling of 
transmissions is done on a cyclic basis: a request made 
in cycle n is handled by the scheduler in cycle n + 1 and 
actually transmitted in cycle n+2. A master "menu" of 
allowable transmissions is available to several subsys­
tems within the radar control program, and it is possible 
that these subsystems can make conflicting transmission 
requests. The list generation algorithm is carried out 
in two passes: in pass 1, a scan is made of all requests 
in order of increasing time, and requests are consoli­
dated according to request type; and in pass 2, a list 
is constructed and ordered by priority of request type 
with certain requests of the same type consolidated into 
single list entries. 

UPDATE 

The third algorithm modelled, UPDATE, is a portion 
of a Kalman filter algorithm used to filter radar return 
data. On the basis of signal-to-noise ratio in the radar 
returns, weights are calculated to be applied to the 
current radar observations, and using these weights, a 

Figure 2-Task precedence lattice 



state vector for an object in track is updated. The 
algorithm is completely described by recursively applied 
equations, which are amenable to solution in any 
FORTRAN-like language. 

SUMMARY OF RESULTS 

The results of the individual comparative studies 
submitted by the four participants are shown below. The 
four performance cirteria chosen were, number of 
source statements, number of object instructions, 
number of storage words required to contain the 
programs and data, and program running times. 
Comparative number of source statements reflect 
ease of expression in the two languages, i.e., a program 
that requires more source statements in one language 
than another is less naturally expressed in this lan­
guage. Comparative numbers of object instructions 
are a partial measure of translator efficiency but do not 
reveal the impact of run-time routines called by the 
translator. Comparative object code storage require­
ments of language translators reflecting storage effi­
ciency represents usage of a critical machine resource in 
most real-time applications. Specific comments on these 
criteria are included in the discussion of each study 
results. 

The University of Michigan 

The IVlichigan study was carried out on an IBM 
360jl\lOD67-2 computer with 1.51\1 bytes of storage 
and compared FORTRAN, PLjI, and IBlVI 360 basic 
assembly language. In addition to coding the three 
algorithms with a "strict" interpretation of the original 
data structure, Michigan investigators carried out a 
redesign of the data structures used in GETTASK and 
EXLIGEN. The revised implementations, using re­
designed data structures, were functionally equivalent 
to the original descriptions but exhibit enhanced 
translator performance. 

Results, as presented in Table I, show a marked 
superiority of assembly language programs on the 
IBM 360. On the average for all cases tested, FOR­
TRAN programs ran 2.7 times as long, and PLjI 
programs 7.4 times as long, as the corresponding 
assembly language programs. Results similar to this 
were noted in a benchmark study 8 which compared 
assembly language and FORTRAN on several large 
current systems. While the PLjI language offers a 
great deal of generality in the range of problems and 
data structures it can handle, it is at the expense of 
performance. Because of the wide range of the language, 
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TABLE I-University of Michigan Comparative Performance 

GETTASK 
(Strict Data Structure) 

Number of Source 
Statements 

Number of Object 
(nstructions (words) 

Storage size (Bytes) 
CPU Run Time 

(milliseconds) 

GETTASK (Redesigned 
Data Structure) 

Number of Source 
Statements 

Number of Object 
Instructions 

Storage Size 
CPU Run Time 

EXLIGEN 
(Strict Data Structure) 

Number of Source 
Statements 

N umber of Object 
Instructions 

Storage Size 
CPU Run Time 

EXLIGEN (Redesigned 
Data Structure) 

Number of Source 
Statements 

Number of Object 
Instructions 

Storage Size 
CPU Run Time 

UPDATE 
(Strict Data Structure) 

Number of Source 
Statements 

Number of Object 
Instructions 

Storage Size 
CPU Run Time 

Data for FORTRAN IV-H and PL/1 
Versus Assembly Language on 

IBM 360 MOD 67-2 

Assembly FORTRAN- PL/I 
Language IV -H F-5 

79 

75 

183 
0.70 

67 

65 

83 
0.49 

259 

228 

305 
1.83 

228 

200 

276 
1.42 

88 

89 

91 
0.74 

50 

251 

314 
2.84 

39 

170 

244 
1.78 

122 

477 

655 
4.98 

126 

405 

557 
2.86 

27 

134 

194 
1.39 

48 

327 

444 
6.74 

48 

292 

413 
3.14 

133 

1100 

1205 
19.20 

130 

783 

1074 
7.03 

28 

351 

447 
2.32 
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TABLE II-System Development Corporation Comparative Performance Data for JOVIAL vs Assembly Language on 
IBM 360 MOD 67 and Comparative Performance of JOVIAL on UNIVAC 1108 and CDC 3800 and IBM 360 MOD 67 

JOVIAL 

Assembly Language 
IBM 360 IBM 360 UNIVAC 1108 CDC 3800 

GETTASK (Strict Data Structure) 

Number of Source Statements 
Number of Ob,:ect Instructions 
Storage Size (32 bit words) 
CPU Run Time (ms) 

EXLIGEN (Strict Data Structure) 

Number of Source Statements 
N umber of Object Instructions 
Storage Size 
CPU Run Time 

UPDATE (Strict Data Structure) 

N umber of Source Statements 
Number of Object Instructions 
Storage Size 
CPU Run Time 

* Includes 17 direct statements 
** Includes 5 direct statements 

*** 36 bit words 
**** 48 bit words 

79 
75 

183 
0.70 

259 
228 
305 

1.83 

88 
89 
91 
0.74 

producing an optimizing compiler is difficult, and the 
language has not had a long enough history to reach the 
state of development of compilers for other languages. 
One of the big disadvantages of FORTRAN and even 
PL/I is that the languages do not have syntactic forms 
which correspond directly to powerful hardware 
capabilities, i.e., the hardware is too highly masked 
by the use of these languages. For FORTRAN, the 
narrow range of syntactic forms appears to be the 
biggest weakness. On the whole, for the problems 
studied, FORTRAN appeared to produce reasonably 
efficient code for the statements allowed in the language, 
but the range of available statements was clearly 
restrictive to the programmer. The best performance 
of FORTRAN and PL/I was on the algebraic UPDATE 
program, which reflects that UPDATE was the most 
naturally expressed (in these languages) of the three 
problems. 

The improvements in performance obtained by re­
design of the data structures are interesting to note. 
For all languages, data structure redesign yielded per­
formance enhancement, but the improvements obtained 
were substantially greater for FORTRAN and PL/I. 
This simply illustrates the fact that performance III 

97* 
198 
399 

2.02 

233 
647 

1146 
4.47 

41 
133 
171 

1.79 

77** 
119 
159*** 

3.4 

232 
449 
566 

2.0 

41 
96 
40 
0.78 

73** 
158 
154**** 

2.1 

228 
454 
566 

2.72 

41 
102 
40 

1.52 

high-level languages suffers as program and data 
organizations become more and more removed from 
basic structures in the languages. Since program and 
data organization in real-time systems are often dictated 
by hardware organization and data formats, applica­
bility of high-level languages may be relatively low. 

SDC 

The SDC Study was performed principally on an 
IBM 360/lVIOD67 and additionally on the UNIVAC 
1108 and CDC 3800 using the JOVIAL language. The 
goals of this study were to exhibit performance for 
another language on IBM 360 equipment and to ex­
plore the ease of transferability of software between 
dissimilar machines. The JOVIAL language exhibits a 
great deal of flexibility in definitional capabilities for 
data structures. It represents a substantial improve­
ment over FORTRAN in this respect, but is not 
quite as wide ranging as PL/I. The JOVIAL language 
also allows a programmer to insert assembly language 
instructions into a program in order to utilize the hard­
ware features he may desire. JOVIAL does not have (in 



Programming Language Efficiency 159 

TABLE III-Brown University 

Comparative Performance Data for LSD vs FORTRAN IV, PLII and Assembly Language on IBM 360 MOD 67-1 

LSD 

Assembly Language FORTRAN IV PLjI I II 

GETTASK (Strict Data Structure) 

N umber of Source Statements 79 
Number of Instructions 75 
Storage Size (Bytes) 183 
CPU Run Time (ms) 0.70 

EXLIGEN (Strict Data Structure) 

Number of Source Statements 259 
N umber of Instructions 228 
Storage Size 305 
CPU Run Time 1.83 

UPDATE 

Number of Source Statements 88 
N umber of Instructions 89 
Storage Size 91 
CPU Run Time 0.74 

the IBlYI 360 version) optimization features which are 
as extensive as those of FORTRAN-IV-H, but pro­
duces "reasonable" code, certainly much better than 
that of PL/I. Performance of IBM 360 JOVIAL is 
given in Table II. The numbers shown may be meaning­
fully compared with the University of Michigan num­
bers for the strict data structures. As one might expect, 
JOVIAL performed better than FORTRAN-IV-H, 
much better than PL/I, and worse than IBM 360 
basic assembly language in the GETTASK and 
EXLIGEN problems. In the UPDATE problem, 
however, the optimizing features of FORTRAN-IV-H 
enabled it to outperform JOVIAL. 

The algorithms were executed on the UNIVAC 
1108 and CDC 3800 by simply changing the data 
definition statements to account for different word 
sizes. Additionally, driver programs had to be altered 
because of differences in system input-output and timer 
routines. The significant fact is that with the exception 
of "direct" assembly language statements in GET­
TASK, no executable statements in the programs re­
quired change. The framework for carrying out such a 
transfer to a different machine is relatively easily used, 
as illustrated by the fact that the CDC 3800 conversion 
was done as a minimal effort by a programmer un­
familiar with the original IBM 360 JOVIAL version. 

P-5 

50 48 50 
251 327 159 
311 444 199 

2.84 6.74 2.2 

122 133 126 
477 1100 440 
655 1205 677 

4.98 19.2 

27 28 31 29 
134 351 159 151 
194 447 133 120 

1.39 2.32 0.78 0.78 

Brown University 

The LSD language is being developed by Brown 
University as a systems programming language for the 
IB1VI 360. LSD is syntactically similar to PL/I, but 
not nearly as broad in scope. I t is specifically tied to the 
organization of the IBlYI 360 hardware, for example, the 
16 general purpose registers of the IBM 360 can be 
directly referenced and manipulated in LSD statements. 
The design philosophy of LSD can be summarized by 
saying that it attempts to make the hardware readily 
accessible to the programmer while retaining the ease 
of usage of a high-level language. In order to produce 
optimal code, the programmer must be thoroughly 
familiar with IBM 360hardware, as only the simplest 
forms of optimization are performed by the compiler. 

The Brown University investigators used University 
of Michigan implementations of the three programs as a 
starting point. PL/I statements were then translit­
erated into LSD statements by means of an automatic 
transliteration program. Results for compilation of the 
resultant LSD source code are shown in Table III under 
the column labeled LSD-I. The data generated for 
EXLIGEN by LSD could not be verified and should be 
regarded as ten tatine. Next, the investigators carried 
out an optimization of the LSD code at the source 
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TABLE IV-Westinghouse 

Comparative Performance Data for FORTRAN V and SLEUTH 
(Assembly Language) on UNIVAC 1108 

GETTASK 

Number of Source Statements 
N umber of Object Instructions 
Storage Size (in 36 bit words) 
CPU Run Time (milliseconds) 

EXLIGEN 

N umber of Source Statements 
N umber of Object Instructions 
Storage Size 
CPU Run Time 

UPDATE 

N umber of Source Statements 
Number of Object Instructions 
Storage Size 
CPU Run Time 

SLEUTH FORTRAN V 

212 
173 
205 

1.2 IllS 

673 
645 
684 

2.6 IllS 

228 
212 
227 

.53 IllS 

50 
192 
256 

1.2 IllS 

177 
746 
828 

2.6 IllS 

35 
181 
212 

.35 IllS 

level for the UPDATE program, taking advantages of 
facilities not provided by PL/I. The results are shown 
in column labelled LSD-II. University of lVlichigan 
FORTRAN-IV and PL/I results are included for 
purpose of comparison. Timings shown for Brown 
University results have been adjusted upward by 10 
percent from the measured. values on an IBM 360/ 
MOD67I-1 in order to make them directly comparable 
to the timings obtained on the University of Michigan 
IBM 360/MOD67-2 (1.5M Bytes Storage). 

Westinghouse 

The Westinghouse study was performed on the 
UNIVAC 1108 and compared with the SLEUTH 
assembly language with FORTRAN V, UNIVAC's 
highly-touted optimizing FORTRAN compiler. Two 
programmers were employed, one coding only in 
FORTRAN and the other only in SLEUTH. They 
designed, together with the project supervisor, com­
patible data structures so that a single driver program 
could drive either the FORTRAN V or SLEUTH 
versions of a particular algorithm. The data structures 
were amenable to problem solution on the UNIVAC 
1108 and were not the same as data structures originally 
developed for the SAFEGUARD data processor. 

On the whole, the performance of FORTRAN V 

as shown in Table IV was of surprisingly high quality. 
The design of compatible data structures for SLEUTH 
and FORTRAN V appears to have been slightly 
slanted toward FORTRAN, i.e., to force the SLEUTH 
programmer to use a data structure that can also be 
used by FORTRAN (especially in the areas of manipu­
lating data pointers) is somewhat of a handicap. For the 
UPDATE algorithm, which was purely algebraic in 
nature, relatively good performance was expected from 
FORTRAN. The algorithm was a relatively small 
piece of code and was simple enough to be easily handled 
by a compiler, i.e., assembly code "tricks" could not be 
employed to any significant advantage. In actual per­
formance, the FORTRAN version ran significantly 
better than the SLEUTH version. If the SLEUTH 
version were to be recoded using the FORTRAN 
version as a guide, it is probable that it could be made 
to perform better than the FORTRAN version. The 
significant fact is that in the time frame allotted to 
this study, FORTRAN actually produced a better 
program, reflecting that in certain cases a cleverly 
written compiler can actually surpass human 
performance. 

CONCLUSIONS 

The following conclusions relative to the performance 
in terms of efficient object code production and CPU 
running times for programming languages, i.e., high­
level or assembly, are drawn from the results sum­
marized above. 

(a) If CPU running time and storage utilization are 
the primary criteria for evaluation, assembly 
language coding is distinctly superior to high­
level languages available today. 

(b) System's Implementation Languages, which 
appear to offer the advantages of high-level 
languages with respect to reducing software 
development costs, also produce object code 
with efficiency approaching that of assembly 
languages. This performance improvement, 
largely achieved by allowing programmers 
to take advantage of system hardware features, 
implies a machine dependence of such languages 
and loss of transferabili ty of programs written 
in these languages from one computer architec­
ture to another. 

(c) Careful design of program data structures can 
greatly improve the performance of present-day 
higher-level languages in production of efficient 
object code. 



(d) The production costs associated with high-level 
languages are lower, up to a threshold at which 
specific desired manipulations cannot easily be 
made in the language. 

(e) Transferability is easily achieved in high-level 
languages, provided that direct usage of machine 
dependent characteristics is carefully controlled. 

(f) Data structures designed for a particular 
machine architecture must be modified if any 
kind of efficiency is desired in transferral to 
another machine architecture. 

(g) The "ideal" high-level language must allow 
flexibility in data definition capabilities as 
JOVIAL does and FORTRAN IV does not, but 
be realistic in scope, as PLjI is not. 
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Brunstrum, SDC and Messrs. R. D. Bergeron, J. D. 
Gannon and J. V. Guttag, Brown University. 
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A review of 
recursive filtering algorithms 

by BERNARD FRIEDLAND 

The Singer Company 
Little Falls, New Jersey 

INTRODUCTION 

The recursive filtering theory introduced scarcely a 
decade ago by Kalman1,2 and Kalman and Bucy3 has 
been widely hailed as a major development in data 
processing, perhaps as important as the work of Weiner4 

on linear filtering. 
The introduction of Kalman's filtering theory could 

not have come at a more propitious time. The theory 
was expressed in the vector-matrix notation which had 
only recently been introduced to control engineers, and 
problems to which the theory was applicable were 
known to many investigators. Perhaps the most impor­
tant reason for the almost immediate reception of the 
theory is that it is expressed essentially in the form of a 
computer program-in other words, it is naturally 
suited to implementation on a high-speed digital 
computer. Digital-computer implementation of earlier 
filtering and smoothing algorithms, on the other hand, 
did not seem to be very promising. 

The fundamental result of Kalman's first papers can 
be stated fairly concisely: consider the discrete-time 
dynamic process evolving according to the "transition 
equation" 

(1.1) 

where 

Xn is the "state vector" of the process at the nth 
instant of observation 

Un is a vector of random excitations 
cI>n is the (known) "transition matrix" 
r n is a known matrix 

Suppose that noisy observations Yn of the state are made 
in accordance with 

(1.2) 

and, further, that Un and Vn are gaussian, independent 
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of each other and of Uk and Vk for all k~n. The optimum 
estimate xn of Xn, given Yn, Yn-I, ... can be expressed by 
means of the recursion equations 

(1.3) 

(1.4) 

where 

in which (') denotes matrix transposition, 

and 

Qn is the covariance matrix of the excitation 
noise Un, i.e., 

Rn is the covariance matrix of the observation 
nOIse. 

The recursive nature of the Kalman filtering algorithm 
and its immediate translation into a computer program 
is illustrated in the flow chart of Figure la. 

The reader may have noticed that the sense in which 
the estimate, computed by the algorithm defined by 
(1.3)-(1.6), is optimum has not yet been defined. This 
omission is intentional, because, quite remarkably, the 
estimate is optimum in every reasonable sense: it is the 
least-squares estimate, the minimum-variance estimate, 
and a maximum-likelihood estimate. It is also the 
conditional mean given the observation data, i.e., 

The other quantities in (1.3)-(1.7) also have statistical 
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significance, namely: 

~n=E[Xn I Yn-l, Yn-2, ... J, conditional mean of Xn, 
prior to observation Yn 

Pn = E[ (xn-xn) (Xn -Xn) 'J, conditional a posteriori 
covariance matrix 

Pn=E[(Xn-~n) (Xn-~n)'J, conditional a priori 
covariance matrix 

It is noted that the covariance matrices P nand P n 

and hence the gain matrices Kn are independent of the 
observation data. Hence the latter can be computed 
off-line and stored for on-line implementation of (1.3) 
as indicated in the flow chart of Figure 1 b. When Un 

and Vn are correlated, Kalman's recursive filtering 
algorithm is somewhat more complicated and uses the 
covariance matrix Cn=E[unvn']' The more general 
algorithm is given in References 1 and 2. 
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Although recursive filtering is informally called 
"Kalman filtering," there is considerable dispute among 
the cognoscenti over who really deserves to be credited 
with the actual discovery. It would appear that the 
essentials of the theory were "in the wind" for several 
years prior to the appearance of Kalman's original paper 
and hence ll!.ay have been discovered independently 
and published internally by several investigators just 
prior to the presentation of Kalman's paper at the 1959 
Joint Automatic Control Conference. Earliest actual 
publication in a technical journal is cl aimed by Swerling,5 

and it is generally agreed that this is the earliest 
appearance of this theory. 

DEVELOPMENT OF THE THEORY 

The appearance of a new analytical technique of 
general utility is likely to engender a large number and 
variety of other studies. Recursive filtering is no 
exception: hundreds of papers and several textbooks 
have been written on this subject. Theoretical papers 
which have appeared since the original work of Kalman 
and Bucy treat with one or more of the following 
subjects. 

• Alternative developments of the basic results and 
relationships with other subjects. 

• Extensions to nonlinear and/or nongaussian pro­
cesses. 

• Subsidiary analysis of (usually messy) details. 

Alternate developments of the theory 

The fact that the estimate produced by the recursive 
filtering algorithm is optimum in many ways suggests 
also that there are many ways in which the same result 
can be derived. This is the case precisely: there seems 
to be as many different ways of deriving the results as 
there are users thereof; one ventures to say that every 
user has derived the results for himself at one time or 
another. 

Kalman's original derivation makes use of a theorem 
on orthogonal projections for gaussian random variables 
and in the opinion of many investigators was unduly 
complicated. In the years that followed, derivations 
appeared which did not require all the mathematical 
apparatus used by Kalman. 

The essential features of the recursive filtering 
algorithm can be developed without recourse to 
statistical concepts: the standard method of least 
squares and some ordinary matrix algebra are all that 
are needed to establish the basic relations. This develop-
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ment follows the line of reasoning suggested by Swerling5 

and is well-known to workers in the field. Because the 
derivation is fairly simple and will be useful for further 
discussion, we will present it here. 

Suppose that the random excitations Un on the process 
(1.1) are absent and it is required to determine the 
initial state vector Xo on the basis of observation vectors 
Yo, Yl, ... ,Yn. Using (1.1) and (1.2) it is seen that 

Yo=Hoxo+vo (2.1) 

where F n = <Pn ••. <Pl. These equations can be con­
catenated into the single matrix equation 

(2.2) 

where 

[~nl [Hn~ ~ll [~nl Yn= : Mn= : V n=: 

Yo Ho Vo 

Suppose that for n sufficiently large, there is enough 
data to determine Xo. Then (2.2) will have a unique 
solution if there were no measurement errors. If there 
are more equations in (2.2) than components in the 
initial state, then (2.2) can be solved by means of 
weighted least squares. It is well-known that to mini­
mize the quadratic form 

Q= (Yn- Yn)'Wn(Yn- Y n) = Vn'Wn Vn 

where Y n is the observed sequence, Y n is the sequence 
which would be observed in the absence of errors, and 
W n is a (positive-definite, but otherwise arbitrary) 
weighting matrix, the optimum solution to (2.2) is 

xo(n) = (Mn'WnMn)-lMn'WnYn (2.3) 

The superscript (n) on Xo indicates that this is the 
initial state estimated on the basis of n measurements, 
and (2.3) is the standard, nonrecursive least squares 
formula. If the number of observations is large, the 
matrix M n is correspondingly large: hence a fairly 
extensive calculation may be required to evaluate 
(2.3). Moreover, the calculation must be repeated each 
time a new observation or group of observations is to 
be included. Wouldn't it be convenient if the result of 
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calculating the (n-1)st estimate xo(n-I) could be used 
to simplify the calculation of xo(n)? To do this, the 
matrices M nand W n are partitioned as follows: 

(Note that this implies that the weighting matrix Wn 
consists of diagonal blocks. Rn -1 represents the new 
matrix in W n that was not in W n-l.) Using the sub­
matrices in (2.4) it is found that (2.3) becomes 
(F n-l' H n' Rn -1 H nF n-l + M n-l'W n-1M n-l) XO(n) 

where 

[Y~-ll Y n- 1 = : 

yo 

Note, however, that if xo(n-l) were computed by least 
squares, it would satisfy 

Y n-l = M n-lXO (n-I) 

Accordingly (2.5) becomes 

(F n-1' H n' Rn -1 H nF n-1 + M n-1'W n-1M n-1) XO(n) 

Note that (2.6) is already in recursive form: xo(n) is 
expressed in terms of xo(n-l) and the new observation 
Yn. To put the result of (2.6) in the form given earlier, 
we define a matrix P n by 

F n-1' P n -1 F n-l = M n-I'W n-1M n-1 (2.7) 

then (2.6) becomes 

Fn_1xo(n) 

= (Pn-1+Hn'Rn-lHn)-1 (PnFn_1Xo(n-1) +Hn'Rn-1Yn) 

(2.8) 

after multiplication by the inverse of F n-l' (which 
exists since F n is the product of nonsingular transition 
matrices). It is also reasonable to define 

'J;n=Fn_1Xo(n-l), estimate of Xn using xo(n-l) 

xn = F n_1XO(n) , estimate of Xn using xo(n) 

then (2.8) becomes 

Finally, we make use of a well-known matrix identity 

(P-l+H'R-IH)-l =P-PH' (HPH' +R)-lHP (2.10) 

for arbitrary nonsingular matrices P and R. This 
reduces (2.9) to 

with 

which is the same as (1.3) and (1.5). Also, using (2.7) 
and (2.4) 

F n'Pn+l-lF n = Mn'W nMn 

= F n-I' H n' Rn-l H nF n-1 + F n-l' P n-1 F n-l 

But, Fn= CPnFn-1. Hence (2.11) becomes 

Let 

Then, on using (2.10), (2.12) becomes 

Pn= (1 -KnHn)Pn 

Also, (2.13) becomes 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

It is seen that (2.14) is the same as (1.7) and (2.15) is 
the same as (1.6) with Qn-1==0, which is equivalent to 
the absence of random excitation. 

The derivation presented above emphasizes that 
recursive filtering is equivalent to weighted least 
squares when there is no random excitation on the 
process. The theoretical equivalence of the two methods, 
however, does not mean that there is nothing new in 
the recursive filtering algorithm. For even though the 
two methods are theoretically equivalent, they are 
computationally quite different. In particular, the 
standard least squares algorithm (2.3) entails inversion 
of a matrix whose dimensions are equal to the number 
of components in the state vector; the recursive 
algorithm, on the other hand, requires inversion of a 
matrix no larger than the number of simultaneous 
observations, i.e., the dimension of the observation 
vector. Since the latter, in most practical cases, is much 
smaller than the former, the recursive filtering algorithm 
generally permits computations to proceed with smaller 
matrices. This feature, however, is not the most signifi­
cant. More significant is the n\lmerical problem which 
arises when the number of observations is large. In this 



case the matrix M n'W nM n, which is to be inverted for 
the least squares estimate, has long, skinny matrices 
M n' and M n as its outer factors. Hence a single element 
in M n'W nM n could be the sum of a large number of 
products. If the individual products are comparable in 
magnitude and could have different signs, it is evident 
that the accumulated round-off error could be enough 
to make the elements of the resulting matrix a set of 
random numbers. All following calculations would then 
be meaningless. Since the recursive calculation never 
entails dealing directly with large matrices, computa­
tional problems are considerably forestalled-but not 
entirely eliminated. 

One might think that the equivalence of the solution 
to a statistical problem-finding the conditional mean 
of a random process-is equivalent to the solution of 
nonstatistical problem is a fortuitous circumstance. 
This, however, is not the case. It turns out that this 
equivalence applies in a more general context as dis­
cussed in the recent, excellent book by Jazwinski. 6 

The equivalence of the conditional mean, the mini­
mum variance estimate, and the maximum likelihood 
estimate, has led to a variety of derivations based on 
statistical concepts, in addition to the orthogonal 
projection theorem used by Kalman. For example, the 
results of the first section can be derived by use of 
Bayes' Theorem and/or by finding the expression for the 
probability density function for xn, given Yn, ... Yo. 

Continuous-time processes 

The problem originally considered by Kalman con­
cerned a discrete-time dynamic process (1.1) with 
discrete-time ("sampled-data") observations. The ex­
tension to a continuous-time process without random 
excitation, and with sampled observations, is imme­
diate. Suppose the process is governed by 

x=A(t)x 

with observations taken at discrete-times 

The solution to (2.16) can be expressed by 

x (tn+1) = cI> (tn+l, tn) x (tn) 

(2.16) 

where cI>(tn+l, tn) is the transition matrix, which is the 
solution at time tn+l to the matrix differential equation 

~=A(t)cI> (2.17) 

with cI>(tn) =1, the identity matrix. Obviously this 
transition matrix is used in place of cI>n, and the earlier 
discrete-time results are directly applicable. 
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The transition matrix IJ>n is needed in two places: to 
update the state estimate via (1.4) and to update the 
covariance matrix via (1.6). It is worth noting, how­
ever, that the transition matrix is not needed to update 
the state estimate. Instead the differential equation 
(2.16) can be integrated over the interval [tn, tn+lJ 
with x(tn) =Xn to obtain x(tn+1) =Xn+l). This additional 
computation may be justified when it is believed that 
the evaluation of the transition matrix may be in­
accurate, because inaccuracies in the transition matrix 
in updating the covariance matrix (1.5) are far less 
serious than errors in the transition matrix used to 
evaluate the estimate of the state. The former type of 
error will result in using a somewhat erroneous gain 
matrix K n , but the latter will result in a direct error in 
the estimate of the state. 

When random excitation is present on the dynamics, 
a variety of theoretical problems arise the treatment of 
which entails sophisticated mathematical concepts. 
Jazwinski's book6 contains a very 'well written account 
of the relevant mathematical techniques. The major 
difficulty arises because the continuous time analog of 
the random excitation Vn is white noise which has very 
disagreeable mathematical properties. Consider the 
effect of adding white noise to the process (2.16), i.e., 

x=A (t)x+B(tH (2.18) 

with ~ being white noise having a known spectral 
density matrix. If ~ were nonrandom, the solution to 
(2.18) would be 

(2.19) 

Since Ht) is white noise, hmvever, the integral in (2.19) 
must be interpreted in a stochastic sense. In accordance 
with standard theory, the integral 

is a random variable, uncorrelated with Vk, k~n having 
zero mean and covariance matrix: 

(2.20) 

where ~ (t) is the spectral density matrix of the white 
noise ~(t), i.e., E[~(tH'(T)J=~(t)O(t-T). Hence, 
except for the possible difficulty in evaluating (2.20), 
the discrete-time theory is applicable to (2.19). 
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When the observations are continuous, however, i.e., 

yet) =H(t)x(t) +7](t) (2.21) 

with 7] (t) being white noise, the discrete-time algorithm 
is not directly applicable. A heuristic deviation of the 
continuous-time equations of Kalman filter is possible 
by use of a limiting process as described by Kalman.2 

For small intervals of time, the solution to (2.18) can 
be approximated by 

where 

Vn is a random variable of zero mean and variance 
~ (tn) Lltn, owing to the integration of white 
noise for an interval Lltn. 

Owing to the white noise on the observations it is 
not possible to sample the output y (t) at discrete times; 
instead, it is necessary to smooth the output during the 
intervals. Simple averaging is easiest to treat. For this 
type of smoothing 

1 ftn 
Yn= Llt yet) dt=y(tn) +wn=H(tn)x(tn) +Wn tn-l 

(2.23) 

where 

1 ftn 
wn= - 7](t) dt 

Llt tn-l 
The integral in Wn is a random variable of zero mean and 
variance N Llt where N is the spectral density matrix of 
the white noise 7]. Accordingly 

Wn is a random variable of zero mean and variance 

( 1/ Llt) 2 N Llt = N / Llt 

Using (2.22) and (2.23) as the characterization of an 
approximate discrete-time system, and applying the 
discrete-time filtering algorithm, gives 

a;(tn+1) = [1 +A (tn) Llt] {x(tn) 

+ P nH' (tn) Rn -1 [Yn - H (tn) X (tn) ] } 

Substituting Rn = N / Llt into this equation and re­
arranging terms gives 

a; (tn+!) - a; (tn ) 

Llt 

= [A (tn)a;(tn) + F nH' (tn)N-1 (Yn - H (tn)a;(tn) ]+O(Llt) 

Hence, as Llt~O, we obtain 

x=A (t)a;+K(y-H(t)x) (2.24) 

with 

Also, the variance equations (1.6)-(1.7), which can 
be written in the form 

F n+l-1 = (if!nF nif!n' + I' nQnI' n)-l+ H n+t' Rn+lH n+l 

become 

F n+!-l = {Fn+[A (tn)Pn+PnA'(tn) +B(tn)~(tn)B'(tn)]Llt 

+0 (Llt2) }-l+H' (tn)N-1 H (tn) Llt 

Upon rearranging terms and omitting terms of 0 (Llt2) 
we obtain 

Fn+1-Fn =A (t )P +P A'(t ) Llt n n n n 

Finally, passing to the limit as Llt~O, we get 

F=A (t)F+FA' (t) +B(t) ~(t)B' (t) 

-FH'(t)N-1H(t)F (2.25) 

Thus the optimum state estimate evolves in ac­
cordance with the differential equation of the original 
process, but forced by the term K(y-Ha;). The co­
variance matrix P evolves in accordance with the 
matrix Riccati equation (2.25). 

Rigorous treatment of the continuous-time process 
entails rather sophisticated concepts of stochastic 
processes. The original treatment by Kalman and 
Bucy3 is entirely rigorous, but is confined to linear 
systems. More general formulations which, in principle, 
are capable of generalization to nonlinear processes, 
have been developed by Stratonovich,7 Kushner,8.9 
Bucy,I° and Kailath and Frost,1l·12 and by others. 

EXTENSION OF THE THEORY 

Like most theories, the theory of recursive filtering 
is applicable exactly in almost no practical situation: 
few processes are linear, almost no random noise is 
gaussian (although what it is if not gaussian is another 
problem), and frequently the actual process model is 
not known. All these problems have received attention 
in the decade since the appearance of the Kalman-Bucy 
papers, and are still receiving attention at the present 
time. A comprehensive survey of the various extensions 
which have been published is an overwhelming assign-



ment-a comprehensive bibliography could easily 
contain a thousand items. There are, however, several 
trends in the investigations being pursued which can be 
outlined in broad perspective. 

Nonlinear discrete-time processes 

A general discrete-time process could be represented 
by the difference equation 

a general observation may be expressed by 

Yn=h(xn, vn) 

(3.1) 

(3.2) 

where, in most Un and Vn are random variables about 
which very little is known. The usual way of handling a 
nonlinear problem is to linearize it along a nominal 
solution. In the present case, suppose a nominal 
sequence Xo, Xl, ... ,xn were known, and, moreover, it 
is known a priori that the random quantities Un and Vn 
are "small enough" to insure that the differences 

are small. Then (3.1) and (3.2) become 

Xn+l =f(xn) +~n(Xn-Xn) + Ii nUn 

but 

xn+l=f(xn) 

Yn=h(xn) = nominal observation 

where 

or 

(3.3) 

(3.4) 

en+l = ~nen+ Ii nUn+O(en2) (3.5) 

Yn -Yn =EI nen+Znvn+O (en2) (3.6) 

Since (3.5) and (3.6), after omitting the terms of 
O(en

2) constitute a linear system, the linear theory of 
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the previous section is applicable, and the deviations 
from the nominal trajectory are given by 

en = en+Kn(Yn-Hnen) 

or in terms of the total state 

Xn+1 = f(xn) + ~nen 
=f(xn) -~n(Xn-Xn) +~n(Xn-Xn) 

~n = [af(Xn, 0)] 
aXn Xn=~n 

(3.7) 

(3.8) 

(3.9) 

Note that except for the difference between ~n and 4>n 
(3.9) can be written 

(3.10) 

Moreover, in many situations the estimated solutions 
xn is more accurate than any a priori nominal solution 
xn~Xn; in fact, there may be no reasonable way of 
determining Xn other than by making it identical to 
the xn, i.e., by defining the nominal solution as the 
running estimate. In this case (3.9) and (3.10) are 
identical. The same reasoning gives 

Xn=Xn+Kn[Yn-h(Xn) ] (3.11) 

The recursive algorithm (3.10) and (3.11) with the 
gain matrix computed from (1.5) and (1.6) with 

is the so-called "extended" Kalman filter, as it is now 
termed. These equations were used as early as 1962 by 
Smith.I3 The following features of the extended Kalman 
filter are worth emphasizing. See Figure 2. 

• No nominal trajectory is required 
• Covariance matrices Pn, Fn, and gain matrix Kn 

must be computed on-line 
• Statistical optimality is only approximate. 

Although no nominal trajectory is required, it is 
necessary to compute the covariance matrix on-line 
and this computation occupies the bulk of the com­
putation requirements. It is not insignificant that strict 
optimality cannot be assured for the extended Kalman 
filter; as a matter of fact, it often happens that the 
estimate given by (3.10) and (3.11) actually diverges 
from the true trajectory as the number of observations 
processed increases. This "divergence problem," to be 
discussed subsequently, could result because the terms 
of O(en

2), so casually omitted in developing the filtering 
equations, in fact, may not be negligible. Their presence 
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can introduce a statistical bias into the results; the 
effect, paradoxically, is most serious when the random 
noise represented by f' nUn and ZnVn in (3.5) and (3.6), 
respectively, is small relative to the nonlinear terms. 
When the random terms are large they tend to swamp 
the nonlinear terms; i.e., those of O(en

2); when they are 

small the nonlinear terms may be predominate. Since 
the nonlinear terms add to the random terms, one is 
tempted to increase the covariance matrices of the 
latter in a heuristic attempt to account for nonlinearity. 
This approach is often quite successful, but could be 
dangerous because the nonlinear terms are not random, 
but are related to the linear terms in a systematic way . 

The limitations of the linearized Kalman filtering 
equation (3.7) and (3.8) or the extended Kalman 
filter (3.10) and (3.11) have led to a number of in­
vestigations, some still continuing, of more accurate 
extensions of the basic theory or of alternate approaches. 
These investigations appear to have been motivated by 
two considerations: the desire to achieve performance 
closer to the optimum, and the need to avoid problems 
which arise in applying the linearized or extended 
algorithm. 

The desire to avoid the "divergence" attributable to 
omission of nonlinear terms is a practical motivation 
which may be handled in various ways, not necessarily 
related to achieving "better" (i.e., closer to optimum) 
performance. In the presence of nonlinearities and/or 
nongaussian random variables, the very definition of the 
optimum estimate is a problem: in the linear, gaussian 
case the conditional mean is also the minimum variance 
estimate and the maximum likelihood (Bayes) estimate. 
In the linear, but nongaussian case, the minimum 
variance estimate (which is what is obtained by 
applying the Kalman-filtering algorithm) is not always 
the conditional mean, and neither may be the maximum 
likelihood estimate. In the nonlinear case, moreover, 
none of the estimates can be expressed by an exact 
recursion algorithm; errors are introduced by use of 
truncated approximations the effects of which are very 
difficult to assess. As a practical matter performance of 
nonlinear filters can be assessed only by Monte-Carlo 
stimulation: a "fix" which works well in one application 
may be useless or even worse than the basic extended 
algorithm in another. 

Improved estimation algorithms can generally be 
classified in two categories: higher order, explicit 
algorithms and iterative algorithms. In the former, the 
updated estimate Xn+l is obtained from xn by an explicit 
computation which entails no iteration and no check 
of accuracy; in the iterative techniques, the updated 
estimate Xn+l is an implicit function of xn which is 
solved for iteratively. 

Iterative techniques 

Iterative techniques for treatment of nonlinear 
problems may be visualized as generalizations of the 



ancient Newton-Raphson technique for solving non­
linear equations. Suppose, for example, that we have a 
single observation y from which it is possible to deter­
mine the state x through the solution of the system of 
equations represented by 

y=h(x) (3.12) 

If this is true, the Jacobian matrix 

H(x) = [:~] 

is nonsingular in the vicinity of the solution to (3.12). 
The standard N ewton-Raphson iteration algorithm for 
solving (3.12) is 

x=x+[H(x) J-I[y-h(x) ] 

where 

x is a prior estimate of the solution 

x is a revised estimate 

(3.13) 

When x differs significantly from x, x is replaced by x 
and the iteration is continued until II x - x II is suffi­
ciently small in accordance with some criterion estab­
lished by the user. 

Comparison of (3.13) with the observation update 
equation (3.11) of extended Kalman filtering reveals a 
very striking similarity. In Kalman filtering the gain 
matrix 

multiplies the residual y-h(x) while in the Newton­
Raphson algorithm the residual is multiplied by Hn- I • 

If the observation noise is absent, and H n -1 exists, 
however, the Kalman filter gain becomes 

Kn = P nH n' (H n') -1 P n -1 H n -1 = H n-1 

In other words the Kalman filter gain is the same as the 
N ewton-Raphson weighting matrix when the latter 
exists and the noise is negligible. The Kalman gain 
matrix may thus be regarded as a generalized version of 
the N ewton-Raphson gain which reduces to the latter 
in the case when noise is absent and H n -1 exists. When 
Hn- I does not exist, i.e., when the number of observa­
tions is insufficient to permit determination of the 
state, but noise is absent, then the Kalman gain matrix 
Kn=PnHn'(HnPnHn')-I is a "generalized inverse" of 
Hn in the sense that HnKn=I, regardless of the value 
of Pn • 
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Although the Kalman filter uses a more general gain 
matrix, it does not perform the iterations of the X ewton­
Raphson technique. In the linear case, of cours(', the 
iterations are not necessary. In the nonlin('ar case, 
however, one would expect that the initial ('stimate x 
of the state could be improved upon by iteration unless 
the uncertainty in the observation has an effect equal 
to the effect of the nonlinearity. Thus, in an application 
entailing highly accurate, but nonlinear, sensors, one 
could expect significant benefit from use of the itera­
tions; conversely, when the sensor noise is large relative 
to the nonlinearity, little improvement due to the 
iteration is to be expected. 

Assuming that iterations are to be employed, what 
is a suitable convergence criterion? If (3.12) is solved 
exactly-to the precision available to the computer­
then all past history of the process is ignored. If no 
iterations are used, then nonlinear effects are dis­
regarded. A reasonable convergence criterion would be 
to iterate until the contribution of the error to the 
residual vector y- h (x) is just about as large as the 
nonlinear effect. The (approximate) covariance matrix 
of the residual is H nP nH n' + Rn. Since, in the absense 
of nonlinear effects, most of the residuals can be ex­
pected to be less than their corresponding theoretical 
standard deviation, i.e., 

it would be reasonable to continue iteration until (3.14) 
is satisfied. The addition of the Newton-Raphson 
iteration cycle to account for nonlinear observations 
entails a negligible complication of the basic algorithm, 
as the flow-chart of Figure 3 shows. The operating 
time, of course, will be increased in proportion to the 
average number of iterations necessary to pass the 
convergence test. Whether this additional running 
time is justified depends on the improvement achieved. 
Moreover, in an application in which the computer is 
dedicated to the Kalman filtering algorithm, there may 
be time available for the iteration so that the additional 
cost could be inconsequential. 

The ideas inherent in the N ewton-Raphson iteration 
technique may be extended to the case in which the 
state cannot be determined from a single observation, 
but requires a series of observations and knowledge of 
the process dynamics. The general equations may be 
derived, using considerations of least-squares by com­
bining the analysis of the second section and of this 
section. The inherent statistical parameters can be 
brought into the problem formulation explicitly. Typical 
developments are to be found in COX,14 and Friedland 
and Bernstein. Is 
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Figure 3 

Explicit techniques 

The general advantage of iterative techniques is their 
relative simplicity; the potential disadvantages include 
uncertain convergence, and possible inefficiency in 
terms of running time. As an alternative to iterative 
techniques for nonlinear estimation, it is possible to 
consider explicit algorithms, i.e., those in which a fixed 
number of calculations are performed at each step. 

The most obvious approach is based on the recogni­
tion that the extended Kalman filtering algorithm can 
be interpreted as the low-order terms in series expan­
sions. Inclusion of additional terms could justifiably be 
expected to produce better results. Return again to 
the simplest case in which a single observation suffices 
to determine the state, i.e., y = h (x) where h ( .) is an 
invertible nonlinear function. In this case we could 
write, for arbitrary x 

x=cp(y) 

where cp(x) is the inverse function of h(·). Assuming 
the existence of the required derivatives, one could 
write 

X= \O(yH [:;] (y-yH aa;;J (y-y)'+'" (3;15) 

where, in the multivariable case 

[
iJcp] [iJCPi] . - = - , amatrlx 
iJy iJY:J 

[
iJ2cp] [ iJ2cp. ] -2 = --~ ,a third rank tensor. 
iJy iJYiYk 

If 

y=h(j;), 

Then (3.15) becomes 

[iJCP] 1 [iJ
2cp

] x=j;+ - [y-h(j;) J+ - - [y-h(j;) J2+ ... 
iJy 2 iJy2 

(3.16) 

Moreover 

Hence it is seen that the Newton-Raphson iteration 
formula (3.13) comprises the first two terms of a series. 
Also, the Kalman algorithm can be viewed as a statis­
tical generalization of the N ewton-Raphson formula. 
It is thus reasonable to expect that an explicit nonlinear 
filtering algorithm could be obtained as a generalization 
of (3.16), i.e., 

Xn=j;n+Kn(2)[y-h(j;n) J+Kn(3)[y~h(j;n) J2+ ... 
(3.17) 

where Kn(i) denotes a tensor of rank i and the expression 
K(i)r i - 1 denotes tensor multiplication, i.e., contraction 
to a vector. The use of an explicit formula of the form 
(3.17) raises several theoretical and practical questions. 



The major theoretical question is the definition of an 
optimum estimate. Whereas in the linear, gaussian case 
all estimates are equivalent and thus lead to the same 
algorithm; this is not the case in the nonlinear case. 
As a consequence the weighting tensors Kn(i) in (3.17) 
depend on how the estimate is defined. It would be 
comforting to know that the differences between the 
weighting tensors for different estimates are insignifi­
cant. Unfortunately, this is not the case: even the sign 
of the second order term may depend on the definition 
employed. 

The practical question is concerned with the com­
putational requirements of explicit methods. It is clear 
that both storage and time requirements become very 
large to compute even the second-order terms in a 
system with a large-dimension state vector. To justify 
the additional computer requirements, it is necessary 
to show that use of higher-order terms really provide 
significant benefit in terms of performance. The reader 
interested in further pursuing higher order methods, 
as well as iterative methods, will find an excellent dis­
cussion and additional references in Chapters 8 and 9 
of Jazwinski's book. 6 

The Kalman filtering technique for linear processes 
has a theoretical basis in the fact that equations for the 
propagation of the conditional mean x and conditional 
variance P are relatively simple and, moreover, serve to 
completely characterize the conditional probability 
distribution of the random state vector x given the 
observation data y (t). In the nonlinear, nongaussian 
case, the conditional mean and covariance do not serve 
completely to characterize the conditional probability 
density function, and any finite number of moments 
can only yield an approximation to the actual proba­
bility density function. Since the conditional density 
function is all one needs to determine everything one 
would want to know about the variable, Bucy reasoned 
that there may be better methods of learning how the 
density function propagates than by propagating all its 
moments. In particular, he and Senne16 developed a 
method which is completely different from the series 
methods. This method is based representing the density 
function by its actual numerical values at points in a 
high-dimensional grid and developing a method of 
representing the motion of this density function in 
space. Owing to the large number of points needed to 
represent a high-dimensional density function, only the 
points at which the density function is "concentrated" 
are determined and propagated. Although the method 
seems quite complicated, Bucy and Senne claim it is 
competitive . with series-expansion methods and, in 
cases they have examined, has given better results than 
other methods. 
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Nonlinear continuous-time processes 

Very few real processes start out with discrete-time 
models. In most cases a continuous-time model (in the 
form of differential equations) is the starting point. 
When there is no random excitation on the process, and 
observations are made at discrete instants of time, there 
is little difficulty in applying the discrete-time (extended­
linear) theory. Suppose for example that the process 
is governed by 

i=a(x) (3.18) 

The solution of (3.18) : 
t 

x(tn ) =x(tn- 1) + f n a[x(A)] dA 
tn-l 

(3.19) 

defines the function f(xn ) in (3.1). Thus the time­
update (3.10) is computed by numerical integration of 
(3.18) over the intervals between observations. The 
initial condition for starting the integration is Xn-l = 
x(tn- 1) and the result, just prior to the next observation 
at tn is x (tn). The update for the nth observation is 
then computed through use of (3.11). 

In order to update the covariance matrix, in ac­
cordance with (1.6), it is necessary to have the differ­
ential transition matrix. Since an analytic expression 
for the nonlinear function f is not generally available, 
it is not possible to calculate <I> = [af / ax] analytically. 
Owing to the definition of f as the solution of a system 
of ordinary differential equations, however, it is 
possible to compute the transition matrix by numerical 
integration of the matrix differential equation 

. [aa] 
cJ? = ax cJ? (3.20) 

with the initial condition <I>(tn- 1) =1, where [aa/ax] is 
the Jacobian matrix of a(x) evaluated along the 
solution to (3.18). Thus x(tn) and cJ?n are evaluated 
concurrently by numerical integration of a system of 
n (n+ 1) differential equations. The process differential 
equations must be integrated to an accuracy consistent 
with the observation errors; in other words, the numer­
ical errors in obtaining Xn=X(tn) from X(tn-l) must be 
of a lower order than the correction Kn[Yn-h(xn)]. 
The computation of the transition matrix, however, 
requires accuracy only consistent with the accuracy to 
which the statistical parameters are known. In practice 
this usually means that the numerical integration 
algorithm used for (3.20) can be less sophisticated than 
that used to integrate (3.18). For example, while a 
fourth-order Runge-Kutta algorithm might be needed 
to integrate (3.18), it could well happen that a simple, 
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first-order Euler algorithm 

q;n=I+ [::] (tn-tn_.) 

would provide sufficient accuracy for the state transi­
tion matrix. 

Nonlinear dynamics with random excitation create 
problems on the frontiers of investigation in the mathe­
matical theory of stochastic processes. The very mean­
ing of differential equations with white noise excitation 
is open to serious question: almost nothing is known 
about how to interpret a general differential equation of 
the form x=a(x,~) with ~ being white noise; the 
meaning of the more restrictive equation 

x=a(x)+B(xH 

in which the white noise ~ is additive, is open to two in­
terpretations, depending upon whether one uses the 
mathematically-favored "Ito calculus" or the "Straton­
ovich calculus" unless the matrix B does not depend on 
x. A lucid discussion of the two interpretations is given 
by Jazwinski. 6 Since white noise is a mathematical ab­
straction which cannot exist in nature, the different in­
terpretations are of more interest to mathematicians 
than to engineers and physicists. Moreover, unless a 
very precise analysis of the physical behavior of the dy­
namic process is made, it is usually impossible to estab­
lish the precise nature of the random excitation. For this 
reason it would seem reasonable to account for all the 
random effects in a typical process by a model of the 
form 

Xn+l = f(xn) + r nUn 

where r n and Un are selected empirically to account for 
the cumulative random errors caused by all random 
excitation during the intervals between the observations. 

Parameter estimation 

In various applications there may be a number of 
parameters to be estimated in addition to the dynamic 
state variables. Suppose the parameters are designated 
as bi (i= 1, ... , m) and arranged in a vector 

b=[] 
Then the discrete-time dynamics can be represented as 

(3.21) 

Likewise the observations can be expressed as 

Yn=h(xn, b, vn) (3.22) 

These equations are general enough to include as 
special cases observation bias and constant (unknown) 
forcing terms. Each observation bias is represented by 
a parameter bi which appears only in the observation 
equation. Each constant forcing term appears only 
in the dynamic equations unless it contributes to a 
direct measurement. 

There is a standard trick for handling parameter 
estimation, namely to treat b as a part of an enlarged 
state vector of k+m components. 

Zn= [~:] 
Since b is a constant it evolves In accordance with 
the equation 

bn+1 =bn 

The initial condition bo for the estimate is taken as the 
expected value before any observations, usually zero. 
The standard extended linear algorithm (or any other 
nonlinear extension) is applied to estimate Zn; the 
resulting estimate contains the estimate xn in the 
presence of (initially) unknown parameters are well as 
an estimate bn of the unknown parameters. The method 
works effectively and, in fact, often is the key to the 
success of the Kalman filtering algorithm in practical 
applications which abound in uncertain parameters. In 
the sense that the filter by estimating the uncertain 
parameters adapts to their presence, the technique may 
be and, in fact, has been termed "adaptive." 

One of the problems with this method of parameter 
estimation is that the dimension of the big vector Zn 

can be quite large and, as a result the calculations, may 
require the manipulation of large matrices. In addition 
to requiring considerable storage, the usual numerical 
difficulties associated with large-matrix calculations 
may be present. In an attempt to avoid such numerical 
difficulties, Friedland17 developed a computation tech­
nique, which is mathematically equivalent to dealing 
with the large vector Zn and the associated covariance 
matrices, but in which the estimation of the parameter 
vector bn is decoupled from the estimation of the state 
vector. In particular, the algorithm consists of com­
puting the estimate xn of the state as if the parameter 
vector b were equal to its expected value prior to any 
observations, say zero, and the corresponding residual 
vectors fn=Yn-h(xn). These residuals are used as the 
input to a "parameter estimator" which produces the 
optimum estimate bn of the parameter b. The estimate 
bn is then multiplied by a matrix V n to yield the cor-



rected estimate: 

(3.23) 

In applying this method, there are usually parameters 
which cannot be estimated, i.e., bn changes negligibly 
from its value prior to any observations. It is clear from 
(3.23) that such parameters need not be included in the 
state vector Zn or in the parameter vector bn . It is 
cautioned, however, that the covariance matrix, say, Pn 

which accompanies the computation of Xn does not 
realistically represent the accuracy of the estimated 
state. When uncertain parameters are present, the 
actual covariance matrix of the state is given by 

(3.24) 

where Vn is the matrix in (3.23) and Mn is the co­
variance matrix of the parameter vector, i.e., 

(3.25) 

When the uncertainty is large it is quite possible that 
V nM n V n' is of the same order of magnitude as P n or 
perhaps even larger. 

THE "DIVERGENCE" PROBLEM 

Almost as soon as Kalman's recursive filtering 
algorithm was announced there were a number of 
investigators ready to apply it to their specific problem. 
It was quickly discovered that a practical difficulty of 
the method is that the estimate of the state may tend 
to diverge from the true state and, in fact, may tend to 
be ridiculous. Kalman showed that the filtering al­
gorithm is stable, i.e., erroneous covariance matrices 
for the dynamic noise and the observation noise will 
not cause the estimate to diverge from the true state. 
Consequently, the divergence could not be attributed 
to an inherent instability of the algorithm. Other 
explanations for the divergence problem had to be 
found. It became evident that the divergence problem 
cannot be attributed to a single source. Sometimes it 
may be due to difficulty in propagating the estimate of 
the state, in accordance with (3.10) and (3.11); some­
times in propagating the covariance matrix In ac­
cordance with (1.6) and (1.7); sometimes both. 

Modeling errors 

Errors in propagating the estimate of the state may 
result because of numerical errors in integrating the 
dynamic equations x = f(x), or because the dynamic 
equations do not really represent the true behavior of 
the process. The state of the art in numerical integration 
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having been very advanced by the time the recursive 
filtering algorithm was introduced, the effect of nu­
merical errors could reasonably be discarded. The 
possibility that the differential equations being in­
tegrated, however, do not accurately represent the 
true physical behavior of the process, however, is not 
so easily dismissed. The true behavior of the process 
may not be sufficiently well understood to be modeled 
accurately, or else an accurate dynamic model may be 
impractically complicated. The consequence of these 
"modeling errors" could very well be the divergence of 
the estimated state from the true state. Possible cures 
for the modeling errors which have been applied with 
success in various applications include: 

• Representation of the modeling errors by "pseudo-
noise" 

• Bounding of the covariance matrix 
• Use of finite-or fading-memory filtering 
• Selective improvement of modeling. 

The performance of the Kalman filter is achieved 
through the correlation of the state of the process at a 
given time to the state at earlier times. This correlation 
is established through the dynamics of the process. It 
follows that if the dynamic model is incorrect, the 
correlations assumed to be developed may be unreliable, 
and their use could be dangerous. Any noise present in 
the process excitation retards the development of this 
correlation, and it is thus reasonable to represent 
uncertainty in the model as having the same effect as 
would be produced by noise. The covariance matrix of 
this "pseudo-noise" is selected so that the standard 
deviation in the latter is about equal to the level ot 
uncertainty in the dynamic model. 

A technique related to the use of pseudo-noise is a 
priori covariance matrix bounding. The rationale for 
this technique is that, on physical grounds, we would 
regard it as impossible to achieve better than a specified 
accuracy in estimating some of the state variables. If 
the covariance matrix indicates that higher ac<;uracy is 
being achieved, the matrix is increased to the a priori 
lower limit. Thus, instead of adding the covariance 
matrix r nQnr n' corresponding to a known dynamic 
noise level at each step, this matrix is adjusted so that 
P n+l = ipnP nipn' + r nQnr n' does not decrease below a spec­
ified lower limit. Similarly, the observation-updated co­
variance matrix Pn=Pn-PnHn'(HnPnHn'+Rn)-lHnPn 
can be kept from falling below a specified limit. 

Another point of view on modeling uncertainties is 
represented by the idea that the validity of the dynamic 
model may be of limited duration. For example, there 
may be certain long-term trends which the model does 
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not accurately treat, but near-term behavior may be 
modeled quite accurately. If this is the case, it would 
follow that data that are older than the interval over 
which the model is valid ought be discarded. In other 
words, the "memory" of the filter should be limited to 
the interval of validity of the. model. The Kalman 
filtering algorithm, however, has infinite memory, in 
the sense that that the estimate at any instant of time 
depends on every observation datum ever processed. 
To be sure, the importance of each datum to the total 
estimate diminishes as more data are processed, but 
there is no way of entirely eliminating dependence on 
data older than a given time. Moreover, in a process 
with unstable dynamics, the importance of early data 
may be emphasized disproportionately. To avoid the 
dependence on all past data, the use of "finite memory" 
filters has been proposed by various investigators. The 
general idea is that the estimate xn of the state Xn would 
be based on a finite amount of past data. For example, 
the optimum estimate could be defined by 

xn= [Xn I Yn, Yn-l, ... ,Yn-N+1] (4.1) 

i.e., the conditional mean given the most recent N 
observations: each time a new observation is made, the 
oldest observation is deleted. One method of obtaining 
a finite-memory estimate is to use a non-recursive 
algorithm. For example, assuming no dynamic noise, 
and following the development in the second section, 
the least-squares estimate of Xn given Yn, ... Yn-N+b 
for a linear process, is given by 

where 

Xn_N+l(n) = (Mn,N'Wn,NMn,N)-lMn'Wn,NYn,N (4.2) 

and 

Representation of (4.2) in recursive form appears to be 
difficult. J azwinski6 has a discussion of the implementa­
tion of algorithms for processing a finite amount of 
past data. 

Instead of dropping all dependence on data older 
than a given number of samples, various investigators 
have suggested that a gradual diminution of importance 

of the data be assumed as the age of the data is in­
creased. This can be accomplished by assuming that the 
noise covariance matrix increases from its "nominal" 
value in proportion to the number of samples elapsed. 
The computational advantage of the assumption of 
gradual diminution of data importance is that the data 
processing can usually be represented by a recursive 
algorithm. For example, Tarn and Zaborszky,I8 have 
shown that if the effective covariance matrix is taken as 
slRn (s > 1) where l is the number of elapsed samples the 
implementation is achieved by simply multiplying the 
term <Pn-lFn-1<Pn-l' in (1.6) by s. Improvement by as 
much as a factor of 3 has been demonstrated in simula­
tion18 using a scale factor s in the vicinity of 1.1. The 
particular simplicity of this "cure" would appear to 
make it worth considering in instances of suspected 
divergence. 

Perhaps the best treatment of modeling errors is to 
use a superior model. As already noted, this may not be 
always possible either because a better model may not 
be available, or because a better model, although 
available, may be too complicated. Very little can be 
done in the former case; in the latter case, however, it 
might be possible to use the recursive filtering method 
to reduce the complexity of the model to achieve a 
suitable balance between performance and complexity. 
The most complete model is formulated, and, in a series 
of simulation runs, the model is simplified until further 
simplifications are found to result in significant degrada­
tion in performance. 

Covariance matrix computational errors 

In a linear process the covariance matrices P nand 
P n are independent of the estimates Xn and xn, and can 
thus be computed in advance and stored in the com­
puter, although storage problems may make if preferable 
to compute these "on-line" as the filter operates. In the 
extended Kalman filter, however, the covariance 
matrices depend on the actual estimates, and the real­
time computation is unavoidable. The real-time 
computation of the covariance matrix may result in 
numerical errors which, if not corrected, could cause 
unsatisfactory filter performance. The basic difficulty is 
the tendency of the covariance matrix to lose its 
positive-definite character. It is emphasized that this is 
strictly a numerical problem, unrelated to any modeling" 
errors which may (or may not) also be present. In 
other words, even if the transition matrix <Pn and the 
observation sensitivity matrix Hn are not correct, 
errors in these matrices in themselves cannot cause the 
covariance matrix to become indefinite. This fact is easy 



to prove. Suppose P n is positive-definite. Then its 
inverse P n -1 exists, and is positive-definite. Con­
sequently, 

(4.3) 

is positive-definite since Hn'Rn-IHn is (at least) positive 
semi-definite, and the sum of a positive definite matrix 
and a positive semi-definite matrix is positive definite. 
Thus Pn= (Pn-I)-I exists and is positive definite. Now 
the transition matrix of a dynamic process is non­
singular, so ipnFnipn' is also positive definite and hence 

P n+l = ipnP n<Pn' + r nQnr n' 

is positive definite for any positive semi-definite Qn. 
This reasoning makes it clear that if Po is positive 

definite then all subsequent values Pn and Pn (n=O, 
1, 2, ... ) are theoretically positive-definite. Theoretical 
positive-definiteness, unfortunately does not assure 
freedom from numerical difficulties. In particular, the 
matrix P n -1 and its inverse P n are very frequently 
ill-conditioned matrices, in the sense that they may have 
numerically large elements but a relatively small 
determinant. In particular, suppose that at some step 
Pn-I is very small (i.e., Pn is very large) but that 
Hn'Rn-IHn is large, i.e., Rn is small-this corresponds to 
the case in which the sensors are very accurate. Suppose 
also that not all the state variables are measured; then 
Hn'Rn-IHn will be a singular (positive-semidefinite) 
matrix and the sum 

P n -1 = P n -1 + H n' Rn -1 H n 

will be ill-conditioned. The computation of its inverse 
may be expected to be fraught with error. 

One obvious possible solution to the problem of 
ill-conditioned covariance matrices is to increase the 
precision of computation. When double-precision hard­
ware is available, the only significant cost is in storage, 
and thus double-precision calculations may be a feasible 
cure. In instances when double-precision hardware is 
not available, or when numerical difficulties traceable 
to ill-conditioned matrices persist even when double­
precision arithmetic is used, it is necessary to seek 
alternative methods. Various ad hoc "fixes" have been 
used with success. One method is to add fixed small 
positive numbers to the diagonal elements of the 
covariance matrices as they are computed, on the theory 
that if a matrix is nearly singular, the addition of a 
small positive diagonal matrix makes it less so. Another 
method, entailing more calculation, is to test the 
covariance matrix for positive-definiteness, and, if at 
any stage, the matrix becomes indefinite, to add a small 
positive definite matrix just large enough to make the 
result slightly positive-definite. Since the covariance 
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matrix is theoretically symmetrical, some users employ 
a "symmetrization" operation in which P n is replaced 
by (Pn +Pn')/2, which is, of course, a symmetric 
matrix. The advantage of symmetrization is not certain, 
however, because the real parts of the eigenvalues of a 
matrix are unchanged by this operation, and, as a 
result, indefiniteness is not affected by symmetrization. 
On the other hand, numerical difficulties which might 
be obvious upon inspection of the unsymmetrized 
covariance matrix could be masked by the sym­
metrization operation. 

A systematic method of possibly overcoming the 
ill-conditioning problem is to use the inverse of the 
covariance matrix (which some investigators have 
called the "information matrix"). In particular, let 

Then, using (4.3) 

bn=bn+HnRn-IHn' (4.4) 

and using (2.9), which implies Kn=PnHn'Rn-I, we 
obtain 

(4.5) 

The inverse Rn -1 of the observation noise covariance 
matrix can be given as input data instead of Rn. Thus 
the information matrix bn is obviously no worse condi­
tioned than bn and its inversion to obtain the gain ma­
trix Kn from (4.5) should cause no difficulty. Moreover, 
any error which arises in the computation of Kn is 
not propagated to later steps in the filter operation. In 
the absence of dynamic excitation noise (Qn==O) , the 
time update of the information matrix is given by 

(4.6) 

where 
\[r n = ipn -1' 

Because \[r n' is the inverse of a transition matrix, it can 
be computed by numerical integration of the adjoint 
differential equation , 

. [aotJ 
\[r= - ax \[r 

and entails no matrix inversion. Thus, when there is 
no process excitation present, the computational 
requirements of this method are comparable to the 
method of covariance matrices; the major difference is 
that now it is necessary to invert an n X n matrix bn 

to obtain the gain matrix instead of an rXr matrix 
(H nP nH n' + Rn). Since r, the dimension of the observa­
tion vector is usually much smaller than n, the addi­
tional computer time needed to realize the calculations 
using (4.4) through (4.6) may be rather considerable. 
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When random excitation is present in the dynamics, 
i.e., rn~O in (1.1), then (4.6) is not valid; instead, the 
correct relationship is 

(4.7) 

and entails an additional matrix inversion. In most 
cases, however, the additive noise as represented by 
r nQnr n' would be expected to be quite small, and the in­
verse of the bracketed matrix in (4.7) can be approxi­
mated by bn - bn'l' n'r nQnr n''I' nbn. Thus (4.7) would be 
approximated by 

(4.8) 

The computation of the additional term in (4.8) not 
present in (4.7) entails two additional matrix multi­
plications, which may not prove significantly better to 
evaluation of (4.7). 

I t is worth pointing out that the matrices to be 
inverted in all aspects of Kalman filtering are sym­
metric and (theoretically) positive-definite. Use of 
inversion algorithms that are specific for such matrices 
might be desirable. In particular, the Gauss-Seidel 
iterative method for inverting bn-1+'I'n'r nQnr n''I'n, 
with bn used to start the iteration, would very likely 
converge in one or two iterations. 

AnQther method for dealing with the ill-conditioned 
matrices that arise in the recursive least-squares 
algorithm, has been termed the "square-root method." 
The method is based on representing each covariance 
matrix as the product of a lower triangular matrix and 
its transpose, i.e., 

(4.9) 

where S is a matrix in which Sij=O for j>i. When P 
and S are scalars S = vip, hence the name of the 
method. (In a strict sense a lower triangular matrix S 
satisfying (4.9) is not the square root of P. A true 
matrix square root, say W, satisfies W2=P, and when 
P is symmetric, W is also symmetric and thus cannot 
be lower triangular.) 

A survey of the background and current status of the 
square-root method is contained in a recent paper by 
Kaminski, Bryson and Schmidt.19 In the absence of 
process noise, the square root algorithm may be ex­
pressed by the formulas 

Kn = SnF nGn'-lGn-l ( 4.10) 

where 

Fn=Sn'Hn' ( 4.11) 

and 

GnGn' = Rn+Fn'Fn ( 4.12) 

i.e., Gn IS the (unique) lower triangular factor of 

Rn + F nF n' and Gn' is the corresponding upper tri­
angular factor. The updating of the "square root" 
matrix is done using 

where 

8n=Sn-SnFnGn-I1(Gn'+ Vn)-lFn' (4.13) 

Sn+1 = cI>n8n 

VnVn'=Rn 

Only triangular matrices are inverted in (4.10) and 
(4.13) which is a considerable advantage. The major 
computational chore is in the factorization of the 
matrix Rn+FnFn'. This factorization problem is some­
what analogous to the spectral factorization problem 
which arises in Wiener filtering (see Friedland20 for a 
discussion of this connection as well as for independent 
development of the Cholesky-Banachiewicz algorithm19 

for accomplishing the factorization). 
When process noise is present, a more complicated 

algorithm is needed, but the basic ideas are the same. 
The large consumer of computer capacity is the 

triangularization operation impJicit in (4.12) . The 
efficiency of the square-root method thus depends on 
the algorithm used to find Gn • The authors of Reference 
19 have made an extensive study of suitable algorithms 
and conclude that Householder's algorithm is adaptable 
to this problem. A count of operations made in Refer­
ence 19 shows that the square-root algorithm may 
typically require only as much as 30 percent of addi­
tional computer time over that required by the 
conventional (Kalman-Bucy) algorithm and even less 
time than use of the information-matrix algorithm. 
The numerical advantage of the square-root method is 
claimed to be equivalent to doubling the precision of 
calculations: " ... a single precision square-root filter 
would provide the accuracy equivalent of a double 
precision conventional filter in ill-conditioned prob­
lems."19 

CONCLUDING REMARKS 

No survey of the first decade of Kalman filtering would 
be complete without a discussion of applications which 
were investigated almost as soon as the theory ap­
peared. (Since the Swerling paper,5 which predates 
Kalman's paper by a year, deals with an application, 
it would be reasonable to assert that applications were 
investigated even before Kalman's theory appeared.) 

Coming at the time of the rapid expansion of the 
country's aerospace program, it is understandable that 
the majority of appliyations were in the aerospace field. 
G. Smith's very timely paper13 aroused considerable 



interest when it was presented and perhaps was to a 
very large measure responsible for the rapid assimilation 
of the method by aerospace engineers. The application 
of the method to orbit and trajectory determination 
described in the book21 of a notable expert, R. Battin, 
helped to establish the importance of the theory. Since 
the earliest papers, which demonstrated feasibility of 
the method largely through simulations, the number of 
applications which have been studied is overwhelming. 
Hundreds of papers demonstrating potential per­
formance have been presented at technical meetings 
and have been published in the journals of technical 
societies. Moreover, the published studies represent 
only a small fraction of those actually performed. Many 
others are documented in company internal technical 
reports or in final reports of limited circulation (many 
also classified) prepared under government contract. 
The recursive filtering algorithm is so simple that 
almost anyone can develop a simulation program. 
Many organizations evidently have done so. 

Application of the Kalman filtering technique to 
processing of real-world data has naturally been more 
limited than application studies conducted through 
simulation. Nevertheless, the number and importance 
of real-world applications of this technique is most 
impressive. Those who have listened to the broadcasts 
of Apollo flight conversations must have heard reference 
to "state-vector updates" -clearly the language of 
Kalman filtering. And also the substance. A review of 
the extensive use of Kalman filtering in the Apollo 
program by Battin and Levine is contained in a com­
pendium22 of theory and applications papers that were 
presented at a 1970 AGARD meeting. Another im­
portant application of Kalman filtering has been to 
aided-inertial navigation. The Kalman filter, in this 
application, is used to optimally mix data from an 
inertial platform which has very low inherent short­
term errors, but which can build up substantial secular 
drifts, and non-inertial (e.g., radio ranging, LORAN, 
doppler) navigation aids which have opposite char­
acteristics, namely that they are relatively drift-free but 
typically quite noisy. The Kalman filtering algorithm 
is implemented using an airborne digital computer on 
the C5-A military transport. A description of the system 
is given in Reference 22. Inertial navigation applica­
tions have advanced to the point that implementation 
of the Kalman filtering algorithm is now a significant 
design consideration, in particular, with regard to the 
design of airborne digital computers to be used in 
such systems. 

Kalman filtering applications appears to be signifi­
cantly less widespread outside of the aerospace field. 
Perhaps one reason for this is that dynamic models 
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which playa large role in Kalman filtering are not well 
established for processes if interest, especially in very 
large-scale systems (e.g., urban dynamics, ecological 
systems, etc.). The existence of an analytically-defined 
dynamic model would appear to be a minimum pre­
requisite for application of the recursive filtering 
algorithm, unless methods can be found for using the 
algorithms in the absence of such models. In the field 
of industrial processes, Kalman filtering applications 
have been reported in conjunction with direct digital 
control. An early, and by now rather celebrated, 
application in the Swedish paper-making industry was 
presented by Astrom.23 Other applications in the paper 
industry, the cement industry, the metallurgical 
industry, the electric pm\Ter industry, have been 
reported or proposed. 

The recursive filtering technique developed by 
Kalman and Bucy would appear to be mature and 
vigorous despite its youth. The easy theoretical problems 
seem to have been solved, / and the reasons 'why the 
difficult problems are difficult have been discovered; 
approximate methods have been developed to facilitate 
engineering applications and to develop insights; 
applications in diverse fields have been studied and 
often implemented; the basic results are teachable and 
are included in many curricula in systems engineering. 
Like many engineering analysis techniques of the past, 
some of the glamor of Kalman filtering is likely to wear 
off. What remains, hmvever, will continue to be useful 
for many years to come. 
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On computational methods for dynamic and 
static optimization* 

by D. H. JACOBSON 
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Cambridge, Massachusetts 

INTRODUCTION 

In the 1960s the joint impact of fast digital computers 
and the space age stimulated the ingenuity of a number 
of researchers in optimization and prompted them to 
invent new and/or better (faster, more elegant) methods 
for solving, numerically, optimization problems of 
different types. Two areas that received much attention 
were trajectory optimization and parameter optimiza­
tion. That is, the computational problems of deter­
mining optimal trajectories (generally, functions of 
time) and optimal parameter values by minimizing 
(maximizing) appropriate performance criteria. 

Many of the (very successful) algorithms developed 
were heuristic in that they were good ideas translated 
skillfully, albeit non-rigorously in the mathematical 
sense, into algorithms and computer programs. More 
recently, more effort has been assigned to the theoretical 
problems of convergence and rate of convergence of 
algorithms. But, and this is an important point, new 
powerful algorithms rarely arise out of purely abstract 
treatments while on the other hand good heuristic 
methods seldom manifest themselves unless their 
inventors have at least some deep, albeit informal, 
understanding of theories of convergence which would 
enable them to propose an algorithm which is "unlikely 
not to converge." Thus, good heuristics and theory of 
algorithms should complement one another in the 
invention and development of numerical methods. 

Certain trajectory optimization algorithms that 
manifested themselves, as powerful numerical methods 
for solving real aerospace problems are described in 
References 1 and 5. The reader should acquaint himself 
with these because, though some of the methods are 
dated, insight into the development of computational 
methods in optimization can be gained and, moreover, 

* This research is supported by the Joint Services Electronics 
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certain of the second-variational algorithms remain as 
attractive methods. 

Our work in trajectory optimization (or, more 
generally, computation of optimal controls) has been 
concerned with the development of a class of algorithms 
and a methodology of computation based on Dynamic 
Programming. The approach which is called Differential 
Dynamic Programming (DDP) arose as a consequence 
of an early stimulating paper6 and is quite extensively 
described in Reference 7. While no theorems of con­
vergence are given in Reference 7, conditions and proofs 
for continued descent are provided, and the algorithms 
have successfully solved a number of substantial 
numerical problems. Thus, there is still room for 
theoretical extensions in the form of convergence proofs 
and rate of convergence studies, though these will be 
nontrivial. Mayne's8 recent approach to DDP may 
prove to be useful in these theoretical problems. 

In parameter optimization which, basically, involves 
choosing the values of n variables to minimize a scalar 
function, the most famous and widely used methods are 
given in References 9 and 10. These methods are based 
on quadratic modelling of the function to be minimized 
and hence are quasi-Newton in type. Interestingly 
Fletcher and Powell's algorithm appeared in 1963, 
and has been very popular, but it was not until 1971 
that a proof of convergence was offered by Powell.ll 

Our interest in the function minimization problem 
led us to propose a new class of algorithms which is 
based upon the concept of an homogeneous function. 12 

Our algorithm12 is but one possible example of the use 
of the homogeneous model and it is likely that others 
will be forthcoming. The algorithm is roughly at the 
stage that Fletcher and Powell's was circa 1964 in that 
computational experience suggests that it is attractive, 
while convergence and rate of convergence studies are 
yet to come. 

A recent book which is appealing in its novelty of 
approach to the theoretical questions of convergence 
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and rate of convergence is Polak's. 13 Here, general 
theorems on convergence are presented and applied 
to known and new algorithms. Though this general 
theorem approach is appealing and useful it is not a 
panacea; indeed, some effort appears to be needed to 
twist the algorithm described in Reference 12 into the 
framework and verification of a number of required 
conditions seems to be nontrivial. 14 

With this background and philosophy noted, we 
continue with subsequent sections of this paper which 
describe briefly the notions of DDP for control op­
timization, and homogeneous modelling for function 
optimization. These are two approaches which seem to 
be attractive and which, as outlined above, offer 
potential for future research. 

OPTIMAL CONTROL COMPUTATION 

Problem formulation 

We are concerned with the problem of finding a 
control function u ( .) which minimizes 

I
t! 

V(Xo, u(·), to) = L(x, u, t) dt+F[x(tj)J 
to 

subject to the dynamic system constraints 

x=f(x, u, t); x(to) =Xo 

and the terminal and control constraints 

-.f;(x(t j » =0 

g(u(t»~O 

(1) 

(2) 

(3) 

(4) 

Here, L:RnXRmXRL-7R\ F:Rn~R1, f:RnXRmXR1~ 
Rn, -.f;:Rn~R8, g:Rm~Rq, and all these functions are 
assumed to be three times continuously differentiable 
in each argument. The initial and final times to, tj are 
assumed to be given. 

In general, one is unable to find the absolute mini­
mum of V (some sort of global search technique would 
be required) unless V is a convex functional of u(·) 
which would exclude the possibility of there existing 
a number of local minima having different V values. 
Typically what one can find is a stationary point of V 
or, at best, a local minimum of V. 

It is known that a necessary condition (Pontryagin's 
Principle) for V(xo,u('),to) to have a relative mini­
mum with respect to u(·) at u(·) =Uo(.) is that there 
exist multipliers poER+\ vERB, A(') absolutely con­
tinuous, not all zero, such that 

where 

H(x, u, A, t) = poL (x, u, t) +ATf(x, U, t) (6) 

and 
UO(t) = arg min H (x, u, A, t) (7) 

U(t)EU 

where 
u= {u(t) :g(u(t» ~O} (8) 

Usually one assumes that the problem is normal (i.e., 
that the conditions can be satisfied with po:;eO) so that 
po can be set equal to unity. 

Thus, at the very least, one is interested in deter­
mining a control function which satisfies the above 
necessary condition. 

Certain algorithms [2J, [3J are based directly on 
second-order expansions of the above optimality 
conditions, but we prefer to use the notion of DDP 
which is intuitively more appealing and gives rise to 
algorithms which are significantly different from those 
arising from expansions of conditions (5) - (7) . Of 
course, with hindsight, it is possible to derive these 
algorithms by expanding (5)-(7) but it is the Dynamic 
Programming formulation which gave rise to these in 
the first place (see Reference 15 for some discussion 
of this). 

For the purpose of this presentation we shall assume 
g ( • ) = 0 (i.e., no control constraints) and at the outset 
we shall assume -.f;(.) =0 (no terminal constraints) 
though we shall allow -.f;( ·):;e0 later in the paper (see 
Reference 7 for DDP algorithms that handle control 
constraints) . 

We define the optimal value function VO(x, t) by 

..1 jt! 
VO(x, t) = min L(x, u, t) dt+F(x(tj» 

U(T) ,t<T<tf 

(9) 

On assuming that VO(x, t) is twice continuously 
differentiable with respect to x, t one can obtain the 
following (Bellman) partial differential equation for 
VO(x, t) : 

- (avo/at) (x, t) 
=min[L(x, u, t)+{VxO(x, t) Ff(x, u, t)J (10) 

U 

..1 

=minH(x, u, Vxo, t) (11) 
where U 

(12) 

The solution of this partial differential equation is 
straightforward in the case of quadratic L, F and 
linear f (VO turns out to be a quadratic function of x) 
but, in general, it can be solved only numerically. As 
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VO:RnXRl~Rl, storage and computer time require­
ments become unmanageable for n ~ 3. This is in con­
trast to Differential Dynamic Programming which 
allows us to compute the optimal control UO ( .) for 
quite large n but does not yield the global solution of 
Bellman's equation (in many cases knowledge of this 
solution would be of doubtful value; often, all one 
wants is UO(t), tECto, tfJ). 

Differential dynamic programming 

Here we shall indicate the approach of DDP and 
refer the reader to Reference 7 for details of the al­
gorithm. Basically, one guesses a nominal control 
function u( .) which yields a nominal cost V[xo, u( • ), toJ 
and a nominal state variable traj ectory x ( • ). Estimates 
of VxO[x(t),tJ, VxxO[x(t),tJ are obtained and this 
"local information concerning VO" is used to yield an 
improved control function U1(·) =u(·) +ou(·) where 
ou( • ) is such that 

V(xo, U1(·), to) <V(xo, u(·), to) (13) 

The DDP algorithm is then used iteratively until a 
stopping criterion is satisfied; e.g., 

(14) 

Fixed end-point problem 

Here we allow terminal constraints 

(15) 

In order to solve this problem we make the assumption 
that 

.1 

V[xo, u( • ), b, toJ = V[xo, u( • ), toJ+bT1f[X(tf) J (16) 

has a minimum w.r.t. u(·) for all bERs. Note that a 
well-known sufficient condition for this to be true is 
that L(x, u, t) be strictly convex in [x, UJT, F be 
convex in x (tf), f be linear in x, u, and 1f be linear in 
x(tf )· ' 

If the above assumption and certain other conditions 
[7J are satisfied then the optimal solution is given by 

max VO(xo, b, to) (17) 
beRa 

where 

(18) 

DDP extends easily to this situation by computing 
estimates of VbO(xo, 6, to), VbbO(XO, 6, to) to enable the 
nominal value of 6 to be improved iteratively.7 

DDP algorithms for solving problems \vith control 
variable constraints are presented in Reference 7 but 
the important case of control problems with state 
variable inequality constraints has not been solved; 
i.e., the case where the trajectory must satisfy 

S(x(t), t) ~O, VtE [to, tfJ, S:RnXRl~Rl (19) 

Certain optimality conditions for this problem [16J, 
obtained recently, could stimulate activity in this 
important area of research. 

FUNCTION MINIMIZATION 

In the previous section we outlined the DDP ap­
proach for computing minima of functionals (dynamic 
optimization) and suggested a problem (state con­
strained) for future research. Here we wish to outline a 
new approach to the minimization of functions andio 
again suggest research directions. 

Problem formulation 

Minimize C(x), C:Rn~Rl (20) 
x 

Here C is assumed to be twice continuously differentiable 
and to have a unique stationary point, which is its 
minimum, at x=x* (in the case of functions having 
multi-minima and/or stationary points, available 
algorithms will generally find "the nearest one"). 

Available methods 

Apart from the classical steepest descent and Newton 
methods, the two most widely used methods are prob­
ably the conjugate gradient method9 and Fletcher and 
Powell's method.lO These methods have the attractive 
feature of converging in n steps to the minimum if 
C(x) is a quadratic function, 

C(x) = Y2(X-X*)TQ(X-X*) +w (21) 

When applied to non-quadratics (computed examples 
show that) these methods are impressive in their speed 
of convergence provided that the non-quadratic looks 
quadratic in the neighborhood of the minimum [Le., 
provided Cxx(x*) >0]. There is a host of other methods 
based on quadratic models (Quasi-Newton methods) 
and each has its advantages and disadvantages when 
compared with References 9 and 10; see, for example 
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Reference 17. The important point is that researchers 
in this field have exploited and continue to exploit, 
admittedly cleverly, the quadratic model. Thus, the 
homogeneous model, described below, seems to be a 
departure from conventional approaches (though a 
certain method that arises from the homogeneous 
model is closely related to Newton's method). 

Homogeneous function as a model for minimization 
algorithms 

The continuously differentiable function C (x) is 
said to be homogeneous of degree "I if 

C(x) ="1-1 (x-x*)T(ac/ax) (x) +w (22) 

Clearly a quadratic function is homogeneous of degree 
2. An example of a non-quadratic homogeneous func­
tion is 

C(x) = [Y2(X-X*)TQ(X-X*)Jp, p>l, Q>O (23) 

Since Cxx(x*) =0 convergence of conjugate gradient 
methods is particularly poor for this type of function 
[12]. 

Multiplying (22) by 'Y yields 

~ 

'YC(x) = (x-x*)T(ac/ax) (x) +w, 'Yw=w (24) 

N ow, the attractiveness of this model is apparent; 
namely, the unknowns x*, "I, w appear linearly and can 
be solved for, given n+2linearly independent vectors 

[C(Xi), (ac/ax) (Xi), -IJ, i=I, ... n+2 (25) 

Our new algorithm, for general functions, described in 
Reference 12 is one possible procedure for iteratively 
updating the estimates of x*, "I, w as new data points 
become available. Numerical experience indicates that 
the algorithm is at worst competitive with Fletcher 
and Powell's and, in a number of representative 
examples, is almost twice as fast in terms of number of 
evaluations of the pair [C (x), (aC / ax) (x)]. 

Though the class of homogeneous functions is larger 
than, and includes, quadratic functions, a suitable 
modification of Newton's method will find the minimum, 
x*, in one step. Differentiating (24) with respect 
to x yields 

[(a2c/ax2) (x)J(x-x*) = ("1-1) (ac/ax) (x) (26) 

whence, if the required inverse exists and is positive 
definite, 

x*=x- ("1-1) [(a2c/ax2) (x) J-1 (ac/ax) (x) (27) 

Note that this is a Newton step modified by the scale 
factor ("1-1). Thus Newton's method, which minimizes 
a quadratic in one step, minimizes a homogeneous 
function if a step length of ("1-1) is used. This appears 
to be unknown in the function minimization literature 
though analogous behavior, in the problem of locating a 
repeated root of an equation, was recognized in 1870 by 
Schroder. Unfortunately, methods which generate 
estimates of the second derivative matrix (inverse) 
from past data, for example Fletcher and Powell, do 
not preserve this valuable property; this is another 
motivation for estimating x*, "I, w directly from (24), 
as is done in Reference 12. 

CONCLUSION 

In this paper our intent is to place in perspective certain 
approaches to the development of optimization tech­
niques, and to suggest certain research directions. 

Two areas of recent activity, namely dynamic and 
static optimization via DDP and homogeneous model­
ling, are introduced. DDP and homogeneous modelling 
are two novel approaches to optimization which could 
be exploited further. 
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Piecewise linear approximations of fewest line segments 

by D. G. WILSON 

Virginia Commonwealth University 
Richmond, Virginia 

INTRODUCTION 

Schwerdtfeger4.5 has considered the problem of inter­
polation and curve fitting over a given partition by a 
sum of continuous sectionally linear functions. He 
showed how to construct an orthogonal system of these 
functions over a given partition and how to use this 
system to obtain an approximation of a given function 
which is best in the least square sense. 

Stone,6 Bellman,! and Gluss2 have analyzed various 
aspects of the problem of obtaining a piecewise linear 
approximation, not necessarily continuous, with a given 
number of line segments which is best in the least 
square sense. 

IVlore recently, Phillips3 has given an algorithm for 
obtaining a continuous piecewise linear approximation 
to a function whose second derivative is of one sign. 
This algorithm gives an approximation which is of 
fewest segments among those with a given deviation. 
The output from this algorithm is a partition of the 
given interval and the parameters of a straight line 
over each subinterval of the partition. 

We consider the problem of approximating a con­
tinuous sectionally linear function by another piecewise 
linear function, which mayor may not be continuous, 
satisfying: 

(a) the approximation is within a given deviation, 
which need not be constant, of the given function 
and 

(b) the approximation is extremal in the sense that 
there is no other piecewise linear approximation 
which is within the same or lesser deviation and 
which has fewer line segments. 

We give an algorithm which solves the problem as 
stated and a modification which gives a continuous 
piecewise linear, approximation which is within a given 
deviation of the given function and which is extremal 
among such approximations in the sense given above. 

We thus solve the problem of fitting data known only 
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at discrete abscissa values within a variable tolerance. 
Our algorithms can also be used to approximate con­
tinuous functions. However, in this case a partition of 
the interval of interest must be chosen first, the values 
of the function at these points computed, and an initial 
continuous piecewise linear approximation obtained by 
linear interpolation. It is evident that our algorithms 
cannot give a "good" fit if this initial approximation is 
not "good." It is also evident how to make this initial 
approximation "good." But it is not at all obvious how 
to make it how "good." We have not solved this 
problem in general. Perhaps a combination of Phillip's 
algorithm and ours could be used to solve the problem 
for continuous functions whose domains are separable 
into intervals over which the second derivative is of 
one sign. 

In the second section we give a precise statement of 
the problem we have solved. Section three contains the 
basic algorithm and the modification. Section four 
contains the proofs which validate the algorithm. 
Section five contains some sample results. Section six 
acknowledges the assistance of others. A listing of a 
FORTRAN program which implements our algorithms 
is appended. 

STATEMENT OF THE PROBLEM 

Let P denote a partition of the finite interval [a, b]. 

Let f (x) be a continuous function defined on [a, b J 
which is linear on each subinterval [Xi-I, xiJi = 1, ... , n. 
Let 0 (x) be the continuous sectionally linear extension 
to [a, b J, obtained by linear interpolation, or 0 (x) = OJ 
when x=xjEP, where 0i>O, j=O, ... , n, are the 
permissible deviations at the points of P. 

Then the problem is, given Uo = a, determine m, pi, qi, 
and Ui, i= 1, ... , m such that F(x) given by: 
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when xE [Ui-I, Ui) for i = 1, ... ,m and 

F(um) =Pmx+qm, 

satisfies If(x)-F(x)l:::;o(x) for xE[a,bJ and m, 
the number of linear segments of F, is a minimum. 

THE ALGORITHM 

We consider eachf(xi) as the center of a vertical line 
segment of length 20i over the corresponding Xi. We 
denote by Lt(x) and Lb(X) the continuous piecewise 
linear functions f + 0 and f - 0 respectively. 

Briefly our algorithm successively determines the 
longest "line of sight" into the two dimensional "tunnel" 
bounded by Lb and Lt. The process terminates since 
there are only a finite number of data points. 

We index the approximating line segments by a 
parameter k initially set to 1. We define a parameter 
"A (k) taking values + 1 and -1 which indicates whether 
the previous line segment, the (k-l)th, terminated on 
L t, "A(k) = +1, or on L b, "A(k) = -1. It is evident that 
any line segment which at each point X of its domain, 
is within 0 (x) of f (x) must either extend to x = b or 
terminate either on L t or on Lb. Initially we arbitrarily 
take "A(I) = +1. 

Weare interested in the maximum and minimum 
permissible slopes for an approximating line segment 
through a given point. Accordingly we define: 

Sk(X, y) = [Lt(y) -f(x) - "A(k)o(x) J/ (y-x), (2.1) 

Sk(X, y) = [Lb(Y) -f(x) -"A(k) o(x) J/ (y-x), (2.2) 

and 
CTk(X, y, B) = supz<z:::;y{Sk(X, z), B}. 

~k (x, y, A) is the minimum of the maximum per­
missible slopes of approximating segments over [x, y J 
through (x,f(x) +"A(k)o(x)) which are not greater than 
some given slope A. Similarly CTk(X, y, B) is the maxi­
mum of the minimum permissible slopes of approxima­
ting segments over [x, yJ through (x,f(x) +"A(k)o(x)) 
which are not less than some given slope B. 

If ~k(X, y, A) ~Uk(X, y, B), then an approximating 
segment can be drawn through (x,f(x) +"A(k)o(x)) 
which extends at least from x to y. We are naturally 
interested in the largest y for which this is true. We 
define 

Yk(x, A, B) = sup{y I y:::;b, ~k(X, y, A) ~Uk(X, y, B)}, 

Hk(x, A, B) = max {i I xiE P, Xi:::; Yk (x, A, B) }. 

Yk(x, A, B) is the right endpoint of the domain 
of the longest approximating segment through 

(x,f(x) +"A(k)o(x)) with slope between Band A. 
The value of Yk(x, A, B) may not be in P, but this 
value can be determined since f is a continuous piece­
wise linear function. We will return to this point. 

Before giving the algorithm we define three more 
quantities of interest. Let 
Xk(x, A, B) 

r max[x, {Xi I xiEP, Xi<Y.(X, A, B), 

= 1 S.(x, Xi) ~ 2:. (X, Xi, A) I] if A(k) ~ + 1 

max[x, {xiE P, Xi< Y.(x, A, B), 

Sk(X,Xi)=Uk(X,Xi,B)}J if }"(k) =-1, 

(the sets defined in braces in the previous expression 
may be empty) , 

Pk(w, x, y, z) 

min{min[sk(Y, Xi) I xiE P, W:::;Xi<yJ, 

if "A(k) = +1, 

Sk(X, y) if "A(k) = -1, 

Qk(W, x, y, z) 

Sk(X,y) if "A(k)=+I, 

if "A(k)=-1. 

Xk(X, A, B) determines a "pivot point" in our two 
dimensional tunnel to the right of x. This will be taken 
as a new "eyepoint" for determining a new "line of 
sight" extending farther to the right. Pk and Qk deter­
mine respectively a maximum and a minimum slope for 
a new segment through the pivot point. These will 
determine the parameters A and B for subsequent 
evaluations of Uk, ~k, Yk, X k. This is another point to 
which we shall return. 

We are now ready to give our algorithm: 

Initialization: 

Set: Zo = z* = Uo = a, "A ( 1) = + 1, j = 1, k = 1, 

Ao= [f(XI) +O(Xl) -f(xo) -o(xo) J/ (Xl-XO) , 

Bo= [f(Xl) -O(Xl) -f(xo) -o(xo) J/ (Xl-XO). 

Set an indicator if the approximation is to be con­
tinuous. 
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Iteration: 

1. Compute: Yi= Yk(Zi-l, Ai-I, B i- I) , 

h=Hk(Zi-l, Ai-I, B i- I) +1, 

Zi=Xk(Zi-l, Ai-I, Bi- I). 

2. If Yi = b, then go to Termination step 4. 
3. If X(k)=+1 and Sk(Zi-I,Xh) <Uk(Zi-I,Xh,Bi- I), 

or if X (k) = -1 and Sk (Zi-I, Xh) > ~k (Zi-I, Xh, Ai-I), 
then go to Termination step 1. 

4. If Zi = Zi-I, then go to Termination step 2. 
5. Compute: Ai=Pk(Z*, Zi-I Zh Yi), 

Bi=Qk(Z*, Zi-I, Zh Yi)' 

6. Increment j by + 1 and go to Iteration step 1. 

Termination: 

1. If X(k)=+1, then set Pk=Sk(ZhYi)' If 
X(k) = -1, then set Pk= Sk(Zh Yi)' Set qk= f(zi) + 
"A(k)O(Zi) -PkZi' Set X(k+l) =X(k). Go to 
Termination step 3. 

2. If X(k) = -1, then set Pk=Sk(Zi, Yi)' If 
"A(k) = + 1, then set Pk = Sk (Zh Yi)' Set qk = f(zi) + 
"A(k)o(z) -PkZi' Set X(k+1) = -X(k). 

3. Set: Uk=Yh 

Ao= Sk(ZO, Xh), 

Bo= Sk (zo, Xh). 

If the approximation is to be continuous, then 
set z* = Zh otherwise set z* = Yi' If the approxi­
mation is to be continuous and k> 1, then 
recompute Uk-I, the abscissa value at the inter­
section of the current and previous segments. 
Set: j = 1, increment k by + 1 and go to 
Iteration step 1. 

4. Set: Pk = {~k (Zi-I, b, Ai-I) +Uk (Zi-I, b, Bi- I) } /2, 

qk=f(Zi-l) +"A(k) o (Zi-I) -Pkzi-I, 

uk=b. 

If the approximation is to be continuous and 
k> 1, then recompute Uk-I, the abscissa value at 
the intersection of the current and previous 
segments. End. 

VALIDATION 

In this section we show that Yk(x, A, B) can be 
computed, that the algorithm just given does generate 
a piecewise linear approximation which is extremal in 

. the sense already defined and finally that the modifica­
tion to be implemented for a continuous approximation 

does generate an extremal continuous piecewise linear 
approximation as asserted. 

Lemma 1: 

For a fixed x the functions Sk (x, y) and Sk (x, y) are 
continuous piecewise linear functions of (Y-X)-I for 
Y E (x, b], and the partition of the functions into 
segments linear in (Y-X)-I is exactly P. 

Proof: 

The functions are rational and hence continuous on 
(x, b]. Let Xi and Xi+! be successive points of P n [x, b]. 
That Sk and Sk are linear in (Y-X)-I for yE (Xi, Xi+!] 
follows from substituting 

LJ.I(Y) =LJ.I(Xi) + [LJ.I(Xi+l) -LJ.I(Xi) ](Y-Xi) / (Xi+I-Xi) 

for p,=t into the definition of Sk equation (2.1) and 
for p,=b into the definition of Sk equation 2.2. Writing 
(Y-Xi) = (y-x) + (X-Xi) and dividing out (y-x) 
gives an expression linear in (Y-X)-I. 

Corollary 1: 

For a fixed X E [a, b], if Xi and Xi+! are successive 
points of Pn[x,b],then Sk(X,y) and Sk(X,Y) are 
monotone functions of Y for Y E (Xi, Xi+l]. 

Corollary 2: 

For fixed xE [a, b], Sk(X, y) and Sk(X, y) take their 
minimum and maximum values respectively at points 
y' and y" which belong to pn (x, b]. 

Lemma 2: 

For a fixed X E [a, b], A and B, if Xi and Xi+! are 
successive points of pn (x, b] with ~k(X, Xi, A) ~ 
Uk(X, Xi, B) and ~k(X, Xi+!, A) <Uk (X, Xi+!, B), then 
either Sk (x, Xi+l) > ~k (x, Xi, A) or Sk (x, Xi+l) < 
Uk(X, Xi, B) and not both. 

Proof: 

We show first that under the hypothesis not both 
inequalities may hold. Since Sk(X, Xi+!) ~Sk(X, Xi+!) , 
both inequalities would imply Uk (X, Xi, B) > ~k(X, Xi, A) 
which contradicts the hypothesis. 

We now show that under the hypothesis not both 
inequalities may fail. From the definition of ~k and Uk, 
and lemma 1: If Sk (x, Xi+!) ~ ~k (X, Xi, A) and 
Uk(X, Xi, B) ~~k(X, Xi, A), then Uk(X, Xi+l, B) ~ 
~k(X, Xi, A); similarly if Sk(X, Xi+!) ~Uk(X, Xi, B) and 
~k(X, Xi, A) ~Uk(X, Xi, B), then ~k(X, Xi+l A) ~ 
Uk (X Xi, B). Thus, if the hypothesis held but both 
inequalities failed we would have: ~k (x, Xi, A) ~ 
Uk(X, Xi+l, B) > ~k(X, Xi+l, A) ~Uk(X, Xi, B). But this 
implies Sk (x, Xi+l) > Sk (x, Xi+!) which is impossible. 
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Lemma 3: 

For a fixed xE [a, b], A and B, let Xi and Xi+! be 
successive points of P(](x,b] with ~k(X,Xi,A)~ 

Uk (X, Xi, B) and Uk (X, Xi+l, B) > ~k (x, Xi+l, A) . If 
Sk(X, Xi+l) > ~k(X, Xi, A), then Yk(x, A, B) is the z 
value for which 

Lb(Z) = (z-x) ~k(X, Xi, A) +f(x) +A(k)o(x); 

while if Sk(X, Xi+!) <Uk(X,Xi,B), then Yk(x,A,B) IS 

the Z value for which 

Lt(z) = (Z-X)Uk(X, Xi, B) +f(x) +A(k)o(x). 

Proof: 

Lemma 2 shows that one of these formulae can be 
selected. The formulae follow from the definitions of 
Sk and Sk, Equations (2.1) and (2.2) and the observa­
tions that if Sk (x, Xi+!) > ~k (x, Xi, A), then Sk (x, z) is 
an increasing function of z for Z E (Xi, Xi+l] and we are 
interested in the Z for which Sk(X, z) = ~k(X, Xi, A), 
while if Sk (x, Xi+!) < Uk (X, Xi, B), then Sk (x, z) is a 
decreasing function of z for zE (Xi, Xi+!] and we are 
interested in the z for which Sk(X, z) =Uk(X, Xi, B). 

This lemma shows constructively that Yk(x, A, B) 
can be computed. This is the only function we have 
defined about which there was potential doubt. 

It is evident that our algorithm generates a piecewise 
linear approximation which is within 0 of f. We now 
show that this approximation is extremal. 

For convenience we identify the last Zj associated 
with the kth segment as ek, the abscissa value of the 
eyepoint of this segment. This value is available at the 
termination step of each segment. Note that 

Since each segment, except possibly the right most, 
terminates on either L t or Lb we have shown that each 
approximating segment, again except possibly the 
right most, has at least two points on the boundary of 
our two dimensional tunnel. The extremal property of 
our approximation follows from each approximating 
segment, except possibly the right most, having at 
least three points on the boundary which alternate 
between the boundary lines. 

We will prove this assertion in the next two lemmas. 
The first of these merely establishes a useful geometric 
fact. 

Lemma 4: 

Let asx<y<z, and let R stand for any of: >, <, 
~, S, or =. If A(k) = +1 and Sk(X, y)Rsk(x, z), then 
Sk(X, y)Rsk(y, z). If A(k) = -1 and Sk(X, y)RSk(x, z), 
thensk(x, y)RSk(y, z). 

Proof: 

If A(k) = +1, then the hypotheses imply: 

[Lt(y) -Lt(x) ](z-x)R[Lb(z) -Lt(x)] (y-x). 

In this relation we substitute (z-y+y-x) for (z-x) 
on the left and [Lb(Z) -Lt(y) +Lt(y) -Lt(x)] for 
[Lb(z) -Lt(x)] on the right. The result is: 

[Lt(y) -Lt(x) ](z-y)R[Lb(z) -Lt(y) ](y-x). 

The conclusion, Sk(X, y)Rsk(y, z), follows from dividing 
this relation by (z-y)(y-x) >0. 

The argument is similar in the case A (k) = - 1. 

Lemma 5: 

If the kth approximating segment is not the right 
most and terminates on Lp., where,." = b or t, then there 
exist x'E [Uk-I, Uk) and x"E (x', Uk) such that Lp.(x') = 
X'Pk+A(k)o(x') and Lv(x") =X"Pk+A(k)o(x") where 
if ,." = b, then v = t and vice versa. 

Proof: 

The idea of the proof is simple although the notation 
is complicated. The outline of the proof is as follows. 
If the kth segment is not the right most, then the slope 
of this segment is both the maximum of the minimum 
permissible slopes for approximating segments through, 
(ek' Lp.(ek» which intersect the vertical segment over 
Uk-I, and the minimum of the maximum permissible 
slopes for approximating segments through this eye­
point which intersect this vertical segment. Further­
more each of these slopes is determined by a point on 
the boundary. One of these points is the terminal point 
of the segment, the other is the point whose existence 
this lemma asserts. 

There are four possible cases determined by: 
Lt(Uk) =UkPk+qk with A(k) = ±1, and Lb(Uk) =UkPk+qk 
with A (k) = ± 1. We shall consider the two cases with 
A (k) = + 1. The other two are similar to these. 

We consider first A(k) = +1 and Lt(Uk) =UkPk+qk. 
Then Lt(ek) =ekPk+qk, x'=ek and we need to find 
x" E (x', Uk). If ek = Uk-I, then the slope of the line 
through (Uk-I, Lt(Uk-I» and (Uk+l, Lt(Uk+!» is the 
minimum permissible slope of an approximating 
segment over [Uk-I, Uk]. By lemma 3 and corollary 2 of 
lemma 1 this minimum slope is the slope of a line from 
(Uk-I, Lt(Uk-I» through (Xi, Lb(Xi» for some 
Xi E P(] (Uk-I, Uk]. Furthermore, this Xi is not Uk since 
Lt(Uk) =UkPk+qk. In this case x" is this Xi. 

If ek¢.uk-I, then to determine Uk, Pk and qk more than 
one pass through the iteration phase of our algorithm 
was required. Let ek* and Yk* be respectively Zj-2 and 
Yi-I, where ek = Zi from the determination of Uk, Pk and 
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qk and let Xk * = min {x I x E P, x ~ Yk * }. Then 

Pk= ~k(ek, Uk, A) =uk(ek, Uk, B), 

where 

and 

If there were no x" E (ek' Uk) such that Lb (x") = 
X"Pk+qk, then Pk would equal Band sk(ek, Xi) would be 
less than B for each Xi E pn (ek' Uk]. But this is im­
possible. For the algorithm which gives the value of Yi 
insures that Sk(ek*, ek) :::;sk(ek*,xk*); and lemma 4 then 
implies Sk (ek*' ek) :::;Sk (ek' Xk*). Finally, since A = + 1, we 
have B=Sk(ek*, ek). Hence sk(ek, Xk*) ~B, and the 
existence of an x" is established. 

We suppose now that A(k) = +1 and Lb(Uk) = 
UkPk+qk. Then Lt(ek) =ekPk+qk and we will show that 
there exists x' E [Uk-I, ek) such that Lb(x') = X'Pk+qk. 
This follows from Sk(ek, Uk) =Pk(Uk-I, ek*, ek, Yk*). For 
Sk (ek' Uk) = Uk (ek' Uk, B) = ~k (ek' Uk, A), and if this is 
not A, namely Pk(Uk-I, ek*, ek, Yk*), then there exists 
some xiEPn(ek, Uk) such that Sk(ek, Xi) <A. But this 
contradicts the definition of ek as the last Zi from the 
iteration phase in the determination of Uk, Pk and qk. 

Corollary 1: 

There is no approximating linear segment whose 
domain includes Uk-I which extends farther to the right 
than Uk. 

Proof: 

Such a segment would have to cross our kth approxi­
mating segment twice. 

Corollary 2: 

Our approximation is extremal in the sense stated. 

Proof: 

Any other linear approximation of fewer line seg­
ments must have at least one segment whose domain 
begins to the left of and ends to the right of the domain 
of one of our approximating segments. 

Lemma 6: 

The modification of our algorithm for a continuous 
approximation does give a continuous piecewise linear 
approximation which is extremal in the sense we have 
defined. 

Proof: 

The modification is to one of the argument values 
where Pk and Qk are to be evaluated. The result is to 
insure that for k> 1 the kth segment extended to the 

left intersects the (k - 1) th segment between the x" 
and Uk of lemma 5. That this approximation is extremal 
follows from the observation made in the proof of 
corollary 2 of lemma 5. 

SAMPLE RESULTS 

The appended FORTRAN program, with a suitable 
driver, was run a number of times. An input parameter 
determined if the approximation was to be continuous 
and whether or not the deviation was to vary. If the 
deviation was not to vary it was taken as the first 
input tolerance. 

One set of test data was the following: 

INPUT DATA, NUMBER OF POINTS=20 

x Y TOLERANCE 

1.0000 0.7175 0.1250 
2.0000 0.6250 0.0625 
3.0000 0.6250 0.0625 
4.0000 0.6250 0.1250 
5.0000 0.6563 0.1250 
6.0000 0.7500 0.2500 
7.0000 0.6563 0.1250 
8.0000 0.6406 0.0313 
9.0000 0.7500 0.0312 

10.0000 0.5000 0.0156 
11.0000 0.7500 0.1250 
12.0000 0.6250 0.0625 
13.0000 0.6250 0.0625 
14.0000 0.6250 0.1250 
15.0000 0.6563 0.1250 
16.0000 0.7500 0.2500 
17.0000 0.6563 0.1250 
18.0000 0.6406 0.0313 
19.0000 0.7500 0.0312 
20.0000 1.0000 0.0156 

The results, when the deviation was taken as constant, 
namely 0.125, were: 

2 LINE SEGMENTS WERE REQUIRED TO 
FIT THESE DATA EQUATION OF 
APPROXIMATION IS Y=PX+Q 

FOR U.LT.X.LT.V 

P Q U v Y(U) Y(V) 

0.0 0.6250 1.0000 19.0000 0.6250 0.6250 
0.3750 -6.5000 19.0000 20.0000 0.6250 1.0000 

whether or not the approximation was required to be 
continuous. When the deviation was permitted to vary, 
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the results were: 

6 LINE SEGMENTS WERE REQUIRED TO 
FIT THESE DATA EQUATION OF 
APPROXIMATION IS Y=PX+Q 

FOR U.LT.X.LT.V 

P Q U v Y(U) Y(V) 

0.0113 0.5812 1.0000 8.6372 0.5925 0.6791 
-0.0627 1.2828 8.6372 9.3075 0.7415 0.6995 
-0.1893 2.4086 9.3075 10.0947 0.6467 0.4977 

0.0832 -0.2904 10.0947 11.9235 0.5497 0.7018 
0.0172 0.3621 11.9235 18.6778 0.5673 0.6835 
0.2393 - 3. 7867 18.6778 20.0000 0.6835 1.0000 

when the approximation was not required to be con­
tinuous, and: 

6 LINE SEGMENTS WERE REQUIRED TO 
FIT THESE DATA EQUATION OF 
APPROXIMATION IS Y=PX+Q 

FOR U.LT.X.LT.V 

P Q u v Y(U) Y(V) 

0.0113 0.5812 1.0000 8.0000 0.5925 0.6719 
0.0469 0.2965 8.0000 9.0000 0.6719 0.7188 

-0.2032 2.5474 9.0000 10.0000 0.7188 0.5156 
0.1094 -0.5781 10.0000 11.0000 0.5156 0.6250 
0.0067 0.5513 11.0000 18.6084 0.6250 0.6759 
0.2329 -3.6572 18.6084 20.0000 0.6759 1.0000 

when the approximation was required to be continuous. 
These results show that it may not require any 

additional segments to have the approximation be 
continuous for a given set of tolerances. 

Another set of test data was: 

INPUT DATA, NUMBER OF POINTS = 13 

X Y TOLERANCE 

0.0 5.0000 0.2000 
1.0000 4.0000 0.1000 
2.0000 3.1000 0.3000 
3.0000 3.1000 0.0100 
4.0000 3.1000 0.0030 
5.0000 4.0000 0.2000 
6.0000 5.0000 0.3000 
7.0000 6.0000 0.5000 
8.0000 6.0000 0.2000 
9.0000 6.0000 0.1000 

10.0000 4.0000 0.7500 
11.0000 2.5000 1.0000 
12.0000 1.0000 0.2000 

The results were: 

5 LINE SEG:\IENTS WERE REQUIRED TO 
FIT THESE DATA EQUATIOX OF 
APPROXLUATION IS Y =PX+Q 

FOR U.LT.X.LT.V 

P Q 

-0.7500 4.8000 
0.2727 2.2091 
0.8333 -0.0333 

-0.2632 8.1684 
- 1 . 6500 20. 7000 

U v Y(U) Y(V) 

0.0 2.5333 4.8000 2.9000 
2.5333 4.0000 2.9000 3.3000 
4.0000 7.4800 3.3000 6.2000 
7.4800 9.0360 6.2000 5.7905 
9.0360 12.0000 5.7905 0.9000 

when the approximation was required to be continuous 
and the deviation was taken as 0.2; and: 

5 LINE SEGl\1ENTS WERE REQUIRED TO 
FIT THESE DATA EQUATION OF 
APPROXIlVIATION IS Y=PX+Q 

FOR U.LT.X.LT.V 

P Q 

-0.7000 4.8000 
0.0130 3.0510 
0.7990 -0.0930 

-0.3000 8.6000 
-1.7237 21.6847 

U v Y(U) Y(V) 

0.0 2.4530 4.8000 3.0829 
2.4530 4.0000 3.0829 3.1030 
4.0000 7.9099 3.1030 6.2270 
7.9099 9.1905 6.2270 5.8429 
9.1905 12.0000 5.8428 1.0000 

when the approximation was required to be continuous 
and the deviation was permitted to vary. 

The program will accept any non-negative tolerance 
including zero. If all tolerances are zero the program 
gives the parameters for linear interpolation. 
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APPENDIX 

FORTRAN IV G LEVEL 19 MAIN 

0001 
0002 

000:3 

0004 
0005 

0001;. 
0007 
000:::: 
0009 
0010 
0011 
0012 
001:3 
0014 
0015 

0011:.. 

0017 

0018 
0019 

0020 

C PIECWISE LINEAR APPROXIMATION OF FEWEST 
C LINE SEGMENTS WITHIN A GIVEN TOLERANCE. 
C BY D G WILSON AND W T LIPSCOMB III 
C VIRGINIA COMMONWEALTH UNIVERSITY. 
C 

r' 
C 
C 
C 
C 
C 
C 

SUBROUTINE STL(X,Y,E,N,U,P,Q,K,ITCH) 
DIMENSION X(9),Y(9),E(9),U(9),P(9),Q(9) 

X AND Y ARE INPUT DATA ARRAYS OF N ELEMENTS 
Y = P(I)*X + Q(I) IS THE EQUATION OF THE 
ITH SEGMENT OF THE PIECEWISE LINEAR APPROX­
IMATION. THE ITH SEGMENT EXTENDS FROM 
X = UeI) to X = U(I+l1. K IS THE NUMBER 
OF SEGMENTS. IF THE INDICATOR ITCH IS 
EITHER 1 OR 3, THE APPROXIMATION MUST BE 

C CONTINUOUS. IF ITCH IS 2 OR 3, E IS A 
C TABLE OF N PERMISSIBLE DEVIATIONS.. IF ITCH 
C IS LESS THAN OR EQUAL TO 1, THEN E(l) IS 
C THE SINGLE PERMISSIBLE DEVIATION. 
C 
C * * * * * * * * * * * * * * * * * * * * * * 
C INITIALIZATION 
c 
C FROM SCRATCH 
C 

C 
C 

.J = 1 
J IS THE INDEX INTO THE U ARRAY. 
ILLEGITIMATE DATA CAUSES ERROR RETURN WITH 

C K, THE NUMBER OF LINEAR SEGMENTS, EQUAL O. 
C THE MINIMUM NUMBER OF DATA POINTS IS TWO. 

IF (N.LE.l) GO TO 777 
IF (E(l).LT.O.O) GO TO 777 

C DEVIATIONS MUST BE NONNEGATIVE 
C CHECK FOR DATA OUT OF ORDER. 

r' 
r' 
C: 

DO 29 L =. 2, N 
IF (X(L-l).GE.X(L» GO TO 777 
IF (ITCH.LE.l) GO TO 29 
IF (E(L).LT.O.O) GO TO 777 

29 CONTINUE 
EP:3LN = E( 1 ) 
YINIT = Y(l) - EPSLN 
:::;dN = 1.0 
KEEP = 1 
U(l) = X(l) 

U(M) IS THE LEFTMOST ABCISSA VALUE FOR THE 
MTH SEGMENT AND THE RIGHTMOST ABCISSA VALUE 
FOR THE (M-l)TH SEGMENT. 

I = 1 
C I IS THE INDEX INTO THE X AND Y ARRAYS. 

C 
C 
,-. 
'-' 

YEYE = Y(l) + EPSLN 
XEYE, YEYE ARE THE COORDINATES OF THE 
CURRENT EYEPOINT. 

C FOR EACH LINE SEGMENT 
c 

c 

3!:i CONT I NUE 
IF (U(J).GE.X(N» GO TO 777 

TEST FOR END OF DATA 
XEYE = U(.J) 
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FORTRAN IV G LEVEL 19 STL 

0021 

0022 

002:::: 
0024 
0025 

(l021::.. 
0027 

0029 

00::::0 

0031 
0032 

00::::::: 

00:34 
0035 

0031:.. 
00:37 

003:::: 
00::::9 

0040 

C 
r­
C: 

U(J-l), YINIT ARE THE COORDINATES OF 
THE POINT OPPOSITE THE ORIGONAL EYEPOINT 
OF THE CURRENT SEGMENT. 

INIT :: 1 
C I NIT U:: THE I NDE X OF THE F I'R::::T 1 NPUT 
C X VALUE IN THE CURRENT SUBDIVISION. 
C THIS MAY NOT BE THE INITIAL X-VALUE 
C OF THE CURRENT SEGMENT. 

c 

C 
r-
C 
C 

C 
r-
C 
C 
C 

c 
c 
c 

C 
C 

IF (XEYE .GE. XCI») I:: 1+1 
TEST FOR SEGMENT ENDING AT AN INPUT X VALUE 

IF (ITCH.NE.l.AND.ITCH.LT.3) KEEP:: IN IT 
IF (ITCH.GE.2) EPSLN :: SGN*E(I) 

DX:: X(I) - XEYE 
DX :: DISTANCE FROM CURRENT EYEPOINT TO X­
COORDINATE OF POINT CURRENTLY BEING CONSID­
ERED. TO BE USED IN COMPUTING MAX AND MIN 
SLOPES SMAX AND SMIN RESPECTIVELY 

SMAX :: (Y(I) + EPSLN - YEYE)/DX 
SMIN:: (YCI) - EPSLN - YEYE)/DX 
IPIV :: I 

IPIV IS THE INDEX OF THE RIGHTMOST DATA 
POINT FOR WHICH THE CANDIDATE FOR SMAX IS 
LESS THAN OR EQUAL TO THE CURRENT SMAX. 
THIS LOCATES THE CANDIDATE FOR NEW EYEPOINT 
IF PIVOTING IS NECE~SARY. 

IGRAZE :: I 
IGRAIE IS THE INDEX OF THE RIGHTMOST DATA 
POINT FOR WHICH THE CANDIDATE FOR SMIN IS 
GREATER THAN OR EQUAL TO THE CURRENT SMIN 

.J :: .J + 1 
INCREMENT INDEX INTO OUTPUT ARRAYS 

r- END OF INITIALIZATION 

C * * * * * * * * * * * * * * * * * * * * * * 
C DETERMINE MAX AND MIN SLOPES FOR SEGMENT 
C 

c 

C 

C 

C 

55 CONTINUE 
IF (I .EI). N) GO TO 705 

TEST FOR END OF DATA WITHIN CURRENT SEGMENT 
I :: 1+1 

INCREMENT INDEX INTO DATA ARRAYS 
57 CONTINUE 

DX:: XCI) - XEYE 
DX AS BEFORE 

IF (ITCH.GE.Z) EPSLN :: SGN*E(I) 
TEMP1 :: (Y(I) + EPSLN - YEYE)/DX 

TEMP1 IS A CANDIDATE FOR SMAX 
TEST :: TEMP1 - SMAX 

IF (SGN.LE.O.O) TEST:: -TEST 
C SGN WILL BE POS IF PREVIOUS SEGMENT 
C ENDS AT TOP OF TUNNEL, NEG IF PREVIOUS 
C SEGMENT ENDS AT BOTTOM OF TUNNEL 
C IF SGN IS NEG CONSIDER TUNNEL TO BE UPSIDE 
r- DOWN FOR TESTS WITH TEMPl AND TEMP2. 

C 
C 
C 

IF (TEST) 75, 91, 9~:; 

IF CANDIDATE FOR SMAX IS GE OLD SMAX, 
THEN KEEP OLD SMAX. OTHERWISE CANDIDATE 
BECOMES THE NEW SMAX. EPSLN IS NEG IF 
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0041 

0042 
004:3 
0044 
004~; 

004t. 
0047 
0048 
0049 

0050 
0051 
0052 
005:::: 
0054 
0055 

005l:;.. 
0057 
005:::: 
0059 
OOt.O 

0061 
0062 

006::: 
0064 
0065 
OOt.,~. 

00/:;..7 
0068 
OOt.9 
0070 

007 1 
0072 
0073 
0074 
0075 

C INITIAL EYEPOINT IS AT BOTTOM OF TUNNEL. 
75 CONTINUE 

C CANDIDATE FOR SMAX IS LESS THAN OLD SMAX. 
r TEST IF CANDIDATE IS ALSO LESS THAN OLD 
r SMIN. IF SO END SEGMENT AT TOP OF TUNNEL. 

TEST = TEMPl - SMIN 
IF (SGN.LE.O.O) TEST = -TEST 
IF (TE!::;T .LT. 0.0) GO TO lZ1 

!::;MAX = TENPl 
91 CONTINUE 

IPIV = I 
95 CONTINUE 

TEMP2 = (Y(I) - EPSLN - YEYE)/DX 
r COMPUTE CANDIDATE FOR NEW SMIN AND CONPARE 
C WITH OLD MINIMUM SLOPE. 

TEST = SMIN - TEMPZ 
IF (SGN.LE.O.O) TEST = -TEST 
IF <. TE~::;T) 9}, 99, 55 

97 CONTINUE 
TEST = TEMPZ - SNAX 

IF (SGN.lE.O.O) TEST = -TEST 
C COMPARE NEW CANDIDATE FOR MIN SLOPE 
C WITH OLD NAX SLOPE. IF NEW MIN IS 
r GREATER THAN OLD MAX CHECK IF PIVOT 
C IS POSSIBLE. OTHERWISE SET MIN SLOPE 
C TO NEW VALUE AND CONSIDER NEXT DATUM. 

C 

IF (TEST.GT.O.O) GO TO 101 
st'll N = TEMP2 

9'~ CONT I NUE 
IGRAZE = I 

GO TCI 55 

C * * * * * * * * * * * * * * * * * * * * * * 
C CHECK IF PIVOT POSSIBLE 
C 

C 
C 
C 
C 

.-. 
1_. 

C 
C 
C 

101 CONTINUE 
IF (XEYE.EG!.X(IPIV}) GO TO 125 

X(IPIV) IS THE X-COORD OF THE LAST DATUM 
FOR WHICH THE CANDIDATE FOR SMAX WAS LESS 
THAN OR EQUAL TO THE OLD SMAX. IF XEYE IS 
EQUAL TO X(IPIV) NO PIVOT IS POSSIBLE. 

IF (ITCH.GE.2) EPSLN = SGN*E(IPIV) 
XEYE = X(IPIV) 
YEYE Y( IPIV) + EP~=;LN 

Sl"lIN = 
Sl"lAX = (YINIT - YEYE)/(U(J-1) - XEYE) 

IF (KEEP.GE.IPIV) GO TO 105 
IT = IPIV - 1 
TEMP2 = YEYE + EPSLN 

COMPUTE THE NIN OF THE SLOPES FROM ALL 
PRECEEDING DATA POINTS OF CURRENT SEGMENT 
TO (X(IPIV),Y(IPIV) + 2*EPSLN). THIS WILL 
BE A FIRST APPROXIMATION TO THE NEW SMAX. 

DO 103 L = KEEP, IT 
IF (ITCH.GE.2) TEMPZ = YEYE + SGN*E(L) 

TEMP1 = (Y<'L) - TEMPZ)/(X(L) - XEYE) 
TEST = TEMP1 - S~~X 

IF (SGN.LE.O.O) TEST = -TEST 
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0076 IF (TEST.LT.O.O) SMAX :: TEMPl 
0077 103 CONTINUE 
0078 105 CONTINUE 
0079 IF (IPIV.GE.I-1) GO TO 57 
0080 IT = I - 2 

0081 
00:32 
008:3 
0084 
0085 
0081:., 
00::::7 

0089 
0090 
0091 
0092 
009:3 
0094 

0095 

0097 

0098 
0099 

0100 
0101 
0102 
0103 
0104 

0105 

C 
C COMPUTE THE MIN OF THE SLOPES FROM ALL 
C SUCCEEDING DATA POINTS OF THE CURRENT 
C SEGMENT TO (X(IPIV),Y(IPIV» IF THIS IS 
C 
C 

c 

LESS THAN THE PREVIOUSLY COMPUTED VALUE, 
THEN IT BECOMES THE NEW SMAX. 

TEMP2 = YEYE - EPSLN 
DO 111 L = IPIV,IT 

DX = X(L+l) - XEYE 
IF (ITCH.GE.2) TEMP2 = YEYE - SGN*E(L+l) 

TEMPl ::: (Y(L+l) - TEMP2)/DX 
TEST ::: TEMP1 - SMAX 

IF (SGN.LE.O.O) TEST = -TEST 
IF (TEST) 107, 109, 111 

107 CONTINUE 
:::;MAX ::: TENP1 

109 CONTINUE 
IPIV ::: L + 1 

111 CONTINUE 
GO TO 57 

C * * * * * * * * * * * * * * * * * ~ * * * * 
r END CURRENT SEGMENT 

c 
c 
C 
ro 
C 

C 

C 
ro 
C 
C 
C 

C 

121 CONTINUE 
TEMP2 ::: SNIN 
KEEP ::: IGRAZE 

EQ OF THIS SEGMENT IS 
Y :: SMIN * (X - XEYE) + YEYE 
NEW EYEPOINT WILL BE AT THE INTERSECTION 
OF THIS LINE WITH THE LINE BETWEEN 
( X ( 1-1 ) , Y ( 1-1 ) +EP:::;;LN) AND (X <. I ) ,y <. I) +EP::;:LN ) 

IF (ITCH.LE.l) GO TO 135 
GO TO 129 

125 CONTINUE 
SGN ::: -::;GN 
EP:::;LN ::: -EPSLN 
TENP2 ::: SMAX 
KEEP:: IPIV 

EQUATION OF THIS SEGNENT IS 
Y :: SMAX * (X - XEYE) + YEYE 
NEW EYEPOINT WILL BE AT THE INTERSECTION 
OF THIS LINE WITH THE LINE BETWEEN 
(X( 1--1) ,y( 1-1 )-EPSLN) AND (X( I) ,Y( I )-·EPSLN) 

IF (ITCH.LE.l) GO TO 135 
IF ITCH.LE.l, THEN EPSLN IS A CONSTANT 

C NAMELY E(l). 
0106 129 CONTINUE 
0107 TEMPl ::: EPSLN - SGN*E(I-l) 
0108 
o 10':t 
0110 
0111 

GO TO 1:37 
13~i CONT I NUE 

TEMPl ::: 0.0 
137 CONTINUE 
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FORTf~~AN 

01 1'-' .::.. 

01 1 ,-', 
.~ 

01 14 

01 15 

01 1/;. 

01 17 
01 1'-' 1=' 
01 19 

0120 
0121 

0122 
012:3 
0124 

0125 

0126 

0127 

0128 
0129 
01::::0 
01:31 
01:32 
01:3:3 
01::::4 
01:35 
01 :36 

IV 13 LE',jEL 1 '1 

C 

C 

c· -' 
C 
r' -' 
C 
C 
r' 

1 

1 

TEMP1 ::: (Y(I) - Y(I-l) + TEMP1)/ 
(X(I) - X(I-I») 

U(J) ::: (Y(I) + EPSLN - YEYE - TEMPl * 
XCI) + TEMP2*XEYE)/(TEMP2 - TEMP1) 

P( ,J-1) ::: TE\':1P2 
PCM) IS THE SLOPE OF THE MTH SEGMENT 

Q(J-l) ::: YEYE - TEMP2 * XEYE 
Q(M) IS THE INTERCEPT OF THE MTH SEGMENT 

YEYE::: TEMP2*U(J) + Q(J-l) 
(XEYE,YEYE) WILL BE THE COORDINATES OF THE 
NEW EYEPOINT. XEYE WILL BE SET TO U(J). 
IF SEGMENT ENDS AT BOTTOM OF TUNNEL, THEN 
START NEXT SEGMENT WITH EYE POINT AT BOTTOM 
OF TUNNEL. IF SEGMENT ENDS AT TOP, START 
NEXT WITH EYEPOINT AT TOP OF TUNNEL. 

TEMP 1 ::: EP!:::LN 
IF (ITCH.LE.l) GO TO 141 

TEMP1 ::: EPSLN + (SGN*E(I-1) - EPSLN)* 
1 (XCI) - U(.J»/(X(I) -, XCI-l» 

1.41 CONTINUE 
YINIT ::: YEYE - TEMP1 - TEMP1 

C IF APPRO X MUST BE CONTINUOUS, THEN U(J-l) 
C MAY HAVE TO BE RECOMPUTEDo IN THIS CASE 
C ITCH WILL BE 1 OR :3. 

C 

c 
c 

C 
C 
C' 

IF (ITCH.NE.l.AND.ITCH.LT.3) GO TO 35 
145 CONTINUE 

1 

IF (INIT.EQ.l) GO TO 35 
IF INIT IS 1 THE CURRENT SEGMENT IS THE 
INITIAL SEGt1ENT. 

IF (XEYE.EQ.U(J-1» GO TO 35 
IF XEYE IS STILL U(J-1), THEN NO PIVOT WAS 
MADE AND U(J-1) NEED NOT BE RECOMPUTED. 

U(J-1) :::(Q(J-2) - Q(J-1»/ 
(P(J-1) - P(J-2» 

GO TO :::5 
* * * * * * * * * * * * * * * * * * * * * * 
END OF DATA ENCOUNTERED 

705 CONTINUE 
U(.J) ::: X(N) 

P(J-l) ::: O.5*(SMAX + SMIN) 
Q(J-l) ::: YEYE - XEYE * P(J-l) 

IF (ITCH.EQ.l.0R.ITCH.GE.3) GO TO 145 
777 CONTINUE 

K:::.J-l 
RETURN 
END 



Experimental results on a new computer method for 
generating optimal policy variables in (s, S) inventory 
control problem 

by P. E. V ALISALO, B. D. SIVAZLIAN and J. F. MAILLOT 
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Gainesville, Florida 

INTRODUCTION 

The problem of developing a computable solution to 
the optimal periodic review stationary (S, S) inventory 
control problem has not received the same level of 
attention as the theoretical works first initiated in 1951 
by the well-known paper of Arrow, Harris, Marschak.1 

Even for some of the simplest situations, perhaps 
closest to practice, involving a fixed set-up cost, and a 
linear holding and shortage cost, the solution to the 
mathematical problem of determining the optimal 
values of Sand S to minimize the total expected cost 
per period, requires the formal solution of an integral 
equation of the Volterra type and an optimization 
problem of a fairly complex objective function in­
volving the decision variables Sand S. 

Explicit theoretical solutions for sand S can be 
obtained as computable formulas for some very simple 
demand distributions as for example the negative 
exponential distribution. Approximations to the optimal 
solutions were proposed by Roberts2 in 1962. In 1965, 
Veinott and Wagner6 developed an algorithmic pro­
cedure applicable to instances when the demand 
distribution is described by a discrete random variable; 
the study fails to discuss the computational efficiency 
of the algorithm and its usability in practice particularly 
in relation to the large number of input variables (at 
least five) which are necessary to compute a single pair 
of optimal values of (S, S). In practice, this facet of the 
computational problem cannot be ignored since inven­
tory control involves usually several thousand of 
commodities, e~ch commodity necessitating frequent 
updating of the set of input variables due to changes in 
economic or other conditions. In 1968, Sivazlian3 

derived a set of equations to compute the optimal 
values of Sand Q = S - S and developed conceptual 
approaches to solve these equations on the digital 
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computer and on the analog computer. The feasibility 
of using analog computers was demonstrated in a set of 
experiments published in 1970 by Sivazlian and 
Valisalo.5 By using dimensional analysis and using 
numerical inversion techniques for Laplace transforms, 
Sivazlian4 generated a set of graphs for the case of 
gamma distribution demand with integer order, to 
obtain the optimal values of Sand Q for all possible 
values of input variables. The computational feasibility 
of the problem was also discussed. 

Although both analog and digital computer tech­
niques proved successful, certain computational 
deficiencies were encountered in both methods. In 
using analog computers, experimental errors were 
generated when increasing the number of integrators. 
Further the derivation of results for complex demand 
distrib~tions was limited by the capability of the 
analog computer system. In using digital computation, 
the discretization of the problem and the numerical 
method utilized could generate solution instability. 

These two deficiencies were ultimately resolved by 
combining the conceptual basis of analog computation 
with the capacity and speed of digital computers by 
using the Continuous Simulation and Modeling Pro­
gramming (C.S.M.P.) on the IBM 360/65 digital 
computer. The C.S.M.P. is a simulation language which 
works on block diagrams as an analog computer does 
but which utilizes a digital program. The present paper 
presents preliminary results obtained using this com­
putation technique and discusses some inherent merits 
of this method. 

THEORETICAL CONSIDERATIONS 

A brief discussion of the theoretical results as ob­
tained by Sivazlian3 is necessary. 
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TABLE I 

****CONTINOUS SYSTEM MODELING PROGRAM**** 
***PROBLEM INPUT STATEMENTS*** 

INITIAL 
P=IO.jX 
A=XjIC. 

PARAM S=(O. ,2. ,4. ,6. ,8., 12.),X=19. 
DYNAMIC 

XLO=O. 
XLI =REALPL(A,P,XLO) 
XL2 = REALPL(O. ,P, XLI) 
XL3 = REALPL(O. , P, XL2) 
XL4 = REALPL(O. , P, XL3) 
XL5 = REALPL(O. , P, XL4) 

XL6 = REALPL(O. ,P, XL5) 
XL7 =REALPL(O., P, XL6) 
XL8=REALPL(0. ,P,XL7) 
XL9 = REALPL(O. , P, XL8) 
XLlO = REALPL(O. ,P, XL9) 
XLll =REALPL(O. ,P,XLlO) 

XLI2=REALPL(0. ,P,XLll) 
XLI3=REALPL(0. ,P,XLI2) 
XLl4 = REALPL(O. ,P, XLI3) 
XLI5=REALPL(0. ,P,XLI4) 
XLI6 = REALPL(O. ,P, XLI5) 
XLI7=REALPL(0. ,P,XLI6) 

XLl8 = REALPL(O. ,P, XLI7) 
XLI9=REALPL(0. ,P,XLI8) 
XLD = 11. *XLI9 
SM=XI9-XL 
XL=INTGRL( -10. ,XLD) 

PROCED C=BLOC(TIME,S) 

IF(TIME-S)I,2,2 
1 C=O. 

GOT03 
2 C=1. 
3 CONTINUE 

ENDPRO 

SMI=C*SM 
Xl = REALPL(O. ,P, SMI) 
X2=REALPL(0. ,P,XI) 
X3 = REALPL(O. ,P ,X2) 
X4=REALPL(0. ,P,X3) 
X5=REALPL(0. ,P,X4) 

X6=REALPL(0. ,P,X5) 
X7=REALPL(0. ,P,X6) 
X8 = REALPL(O. ,P ,X7) 
X9 = REALPL(O. ,P, X8) 
XIO=REALPL(O. ,P,X9) 
XU = REALPL(O. ,P, XIO) 

Xl2 = REALPL(O. ,P, XII) 
XI3=REALPL(0. ,P,XI2) 
XI4=REALPL(0. ,P,X13) 
XI5=REALPL(0. ,P,XI4) 
XI6=REALPL(0. ,P,XI5) 
XI7=REALPL(0. ,P,XI6) 

XI8=REALPL(0. ,P,XI7) 
XI9 = REALPL(O. ,P, XI8) 
BM=INTGRL(O. ,SMI) 

FINISH SM = O. 

Consider the periodic review inventory control 
problem of a single commodity system where the 
demand per period for the commodity is described 
by a continuous random variable ~ (0 < ~ < 00) with 
probability density function ¢(O identically and 
independently distributed from period to period. Assume 
that the following cost components affect the operation 
of the system: a fixed order cost K, a holding cost and 
a shortage cost. Complete backlogging is allowed and 
delivery of orders is immediate. Let L (x) be the ex­
pected holding and shortage cost over one period when 
the stock level at the beginning of the period following 
a decision is x. An (S, S) policy is in effect, that is, 
whenever the stock level at the beginning of a period 
lies between Sand S, no order is placed, and whenever 
the stock level falls below S, it is brought up to S. It 
can be shown3 ,4 that for S 2:: 0 the values of Sand 
Q = S - S which minimize the total expected cost per 
period for the stationary inventory system are solutions 
to the system of equations 

m(S, Q) =0 (1) 
and 

fQ m(S, x) dx=K (2) 
o 

where m (S, x) satisfies the Volterra integral equation 

2 (6+x) 

+ 
-1 

~(s) 

Figure I-Feedback system simulating the equation 

m(S, x) = - l(S + x) + 1:1) m(S, x - u) cp (u) du 

m(.6 ,x) 



Figure 2-Flow chart for the digital simulation when h 
p = 10, n = 4 and a = .40 

1, 

m(S, x) =-L'(S+x)+ IX m(S, x-~)cp(~) d~ (3) 
o 

Let 
l(x) =L'(x) 

l(s, S) =£{l(S+x)} 

([>(s) =£{cp(x)} 

fii(s, S) =£{m(S, x)} 

Then, from taking the Laplace transforms on both sides 
of (3) and solving for fii(S, s) we obtain 

_ ( ) _ -l(s, s) 
m S, s - 1- ([> ( s ) 

Thus, the integral equation (3) can be solved using the 
feedback system of Figure 1. 

The optimal values Sand Q can be determined by 
observing that the output function m (S, x) must 
satisfy equations (1) and (2). The interesting practical 
case which was investigated was the following: 

Assume. proportional holding and shortage costs, 
measured at end of period, then 

L(x) =h IX (x-u)cp(u) du+p f"" (u-x)cp(u) du 
o x 

(4) 

In inventory terminology, h is the unit holding cost and 

Figure 3-Analog equivalent of Figure 2 
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100 
Q 

Figure 4-C.S.M.P. results for m(S, x) when n = 1, a = .1 and 
increments of .01 

p is the unit shortage cost. Differentiating (4) with 
respect to x, we obtain the following expression for l(x) : 

l(x) = (h+p) IX cp(u) du-p 
o 

(5) 

We shall restrict our attention to the case when 
cp ( .) is a gamma density function of integer order n, 
i.e., 

(a~) n-l 

cp(~) = (n-1)! ae-a~a>O, n=1, 2, ... (6) 

Note then that in the s domain 

([>(s) =an/(s+a)n n=1, 2,... (7) 

THE CONTINUOUS SYSTEM MODELING 
PROGRAM AND EXPERIMENTAL RESULTS 

For illustrative purpose the numerical values of h = 1, 
p = 10 and a = .1 On were used. The selection of this 
particular value of a yields an expected demand of 10 
units per period irrespective of the order of the gamma 
distribution. In Reference 5 a parallel connection was 
used to generate the gamma distribution. In contra­
distinction, a series connection is used in this paper 
involving a cascade of n filters of a/ (s+a). Thus, the 

103 
Q 

Figure 5-C.S.M.P. results for m(S, x) when n = 4, a = 4 and 
increments of .01 
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TABLE II -n = 1. Comparison Data for Alternative Methods Used in Solving for Q and K 

Q K 

Digital Digital Digital Digital Digital Digital 
S Analog 1.0 (inc.) 0.1 (inc.) 0.01 (inc.) Analog 1.0 (inc.) 0.1 (inc.) 0.01 (inc.) 

0 100.0 100 

2 78.9 81 79 

4 62.9 64 63 

6 49.7 51 50 

8 38.9 40 39 

12 22.8 23 23 

Computing Cost 

entire problem was to be redesigned in such a way that 
the number of feedback loops as used in the original 
analog circuitry5 was eliminated; instead, a serial first 
order loop approach was implemented. Figure 2 
illustrates the flow chart of the digital simulation when 
n=4, while Figure 3 is the analog equivalent of Figure 
2. Referring to Figure 2, when time is less than S, c = 0 
and the feedback loop is idle. When time is greater than 

100 

80 

63 

50 

39 

23 

500 499.9 499.4 

315.7 332.6 319.2 320.1 

200.6 211.0 202.3 203.1 

124.9 132.0 126.3 126.8 

76.4 81.0 77.4 77.7 

26.2 28.0 26.6 26.8 

$ 2.45 $ 3.05 $ 8.52 

S, then c = -1 thus initiating the feedback loop. At the 
same time, the last integrator marked 1/ s is turned on 
on operate mode. The logic part has been left out in 
Figure 3 for the sake of simplicity and because it has 
well been defined in Reference 5. The C.S.M.P. program 
for n= 1 to n= 19 (Table I) ,vas so designed as to print 
out the Q and K values when the function m (S, x) 
reaches zero. 

TABLE III-n=4. Comparison Data for Alternative Methods Used in Solving for Q and K 

Q K 

Digital Digital Digital Digital Digital Digital 
S Analog 1.0 (inc.) 0.1 (inc.) 0.01 (inc.) Analog 1.0 (inc.) 0.1 (inc.) 0.01 (inc.) 

0 102.9 103 103 103 528.5 537.4 537.4 537 

2 81.8 83 81 81 338.4 354.5 338.3 339.5 

4 60.0 62 60 60 189.4 201.5 190.2 191.3 

6 41.6 43 41 41 94.1 100.8 94 94.6 

8 26.5 27 26 26 41.1 44.2 40.8 41.1 

12 7.1 7 6 6 5.6 5.8 5.2 5.3 

Computing Cost $ 2.59 $ 3.66 $ 12.37 



DISCUSSION 

A significant marked improvement results for the 
output function m (S, x) ; this is illustrated in Figures 
4, 5 and 6 for values of n= 1, 4 and 19 respectively. 
The fact that the function m (S, x) can be generated 
for a gamma distribution of an order as high as n= 19 
is significant, particularly in the context of previous 
work. 

Tables II and III report respectively some of the 
numerical results for n = 1 and n = 4 obtained from 
analog computation and digital computation using 
C.S.M.P. Increments of 1.00, .10 and .01 were used for 
comparison purposes. 

I t may be noticed that the order of magnitude of n 
depends on the size of the analog installation,5 whereas 
the digital does not seem to have any limitations on the 

103 
Q 

Figure 6-C.S.M.P. results for m(S, x) when n = 19, a = 1.9 and 
increments of .01 
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value of n at all. It is evident that the advantage of the 
analog system is not present in the discretized problem 
particularly when an immediate visual or graphical 
picture is desired for m (S, x) . 
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Bounds on multiprocessing anomalies 
and related packing algorithms 

by R. L. GRAHAM 

Bell Telephone Laboratories, Inc. 
Murray Hill, New Jersey 

INTRODUCTION 

It has been known for some time that certain rather 
general models of multiprocessing systems frequently 
exhibit behavior which could be termed "anomalous," 
e.g., an increase in the number of processors of th2 
system can cause an increase in the time used to com­
plete a job.42 ,36,2o In order to fully realize the potential 
benefits afforded by parallel processing, it becomes im­
portant to understand the underlying causes of this 
behavior and the extent to which the resulting system 
performance may be degraded. 

In this paper we survey a number of theoretical re­
sults obtained during the past few years in connection 
with this topic. We also discuss many of the algorithms 
designed either to optimize or at least to improve the 
performance of the multiprocessor system under 
consideration. 

The performance of a system or an algorithm can be 
measured in several rather different ways.5 Two of the 
most common involve examining the expected behavior 
and the worst-case behavior of the object under con­
sideration. Although knowledge of expected behavior 
is generally more useful in typical day-to-day applica­
tions, theoretical results in this direction require as­
sumptions concerning the underlying probability dis­
tributions of the parameters involved and historically 
have been extremely resistant to attack. 

On the other hand, there are many situations for 
which worst-case behavior is the appropriate measure 
(in addition to the fact that worst-case behavior does 
bound expected behavior). This type of analYEis is cur­
rently a very active area of research, and theoretical 
insight into the worst-case behavior of a number of 
algorithms from various disciplines is now beginning to 
emerge (e.g., see References 7, 14, 15, 19,20,21,26, 27, 
29, 32, 33, 44, 47, and especially Reference 41.) It is 
this latter measure of performance which will be used 
on the models and algorithms of this paper. Since it if:! 
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essential to have on hand the worst examples one can 
think of before conjecturing and (hopefully) proving 
bounds on worst-case behavior, numerous such ex­
amples will be given throughout the text. 

Before concluding this section} it seems appropriate 
to make a few remarks concerning the general area of 
these topics. Recent years have seen the emergence of 
a vital and important new discipline, often called 
"analysis of algorithms." As its broad objective, it 
seeks to obtain a deeper understanding of the nature of 
algorithms. These investigations range, for example, 
from the detailed analysis of the behavior of a specific 
sorting routine, on one hand, to the recent negative 
solutiont to Hilbert's Tenth Problem by j\'iatijasevic37 

and Julia Robinson,43 on the other. It is \vithin this 
general framework that the present. discussion should 
be viewed. 

A GENERAL MULTIPROCESSING SYSTEM 

Let us suppose we have n (abstract) identical pro­
cessors Pi, i = 1, ... , n, and we are given a set of tasks 
::I = {Tli ... , T r} which is to be processed by the Pi. 
Weare also given a partial order t t < on ::I and a func­
tion ,u:::I~(0, 00). Once a processor Pi begins to execute 
a task Tj, it works without interruption until the com­
pletion of that task, t t t requiring altogether ,u (Tj ) units 
of time. It is also required that the partial order be 
respected in the following sense: If T i < T j then T j can­
not be started until Ti has been completed. Finally, 
we are given a sequence L = (T io ... , T i r ), caJled the 

t Which roughly speaking shows that there is no universal 
algorithm for deciding whether a diophantine equation has 
solutions or not. 
tt See Reference 31 for terminology. 
ttt This is known as nonpreemptive scheduling as opposed to 
preemptive scheduling in which the execution of a task may be 
in terrupted. 5 
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T1/3 0 ~O T9/9 

T2/2 
T5/4 

Ts/4 
T3/2 T7/4 

T4/2 Ta/4 
Figure 1-A simple graph G 

(priority) list (or schedule) consisting of some permuta­
tion of all the tasks 3. The Pi execute the T j as follows: 
Initially, at time 0, all the processors (instantaneously) 
scan the list L from the beginning, searching for tasks 
Ti which are "ready" to be executed, i.e., which have no 
predecessors under <. The first ready task T j in L 
which Pi finds immediately begins to be executed by 
Pi; Pi continues to execute T j for the p,(Tj) units of 
time required to complete T j • In general, at any time 
a processor Pi completes a task, it immediately scans 
L for the first available ready task to execute. If there 
are currently no such tasks, then Pi becomes idle. We 
shall also say in this case that Pi is executing an empty 
task which we denote by 'P (or 'Pi). Pi remains idle until 
some other P k completes a task, at which time Pi 
(and, of course, Pk ) immediately scans L for ready 
tasks which may now exist because of the completion 
of T j • If two (or more) processors both attempt to 
start executing a task, it will be our convention to 
assign the task to the processor with the smaller index. 
The least time at which all tasks of T have been com­
pleted will be denoted by w. 

We consider an example which illustrates the work­
ing of the preceding multiprocessing system and various 
anomalies associated with it. We indicate the partial 
order < on T and the function p, by a directed graph t 

T, T9 
3 9 

T2 T5 T7 
0: 2 4 4 

T3 T6 Ts 
2 4 4 

Figure 2-The timing diagram D for G 

t For terminology in graph theory, see Reference 23. 

T1 T3 T9 
3 2 9 

0': 
T2 T5 ¢1 
2 4 4 

T4 T6 Ts ¢2 
2 4 4 4 

Figure 3-The timing diagram D' when L' is used 

G ( <, p,). In G ( <, p,) the vertices correspond to the T i 
and a directed edge from Ti to T j denotes T i < T j. The 
vertex T j of G( <, p,) will usually be labeled with the 
symbols Tj/p,(Tj). The activity of each Pi is con­
veniently represented by a timing diagram D (also 
known as a Gantt chart.2 D consists of n horizontal 
half-lines (labeled by the Pi) in which each line is a 
time axis starting from time ° and is subdivided into 
segments labeled according to the corresponding 
activity of the Pi. In Figure 1 we show a simple graph 
G. 
In Figure 2, we give the corresponding timing diagram 
D assuming that the list L= (TI' T 2, ••• , T 9) is used 
with·three processors. The finishing time is w = 12. 
Note that on D we have labeled the intervals above by 
the task and below by the length of time needed to 
execute the task. 

It is evident from the definition of w that it is a 
function of L, p" < and n. Let us vary each of these 
four parameters in the example and see the resulting 
effect this variation has on w. 

(i) Replace L by L' = (Tl; T 2, T 4, T 5, T 6, T a, T 9, 

T7, Ts), leaving p" < and n unchanged (Figure 
3). For the new list L', w'=w'(L', p" <, n) =14. 

(ii) Change < to <' by removing T4 < T5 and 
T4 <T6• 

For the new partial order <', w' = w' (L, p" <', n) = 16 
(Figure 4). 

T1 T9 
3 9 

0': T2 T4 T7 ¢1 
2 2 4 8 

T3 T5 Ts ¢2 
2 4 4 6 

Figure 4-The timing diagram D' when <' is used 



T1/2 0 ·0 Tg/8 

T2/1 
T5/3 

Ts/3 

T3/1 T7/3 

T4/1 Ta/3 

Figure 5-The new graph G using p,' 

2 3 3 5 

D': 
T9 
8 

8 

Figure 6-The timing diagram D' when p,' is used 

T1 I T8 I CP1 
3 4 8 

T2 T5 
~ 

T9 
2 I 

4 
I 9 I 

D': 
T3 T6 CP2 I 

2 4 9 

T4 I T7 I CP3 I 

2 I 4 I 9 I 

Figure 7-The timing diagram D' when 4 processors are used 

Ts/3 

Figure 8-Another simple graph 
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Tl 
I 

T2 T5 T4 

P'i 
2 2 3 6 

D: w=13 
T3 Ts T7 

P2 4 3 6 

Figure 9-The timing diagram D using the list L 

(iii) Decrease p, to p,' by defining p,'(Ti ) =p,(Ti)-l 
for all i. In this case G ( <, p,) is shown in 
Figure 5. 

The corresponding timing diagram D' is shown in 
Figure 6 where we see w' = w' (L, p,', <, n) = 13. 

(iv) Increase n from three to four (Figure 7). In this 
case w' = 15! 

Note that in (iii) by using the list L" = (Tl' T2, Tg, 

T4, T9, Ts, T6, T7, Ts) we can reduce the finishing time 
to 10 which is less than the 12 of the original un­
shortened problem. This does not always have to occur 
though, as the example given in Figure 8 shows. 

When the (optimal) list L= (Tl' T2, T g, Ts, T6, 

T4, T7) is used, w= 13 (Figure 9). 
If all execution times are decreased by one unit then 

all lists generate the same finishing time w' = 14. A 
typical D' is shown in Figure 10. 

A GENERAL BOUND 

The examples in the preceding section show that 
contrary to what might generally be expected, relaxing 
<, decreasing p, or increasing n can all cause w to in­
crease. It is natural to inquire into the extent to which 
these changes can affect the finishing time w. The 
right measure turns out to be the ratio of the po~sible 
finishing times, and a bound is given in the following 
result. 

Theorem. 19 ,20 

Suppose we are given a set of tasks 3, which we wist 
to execute twice. The first time we use a time function 
p" a partial order <, a list L and a multiprocessing 
system composed of n processors. The second time we 

5 2 

Ts 
3 

5 
Wi =14 

Figure lO-A timing diagram D using shortened times 
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Figure 11-A graph G 

use a time function Ii S J.I.., a partial ordert <' ~ <, a 
list L' and a multiprocessing system composed of n' 
processors. Let wand w' denote the respective finishing 
times. Then 

w'lw~l+(n- )l/n'. (1) 

Furthermore, this bound is best possible in the sense 
that the right-hand side cannot be replaced by any 
smaller function of nand n'. 

For n = n', the bound becomes 

w'lw~2-1/n (2) 

In fact, examples t t can be given19 which show that the 
bound in (2) can be achieved (to within an arbitrary 
E> 0) by varying anyone of the three parameters L, J.I.. 

and <. Note that (2) implies that using the worst 
possible list instead of the best possible list still only 
results in an increase in w of at most a factor of 2-1/n. 

When n = 1, (1) implies w'l w ~ 1 which agrees with 
the obvious fact that the aforementioned changes in 
L, J.I.., < and n can never cause increase in the running 
time when compared to that for single processor. On 
the other hand, when n> 1 then even a large increase 

T 1004 

1000 

T T 

I '°1
02

, 'f': 
1<1> 
€ 

w=1000+2£ 

Figure 12-2 processors are used to execute the tasks of G 

fSince a partial order on J is a subset of J X J, <' C < has the 
obvious meaning. 
tt Recent examples of M. T. Kaufman (personal communication) 
show that in many cases the bounds of (1) and (2) can be achieved 
even when J.!(T) = 1 for all T. 

in the number of processors (but with a fixed list L) can 
cause w to increase as the example given in Figure 11 
shows (where O<E< 1). 

If the tasks of G are executed by two processors 
using the list L= (TI' T2, Ta, ••• , T I004 ) then w= 1000+ 
2E (Figure 12). 

If the tasks of G are executed by 1000 processors 
using the same list L then w' = 1001 +E (Figure 13). 
However, it is always true that the use of a suitable list 
will prevent w from increasing because of an increase 
in n (e.g., in this case, take L= (TlO04, TI, T2, 

... , T1003)). 

We mention here that even if inserted idleness and 
preemption t are allowed in the first run, it can be shown 
that wlw' is still bounded above by 2-1/n.a.18 

PI 
T, T4 TlOO4 

C 1 1000 

P2 
T2 T5 <1> 
C 1 1000 

P 3 
T3 Ts <1> 

D': c 1 1000 w'=1001+€ 

11000 <1> T 1OO3 <1> 
€ 1 1000 

Figure 13-1000 processors are used to execute the tasks of G 

SOME SPECIAL BOUNDS 

We next consider results arising from attempts at 
finding lists which keep the ratio of wi Wo close to one. 
Since for any given problem, there are just finitely 
many possible lists then one might be tempted to say: 
"Examine them all and select the optimum." Not much 
insight is needed, however, to realize that due to the 
explosive growth of functions such as n!, this is not a 
realistic solution. What one is looking for instead is an 
algorithm which will guarantee that wi Wo is reasonably 
close to one provided we are willing to expend an appro­
priate amount of energy applying the algorithm. Un­
fortunately, no general results of this type presently 
exist. There is a special case, however, in which steps in 
this direction have been taken. This is the case in which 
< is empty, i.e., there are no precedence constraints 
between the tasks. We shall restrict ourselves to this 
case for the remainder of this section. 

Suppose, for some (arbitrary) k, the k tasks with the 
largest values of J.I.. have been selected t and somehow 

t i.e., holding a processor idle when it could be busy and inter­
rupting the execution of a task before completion. 
t Recent results of Blum, Floyd, Pratt, Rivest and Tarjan41 allow 
this to be done in no more than 6r binary comparisons where r 
denotes the number of tasks. 



arranged in a list Lk which is optimal with respect to 
this set of k tasks (i.e., for no other list can this set of 
k tasks finish earlier). Form the list L(k) by adjoining 
the remaining tasks arbitrarily but so that they follow 
all the tasks of L k • Let w (k) denote the finishing time 
using this list with a system of n processors. If Wo denotes 
the global optimum, i.e., the minimum possible finish­
ing time over all possible lists then the following result 
holds. 

Theorem. 20 

w(k) <1+ I-I/n 
Wo - 1+ [k/n] 

For k=O(mod n) this bound is best possible. 

(3) 

For the case of k=O(mod n) the following example 
establishes the optimality of the bound from below. 

For 1:=:;i:=:;k+1+n(n-1), define Jl(Ti) by 

{

n for 1:=:;i:=:;k+1, 
Jl(Ti ) = 

I for k+2:=:;i:=:;k+l+n(n-I). 

For this set of tasks and the list L (k) = (Tl' ... , T k , 

T k+2, ... , Tk+1+n(n-l) , Tk+1 ) we have w(k) =k+2n-1. 

Pi 
°1 °2n °2n+1 

P2 
°2 a 2n- 1 

0*: P3 
°3 °2n-2 w*= 4n-1 

Pn- 1 °n-1 On+2 

Pn On °n+l 

Figure I4-The timing diagram D* using the decreasing list L* 

Since wo=k+n, and k=O(mod n) then 

w(k)=I+ l-l/n 
Wo l+[k/n] 

as asserted. 
For k=O, (3) reduces to (2) while for k=n we have 

w(n)/wo:=:;3/2-1/2n. (4) 

The required optimal assignment of the largest n tasks 
to the n processors is immediate-just assign each of 
these tasks to a different processor. For k = 2n, .(3) 
reduces to 

w(2n)/wo:=:;4/3-1/3n, (5) 

a bound which will soon be encountered again. 
An important property of (3) is that the right-hand 

side tends to I as k gets larger compared to n. Thus, in 
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Pi 
°1 °2n-2 

P2 °2 °2n-3 

Do: wo"'3n 
P 
n-2 «n-2 °n+1 

Pn- 1 °n-1 an 

Pn 
°2n-1 a2n °2n+l 

Figure I5-The timing diagram Do using an optimal list 

order for w(k) to be assured of being within 10 percent 
of the minimum value Wo, for example, it suffices to 
optimally schedule the largest 9n tasks. 

Another heuristic technique" for approximating the 
optimal finishing time Wo is to use the "decreasing" 
listt L*= (Til' T i2, ... ) where Jl(TiJ '2.Jl(Ti2 ) '2. .... 
The corresponding finishing time w* satisfies the follow­
ing inequality. 

Theorem. 20 

w* / wo:=:; 4/3 -1/3n. (6) 

This bound is best possible. 
For n= 2, (6) yields a bound of 7/6 which is exactly 

the ratio obtained from the canonical example vdth 
five tasks having execution times of 3, 3, 2, 2 and 2. 
More generally, the follmving example shows that (6) 
is exact. ;) consists of r = 2n+ 1 independent tasks Tk 
with Jl(Tk) =ak=2n-[(k+I)/2] for l:=:;k:=:;2n and 
Jl(T2n+1) =a2n+l=n (where [x] denotes the greatest 
integer not exceeding x). Thus 

= (2n-l, 2n-l, 2n-2, 2n-2, . .. ,n+l, n+l, n, n, n) 

In Figure 14, ;) is executed using the decreasing list 
L* = (Tl' T2, ... , T 2n+1). 

In Figure 15,;) is executed using an optimal list. 

T1 T1 cp 
6 6 

T2 T3 T2 T4 
3 3 3 2 

T4 T5 T3 
2 2 3 

Wo =6 w(6) =7 

Figure I6-Example illustrating difference between L* and L(2n) 

t Such a list can be formed in essentially no more than r log r Ilog 2 
binary comparisons. 33 
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It is interesting to observe that although the right­
hand sides of (5) and (6) are the same, arranging the 
tasks by decreasing execution time does not necessarily 
guarantee that the largest 2n tasks will be executed 
optimally by L*. An example showing this (due to 
J. H. Spencer (personal communication» is given in 
Figure 16. The execution times of the tasks are 
(6,3,3, 2, 2, 2) and three processors are used. 

The following result shows that if none of the execu­
tion times is large compared to the sum of all the execu­
tion times then w* cannot be too far from woo 

Theorem. IS 

If < is empty and 

max Jl. (T) / ~ Jl. (T) ~ (3 
T 

then 
(7) 

Another approach is to start with a timing diagram 
resulting from some arbitrary list and then make pair­
wise interchanges between tasks executed by pairs of 
processors which decrease the finishing time, until this 
can no longer be done. If w' denotes the final finishing 
time resulting from this operation then it can be shown18 

that 

w'/wo~2-2/(n+1) (8) 

and, furthermore, this bound cannot be improved. 

SOME ALGORITHMS FOR OPTIMAL LISTS 

There seems little doubt that even for the case when 
< is empty, Jl.(T) is an integer, and n=2, any algo­
rithm which determines an optimal list for any set of 
tasks must be essentially enumerative t in its computa­
tional efficiency. This problem can be rephrased as 
follows: 

Given a sequence S= (81, ... ,8r ) of positive integers 
find a choice of ei = ± 1 such that 

is minimized. 
Thus any hope for efficient algorithms which produce 

optimal schedules for more general multiprocessing 

t More precisely, the number of steps it may require cannot be 
bounded by a fixed polynomial in the number of bits of informa­
tion needed to specify the input data. 

problems seems remote indeed. There are several special 
cases, however, for which such algorithms exist. 

For the case when Jl. (T) = 1 for all tasks T and < is a 
forest, t Hu28 has shown that the following algorithm 
generates an optimal list Lo. 

(i) Define the level A (T) of any terminal t t task T 
to be 1. 

(ii) If T' is an immediate successor of T, define 
A(T) to be A(T') +1. 

(iii) Form the list Lo= (Til' T i2, ... , Ti r ) in order of 
decreasing A values, i.e., A(Til ) C:.A(Ti2) C:. ••• C:. 
A(Tir ) • 

Theorem. 2s 

Lo is an optimal list when Jl. (T) = 1 for all T and 
< is a tree. 

The only other case for which an efficient algorithm 
is currently known is when Jl. (T) = 1 for all T, n = 2 and 
< is arbitrary. In fact, two quite distinct algorithms 
have been given. One of these, due to Fujii, Kasami 
and Ninomiyall ,12 is based on a matching algorithm for 
bipartite graphs of Edmonds8 and appears to be of 
order O(r3). The other, due to Coffman and Graham,3 
uses the following labeling technique: 

Assuming there are r tasks, each task T will be as­
signed a unique label a(T)e{1, 2, ... ,r}. 

(i) Choose an arbitrary terminal task To and define 
aCTo) = 1. 

(ii) Assume the values 1, 2, ... , k-1 have been 
assigned for some k~r. For each unlabeled task 
T having all its immediate successors already 
labeled, form the decreasing sequence M (T) = 
(ml' m2, ... , m5) of the labels of T's immediate 
successors. These M (T) are lexicographicallyt 
ordered. Choose a minimal M (T') in this order 
and define a (T') = k. 

(iii) Form the list L*= (Til' T i2, ... , TiT) ac­
cording to decreasing a values, i.e., a(Til) > 
a(Ti2) > ... >a(Tir ). 

Theorem. 3 

L* is an optimal list when Jl. (T) = 1 for all T and 
n=2. 

t This means that every task T has at most one immediate 
successor T', i.e., T < T' and for no Til is T < Til < T'. Actu­
ally, by adding a dummy task To preceded by all other tasks, < 
can be made into a tree, without loss of generality. 
tt i.e., a task with no successor. 
t i.e., dictionary order, so that (5, 4, 3) precedes (6, 2) and 
(5, 4, 3, 2). 



This algorithm has been shown to be of order 0 (r2
) 

and so, in a sense, is best possible since the partial 
order < can also have this order of number of elements. 

The increase in complexity of this algorithm over 
Hu's algorithm seems to be due to the greatly increased 
structure an arbitrary partial order may have when 
compared to that of a tree. Even relatively simple 
partial orders can defeat many other algorithms which 
might be thought to be optimal for this case. The ex­
ample in Figure 17 illustrates this. 

An optimal list for this example is L*= (T10 , T 9 , ••• , 

T1) where we assume p,(Ti) = 1 for all i. Any algorithm 
which allows TlO not to be executed first is not optimal, as, 
for example, executing tasks on the basis of the longest 
chain to a terminal task (i.e., according to levels), or 
executing tasks on the basis of the largest number of 
successors. 

For n>2 and p,(T) = 1 for all T, the algorithm no 
longer produces optimal lists as the example in Figure 18 
shows. 
It would be interesting to know the worst-case behavior 
of the lists produced by this algorithm for general n. 

The current state of affairs here seems to be similar 
to that of the job-shop scheduling problem5 ,30 for which 
optimal schedules can be efficiently generated when 
n = 2, while for n> 2 no satisfactory algorithms are 
known. 

A DUAL PROBLEM 

Up to this point, we have generally regarded the 
number of processors as fixed and asked for the list 

Tg 

Ta 
Figure 17-A useful graph for counterexamples 
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Tg 

Ta 

Figure 18-A counterexample to optimality when n = 3 

L which (approximately) minimizes the finishing time 
w. We now invert this question as follows: For a fixed 
deadline w*, we ask for a list L which when used \yill 
(approximately) minimize the number of processors 
needed to execute all tasks by the time w*. Of course, 
the two questions are essentially equivalent, and so no 
efficient algorithms are known for the general case. t 
Nevertheless, a number of recent results are now avail­
able for several special cases and these will be the sub­
ject of this section. 

We first make a few remarks concerning the general 
case. It is not hard to see that if A * denotes the length 
of the longest chain t t in the partially-ordered set of 
tasks 3, then we must have W*~A*. Otherwise, no num­
ber of processors could execute all tasks of 3 in w* time 
units. On the other hand, if sufficiently many processors 
are available then all tasks of 3 can be executed in 
time A*. In fact, if m* denotes the maximal number of 
mutually incomparable t tasks of 3, then it is never 
necessary to have more than m* processors in the sys­
tem since clearly no more than m* can be in operation 
at anyone time. 

t Both of these questions are raised in Reference 10. 
tt i.e., a sequence T i1 < T i2 < ... < Tim with Lk IJ. (T iJ 
maximal. 
t T i and T i are incomparable if neither T i < T i nor T i < T i 
hold. 
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Figure 19-An example with N FF IN 0 = 17/10 

For the case in which J.I. (T) = 1 for all tasks T, lower 
bounds for both problems are provided by results of 
HU.28 In this case, if A (T) denotes the level of a task 
T as defined in the preceding section, let m denote the 
maximum level of any task in 3 and for 0 ~ k ~ m, let 
A(k) denote the number of tasks having level strictly 
greater than k. 

Theorem. 28 

If n processors can execute 3 with finishing time w 
then 

w~ max (k+A(k)/n). 
oSk'::;m 

(9) 

For other early results dealing with these and related 
problems, the reader may consult References 1, 5, 13, 
24, 38, 42, 45, and 46. 

For the remainder of this section, we restrict ourselves 
to the special case in which there are no precedence 
constraints on the tasks. In this case the second problem 
becomes a special case of the one-dimensional cutting 
stock problem15 ,17 as well as a special case of the as­
sembly-line balancing problem.5 

We can also think of the problem in the following 
terms. Weare given a set of objects i,O with Oi having 
weight ai=}.t(T i ), l~i~r. We have at our disposal an 
unlimited supply of boxes Bj, each with a maximum 
capacity of w* units of weight. It is required to assign 
all the objects to the minimum number No of boxes 
subject to the constraint that the total weight assigned 
to any box can be no more than w*. In this form, this 
question takes the form of a typical loading or packing 
problem.9 Integer linear programming algorithms have 
been given9 ,16,17,25 for obtaining optimal solutions for 

this problem, but the amount of computation necessary 
soon becomes excessive as the size of the problem grows. 

Several heuristic algorithms have been suggested9 ,15,4o 

for approximating No. One of these, which we call the 
"first-fit" algorithm, is defined as follows: For a given 
list L= (ai2' ai2' ... , air), the aik are successively as­
signed in order of increasing k, each to the box B j of 
lowest index into which it can validly be placed. The 
number of boxes thus required will be denoted by 
NFF(L) , or just N FF, when the dependence on L is 
suppressed. 

If L is chosen so that ail ~ ai2 ~ ••• ~ air then the 
first-fit algorithm using this list is called the "first-fit 
decreasing" algorithm and the corresponding NFF(L) 
is denoted by N FFD. 

Instead of first-fit, one might instead assign the next 
ak in a list L to the box in which the resulting unused 
capacity is minimal. This is called the "best-fit" 
algorithm and N BF will denote the number of boxes 
required in this case. The corresponding definitions of 
"best-fit decreasing" and N BFD are analogous to first-fit 
decreasing and N FFD and are omitted. 

One of the first questions which arises concerning 
these algorithms is the extent by which they can ever 
deviate from No. Only for N FF is the behavior accurately 
known. 

Theorem.47 ,15 

For any e>O, if No is sufficiently large then 

NFF/No < 17/10+e. (10) 

The 17/10 in (10) is best possible. An example for 
which NFF/No= 17/10 is given in Figure 19 (where 

2.0 

~ 1.5 
0:: 

.-_ ... ----
1. 0 "---1...&..11-'-1--1.1---1.1---'-1-------'--

"'7654 3 2 

a 

Figure 20-The function R(a) 



w* = 101). The multiplicity of types of boxes and ob­
jects are given in parentheses. 
For any e>O examples can be given with NFF/No~ 
17/10-e and No arbitrarily large. It appears, however, 
that for No sufficiently large, N FF/ No is strictly less 
than 17/10. 

In order to achieve a ratio NFF/No close to 17/10 it is 
necessary15 to have some of the Oli exceed w* /2. Con­
versely, if all Oli are small compared to w* then NFF/No 
must be relatively close to one. This is stated precisely 
in the following result. 

Theorem. 15 

Suppose max Oli/W*~Ol. Then for any e>O, if No is 
sufficiently large then 

(11) 

The right-hand side of (11) cannot be replaced by any 
smaller function of a. 

We denote the right-hand side of (11) by R(Ol) and 
illustrate it in Figure 20. 

It is conjectured15 that the worst-case behavior of 
NBF/No is the same as that of NFF/No but this has not 
yet been established. It is known that R(Ol) is also a 
lower bound for NBF/No when max Oli~OlW*. 

As one might suspect, N FFD/ No cannot differ from 
1 by as much as N FF/ No can. This is shown in the 
following result. 

1_2£ 
4 

~-28 
1+28 4 

1+ 2£ 
4 

(X6n) (X 3n) 

88 
1.-28 4 

t- 2 £ 

1 4-2£ 

*-2E 

(X6n) (X2n) (X 3n) 

Figure 21-An example with NFFD/No = 11/9 and No large 
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NFFD=11n: 
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Figure 22-An example with NFFD/NBFD = 11/10 and No large 

Theorem. 15 

For any E>O, if No is sufficiently large then 

N FFD/ No < 5/4+e. 

The example in Figure 21 shows that 

NFFD/No~ 11/9 

(12) 

(13) 

is possible for No arbitrarily large. It is conjectured 
that the 5/4 in (12) can be replaced by 11/9; this has 
been established15 for some restricted classes of Oli. 

The preceding remarks also apply, mutatis mutandis, 
to the ratio N BFD/ No. This is implied by the following 
somewhat surprising result. 

Theorem. 15 

If max Oli/ W* ~ 1/5 then N FFD = N BFD. 
The quantity 1/5 above cannot be replaced by any 

smaller number as the example in Figure 22 shows. 
This example raises the whole question concerning 

the extent by which the numbers N FF, N BF, N FFD and 
N BFD may differ among themselves (assuming that No 
is large). The example in Figure 22 shows that 
NFFD/NBFD~II/10 is possible for arbitrarily large No. 
On the other hand, the example of Figure 23 shows that 
N BFD/NFFD~ 13/12 is possible for arbitrarily large No. 
These two examples represent the worst behavior of 
N FFD/ N BFD and N BFD/ N FFD currently known. 

Another algorithm which has been proposed40 pro­
ceeds by first selecting from all the Oli a subset which 
packs B1 as well as possible, then selecting from the 
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Figure 23-An example with NBFD/NFFD = 13/12 and No large 

remaining (Xi a subset which packs B2 as well as possible, 
etc. Although more computation would usually be re­
quired for this algorithm than for the first-fit decrea~ing 
algorithm it might be hoped that the number N of 
boxes required is reasonably close to No. This does not 
have to be the case, however, since examples exist for 
any e>O for which No is arbitrarily large and 

QO 

N/No> 2: 1/(2n -1)-e. (14) 
n=l 

The quantity 

00 

2: 1/ (2n-1) = 1.606695 ... 
n=l 

in (14) is conjectured15 to be best possible. 
Some of the difficulty in proving many of the preced­

ing results and conjectures seems to stem from the 
fact that a decrease in the values of the (Xi may result 
in an increase in the number of boxes required. For 
example, if the weights (760, 395, 395, 379, 379, 241, 
200, 105, 105, 40) are packed into boxes of capacity 

3 4 
2 

6 
, 

N =3: 
9 

7 7 

Figure 24-An optimal packing using L 

1000 using the first-fit decreasing algorithm then we 
find N FFD = 3 which is optimal. However, if all the 
weights are decreased by one, so that now the weights 
(759, 394, 394, 378, 378, 240, 199, 104, 104, 39) are 
packed into boxes of capacity 1000 using the first-fit 
decreasing algorithm, we have N FFD = 4 which is clearly 
not optimal. In fact, the following example shows that 
N FF can increase when some of the (Xi are deleted. In 
Figure 24 the list L= (7, 9, 7, 1, 6, 2, 4, 3) is used with 
the first-fit algorithm to pack boxes of capacity 13, 
resulting in N FF (L) = 3. 

If the number 1 is deleted from L, to form the list 
L' = (7, 9, 7, 6, 2, 4, 3), then we see in Figure 25 that 
NFF(L') =4. 

DYNAMIC TASK SELECTION 

As an alternative to having a fixed list L prior to 
execution time which determines the order in which 

2 2 
6 2 

4 

N'=4: 

7 
9 

7 

Figure 25-A non optimal packing using the deleted list L' 

tasks should be attempted, one might employ an algo­
rithm which determines the scheduling of the tasks in a 
dynamic way, making decisions dependent on the 
intermediate results of the execution. Unfortunately, 
no efficient algorithms of this type are known which 
can prevent the worst possible worst-case behavior. 

Perhaps the most natural candidate is the "critical­
path" algorithm,5 which always selects as the next task 
to be executed, that available task which belongs to the 
longest t chain of currently unexecuted tasks. This type 
of analysis forms the basis for many of the project 
planning techniques which have been developed such 
as PERT, CPM, etc.39 Its worst-case behavior can be 
bad as possible as the example in Figure 26 shows 
(where O<e< 1). 
If WCP denotes the finishing time for three processors 
when the critical path algorithm is used on the example 
in Figure 26, we have wcp=2n-1-2e. However, the 

t Where, as mentioned before, the length of a chain 
Til < ... < Tim is Lk ,u(Tik)' 



optimal solution has Wo = n, giving a ratio of 

wcp/wo= 2-1+2E/n (15) 

Since E may be chosen arbitrarily close to 0, then 
wcp/ Wo may be arbitrarily close to the previous bound 
of 2-1/n. 

This example also applies to the algorithm which 
selects as the next task to be executed, that available 
task for which the sum of the execution times of all its 
successors is maximal. 

It may be true that the critical path algorithm may 
not have such extreme worst-case behavior when all the 
p,(Ti) are nearly equal, although not too much in this 
direction can be hoped for as the example in Figure 27 
shows. 
In this example, where n processors are used and all 
p,(Ti) = 1, Wcp= 2n is possible depending on how some 
of the ties are broken. Since Wo = n+ ,1 then we obtain 
a ratio 

wcp/ Wo= 2- 2/(n+ 1) (16) 

which may be the maximum value possible in this case. 

CONCLUDING REMARKS 

As the reader will have gathered from the preceding 
discussion, there are certainly more questions than 
answers available at this point in time. We take this 
opportunity to comment on several of these questions, 
indicating what seem to the author to be fruitful direc­
tions for further research. 

1. What efficient algorithms exist for preventing 
worst-case behavior in the general multiprocessor 
problem from approaching the 2 - l/n bound? It 

T3n/€ 

OTn-1/€ 

OTn/n-1-€ 

Figure 26-Example which causes worst possible critical path 
algorithm behavior 
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Figure 27-Example which can cause bad critical path algorithm 
behavior 

certainly seems that just as in the case when there 
are no precedence constraints between tasks, it should 
be possible to show in some quantitative sense, that 
if one is willing to use more complex algorithms, one 
can be guaranteed of getting closer to the optimum. 

2. There seems to be little possibility that an effi­
cient t algorithm exists for the determination of optimal 
schedules for the general multiprocessor problem. 
Recent work of S. Cook6 and R. 1\'1. Karp (personal 
communication) helps to clarify some of these issues. 
They show that a large class of combinatorial problems 
(one of which is a special case of this problem) are 
equivalent in this respect, i.e., either they all have 
efficient algorithms or none do. Hmvever, up to now 
everyone has been singularly unsuccessful in proving 
the nonexistence of such algorithms. The time seems 
ripe to remedy this unsatisfactory situation. 

3. In the other direction, it seems likely that efficient 
algorithms should exist for other special cases. For ex­
ample, good candidates would appear to be the cases 
n = 3, p, (T) = 1 for all T and n = 2, p, (T) = 1 or 2 for 
all T. 

4. In reference to the dual (cutting stock) problem 
of an earlier section, a number of interesting open 
questions remain, in addition to those already men­
tioned. For example, one could anow boxes of different 
capacities and study the behavior of NFF(L)/NFF(L') 
for a fixed set of weights, as a function of the lists L 
and L', the ordering of the boxes, the distribution of the 
capacities and weights, etc.9 It would also be of interest 
to examine hvo-dimensional analogues of these prob­
lems in view of the applicability of the results (e.g., see 
References 16 and 17). 

5. Much of the motivation for studying \vorst-case 
behavior is derived from the possible insight the results 

t In the sense of Edmonds.8 
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may provide for the typical or expected behavior of the 
system. Very little has been rigorously established in 
this direction so far although some empirical results are 
available. For example, in simulation studies involving 
fairly large task sets, from two to nine processors, and 
unit task execution times, Manacher36 reports that in 
roughly four-fifths of his runs, optimal lists fail to re­
main optimal when the task execution times are (ran­
domly) slightly perturbed. In other studies, Krone34 

has investigated the typical behavior of several algo­
rithms applied to tasks with no precedence constraints. 
In particular, he compared the finishing times w* and 
w' obtained by using the "decreasing" list L* and by 
using stabilized pairwise interchanges, respectively. He 
found that usually w' < w* when execution times had a 
large variance (in spite of the fact that their worst-case 
behavior is reversed). On the other hand, when the 
execution times were more nearly equal, w* was very 
good and, in fact, frequently optimal. 

In view of the remarkable progress which has oc­
curred in this and other branches of computer science 
during the past decade, there is little doubt in my 
mind that the answers to these and many other related 
questions will be uncovered in the not-too-distant 
future. 
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Computation of recursive programs-Theory vs practice 

by ZOHAR MANNA 

Stanford University 
Stanford, California 

This note is actually an informal exposition of a part 
of a recent paper by Manna, Ness and Vuillemin.l We 
have two main purposes in this note. First, we present 
some known results about computation of recursive 
programs, emphasizing some differences between the 
theoretical and practical approaches. Second, we 
introduce the computational induction method for 
proving properties of recursive programs. It turns out 
that most known methods for proving properties of 
programs are very closely related to the computational 
induction method. We illustrate this point by showing 
how Floyd's inductive assertions method for proving 
properties of "flowchart programs" can be expressed in 
terms of computational induction on recursive pro­
grams. 

The reader should be aware that some of the results 
presented in this note hold only under certain restric­
tions which are ignored in this informal presentation. 

RECURSIVE PROGRAMS 

To simplify our discussion, we shall restrict ourselves 
to a particularly simple language, chosen because of 
its similarity to familiar languages such as ALGOL or 
LISP. A program in our language, called a recursive 
program, is of the form 

F (x) <=r[FJ (x), 

where r[FJ(x) is a composition of known functions 
and the function variable F, applied to the individual 
variables x= (Xl, X2, ... ,xn ). The following, for ex­
ample, is a recursive program over the integers 

Po: F(Xl' X2)<= if Xl =X2 then x2+1 

else F(Xl, F(xl-1, x2+1)). 

We allow our known functions to be partial, i.e., 
they may be undefined for some arguments. This is quite 
natural, since our known functions represent the result 
of some computation, and a computation process may 
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in general give results for some arguments and run 
indefinitely for others. We include as limiting cases of 
partial functions, the partial functions defined for all 
arguments (called total functions) as well as the partial 
function undefined for all arguments. 

Let us consider now the following partial functions: 

fl(Xl, X2): xl+1 

h(Xl, X2): if Xl~X2 then xl+1 else x2-1, and 

fa (Xl, X2): if (Xl~X2) 1\ (Xl-X2 even) then xl+1 
else undefined. 

These three functions have an interesting common 
property: For each i (1:::; i:::; 3), when we replace all 
occurrences of F in the program Po by fi, the lefthand 
side and the righthand side of the <= yield identical 
partial functions, namely, 
fi(XI, X2) == if Xl = X2 thenx2+ 1 else/i(xl,/i(xl-1, X2+ 1)). 
It is straightforward to see that the equality holds for 
fl (Xl, X2), for example, since in this case we get 

Xl + 1 == if Xl = X2 then X2 + 1 else Xl + 1, 

which is clearly true. One can similarly verify that f2 
and fa have the same property. We therefore say that 
the functions fl' f2 and fa are fixpoints of the recursive 
program Po. 

Among the three functions, fa has one important 
special property: for any (Xl, X2) such that fa(Xl, X2) 
is defined, i.e., (Xl ~X2) 1\ (Xl-X2 even), both fl (Xl, X2) 
andh(xl, X2) are also defined and have the same value as 
fa (Xl, X2). For short, we say that fa is "less defined" 
than fl and f2 and denote this by fa Cfl and fa Cf2. It 
can be shown that fa has this property not only with 
respect to fl and f2 but with respect to all fixpoints of 
the recursive program Po. Moreover, fa(Xl, X2) is the 
only function having this property; fa is therefore said to 
be the least (defined) fixpoint of Po. 

One of the most important results related to this 
topic is due to Kleene,2 who showed that every recursive 
program P has a unique least fixpoint (denoted by f p ) • 
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In discussing our recursive programs, the key 
problem is: What is the partial junction j defined by a 
recursive program P? There are two viewpoints. 

(a) Fixpoint approach: Let it be the unique least 
fixpoint jP. 

(b) Computational approach: Let it be the computed 
function j e for some given computation rule C 
(such as "call by name" or "call by value"). 

N ow we come to a very interesting point. All the 
theory of proving properties of recursive programs is 
actually based on the assumption that the function 
defined by a recursive program is exactly the least 
fixpoint jP. That is, the fixpoint approach is adopted. 
Unfortunately, many commonly used programming 
languages imply computation rules for evaluating such 
recursive programs (such as "call by value! !") which 
do not necessarily lead to the least fixpoint. 

Let us consider, for example, the following recursive 
program over the integers 

PI: F(XI, x2)~ijxI=0 then 1 

else F (xl-I, F(XI-X2, X2)). 

The least fixpoint jPl can be shown to be 

jPl(XI, X2): ij Xl'?: 0 then 1 else undefined. 

However, the computed function je, where C is "call 
by value," turns out to be 

fe(XI, X2): ijXI=OV[XI>0I\X2>01\ (X2 divides Xl)] 
then 1 else undefined. 

Thus, je is properly less defined than jPlI e.g., je(1, 0) 
is undefined whilejPl(l, 0) = 1.* 

There are two ways to view this problem: either (a) 
theoreticians are wasting their time by developing 
methods for proving properties of programs which "do 
not exist" in practice. They should concentrate their 
efforts in developing direct methods for proving 
properties of programs as they are actually executed; 
or (b) existing computer systems should be modified, 
since they are computing recursive programs in a way 
which prevents their user from benefiting from the 
results of the theory of computation. Language de­
signers and implementors should look for efficient 
computation rules which always lead to the least 
fixpoint. "Call by name," for example, is such a com­
putation rule, but unfortunately it often leads to very 
inefficient computations. An efficient computation rule 

* It can actually be shown, in general, that for every recursive 
program P and any computation rule C, if f c and f p are not 
identical, then f c must be less defined than f p (Cadiou [3]). 

which always leads to the least fixpoint can be obtained 
by modifying "call by value" so that the evaluation of 
the arguments of the function variable F are delayed as 
long as possible.4 

One way to cope with the problem would be to 
develop translation techniques, so that for every given 
recursive program P and computation rule C, we can 
construct a recursive program P' such that the com­
puted function of P is identical to the least fixpoint of 
P'. The verification techniques can then be applied to 
P'. This is probably the way many verification systems 
are going to work in the future. The main reason for 
adopting this approach is the existence of a very power­
ful method, the computational induction method, for 
proving properties of the least fixpoint of recursive 
programs. Most known methods for proving properties 
of programs can be expressed in terms of the computa­
tional induction method, as illustrated later. The 
computational induction method has two important 
advantages over the other methods: First, it is very 
convenient for machine implementation;5 and second, 
termination and equivalence proofs can be handled in 
exactly the same way as correctness proofs. 

THE COMPUTATIONAL INDUCTION METHOD 

We now describe the computational induction method 
for proving properties of recursive programs. The idea is 
essentially to prove properties of the least fixpoint f P 

of a given recursive program P by induction on the 
level of recursion. 

Let us consider, for example, the recursive program 

P 2: F(x)~ if x=o then 1 else x o F(x-l), 

over the natural numbers. The least fixpoint function 
f P2 (x) of this recursive program is the factorial func­
tion x! . 

Let us denote now by Ji(x) the partial function 
indicating the "information" we have after the ith 
level of recursion. That is, 

jO(x) is undefined (for all x) ; 

P(x) is ifx=O then 1 else x o fO(x-l), i.e., 

if x = 0 then 1 else undefined; 

f2(x) is ifx=O then 1 else x oP(x-l), i.e., 

ij x = 0 then 1 else x 0 (if x-I = 0 then 1 else undefined) , or 
in short, 

if x = 0 V x = 1 then 1 else undefined; 

etc. 



In general, for every i, i~ 1, 

Ji (x) is if x = 0 then 1 else X· Ji-l (x - 1) , 

which is 

if x < i then x! else undefined. 

This sequence of functions has a limit which is exactly 
the least fixpoint of the recursive program; that is, 

limJi(x) =x! 

The important point is that this is actually the case 
for any recursive program P. That is, if P is a recursive 
program of the form 

F (x) ¢=:r[F] (x), 

and Ji (x) is defined by 

fO(x) is undefined (for all x), 

and 
Ji(x) is r[Ji-l] (x) for i~1,* 

then 

lim Ji(x) =fp(x). 
i 

This suggests an induction rule for proving properties of 
fp. To show that some property cp holds for fp, i.e., 
cp ( f p), we show that cp (Ji) holds for all i ~ 0, and 
therefore we may conclude that cp(limJi), i.e., cp( fp), 
holds. i 

There are two ways to state this rule. Both are 
essentially equally powerful. These are actually the 
rules for simple and complete induction on the level 
of recursion. 

(a) simple induction 
if cp(fO) holds and \fi[cp(Ji)==}cp(fi+l)] holds, 
then cp (fp) holds. 

(b) complete induction 
if 'Ii {[ ( Vj s.t. j < i) cp (fi) ]==}cp (fi)} holds, ** 
then cp ( fp) holds. 

The simple induction rule is essentially the "JL-rule" 
suggested by deBakker and Scott,6 while the complete 
induction rule is the "truncation induction rule" of 
Morris.7 

Example: Consider the two recursive programs7 

P 3 : F (x, y)¢=: if p (x) then y else h(F(k(x), y)), 

and 

P 4 : G(x, y)¢=: if p(x) then y else G(k(x), h(y)). 

* Where J[fi-l] is the result of replacing fi=l for all occurrences 
of F in J[F] 
** Note that this indicates implicitly the need to prove q;(fO) sep­
arately, since for i = 0 there is no j s. t. j < i. 
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For our purpose there is no need to specify the domain 
of the programs or the meaning of p, hand k. We 
would like to prove, using the two forms of induction, 
that 

fps(x, y) =gp,(x, y) for all x and y. 

Proof by simple induction 

If we restrict ourselves to simple induction, it is 
much more convenient to prove a stronger result than 
the desired one. This often simplifies proofs by induc­
tion by allowing a stronger induction assumption, even 
though we have to prove a stronger result. So, we 
actually show that 

cp(fps, gp,): \fxVy{[fp3(X, y) =gp,(x, y)] 

1\ [gp,(x, h(y)) =h(gp,(x, y))]} 

holds. We proceed in two steps: 

(a) cp( jO, gO), i.e., VxVy{ [fO(x, y) =gO(x, y)] 

1\ [gO (x, h(y)) =h (gO (x, y))]}. 

\fx\fy{ [undefined = undefined] 

1\ [undefined = undefined] } . 

(b) \fi[cp(Ji, gi)==}cp(fi+l, gi+l)]' 

We assume 

\fx\fy{ [Ji(x, y) =gi(X, y)] 

1\ [gi(X, h(y)) =h(gi(x, y))]}, 

and prove 

Vx\fy{[fi+l(X, y) =gi+l(X, y)] 

1\ [gi+l (x, h(y)) =h(gi+l (x, y))]}. 

fi+l (x, y) = if p (x) then y else h ( Ji (k (x), y) ) 

= if p(x) then y else h(gi(k(x), y)) 

= if p(x) then y else gi(k(x), h(y)) 

=gi+l(X, y). 

gi+l(X, h(y))= ifp(x) thenh(y) elsegi(k(x), h2(y)) 

= ifp(x) thenh(y) elseh(gi(k(x), hey))) 

=h(if p(x) then y else gi(k(x), h (y))) 

=h(gi+l(x, y)). 

Proof by complete induction 

Using complete induction we can prove the desired 
result directly; that is, we prove that 

CP(fp3' gp,): VXVy[fp3(X, y) =gp,(x, y)] 
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holds. This is done by showing first that cp ( f O, gO) and 
cp ( p, gl) hold, and then that cp ( ji, gi) holds for all 
i2=:2. (We treat the cases for i =0 and i = 1 separately, 
since to prove cp ( ji, gi) we use the induction hypothesis 
for both i-I and i-2.) 

(a) cp( f O, gO), i.e., VxVy[JO(x, y) ==gO(x, y)]. 

VxVy[undefined == undefined]. 

(b) cp( fI, gl), i.e., VxVy[JI(x, y) ==gl(X, y)]. 

P (x, y) == if p (x) then y else h ( fO (k (x) , y) ) 

== if p (x) then y else undefined 

== if p(x) then y else gO(k(x), h(y)) 

==gl(X, y). 

(c) (Vi2=: 2) [cp (ji-2, gi-2) /\ cp( ji-I, gi-l)=}cp (ji, gi)] 
We assume 

VxVy[ji-2(X, y) ==gi-2(X, y)] 

and 

VxVy[ji-l(X, y) ==gi-l(X, y)], 

and deduce 

VxVy[ji(x, y) ==gi(X, y)]. 

ji(x, y) == if p(x) then y else h( ji-l (k(x), y)) 

== ifp(x) thenyelseh(gi-l(k(x), y)) 

== if p (x) then y else h ( if p (k (x)) then y 

else gi-2(k2(x) , h(y))) 

== ifp(x) thenyelse (ifp(k(x)) thenh(y) 

else h (gi-2(k2 (x) , h(y)))) 

== if p (x) then y else (if p (k (x)) then h (y ) 

else h( ji-2(k2(x) , h(y)))) 

== ifp(x) then y elseJi-l(k(x), hey)) 

== if p (x) then y else gi-l (k(x), h(y)) 

==gi(X, y). 

THE INDUCTIVE ASSERTIONS METHOD 

The most widely used method for proving properties 
of "flowchart programs" is presently the inductive 
assertions method, suggested by FloydS and Naur.9 It 
can be shown that for any proof by inductive assertions, 
there is a naturally corresponding computational 
induction proof. We shall illustrate the inductive 
assertion method and its relation to computational 

induction on the following simple flowchart program: 

We wish first to use the inductive assertions method 
to show that the above flowchart program over the 
natural numbers computes the factorial function, i.e., 
z=x!, whenever it terminates. To do this, we associate 
a predicate Q (x, Yl, Y2), called an "inductive assertion," 
with the point labelled a in the program, and show that 
Q must be true for the values of the variables x, Yl, Y2 
whenever execution of the program reaches point a. 
Thus, we must show (a) that the assertion holds when 
point a is first reached after starting execution, (i.e., 
that Q(x, 0, 1) holds) and (b) that it remains true 
when one goes around the loop from a to a (i.e., that 
Yl~X/\Q(X, Yl, Y2) implies Q(x, Yl+l, (Yl+1)·Y2)). 
To prove the desired result we finally show (c) that 
z=x! follows from the assertion Q(x, Yl, Y2) when the 
program terminates (i.e., that Yl=X/\Q(X, Yl, Y2) 
implies Y2=X!). 

We take Q(x, Yl, Y2) to be Y2=yd. Then: 

(a) Q(x, 0, 1) is 1 =01. 
(b) We assume Yl~X and Q(x, Yl, Y2), i.e., Y2=yd. Then 

Q(x, Yl+l, (Yl+l) 'Y2) is (Yl+l) 'Y2= (Yl+l)!, 
i.e., (Yl+l) ·yd= (Yl+l)!. 

(c) We assume Yl=X and Q(x, Yl, Y2), i.e., Y2=Yl!, then 
Y2 = Yl! = x! as desired. 

To show the relation between this method and 
computational induction, we must first translate the 
flowchart program into a recursive program. Following 
the technique of McCarthy,lO we find that the above 



flowchart program isfp5(x, 0,1), i.e., the least fixpoint 
of the recursive program Po (with Yl = ° and Y2 = 1) 
where 

Po: F (x, Yl, Y2) {= if Yl = x then Y2 

else F(x, Yl+1, (Yl+1) ·Y2). 

We shall prove by (simple) computational induction 
that f p5(X, 0,1) ex!, i.e., the value of fp5(X, 0,1) is x! 
whenever fp5(X, 0, 1) is defined, which is precisely what 
the above proof by inductive assertions showed. 

We take cp (F) to be the following predicate: 

("Ix, Yl, Y2) {Q(x, Yl, Y2)::::}[F(x, Yl, Y2) ex!]}, 

where Q (x, Yl, Y2) is Y2 = yd, the induction assertion 
used before. Obviously cp ( fO) holds. To show that 
cp (Ji) implies cp ( fHI) for i 2:: 0, we consider two cases: 
either Yl = x, in which case the proof follows directly 
from (c) above, or Yl~X, which follows directly from 
(b) . 

By computational induction we therefore have cp ( f p) , 
i.e., Q(x, Yl, Y2)::::}[fp(x, Yl, Y2) ex!] for all x, Yl, Y2. 
But since Q(x, 0, 1) is known from (a) to hold, we 
conclude that fp (x, 0, 1) ex!, as desired. 
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Mathematical concepts in programming language semantics 
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Princeton, New Jersey 

INTRODUCTION 

In mathematics after some centuries of development 
the semantical situation is very clean. This may not be 
surprising, as the subject attracts people who enjoy 
clarity, generality, and neatness. On the one hand we 
have our concepts of mathematical objects (numbers, 
relations, functions, sets), and on the other we have 
various formal means of expression. The mathematical 
expressions are generated for the most part in a very 
regular manner, and every effort is made to supply all 
expressions with denotations. (This is not always so 
easy to do. The theory of distributions, for example, 
provided a non-obvious construction of denotations for 
expressions of an operational calculus. The derivative 
operator was well serviced, but one still cannot multiply 
two distributions.) 

The point of such activity is that the formal rules of 
the calculus of expressions allow solutions of problems 
to be found and give us ways of checking correctness of 
proposed solutions. It is by no means the case that 
mathematical inspiration is thus reduced to automatic 
algebra, but the possibility of formal manipulation is a 
great help. Not only can we record useful lemmas, but 
a precise language is essential for teaching and com­
munication. 

I t is of course possible to pick formalisms out of thin 
air and to ask people to accept their usefulness on 
mystical grounds. (The operational calculus was 
developed a little that way.) There is no denying that 
clever guesswork can be very successful, but ultimately 
it is fair to ask the mystic just what he is talking about. 
A way to counter that question is to show how the 
concepts being symbolized in the new language are 
explained in terms of familiar notions. To do this we 
can try either to correlate directly denotations definable 
in familiar terms with the expressions of the new 
language or to show how to translate the new expres­
sions out of every context in which they might occur 
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leaving only what is familiar remaining. If you can do 
it the first way, you can do it the second way, ob­
viously; the converse is not obvious though. A con­
textual translation scheme may be very sensitive to 
the context: a transformation appropriate for one 
occurrence of an expression may not work elsewhere. 

The negative integers can be used as a good example 
here. The rules of algebra are such that all minus signs 
can be eliminated from an equation by multiplying out 
the formal polynomials and then using transposition. 
(Different rules are used for different contexts, note.) 
If it is the question of an algebraic law with variables, 
we use this trick: Suppose we wish to assert that the 
equation f(x) =g(x) holds for all x at both positive 
and negative values. Of course f(x) =g(x) holds for all 
non-negative x. But so does f( -x) =g( -x). In other 
words one equation has been equivalently translated 
into two, in which the variable can be restricted to the 
more familiar range. Now Descartes may have been 
willing to do algebra this way, but we would no longer 
consider it reasonable. We have developed our theory of 
numbers so as to include both positive and negative 
quantities, and we have gone on to imaginary and 
complex numbers with great gains in understanding. 
In the new algebra, expressions are directly meaningful 
and no translations are required. Nevertheless we prove 
that the new algebra is consistent by constructing a 
model out of familiar stuff. Complex numbers were 
fairly easy to handle; quaternions were harder. You all 
know examples and know that mathematicians are 
busy every day finding other weird structures. Whether 
the results deserve other than a mother's love is another 
question. 

What does this discussion have to do with program­
ming languages? Very much I feel. Programming 
languages have introduced a new dimension into the 
problem of semantics. In the first place there has been 
an explosion in the size and complexity of the expres­
sions that must be considered. In view of the com-
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plications, every effort is made to allow the writer of 
the program to keep tiresome details implicit: some 
controls can be written in, but generally it is the com­
piler that will take care of the boring parts. Now many, 
many compilers have been written-even students can 
do it these days. A compiler can be viewed as a translator 
from the source language (unfamiliar) into machine 
language (familiar). Why cannot we say, then, that 
the semantical problems of programming language are 
solved? The answer is, I beHeve, that every compiler 
(if it is meant for a real machine) is a compromise. 
There must be as many compilers as there are machines, 
each reflecting limitations and peculiarities of the given 
machine. Should not the ideal of language definition be 
machine independent? 

Certainly the introduction of abstract machines does 
not settle this difficulty of a multiplicity of translation 
schemes. After all even for an abstract machine the 
compiler writer must choose specific ways of keeping 
track of the order or depth of nesting of computation 
initiations. There may be different ways of doing this, 
all of which lead to the same results. The variety of 
approaches even on an abstract machine may make it 
quite impossible to define in any· meaningful way just 
what is a single computation step. Therefore, the idea 
of the state of the computation is not apparently at all 
well determined by the source language alone. When a 
specific compiler is fixed, however, we may very well 
want to investigate how it handles computation steps. 
But the question remains: do they have anything to do 
with the semantical definition of the original language? 
I think not. 

Before pursuing the question of the proper level at 
which semantics enters, we should take note of a 
second dimension-expanding consequence of program­
ming language study. Mathematical concepts generally 
have a rather static quality. True, mathematicians study 
flows on manifolds and many-body problems, but it 
seems to me that often the interest centers on global 
qualities or asymptotic behavior. What is peculiar in 
programming language-especially from a linguistic 
point of view-is that exactly the same symbols may 
possess a quite different import in different segments 
of a program. This is most apparent in the way variables 
(identifiers) are used. I need give no examples here; 
all of you understand why variables are not employed 
in the assignment statement in a "mathematical" way. 
The dynamic character of command execution requires 
a quite different treatment of variables, and this 
dynamic urge permeates the whole semantic analysis. 
The principal virtue of the programming language is 
that the compounding of the various operations need 
only be indicated in a rather schematic way, since the 

calculation is meant to be automatic in any case. But 
the calculation is not meant as a game or a joke. It is 
something that needs precision, so we must be able to 
"follow" what happens in some rather definite sense. 
What we are discussing is how definite this has to be in 
order to have a good semantical definition of a language. 

Some years ago, Christopher Strachey began a 
project of trying to expose the semantics of a program­
ming language as a series of mutually recursive func-

. tional equations.! The particular complex of equations 
would be "syntax directed" in the sense that each 
clause of the recursive syntactical specification of the 
language would have a corresponding equation. The 
equations taken together would define the meaning of a 
program, because made to correspond to a program 
text would be a recursively defined function. This 
function was intended as a state-transformation func­
tion: the function that takes an initial state to the final 
state that results from executing the program. In many 
instances the notion of "state" used here could be taken 
to be "state of the memory" or some abstraction from 
that idea to make the definition machine independent. 

The formaHsm Strachey used to state his equations 
was a modified version of the A-calculus. There was an 
inherent difficulty in this approach: The A-calculus at 
the time was just another symbolic calculus. 2 The 
criteria for equivalence of expressions were rather weak, 
and it was not clear in which directions they should be 
expanded. The advantage of the A-calculus was that it 
was "clean," especially in its handling of Ivariables, 
which was done along the usual "mathematical" 
lines.3,4 Thus it was felt that some progress had been 
made in explaining the unfamiliar in terms of the 
familiar. Still, the project was not quite complete. 

One objection to the A-calculus the present author 
had was that it possessed no mathematical semantics. 
It was another kind of operational calculus. True, the 
calculus had been proved consistent, but the consistency 
proof did not seem to give clear hints as to how to 
extend usefully the principles of equivalence of expres­
sions.5 This uncertainty was particularly unsettling in 
view of the many inconsistent extensions that had been 
proposed. The main difficulty rested on the thoroughly 
type1ree style of functional application and abstraction 
used in the A-calculus, where, for example, a function 
could be applied to itself as an argument.6 And it was 
just this type-free character of the system that Strachey 
wanted to exploit. 

During the fall of 1969 the author resided in Oxford 
in order to learn more about Strachey's ideas on pro­
gramming languages. After long, and sometimes rather 
heated, discussions on the role of mathematics in 
semantics, it slowly began to dawn on the author that 
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there might be an "objective" interpretation of the 
A-calculus. As explained elsewhere/·s it was possible 
finally to combine ideas and techniques from many 
sources into a coherent theory of models for the 
A-calculus. The key step was to find the right idea of 
an abstract domain (which turned out to be a kind of 
topological space) so that an appropriate notion of a 
function space would be a domain of the same kind. 
From that point it was only a matter of time until the 
question of whether a domain might exist that could be 
isomorphic ally identified with its own function space 
would arise. Fortunately the author was able to see how 
to effect the required mathematical construction, and a 
new approach to functional calculi was opened up. 

This sounds most abstract and impractical, but the 
spaces constructed are actually no worse then the real 
numbers. The "irrational" elements can be explained 
as limits of infinite sequences in ways that are quite 
reminiscent of classical analysis.9 And what is more 
important proofs about the properties of the elements 
can he given inductively by "successive approximation" 
in a simple and natural way. Furthermore it is possible 
to discuss the effectiveness and computability of various 
elements and processes so as to tie in the abstractions 
with actual computation. 

In this paper it will not be possible to discuss the 
mathematical details, though a few words will be 
inserted here and there to resolve puzzles about whether 
the method is reasonable.lO Instead it will be shown how 
the theory of these abstract domains can be applied to 
typical semantical problems, thus supplying the 
mathematical foundation needed for Strachey's equa­
tional approach. It is not claimed that the project for a 
mathematical semantics is at all completely finished, 
but the ideas have been found to be so flexible that we 
have gained full confidence that we can do serious 
model building incorporating features whenever the 
need for them is realized. ll 

LOCATIONS AND STORES 

There are many levels of storage from core to disk to 
tape to card hopper to the mind of the user sitting at a 
console. Some of these are more addressible than others 
(and more reliable). Some require special handling, 
especially as regards allocation of space in preparation 
for future acts of storage. In the present discussion we 
shall not treat these subtleties, even though they are 
very important for good compiler operation. We shall 
simplify the presentation for the sake of illustration by 
making these assumptions: 

• There are but two facets to storage: internal and 
external. 

• The internal storage is addressed by elements of a 
homogeneous collection of locations. 

• The contents stored at each location always may be 
read out (nondestructively), and at any time new 
contents may be read in updating (destroying) 
the old contents. 

• The current state of the store allows a distinction 
between the area of active locations (with conte'!ts) 
and passive or free locations (without contents). 

• At any time a new location may be selected from 
those free and placed in the active area. 

• At any time a location may be lost or retired to 
the free list. 

• One part of the external store allows reading in of 
fresh information (input). 

• The other part of the external store allows writing 
of computed information (output). 

• External reading and writing are independent 
operations: what is written cannot be read back 
unless it has been separately stored internally. 

The statements of these rather natural assumptions 
have been given first in fairly precise yet intuitive 
language. The point of the present paper is to show how 
to "mathematize" such assumptions in terms of a model 
that can be incorporated into a full semantical defini­
tion. (No formal language has been discussed at this 
point, however.) To carry out the mathematical 
modelling, we postulate first the existence of several 
domains that will be interrelated by the model: 

The basic domains 

L = locations 

v = stored values 

S = states of the store 

T = truth values 

Possibly it would have been better to say "storable 
values" since not every element of V is actually stored. 
Just what these quantities are supposed to be will be 
left open until the next section. One has a variety of 
choices depending on the kind of language that is to 
be interpreted. 

These domains alone do not specify the model because 
they have not yet been supplied with any structure. 
This can be effected by listing the operations and 
transformations tha~ may be applied to the domains in 
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various combinations: 

The store operators 

Contents: L-{S~ V] 

Update: LXV~[S~SJ 

Area: L~[S~TJ 

New: S~L 

Lose: L~[S~SJ 

Read: S~VXS 

Write: V ~[S~SJ 

Given any two domains Do and D1, we write [Do~DlJ 
for the space of all (admissible) functions from Do into 
D1• (At this stage we do not need to worry just which 
functions are admissible.) We write f: Do~Dl to 
indicate that f is just such a function. What we have 
listed above are the functions that correspond to our 
intuitive ideas about the structure of the store. In order 
to explain how this works, the following variables will 
be used (with or without sub- and superscripts) re­
stricted to the indicated domains: 

a:L, (3:V, O':S, r:T 

Suppose, then, a is a particular location and 0' is the 
current state of the store. The function value Con­
tents(a) (0') is to be the V-value stored by 0' at a. 
Conversely, let {3 be a given V-value. The pair (a, (3) in 
LXV provides the desired information for updating the 
store. Therefore, when we write 

Update(a, (3) (0') =0" 

we want 0", the transformed store, to be just like 0' 
except in having (3 stored now in location a. Similarly 
Area (a) (0') is true or false according as a is in the active 
area of 0'. The function Lose(O') transforms 0' into the 
store 0''' which is just like 0' except that a has been freed. 
Exactly what Read and Write do depends on the 
activities of the mad scientist at the console. Supposing, 
however, that he does not ruin the equipment, whenever 
Read (0') is activated something will happen. This 
transformation can be recorded as a pair ({3', 0"), where 
(3' is a storable value, and 0" has the same internal 
state as 0' did, but the external condition is made all 
eager and ready for the next input. In a similar way, the 
function Write({3') may be regarded as only affecting 
the external portion of the store. 

The functional notation of mathematics has the gloss 
of precision. But so far the gloss is the only aspect 

introduced, since note that the above explanations of 
what the functions are supposed to do are just as 
informal as the original assumptions given in ordinary 
language. What must be avoided in this kind of work is 
the Fairthorne Hovercraft effect described12 as an "ap­
proach in which we use extremely sophisticated tech­
niques and mathematical devices to skim at very high 
speed and great expense over the subject of concern 
without ever touching it." 

Now in mathematical model building the way to 
touch ground is to find out how to formulate with 
precision the postulates that correspond to the intuitive 
assumptions. Notational precision is not enough-if 
there is no way of proving useful theorems. So far our 
postulates have been rather weak: nothing more than 
simply noting the functional characters (or logical 
types) of certain operators. The next step is to say 
exactly how these operators are connected. 

What I wish to claim is that each of the intuitive 
assumptions previously informal1y indicated can be 
expressed rigorously by an equation. For example, 
after updating the store at a location, the contents of 
the location wiH be found to be what is expected and 
the location will be found to be active. This statement 
makes two equations as follows: r 

Contents (a) (Update(a, (3) (0'» =(3 

Area(a) (Update(a, (3) (0'» = true 

These equations are meant to hold for all a, (3, 0'. What 
about locations a' different from a? If a' ~ a, we expect 
that: 

Contents (a') (Update(a, (3) (0')) = Contents (a') (0') 

Similarly in the case of Area. If we introduce the 
equality relation on L: 

Eq: LXL~T 

and conditional expressions, these four equations can be 
reduced to two in the obvious way. 

In writing these equations, one puzzle is what to 
write in the cases where the functions are possibly 
undefined. A solution is to introduce a special value to 
correspond to this case. The symbol for this value 
adopted here is -L. We write f(x) =.L to indicate that 
the function x is undefined at x. (Other symbols in use 
are n, w, *, and UU.) This convention is useful in the 
main equation relating Contents to Area: 

Contents(a) (0') =if Area(a) (0') 
then Contents ( a) (0') 
else .L 
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There is not enough room here to formulate all the 
necessary equations; thus, my claim must remain just 
that.13 But it does not seem to me that the claim is too 
implausible. Note, however, that these postulates on the 
character of the store would not completely specify 
everything. The exact nature of V is left· open at this 
stage of the model building. Concerning L, all we would 
know is that there are infinitely many locations, because 
new ones can be produced indefinitely. Actually that is 
probably enough to know about L until one gets into 
problems of allocation. The input/output phase has 
also been left a little vague, but that is not necessarily 
bad either. If we can prove any theorems at all, it is 
better to prove them from fewer assumptions. Some 
assumptions are needed, nevertheless; and it requires 
experimentation to find just the right balance. Part of 
the thesis of this paper is that the mathematical style 
advocated allows for this experimentation to take place 
in a convenient way. 

A LANGUAGE 

There were no surprises in the discussion of storage in 
the previous section, and there are no surprises planned 
for this section either. All we shall do here is to indulge 
in some very modest language design. Any real innova­
tion is saved for the section on semantics. And this is 
how it should be, otherwise we would not be giving 
solutions to natural problems. It is quite possible, 
though, that after the semantical approach has been 
appreciated language design practice will be altered. 
Strachey has argued for this,14 but the effects remain to 
be seen. In any case we hope to develop a semantical 
style within which the consequences of different design 
choices can be studied. 

To start with our language will be divided into the 
usual syntactical categories: 

The syntactical domains 

Id = identifiers 

N um = numerals 

Op = (binary numerical) operations 

Cmd = commands 

Exp = expressions 

A feature of our method is that we treat these domains 
on a par with the basic and semantical domains. They 
are different, since they are constructed for syntactical 
purposes; but they are domains nevertheless. The 

following variables are used in restricted senses: 

~:Id, v:Num, w:Op, 'Y:Cmd, E:Exp 

The syntax for Id, N um, and Op will not be given since 
it is standard. The remaining two categories are defined 
as follows: 

Commands 

'Y : : = EO: =El , write E , !E , E~'YO, 'Yl , 

dummy , 'Yo; 'Yl , while E do 'Y , 

let ~:;:; E in 'Y ,let ~ = E in 'Y ,letrec ~ be e in 'Y , 

('Y) 

Expressions 

e: : = ~, ..L , read , 'Y result is e , eO~el, e2 , 

e: T , true , false , eo = el , 

e : N I v , eOwel , 

e:C, :'Y' 

e: P , A~. E 'eoe! I 

e:R' 1 e' ie' 

(e) 

Some comments are necessary: (i) There is an 
unpleasant conflict in this syntax between the use of 
words versus the use of symbols. The trouble is that 
there are not enough symbols-especially on key­
boards-otherwise all constructs could be symbolized. 
But then one has to remember what the symbols are 
for, so it is better to use words-:-especially English 
words. But it takes so long to write out all those words. 
The situation is hopeless. (ii) There is an unpleasant 
ambiguity in this syntax. The same string could be 
parsed in several different ways. Necessarily, then, the 
meaning of a command or an expression will have to 
depend on the parse. But we· will pretend in writing 
equations that everything can be determined from the 
string alone. If that worries you, please write in the 
parentheses (you are allowed to by the last clause of 
the definition). But no one can stand to write in all 
those parentheses. The situation is hopeless. But for the 
semantical theory it does not really matter.15 

The style of language definition was chosen to give a 
few hints as to the meanings. But I hope there are some 
constructs that seem quite mysterious on a first reading. 
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Some explanation is in order. Take commands first. 
The first clause gives us assignment statements. Every­
one knows what they mean-except what does it mean 
to have a compound expression on the left? Well, never 
mind. The next command is obviously intended to 
invoke output. That was easy. For the next clause it 
would have been better to write do E. In this language 
commands can be set up and (their closures) stored 
away for later execution. This command means that E 

should be evaluated out; and if the value is a command 
closure, then it should be done. If not, what then? 
Never mind. Next we have the conditional command 
(Boolean-valued expressions are possible). To execute 
dummy, do nothing-except waste time. The semicolon 
provides the means for sequencing, or composition, of 
commands. Next we have the while statement. Its 
effect is well-known. Finally there are three kinds of 
initialization of parameters in blocks. But which is 
which? 

An odd fact about many programming languages is 
that identifiers are used for many different purposes 
even though they form just one syntactical category. 
The context is expected to give the clue as to use. It is 
not such a bad idea. When one starts to write a program, 
the number of identifiers to be used is probably not 
known. To have to divide them up into various sub­
categories would complicate the language a great deal, 
and restrict the ways they could be chosen, by tiresome 
rules. They have only a local significance in any case, so 
some rough, informal conventions of programming 
style are sufficient to assure readability of programs. 

The three types of initialization in this language 
illustrate three quite different uses of identifiers. In the 
first, we begin by evaluating E. It will turn out to be 
either an L-value or a V-value. Whatever it is, we 
associate the same value with ~ and go on to execute 'Y 
under this assignment (keeping assignments to other 
identifiers the same as before, of course). In the second, 
we evaluate E. If the value is a V-value, we are happy. 
If the value is an L-value, we find the contents of the 
current state of the store in that location-a V-value. 
In either case we now have a V-value. Next we find a 
new L-value outside the active area of the store and 
attach it to ~.Finally we update this location with the 
computed V-value. Thus prepared, we can now execute 
'Y. (The only reason for being so complicated is that in 
'Y we would like to be able to use ~ on the left of assign­
ment statements.) The first two cases are not so very 
different, but the third presents a fresh aspect. 

At the time of making a recursive definition, we want 
to associate the "import" of E with ~, but we do not 
want to evaluate E. Also E may contain ~ (a free occur­
rence of the identifier) , and we want ~ to mean the same 

as we just said. Having made this tie-up without 
actually evaluating anything, we begin to execute 'Y. 
Every time we find a (free) ~, in effect, we want to 
replace it be E and continue the evaluation. That is to 
say, E will be evaluated only when it is called for by an 
occurrence of ~. Since E contains ~, this may happen 
repeatedly. This sequence of events is quite unlike the 
non-recursive initializations where the ~'s in E are not at 
the same as the r s in 'Y. 

Turning now to expressions, the explanations can be 
rather short. The read expression invokes input and has 
a V-value. The result is combination allows for the 
command 'Y to be executed before E is evaluated. Next 
we see the conditional expression. The E: X expressions 
are all Boolean-valued and are tests on the nature of the 
value of E. In lines two and three of the definition we 
have obvious Boolean-valued or numerical-valued expres­
sions. In line four we have to do with (closures of) 
commands, and :'Y forms just such a closure making a 
command into an expression. Line five has to do with 
procedures. First we find "A-abstraction (functional 
abstraction) which forms a (closure of) a procedure 
from an expression with respect to a formal parameter. 
N ext we have application of a procedure to an argu­
ment. Line six, finally, has to do with references. We 
can make a reference (to the value of E), or we can 
look up a reference. References bring in the problem of 
sharing, but we will not treat it in this paper. Nor shall 
we discuss arrays. Note too that labels and jumps have 
not been included. 

The explanations just given have not been very full; 
but the programming concepts mentioned are familiar, 
and most of us would now have a fairly good idea of 
what a program written in this language would do. 
Such intuitive understanding is not rigorous semantics, 
however, and as everyone knows sticky points can arise. 
Just as we could turn the intuitive assumptions about 
the store into precise equations, so must we formalize 
our semantical understanding, as will be outlined in the 
next section. 

THE SEMANTICS 

The plan of the semantical definition is that every 
command and every expression shall denote something. 
It is the construction of the domains in which the values 
lie that requires the mathematics. We have spoken 
already about the basic domains L, V, S, and T. Of 
these Land T can be given independently in advance, 
but V and S can only be formed in conjunction with the 
over-all semantical project. To do this we have to look 
at the kinds of expressions there are to be found in the 
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language and to provide appropriate domains. The 
uses of the identifiers also have to be taken into account. 
This analysis suggests these domains in addition to the 
four already isolated: 

The semantical domains 

N = numerical values 

E = expression values 

W = dynamic values 

D = denoted values 

C = command values 

P = procedure values 

R = reference values 

The denoted values accumulate all the possible values 
that might be attached to an identifier. A scheme of 
such attachments is called an environment. Mathe­
matically it is just a function from identifiers to denoted 
values. All our evaluations will have to take place 
within (or relative to) such an environment. The 
following variable is restricted to environments: 

p: Id~D 

Environments can change, but the meanings of the 
numerals and the numerical operations are fixed. The 
way to fix them is to define in the standard way these 
two functions: 

Numval: Num~N 

Opval: Op~[NXN~NJ 

Explicit definitions need not be given here. 
Ultimately a command means a store transformation. 

In mathematics expressions have "static" expression 
values, but in programming it turns out that commands 
can be invoked in evaluating a command. Thus an 
expression has an effect as well as a value. We also have 
to remember that expressions are sometimes used for 
their L-values and sometimes for their V-values. All of 
this can be summarized in several semantical functions 
which have these logical types: 

The semantical functions 

e: Cmd~[[Id~DJ~[S~SJJ 

S: Exp~[[Id~DJ~[S~EXSJJ 

£: Exp~[[Id~DJ~[S~LXSJJ 

"0: Exp~[[Id~DJ~[S~VXSJJ 

To understand how these functional types are 
arrived at, consider a command 'Y. Given an environ­
ment p and a state of the store u, we can write the 
equation 

e ( 'Y) (p) (u) = u' 

to indicate that u' will be the state achieved after 
execution of 'Y. Similarly for expressions the equation 

See) (p) (u) = (1], u') 

indicates that 1] is the value found for e, while u' is the 
state achieved after the act of evaluation. 

An immediate question is why the p and u are 
separated as arguments. The answer is that they enter 
into the evaluations in different ways. For one thing, 
they change at quite different rates with p staying fixed 
much longer than u. For another, we will be tempted to 
copy p, but we will generally never feel free to ask for a 
copy of the whole store-there just is no room for that. 
Possibly in simulating a small machine on a large 
machine we could conceive of programming the copying 
of the store, but this is not yet a standard concept. In a 
way p enters at a more conscious level, while u flows 
along as the unconscious. Much of the action on u is 
meant to be automatic, though there is communication 
between the levels. Besides these reasons, it is often the 
case that we want to discuss e ( 'Y) (p) without reference 
to a particular u; thus it is convenient to be able to drop 
it off as the last (deepest) argument. 

For stylistic reasons and as an aid to the eye, we shall 
use emphatic brackets with the semantical functions: 

S[e](p) (u) 

These are helpful because the expressions tend to get 
along and to pile up their own parentheses. Before we 
can discuss the semantical equations, however, we must 
return to the definitions of the various domains. 

The domains L, T and N are given. The rest are 
constructed. The constructions can be summarized as 
follows: 

The domain equations 

V=T+N+C+P+R 

E=V+L 

W=S~EXS 

D=E+W 

C=S~S 

P=E~W 

R=L 
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We shall not need variables over all of these domains. 
The following restricted variables are used: 

?]:E, o:W, (1:C 

One domain is missing from the list: namely, S. The 
construction of S is a bit complicated and needs more 
discussion of L than we have time for here. Roughly 

S=AX[L~VJXI/O, 

where the A-coordinate represents the area; the middle 
coordinate, the contents-function; and the last, the 
input/output features. But this is a little too rough, 
though we must leave it at that. ls 

. What is essential to note here is the highly recursive 
character of these domain equations; in particular, V 
involves Sand S involves V. The involvement comes 
about through the use of function domains such as 
[S~SJ and [L~V]. Since V-values are storable values, 
something seems wrong here. We said earlier that we 
would not store (i.e., copy) stores, yet we are asking to 
store a store junction (1: S~S. There is actually no 
conflict here. Functions involve their arguments in a 
potential, not actual, manner. In implementing such a 
language, functions would be stored as finite descriptions 
(i.e., texts of definitions) not as infinitary abstract 
objects. From the point of view of mathematical con­
ception, however, we want to imagine in theory that it 
is the functions that are stored. If we did not want to do 
this, we should explicitly program the syntax of func­
tion definition and the necessary interpretive operations. 
In any case, storing a function is done without storing 
the store. 

Granting the reasonableness of the connections 
between V and S, it is still fair to ask whether such 
domains exist. This is where the real mathematics 
enters. The idea mentioned in the Introduction of 
constructing A-calculus models can be employed to 
construct these more involved domains. It requires a 
combination of lattice theory and topology to achieve 
the proper kind of function theory.17 On set-theoretical 
grounds it is clear that when we write [S~S ] we cannot 
mean to take arbitrary functions, otherwise the car­
dinality of S (and of V) would become unbounded. The 
point is that the functions defined by programs are of a 
very special sort. Looked at in the right way they are 
continuous functions, and there are many fewer con­
tinuous functions than there are arbitrary functions. 
And this turned out to be the secret: by restricting the 
function spaces to the continuous functions, the re­
quired domains can indeed be constructed. Expensive 
as this device is, the Hovercraft effect is avoided by 
showing that such a theory of domains fits in very well 

with the theory of computable functions (recursive 
functions) and that a]] the functions required by the 
se~antics of the language are indeed computable. In 
particular the theory provides a basis for justifying the 
existence of functions defined by involved recursions 
(like the semantical functions) and for proving proper­
ties of such functions. 18 ,19 

It should be stressed that the semantical domains 
make no explicit reference to the syntax of the language. 
True, we gave the language first, and then cooked up 
the domains to match. It could have easily been the 
other way round. Take V for example. There were five 
main sections to the definition of an expression corre­
sponding to five sorts of values an expression could 
have. (Strictly speaking this is not true. The expres­
sions eOel and i e could have arbitrary values. It might 
have been more logical to put these clauses on the first 
line of the definition.) Therefore in the construction of 
V, we had to provide for five sorts of elements, T, N, C, 
P, and R. The summation operation (+) on domains 
has to be defined as a disjoint union (and a little care is 
needed with the topology of the reSUlting space). If we 
had wanted, we could have included other sorts of 
summands. They would not have been reflected in the 
language, however. It is an interesting question 
whether the language reflects enough of the structure of 
the domain V, but one that we cannot pause to consider 
here. The point is that language design and domain 
construction are parallel activities, each can (and 
should) affect the other. 

Finally it remains to illustrate some of the equations 
needed to define the semantical functions: 

Some semantical equations 

e[eo: =el](p) = Update*Pair (£ [eo](p) ) (00 [el](p) ) 

e[writee](p) = Write *8 [e](p) 

eho; 'Yl](p) = ehl](p)oeho](p) 

e[!e](p) =Do*8[e](p) 

e[let ~=e in 'Y](p) = (A?]- eh](p[17/~J)) *He](p) 

e [letrec ~ be e in 'Y] (p) 

= eh](p[Fixpoint(Ao-8[e] (p[o/~J)) /~J) 

For the e-function there should be 11 equations in 
all; and for the 8-function, 21 equations. Then the 
semantical definition would be complete. Note how the 
equations are mutually recursive functional equations: 
the e- and 8-functions occur on both sides of the 
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equations in functional contexts. Note too that there is 
much unexplained notation. 

In order to be able to combine functions, we need at 
least two kinds of composition; because some functions 
are of type [S~SJ, and some are of type [S~XXS]. 
We can see how this works in one example. Let: 

We want: 

f=£[EO](p): S~LXS 

g=eu[El](p): S~VXS 

Pair(f) (g): S~[LXVJXS. 

Suppose 0- is a given state. Thenf( u) = (a, u'). Carrying 
over 0-' to the next step, g (u') = ({3, u"). So we can 
define: 

Pair ( f) (g) (u) = ((a, (3), u"). 

(The reason for doing it this way is to get the effect of 
two separate evaluations, because there were two 
expressions EO and El needing evaluation. ) Then by 
definition: 

(Update*Pair( f) (g)) (u) = Update (a, (3) (u") 

This shows how * is a form of functional composition. In 
the third equation we wrote 0, since this was just the 
ordinary composition of two [S~S ] functions. 

The notation p[7]/~J means that the original environ­
ment p has been altered to assign the value 7] to the 
argument~. (Remember that the arguments of environ­
ments are the formal identifiers as syntactic objects.) 
The import of the fifth equation then is to evaluate E 

first, pass on the value to the environment, and then 
execute the command starting in the state achieved 
after evaluation of E. Note that E is evaluated in the 
original environment. 

The Fixpoint function in the last equation is applied 
to a function F: W ~ W. All our domains are constructed 
so that functions defined by expressions always have 
fixed points-ifthey have the same domain of definition 
and range of values, of course. The domains are lattices 
as well as topological spaces, so we can speak of the 
least solution to the equation: 

oo=F(oo). 

This 00 = Fixpoint (F) . Fixed points of functional 
equations solve recursions. So in the letrec command, we 
first set up the solution 00, and then execute the com­
mand in the environment p[oo/~]. This explains our 
mathematical concept of recursion. 20 Note that there are 
no stacks, no pointers, no bookkeeping. None of those 
devices of implementation are relevant to the concept. 
That is why this is a mathematical semantics. 

CONCLUSION 

The presentation in this paper has been but a sketch. 
For a complete semantics even of this small language, 
many more details would be required. But it is hoped 
that enough of the project has been exposed to convince 
the reader that it is possible to carry out such a plan. 
And it is not even too painful to. do so: not so many 
mathematical constructs are required, and the equa­
tions need not be so very complicated. Of course, 
judgment of the worth of doing so should be withheld 
until the semantical equations for a really serious 
language are fully written out. 
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INTRODUCTION 

There are certain aspects of language theory that have 
had, or can have, significant impact on the design and 
implementation of compilers. These areas are, prin­
cipally, the subjects of context free grammars and syn­
tax directed translations. It is perhaps to be expected 
that the deep and interesting theorems of language 
theory do not usually find application. Rather, it is the 
definitions of formal constructs and their elementary 
properties that find use. 

In this paper, we will discuss some of the ways in 
which the language theorist can help the compiler de­
signer. First, we will discuss classes of context free 
grammars that have fast parsing algorithms and discuss 
briefly what these algorithms are. Then we shall discuss 
schemes for specifying the translations which must be 
performed by the compiler. 

CONTEXT FREE GRAMMARS 

Let us proceed to the principal formalism of use to 
compiler writers, the context free grammar. 

Definition: A context free grammar (CFG) is a four­
tuple (N, ~, P, S), where N and ~ are finite, disjoint 
sets of nonterminals and terminals, respectively; S in N, 
is the start symbol, and P is a finite list of productions 
of the form A~a, where A is in N and a in (NU~) *.t 

Example: A good example grammar, which will be 
subsequently referred to as Go, is ({E, T, F}, 
{a, (,), +, *}, P, E), where P consists of the following 
productions. 

(1) E~E+T 
(2) E~T 
(3) T~T*F 
(4) T~F 
(5) F~(E) 
(6) F~a 

t If X is any alphabet, then X* denotes the set of finite length 
strings of symbols in X, including e, the string of length O. 
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Go defines arithmetic expressions over operators + and 
*, with no structured variables, and with a representing 
any identifier. 

The way in which a CFG serves to define strings of 
terminal symbols is as follows. 

Definition: Let G= (N, ~,P, S) be a CFG. We define 
the relation =::} on (NU ~) *, by: if a and (j are any strings 

G 

in (NU~) *, and A~')' is a production, then aA{j=::}a,),{j. 
G 

If a is in ~*, then aA{j =::} a,),{j and if {j is in ~*, then 
Glm 

aA{j =::} a')'{j; lm and rm stand for leftmost and rightmost, 
Grm 

respectively. The transitive closure of any relation R, 
denoted R+, is defined by: 

(1) if aRb, then aR+b; 

(2) if aR+b, and bR+c, then aR+c; 

(3) aR+b only if it so follows from (1) and (2). 

The reflexive-transitive closure of relation R, denoted 
R*, is defined by aR*b if and only if a = b or aR*b. 

* Thus, we can use a=::}{j, for example, to express the no-
G 

tion that a can become {j by some (possibly null) se-
quence of replacements of left sides of productions by 
their right sides. 

We will, whenever no ambiguity results, drop the 
subscript G from the nine relations =::}, =::} ,=::} ,and their 

G .Glm Grm 

transitive, and reflexive-transitive closures. 
We say L (G), the language defined by G, is {w I w is 

* in ~* and S=::}w l. L (G) is said to be a context-free lan-
guage (CFL). 

Convention: Unless we state otherwise, the following 
convention regarding symbols of a context free gram­
mar holds. 

( 1 ) A, B, C, ... are nonterminals. 
(2) ... , X, Y, Z are either terminals or nonterminals. 
(3) a, b, c, ... are terminals. 
( 4) u, ... , z are terminal strings. 
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(5) a, /3, ,,(, ... are strings of terminals and/or 
nonterminals. 

( 6) S is the start symbol; except in Go, where E is 
the start symbol. 

(7) e denotes the empty string. 

We may, using this convention, specify a CFG merely 
by listing its productions. Moreover, we use the short­
hand A -7al I ••• I an to stand for the productions 
A-7aI, A-7a2, ... ,A-7an. 

Definition: Let G= (N, ~, P, S) be a CFG. If 
al~a2~" '~an, then we say there is a derivation of an 

from al. If ai~ai+I' 1:::; i < n, we call this a leftmost deri-

vation, and if ai~ai+l, 1:::; i < n, it is a rightmost deriva-
rm 

tion. Most often, we are interested in the case where 

al = S. If S~a, then a is a sentential form. If S~a, it is 
* lm 

a left sentential form, and if S~a, it is a right sentential 
rm 

form. 
Example: Let us consider Go, and the string a*a+a 

in L (Go). It has the following derivations, among 
others. 

(1) E~E+T~T+T~T+F 
~T*F+ F~T*a+ F~F*a+ F 
~F*a+a~a*a+a 

(2) E~E+T~T+T~T*F+T 
~F*F+T~a*F+T~a*a+T 
~a*a+F~a*a+a 

(3) E~E+T~E+F~E+a~T+a 
~T*F+a~T*a+a~F*a+a~a*a+a 

Derivation (1) is neither rightmost nor leftmost. (2) 
is leftmost and (3) is rightmost. F*a+F is a sentential 
form of Go, but happens not to be a left or right sen­
tential form. a*a+a is both a left and right sentential 
form, and is in L(Go). 

Given a derivation of w from S we can construct a 
parse tree for w as follows. Let S = al~a2 .. . ~an = w. 

(1) Begin with a single node labeled S. This node is 
a trivial tree, and is said to be the tree for al. 

In general the tree for ai will have a leaf corre­
sponding to each symbol of ai. Initially, the lone 
symbol S of al corresponds to the lone node. 

(2) Suppose we have constructed the tree for ai, 
i < n. Let ai+1 be constructed by replacing some 
instance of A in ai by /3. To this instance of A 
there corresponds a leaf. Make descendants of 
that leaf for each symbol of /3, ordered from the 
left. If /3 is the empty string, then we create a 
single descendant, labeled e. 

The construction of a tree defined above is called 
top down. We can also construct the same tree bottom 
up, as follows. 

(1) Begin with an isolated node corresponding to 
each symbol of an. As this algorithm proceeds, 
we will have a collection of trees corresponding 
to each step of the derivation. At the end, there 
will be one tree for the first sentential form al 

(i.e., S). 
(2) Suppose we have a collection of trees for ai, 

1 < i:::; n, where to each symbol of ai there cor­
responds a root of one of the trees. If ai is con­
structed from ai-I by replacing A by /3, create a 
new node, labeled A, whose direct descendants 
are the roots of the trees for the symbols of /3. 
The order of symbols in /3 reflects the order of 
the descendants. If, however, /3 = e, create one 
descendant for the node labeled A, and label the 
descendant e. 

Example: The unique parse tree for a*a+a in Go is 
shown below. Note that the leaves of the tree read 
a*a+a, from the left. 

E 

/I~ 
E + T 

1 j 
T F 

/~ 1 
T * F a 

I I 
F a 

I 
a 

It is easy to show that the top down and bottom up 
methods of tree construction yield the same tree when 
applied to one derivation. 

An important property of a CFG is that it be unam­
biguous, that is, no word in its language has more than 
one parse tree. Because of the way syntax directed 
translation algorithms work on parse trees, an am­
biguous programming language is very likely to provide 
surprising machine code when (at least some of) it~ 

programs are compiled. It is easy to show that the con-
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dition of unambiguity is tantamount to saying that 
each word in the language has a unique leftmost deriva­
tion and a unique rightmost derivation. 

EARLEY'S ALGORITHM 

There is one outstanding method of recognizing the 
words of an aribtrary CFL and building parse trees, 
although many others have been proposed. This is the 
method of Earley.l Descriptions of other general 
methods can be found in References 2 and 3. Earley's 
method works as follows. 

(1) Let G= (N, ~, P, S) and let al ... an be the 
word we wish to recognize or parse. We con­
struct lists 10, II, ... , In, of items; an item is of 
the form [A~a·{3, iJ, where A~a{3 is a produc­
tion and i an integer. 

(2) Construct 10 as follows. 
(i) Add [S~·a, OJ to 10, for each S~a in P. 

(ii) If [A~·Ba, OJ is on 10, add [B~·{3, OJ to 
10, if it is not already there, for each B~{3 
inP. 

(3) Suppose we have constructed Ii-I. Construct 
I i as follows. 

(i) For all [A~a·ai{3, jJ on Ii-I, add 
[A~aai·{3,jJ to Ii. Recall that ai is the 
ith input position. 

(ii) If [A~a· ,jJ is on list Ii, add [B~{3A .'Y, kJ 
to Ii, if [B~{3·A'Y, kJ is on I j • 

(iii) If [A~a·B{3,jJ is on Ii, add [B~·'Y, iJ to 
Ii for all B~'Y in P. 

We can show that item [A~a·(3)jJ is placed on 
I i if and only if there is a leftmost derivation 

As a special case of the above, al ... an is in L (G) if 
and only if [S~a·, OJ is on In for some a. Thus, it is 
easy to see how Earley's algorithm can be used to 
recognize the words of a language. Moreover, once the 
lists have been constructed, it is possible to build the 
parse tree of the word. We shall not explore this further 
here, but the intuitive idea behind the tree construc­
tion algorithm is to let the item [S~a·, OJ on In 
represent the root, then look for those complete (dot at 
the right end) items which lead to its being placed on 
In. Make these items correspond to the descendants of 
the root, and proceed top down, finding "causes" for 
each item corresponding to a node. 

Example: The lists for Go, with input a*a are shown 
below. 

10 
E~·E+T,O 

E~·T,O 

T~·T*F, 0 
T~·F, 0 
F~· (E), 0 
F~·a,O 

II 
F~a·,O 

T~F·,O 

E~T·,O 

T~T·*F,O 

12 13 
T~T*·F, 0 F~a·, 2 
F~· (E), 2 T~T*F·, 0 
F~·a, 2 E~T·, 0 

T~T·*F, 0 

List 13 is constructed as follows. [F~a., 2J is added 
by rule (3i), because [F~ ·a, 2J is on 12• [T~T*F·, OJ 
is added to 13 by rule (3ii) , because [T~T*· F, OJ is 
on 12 and [F~a·, 2J is on 13 • [E~T., OJ and 
[T~T·*F, OJ are added 'because [E~·T, OJ and 
[T~· T*F, OJ are on 10, and [T~T*F·, OJ is on Ia. 
Since [E~T·, OJ is on Is, a*a is in L (Go). 

Earley's algorithm can be implemented in O(n2) 
steps of a random access computer if the underlying 
grammar is unambiguous, and in O(n3 ) steps for an 
arbitrary grammar. Moreover, on many grammars of 
practical interest, Earley's algorithm operates in 0 (n) 
steps. It is the fastest known general parsing algorithm. 

LL GRAMMARS 

We will now begin the study of several subclasses of 
the context free grammars. None of the three classes 
we consider is capable of generating all the context 
free languages. However, confronted with a context 
free language that is associated with a real program­
ming language, it is highly likely that grammars in the 
classes to be discussed do exist. 

Our first subclass of grammars, called LL(k), for 
left to right scan, producing a leftmost derivation, with 
k symbollookahead, was first examined in Reference 4. 
The LL (l) case was developed independently in Refer­
ence 5. Development of the theory can be found in 
References 6 and 7. The general idea can be summarized 
as follows. 

Let G= (N,~, P, S) be a CFG, and let w be in ~*. We 
may attempt to find a leftmost derivation for w by 
starting with S and trying to proceed to successive left 
sentential forms. Suppose we have obtained 

where ai=xA{3, and x is a prefix of w. If there are 
several productions with A on the left, we must select 
the proper one. It is desirable that we be able to do so 
using only information which we have accumulated so 
far during the parse (which we represent by saying 
that we "know what (3 is") and the k symbols of w be-
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yond prefix x, for some small k. If we can always make 
this decision correctly, we say G is LL (k ) . 

If a grammar is LL(k), we can parse it determin­
istically in a simple fashion. One pushdown list, which 
holds the portion of a left sentential form to the right 
of the prefix of terminals (A,8 in the case of ai, above) 
is used. (There is also some other information on the 
list, but we shall not discuss this here. A discussion 
can be found in in Reference 3.) The input w is scanned 
left to right, and if ai has been reached, the input 
pointer will have scanned over prefix x, and is ready 
to read the first k symbols of w. The arrangement is 
shown below. 

x w 

t input pointer 

top I pushdown list 

~~ 

A!3 

If production A ~'Y is chosen to expand A, the push­
down list is made to hold "1,8. Then, any terminals on 
top of the pushdown list are compared with the input 
immediately to the right of the input pointer, and the 
next left sentential form will be properly represented. 
The process of expanding the topmost nonterminal on 
the pushdown list then repeats. Note that while ex­
panding nonterminals, we could construct a parse tree 
top down if we wished. 

It should be noted that the pushdown list may carry 
information other than grammar symbols, in order to 
summarize at the top of the list, the important in­
formation about what is in the list (,8 in our example). 
However, this information is not essential, if the gram­
mar is modified properly. We now give the formal 
definition of an LL(k) grammar. 

Definition: If a is a string, let I a I denote the length 
of a. Let a: k denote the first k symbols of a, or all of 
a if I a I <k. Let G= (N, ~, P, S) be a CFG. We say 
G is LL(k) if whenever we have the following two 
derivations 

and y: k = z: k. Then we may conclude that ,8 = "I. 

Stated less formally, suppose we are parsing w, and 
have so far reached left sentential form xAa. We have, 
as indicated in the informal parsing procedure which 
introduced the section, not scanned w more than k 
symbols beyond x. Thus, either xy or xz could be w, as 
far as we know. Suppose A~,8 and a~'Y are two pro­
ductions. Then the LL(k) definition assures us that 
independent of w, but depending on x, a and the first 
symbols of w beyond x (which are y:k, or equivalently, 
z: k), we may uniquely select the proper production 
with which to replace A. 

Example: Consider the grammar 

S~aBB I b 

B~bSS I a 

This grammar is LL (l). For suppose we have two 
derivations (1) and (2), as in the LL(k) definition. If 
y: 1 = z: 1 = a, and A is S, then clearly aBB is both,8 and 
"I. If A is B, the ,8 = "I = a. If y: 1 = z : 1 = b, then ,8 = "I = b 
if A is S, and ,8='Y=bSS if A is B. 

LR GRAMMARS 

Just as the LL(k) grammars are a natural class of 
grammars for which parse trees can be built deter­
ministically, top down, via leftmost derivations, there 
is a natural class of grammars, called LR(k), for left 
to right scan, producing rightmost derivations with k 
symbol lookahead, for which parse trees can be con­
structed deterministically bottom up via rightmost 
derivations. This class of grammars was defined in 
Reference 8, and the theory, including optimization of 
LR parsers has been discussed in References 9-13. 

Definition: Let 

S==}aAx==}a,8x. 
rm rm 

Then ,8, in the position shown, is said to be a handle of 
right sentential form a,8x. The handle of a right sen­
tential form need not be uniquely defined, but will be, 
if the grammar is unambiguous. 

Given grammar G= (N, ~, P, S) and w in ~*, we 
could attempt to find a rightmost derivation of w, 
starting with wand working backwards toward S. 
Suppose we have found 

In order to find the right sentential form previous to 
ai, we must find its handle and replace the handle by 
the left side of the production used to create the handle. 
If we can do so, we can recognize and parse using a 
pushdown list as shown. 
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w 

~ 
~I 

t input pointer 

pushdown list } top 

SA 

Suppose Oli is ,BAx. Then ,BA will appear on the push­
down list, with A at the top. (As with LL grammars, 
there will be some extra information on the list helping 
us to make parsing decisions. See References 3 and 8.) 
x will be a suffix of the input, unscanned to this point. 
(In the case i=m,i.e., Oli=W, the pushdown list would 
be empty, with the input pointer at the left end.) The 
handle of ,BAx cannot appear wholly within ,B, by the 
definition of a rightmost derivation. Thus, either it is 
a suffix of ,BA, or its right end is somewhere within x. 

Using the extra information on the pushdown list 
and the k symbols to the right of the input pointer, 
the LR (k) parser concludes either 

(1) that the handle is not yet on the pushdown list, 
and an input. symbol must be shifted from the 
input to the pushdown list (i.e., the input 
pointer moves right, and the symbol which it 
leaves is placed on top of the pushdown list, or 

(2) that the handle is now on top of the pushdown 
list. In this case, the extra information tells us 
what production was used at the step which 
created Oli, and we can reduce Oli to Oli-l by re­
placing the handle by the appropriate non­
terminal. 

Whether (1) or (2) applies, the LR(k) parser re­
peats the decision whether to shift or reduce. Since we 
cannot shift indefinitely, we must eventually reduce. 
If the grammar is LR (k ), the correct decision will be 
made at each step, and we will trace out a rightmost 
derivation in reverse order. Note that we can build the 
parse tree bottom up as we do the reductions. We will 
now give the formal LR(k) definition. 

Definition: Let G= (N, ~, P, S) be a CFG, and let 
G'= (NU{S'},~, P', S') be the augmented grammar 
for G, defined as follows. 

(1) S' is a new nonterminal. 
(2) P' is P preceded by a production numbered 0, 

namely S' ~S. 

The augmented grammar allows us to treat "reduc­
tion" by production S' ~S as the successful completion 
of the algorithm. 

Suppose we have two derivations in G': 
• (1) S'=}OlAx=}Ol,Bx 

rm rm 

• (2) S'==}"(By==}"(oy 
rm rm 

and we can write "(oy as Ol,By', where y': k = x: k. If we 
can always conclude that ,,(By = OlAy' (i.e., y=y', 
A =B and "(= Ol), then we say Gis LR(k). 

Stated informally, suppose we are constructing a 
rightmost derivation of w, in reverse, in such a way 
that we never observe symbols of w that are more than 
k symbols beyond the handle. Suppose that we have 
done some reductions, and reduced some prefix of w to 
0l,B. We still do not know what the tail end of w is; it 
could be x or y', among other things. However, we do 
know that the next k symbols of our current right 
sentential form are x: k (equivalently, y': k). Then if 
G is LR(k), we may determine that ,B is the handle 
and must be reduced to A.W e can make this deter­
mination independent of whether the input actually 
ends with x or y'. 

Example: Consider the grammar 

S~aS I a 

The grammar is not LR (0). For in the augmented 
grammar, we have derivations 

rm rm 

We may compare these derivations with those of the 
LR (k) definition, letting Ol = e, A = B = S, ,B = "( = 0 = a, 
x=y=e and y'=a. Then x:O=y':O=e, but ,,(By, 
which is as, is not equal to OlAy', which is Sa. 

However, this grammar is LR(l). The only possible 
right sentential forms Ol,BX are: 

(i) Ol = X = e, {3 = S, in which the last step replaced 
S' by S, 

(ii) Ol=ai for some i~O, x=e, and ,B=aS. (The last 
step replaced S by as.), or 

(iii) Ol=ai , ,B=a and x=e, where S was replaced by 
a at the last step. 

The above three possibilities hold also if we refer to 
,,(, 0 and y instead of Ol, ,B and x. If we have a violation 
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of the LR(I) condition, since x:l=e, we must have 
')'oy=a,By'andy':I=e,but')'By~aAy'. If y':I=e, then 
y'=e. Moreover, as we argued in (i)-(iii) above, we 
must have y = e in the right sentential form ')'oy. Thus, 
')'0= a,B. 

If a,B = S, then ')'0 = S, and')' = e and 0 = S follows. 
Then B=A = S', and we have ,),By=aAy', which we 
assumed not to be the case. 

If a = ai and ,B = as, it similarly follows that')' = ai 

and o=aS; A=B=S. Again ,),By=aAy'. 
Finally, if a=a i and ,B=a, we may conclude that 

,),=ai and O=a. Again, A=B=S, and ')'By=aAy'. 
We conclude that the grammar is LR (l). 

PRECEDENCE GRAMMARS 

Many practical classes of grammars admit of shift­
reduce type parsing algorithms, as outlined in the 
previous section, but without the need for extra in­
formation on the pushdown list. We shall here discuss 
several classes that go under the heading of precedence 
grammars. The initial idea of operator precedence 
parsing is from Reference 14, while the most common 
current notion of a precedence grammar first appeared 
in Reference 15. The theory of precedence parsing has 
been developed in References 16 through 21. We now 
give the basic precedence definitions. 

Definition: Let G= (N, ~, P, S) be a CFG with no 

production A~e, no derivation A~A, and no symbols 
not appearing in the derivation of some word in L (G) . 
We assume $ is not in NU~. We define three precedence 
relations, <., == and· > on NU~ as follows. 

(1) X == Y if and only if there is a production of the 
form A~aXY,B. 

(2) X < . Y if and only if there is a production 
+ 

A~aXB,B and B~Y')'. 
(3) X· > Y if and o~ly if Y is a terminal, there is a 

production A~aBZ,B, B~')'X and Z~Yo. 

We also have $<·X if S~Xa and X· >$ if S~,BX. 
A grammar is uniquely invertible if it has no two 

productions of the form A ~a and B~a. 
We say G is a precedence grammar if it satisfies the 

constraints mentioned above (no production A ~e, 
etc.), and the relations <., == and . > are disjoint 
from one another. 

If, in addition, G is uniquely invertible, we say G is 
a simple precedence grammar. 

Example: Let us consider the grammar with produc­
tions S~AA, A~aA I b. It is not a precedence gram-

mar, because we have A· >a and A < ·a. That is, since 

AA is a right side, A~aA and A~aA, we have A· >a. 

Since AA is a right side and A~aA again, we conclude 
A < ·a. However, the modified grammar 

S~BA 

A~aA I b 

is a simple precedence grammar. Its precedence rela­
tions are shown below. 

S B A a b $ 
I 

r s I 
j 1 

B - <. <. I 

A 
I 

.> .> .> 

I a -
I 

<. <. 

b ! .> .> .> ; 

$ <. 
\ 

<. <. <. 

We can parse according to a simple precedence 
grammar as follows. An input, scanned left to right by 
a pointer is used, as is a pushdown list. Right sentential 
forms are represented as in the description of the 
LR (k) parser. Initially, only $ appears on the push­
down list, and the leftmost symbol of the input is being 
scanned. The input has $ appended at the right. At 
each step of the algorithm, the following is done. Let 
Xl ... Xm appear on the pushdown list (top right) and 
al ... ar be the remaining input. 

( 1) If X m < . al or Xm == aI, al is shifted onto the 
pushdown list, and the process repeats. 

(2) If Xm·>al, find k such that Xk-I<·Xk== 
X k+l == ... ==Xm. Let A~Xk . .. Xm be a pro­
duction. (A must be unique if G is a simple 
precedence grammar.) Then replace X k . .. Xm 
by A on top of the pushdown list. 

(3) If neither (1) nor (2) apply, accept the input if 
Xl . .. Xm=$S and al ... ar =$. Declare an 
error otherwise. 

I 
i 

i 
I 
I 
I 
I 
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SYNTAX DIRECTED TRANSLATIONS 

We now turn to formalisms for specifying the code 
generation phase of a compiler. The general strategy is 
to work from a parse tree, building some "translations" 
at each node. One translation at the root of the tree is 
designated the output of the translation system. The 
most elementary system, called a (formal) syntax 
directed translation scheme was first expounded in 
Reference 22 and formalized in Reference 4. Some theo­
retical developments and generalizations appear in 
References 22 through 30. 

Definition: A (formal) syntax directed translation 
scheme (SDTS) is a CFG G= (N, ~, P, S), together 
with a translation element for each production. The 
translation element associated with production A ~a is 
a string {3 in (NULl) *, where A is an alphabet of output 
symbols, disjoint from N. {3 must be such that there is 
a one to one mapping from its nonterminals to the 
nonterminals of a, where each nonterminal is mapped 
to an identical symbol. If the mapping preserves the 
(left to right) order of appearance of the nonterminals 
in a and {3, then the SDTS is said to be simple. 

We construct a translation from a parse tree in the 
CFG as follows. An order for the interior nodes is 
chosen so that each node follows all its descendants in 
the order. Each node is considered in its turn. If a 
particular node n has label A and its direct descendants 
have labels Xl' ... ' X n , from the left, then 

A~Xl ... Xn 

is a production. Let {3 = Y l ..• Y m be the translation 
element for that production. The translation at n is 
formed from Y l • •• Y m by substituting for each Y i in 
N, the translation at the jth direct descendant of n if 
Y; is associated with Xj. 

The translation defined by the SDTS is the set of 
pairs (w, x) such that w is the yield of some parse tree 
T and the translation defined at the root of T is x. 

Example: We can build a translation on Go to trans­
late infix arithmetic expressions to postfix (operator 
follows both operands) expressions. 

production 
E~E+T 
E~T 

T~T*F 
T~F 

F~(E) 

F~a 

Translation element 
ET+ 
T 
TF* 
F 
E 
a 

Since no production of Go has more than one occur­
rence of the same nonterminal on the right side of any 

production, the mapping between nonterminals of the 
translation elements and their productions is obvious. 
Note that the SDTS is simple. 

The string (a+a) *a has the parse tree shown below. 
Nodes have been numbered for reference. The following 
order of the interior nodes is acceptable. ns, n7, n6, nlO, 
n9, ns, n4, nll, n2, nl. 

E , 

F a 

I 
a 

The translation at ns is just a, since production F~a 
was applied there, and the associated translation ele­
ment is a. To compute the translation at n7, we sub­
stitute the translation at ns for F in the translation 
element associated with T~F. Thus, the tram~lation 
at n7 is a, as is the translation at n6, nlO, and n9. The 
translation at ns is computed by substituting the trans­
lation at n6 for E and that at n9 for T in the translation 
element ET+. Thus, the translation at ns is aa+. 
Proceeding similarly, the translation at n, is aa+a*. 
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INTRODUCTION 

A little over three years ago the Advanced Research 
Projects Agency of the Department of Defense (ARP A) 
began implementation of an entirely new venture in 
computer communications: a network that would 
allow for the interconnection, via common-carrier 
circuits, of dissimilar computers at widely separated, 
ARPA-sponsored research centers. This network, which 
has come to be known as the ARPA Network, presently 
includes approximately 20 nodes and is steadily growing. 
Major goals of the network are (1) to permit resource 
sharing, whereby persons and programs at one research 
center may access data and interactively use programs 
that exist and run in other computers of the network, 
(2) to develop highly reliable and economic digital 
communications, and (3) to permit broad access to 
unique and powerful facilities which may be eco­
nomically feasible only when widely shared. 

The ARPA Network is a new kind of digital com­
munication system employing wideband leased lines 
and message switching, wherein a path is not es­
tablished in advance and instead each message carries 
an address. Messages normally traverse several nodes 
in going from source to destination, and the network is 
a store-and-forward system wherein, at each node, a 
copy of the message is stored until it is safely received 
at the following node. At each node a sm'111 processor 
(an Interface Message Processor, or IMP) acts as a 
nodal switching unit and also interconnects the re­
search computer centers, or Hosts, with the high band­
width leased lines. 

A set of papers presented at the 1970 SJCCl-5 
described early work on the ARP A Network in some 
detail, and acquaintance with this background ma­
terial (especially Reference 2) is important in under-

* This work was sponsored by the Advanced Research Projects 
Agency under Contract No. DAHC15-69-C-0179. 
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standing the current work. The present paper first 
discusses major developments that have taken place 
in the network oyer the last two years. We then de­
scribe the Terminal INIP, or TIP, a development 
which permits direct terminal access to the network. 
Finally we mention some general issues and discuss 
plans for the next stages in development of the network. 

THE DEVELOPING NETWORK 

The initial installation of the ARPA Network, in 
1969, consisted of four nodes in the western part of 
the United States. A geographic map of the present 
ARPA Network is shown in Figure 1. Clearly, the 
most obvious development has been a substantial 
growth, which has transformed the initial limited experi­
ment into a national assemblage of computer resources 
and user communities. The network has engendered 
considerable enthusiasm on the part of the participants, 
and it is increasingly apparent that the network repre­
sents a major new direction in both computer and 
communications technology. 

Figure 2 is a logical map of the network, where the 
Host computer facilities are shown in ovals, all circuits 
are 50 kilobits, and dotted circuits/nodes represent 
planned installations. On this figure certain nodes are 
listed as a "316 Il\1P"; this machine is logically nearly 
identical to the original IMP, but can handle ap­
proximately two-thirds of the communication traffic 
bandwidth at a cost savings of approximately one-half. 
The original IMP includes a Honeywell 516 computer, 
and more recently Honeywell began to market the 316 
computer as a cheaper, downward-compatible machine. 
As the network has grown, sites were identified which 
did not require the full bandwidth of the original IMP, 
and a decision was made to provide an IMP version 
built around the 316 computer. Also shown in Figure 2 
are certain nodes listed as "TIP"; this new machine 
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Figure I-ARPA Network, geographic map, December 1971 

is discussed in detail later in this paper. Site abbrevia­
tions shown on Figures 1 and 2 are explained in Table I. 

As the network has grown, a great deal of work has 
been concentrated on the development of Host-to­
Host protocol procedures. In order for programs 
within one Host computer system to communicate 
with programs in other Hosts, agreed-upon procedures 
and formats must be established throughout the net­
work. This problem has, as predicted, turned out to be 
a difficult one. Nonetheless protocol procedures have 
evolved and are being accepted and implemented 
throughout the net. At the present writing, many of 
the Hosts have working "network control programs" 
which implement this protocol. Protocol development 
is more fully reported in a companion paper,6 but we 
wish to make a general observation on this subject: 
the growth of the network has dynamically catalyzed 
an area of computer science which has to do with the 
quite general problem of how programs should inter­
communicate, whether in a single computer or between 
computers. Thus the evolution of the Host-to-Host 
protocol represents a side benefit of the network that 
reaches well beyond its utility to the network alone. 

Figure 2-ARPA Network, logical map, December 1971 

Since both hardware and software network con­
nections must be implemented by each Host, it is 
important that the external characteristics of the 
IMP be relatively stable. This stability has been care­
fully maintained, while at the same time internal 
operation of the IMP program has undergone extensive 
revision and improvement. For example, trouble 
reporting, statistics gathering, and test procedures 
have been substantially improved. In addition to im­
provements that have already been incorporated into 
the program, there have also been extensive studies of 
performance and message flow control. 7 These studies 
have pointed up areas of vulnerability to perverse 

NCAR 
GWC 
SRI 
MC CLELLAN 
UTAH 
ILLINOIS 
MIT 
LINCOLN 
RADC 
CASE 
AMES 
USC 
UCSB 
STANFORD 
SDC 
BBN 
CARNEGIE 
MITRE 
ETAC 

UCLA 
RAND 
TINKER 
HARVARD 
BURROUGHS 
NBS 

TABLE I-Site Abbreviations 

National Center for Atmospheric Research 
Global Weather Central 
Stanford Research Institute 
McClellan Air Force Base 
University of Utah 
University of Illinois 
Massachusetts Institute of Technology 
M.LT. Lincoln Laboratory 
Rome Air Development Center 
Case Western Reserve 
N.A.S.A. Ames Research Center 
University of Southern California 
University of California at Santa Barbara 
Stanford University 
Systems Development Corporation 
Bolt Beranek and Newman 
Carnegie University 
MITRE Corporation 
Environmental Technical Applications 

Center 
University of California at Los Angeles 
Rand Corporation 
Tinker Air Force Base 
Harvard University 
Burroughs Corporation 
National Bureau of Standards 

heavy traffic patterns and have suggested still other 
possible improvements in the routing and flow control 
mechanisms. Potential changes are presently being 
being studied in some detail and will be incorporated 
into one or more forthcoming major revisions of the 
program. They will hopefully anticipate problems 
which might be expected to arise as traffic flow in the 
network becomes heavier. 

Somewhat belatedly in the network design, the need 
to connect a single IMP to several Hosts was recog­
nized. This required multiple Host interfaces at the 
IMP as well as more complex IMP software. Further, 
the various Host computers at a site are often physically 



distant from one another, thus requiring an increase in 
the maximum allowable physical separation between a 
Host and its Il\lP. To connect to an arbitrarily remote 
Host would have meant a communications interface 
capable of attachment to common-carrier circuits via 
modems. It would furthermore have required coopera­
tive error control from the Host end. At the time, we 
chose not to modify the logical way in which the Il\,fP 
dealt with the Host and instead we provided more 
sophisticated line drivers which would handle distances 
of up to two thousand feet. Several such "Distant Host" 
installations are now working in the network. Un­
fortunately, as the network has grown, new sites have 
appeared where still greater Host/IMP distances are 
involved. The present scheme does not include error 
control, and use of this scheme over greater distances 
is not appropriate. At the present time we are therefore 
considering how best to arrange IlVIP /Host connec­
tions over large distances and additional options will 
be required in this domain. 

Another facility which has been tested is the ability 
of the IMPs to communicate over 230.4 kilobit phone 
lines instead of 50 kilobit lines. A short, fast link was 
incorporated into the network for a brief period and 
no problems were encountered. To date, network 
loading has not justified upgrading any operational 
network circuits to 230.4 kilobits, but this will be con­
sidered as loading rises. 

Substantial effort has gone into traffic and trouble 
reporting. A Network Control Center (NCC) has been 
built at Bolt Beranek and Newman Inc. in Cambridge, 
where a small dedicated Host computer receives re­
ports each minute from every IlVIP on the network. 
Traffic summaries and status and trouble reports are 

13¢¢ JUNE 16 197- ARPA NETWORK LOG PAGE 11 

13¢¢ IMP 6 : HOST 1 UP (Host 1 at MIT came up) 
IMP 1: SS2 ON (Sense switch 2 was thrown at UCLA) 

13¢1 IMP 1: 1¢ SEC STAT ON (UCLA is using IMP statistics) 
13¢5 IMP 1: 1¢ SEC STAT OFF (UCLA has finished) 

IMP 1: SS2 OFF (and turned the switch off) 

13¢7 IMP 4 : UP :~ :::~:::: (Utah IMP was down, and has come up 

IMP 4: RELOADED FROM NET (A neighbor IMP sent Utah a copy of 
IMP 4: VERS ION 2614 (the IMP program over a phone line) 
IMP 4: HOST 1 UP (Host 1 at Utah is now up) 

131¢ LINE 4 : UP :::::::::: (one of Utah's lines is up) 

LINE 1~ : UP :::::::::: (another is up) 

LINE 15: DOWN :::::::::: (but the third is making errors) 

1317 LINE 15: ERRORS MINUS 13/81 (Utah sees 20% error rate) 
LINE 15 : ERRORS PLUS 7/81 (the other end sees a 10% rate) 
IMP 6 : HOST 1 DN (Host 1 at MIT went down) 

132¢ LINE 15: ERRORS M I NUS ¢181 (the line is error-free) 
LINE 15: ERRORS PLUS ¢181 (in both directions) 

1321 LINE 15 : UP ::::~:::: ( the line is declared usable) 

Figure 3-Typical segment of NCC log 
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then generated from this material. Specifically, a 
logger records any changes that th( Il\lPs report to the 
N CC; it records line errors and Il\:IP storage counts 
when they exceed certain limits, as well as unusual 
events, such as reloading from the net, checksum errors, 
etc. Figure 3 shows an example of this log. (The com­
ments, in parentheses to the right, are not part of the 
log but have been added to explain the meaning of the 
entries.) In addition to this detailed log of interesting 
events, one may at any time obtain a quick summary 
of the status of the network. Finally, detailed and 
summary logs of Host and line traffic are produced. 
The NCC is a focal point not only for monitoring the 
network but also for testing and diagnosing remote 
troubles. Lines throughout the network can be looped 
from here in order to isolate difficulties. Personnel of 
the center coordinate all debugging, maintenance, 
repair and modification of equipment. 

DIRECT TERlVIINAL ACCESS 

During the early phases of network development 
a typical node has consisted of one or more large time­
shared computer systems connected to an L\,fP. The 
IMPs at the various sites are connected together into 
a subnet by 50 kilobit phone lines and the large Host 
computers communicate with one another through 
this subnet. This arrangement provides a means for 
sharing resources between such interconnected centers, 
each site potentially acting both as a user and as a 
provider of resources. This total complex of facilities 
constitutes a nationwide resource which could be made 
available to users who have no special facilities of their 
own to contribute to the resource pool. Such a user might 
be at a site either with no Host computer or where the 
existing computer might not be a terminal-oriented 
time-sharing system. 

A great deal of thought went into considering how 
best to provide for direct terminal access to the net­
work. One possibility, which would have essentially 
been a non-solution, was to require a user to dial direct 
to the appropriate Host. Once connected he could, of 
course, take advantage of the fact that that Host was 
tied to other Hosts in the net; however, the network 
lines would not have been used to facilitate his initial 
connection, and such an arrangement limits the ter­
minal bandwidth to what may be available on the 
switched common-carrier networks. 

A similar solution was to allow terminals to access 
the network through a Host at a nearby node. In such 
a case, for example, a worker in the New England area 
wishing to use facilities at a California site might 
connect into a local Boston Host and use that Host 
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as a tap into the network to get at the facilities in 
California. This approach would have required Hosts 
to provide hardware access facilities for many ter­
minals which would use their systems only in passing. 
For many Hosts, the kinds of terminals which can be 
connected directly are limited in speed, character set, 
etc. In terms of reliability, the user would have been 
dependent on the local Host for access; when that Host 
was down, his port into the network would be un­
available. Furthermore, the Hosts would have been 
confronted with all of the problems of composing 
terminal characters into network messages and vice 
versa as well as directing these messages to the proper 
terminals and remote Hosts. Time-sharing systems are 
generally already overburdened with processing of 
characters to and from terminals and many are con­
figured with front end processors employed explicitly 
to off-load this burden from the main processor. In­
creasing the amount of such work for the Hosts there­
fore seemed unreasonable and would have resulted jn 
limiting terminal access. Instead, a completely separate 
means for accessing the network directly seemed called 
for: an IMP with a flexible terminal handling capa­
bility-a Terminal IMP, or TIP. 

One of the fundamental questions that arises when 
considering this problem is: what is the proper dis­
tribution of computational power among the remote 
big facility, the terminal processor, and the terminal? 
Shall the terminal processor be clever, have sizable 
storage, be user programmable, etc., or shall it be a 
simpler device whose basic job is multiplexing in a 
flexible way? Serious work with interactive graphics 
seems to require the terminal to include, or be in 
propinquity to, a user-programmable processor and 
considerable storage. To date, such work has primarily 
been done with terminals attached directly to a Host. 
Some elaborate terminals, such as the Adage, include 
a powerful processor. Other kinds of terminals, in­
cluding Teletype-like devices, alphanumeric displays, 
or simple graphic displays (excluding serious inter­
active graphics), do not require a user-programmable 
local processor or significant local storage. 

We believe that the great majority of potential 
groups needing access to the ARPA Network will not 
need powerful interactive graphics facilities. Further, 
for the minority that will need powerful terminals, we 
believe that individual terminals with built-in or 
accompanying processors will become more common. 
For these reasons, we decided that the terminal pro­
cessor should be simple and not programmable from 
the terminals. The computational load and the storage 
should be in the Hosts or in the terminals and not in the 
terminal processor. This simple multiplexing approach 
is amenable to some standardization and is philo-

sophically close to the original IMP notion of a stan­
dard nodal device. 

Another major question we faced was whether to 
build a separate terminal handler and then connect it 
to the IMP or to build an integrated unit that was 
housed in a common cabinet and used the IMP pro­
cessor. One advantage of the two-machine approach 
is that it isolates the IMP functions from the terminal 
functions, thereby providing a barrier of safety for the 
net. This approach also provides the processing power 
of two machines and a potentially greater degree of 
user freedom in modifying or writing programs. 
Another interesting reason for considering separate 
machines was to reduce the large cost associated with 
I/O equipment (such as line controllers) by making 
use of the extra processing power. We discussed with 
several manufacturers the possibility of bringing 
terminal wires "into" their processors and decoding 
the basic line information directly in software. How­
ever, even with some of the new state-of-the-art 
machines, like the Meta-4, with fast 90 nsec read-only 
memories to handle character decoding, the I/O cost 
was still high, and in large part the necessary I/O 
equipment was yet to be designed. We therefore con­
cluded that it was still somewhat early to proceed in 
this fashion, and two processors did not appear to save 
I/O equipment. 

The principal disadvantages of the two-machine 
approach were the higher initial cost, the djfficulties 
of maintaining two machines, and the software problems 
of dealing with two machines. In particular, the com­
munication between two machines would require two 
hardware Host interfaces, and two software Host/IMP 
programs. This would result in a much poorer com­
munication between the IMP program and the ter­
minal handling program than would exist in a single 
machine. In either case, one machine or two, the 

Figure 4-A TIP in the network 

/ 

t/ 
LINES CONNECTING TO 
IMPS IN THE MAIN , 
NETWORK ", 



Figure 5-Photograph of TIP 
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terminal handling process required the implementa­
tion of a version of Host protocol. 

We finally decided that the least expensive and most 
sensible technical alternative was to build the IMP 
and the terminal handler (with the necessary subset 
of Host protocol) together into a single machine. Then, 
since certain new machines appeared attractive in 
cost/performance relative to the Honeywell 16 series, 
we spent considerable time thinking about what 
machine to use. We decided that no alternate choice 
was sufficiently attractive to justify rewriting the 
main IMP program and redesigning the Host and 
modem interface hardware. This left us with a de­
cision between the Honeywell 516 and 316 computers. 
We chose the 316 on the basis of size and cost, feeling 
that the somewhat higher bandwidth of the 516 was 
not essential to the job and did not justify its higher 
price and the second cabinet which would have been 
required. 

TERMINAL IMP HARDWARE 

Figure 4 shows how the TIP fits the user into the 
network. Up to 63* terminals, either remote or local, 
of widely diverse characteristics may be connected to 
a given TIP and thereby "talk" into the network. It is 
also possible to connect a Host to a TIP in the usual 
way. 

The TIP is shown in Figure 5. It is built around a 
Honeywell H-316 computer with 20K (20,480 words) 
of core. It embodies a standard 16 port multiplexed 
memory channel with priority interrupts and includes 
a Teletype for debugging and program reloading. 
Other features of the standard IMP also present are 
a real-time clock, power-fail and auto-restart mecha­
nisms, and a program-generated interrupt feature. 2 

As in the standard IMP, interfaces are provided for 
connecting to high-speed (50 kilobit, 230.4 kilobit, 
etc.) modems as well as to Hosts. The single-cabinet 
version limits the configuration to a total of three 
modem and/or Host interfaces, but an expansion 
cabinet may be used to increase this limit. lVlore basic 
limits are set by the machine's logical organization 
(specificallY the number of available memory chan­
nels) and the program bandwidth capability as dis­
cussed below. 

Aside from the additional 8K of core memory, the 
primary hardware feature which distinguishes the 
TIP from a standard IMP is a Multi-Line Controller 
(]\tILC) which allows for connection of terminals to the 

* There are 64 hardware lines but line 19 is logically reserved by 
the program for special use. 
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IlVIP. Any of the l\1LC lines may go to local terminals 
or via modems to remote terminals. As shown in 
Figure 6 the lVILC consists of two portions, one a piece 
of central logic which handles the assembly and disas­
sembly of characters and transfers them to and from 
memory, and the other a set of individual Line In ter­
face Units (all identical except for small number of 
option jumpers) which synchronize reporting to in­
dividual data bits between the central logic and the 
terminal devices and provide for control and status 
information to and from the modem or device. Line 
Interface Units may be physically incorporated one at 
a time as required. 

The MLC connects to the high-speed mUltiplexed 
memory channel option of the H-316, and uses three 
of its channels as well as two priority interrupts and a 
small number of control instructions. The MLC is 
fabricated by BBN and is built from TTL integrated 
circuits. The lVILC central controller, complete with 
power supply, is housed in an H-316 expansion chassis, 
and the entire lVILC, as well as the computer itself, 
is mounted in a standard six-foot rack. Additional 
space is provided in the bottom of the rack for up to 
sixteen card-mounted modems of the Bell 103, 201, or 
202 variety, together with their power supplies. 

In order to accommodate a variety of devices, the 
controller handles a wide range of data rates and 
character sizes, in both synchronous and asynchronous 
modes. Data characters of length 5-, 6-, 7-, or 8-bits 
are allowed by the controller. Since no interpretation 
of characters is done by the hardware, any character 
set, such as Baudot, Transcode ASCII or EBCDIC 
may be used. 

The following is a list of data rates accepted by the 
controller: 

SYNCHRONOUS 
Any rate up to and in­

cluding 19.2 Rb/s 

ASYNCHRONOUS 
eN ominal Rates) 

75 1200 
110 1800 
134.5 2400 

150 4800} 
300 9600 output only 
600 19200 
All above in bits/second 

The data format required of all devices is bit serial 
and each character indicates its own beginning by 
means of a start bit vvhich precedes the data and in­
cludes one or more stop bits at the end of the char­
acter. This per-character framing is quite standard 
for asynchronous lines but synchronous lines, generally 
designed for higher bandwidths, frequently adopt 
some form of "binary synchronous communication" 

where the characters are packed tightly together into 
messages which are then framed by special characters. 
Framing is thereby amortized over the entire message, 
thus consuming a smaller fraction of the available 
bandwidth than the per-character framing which uses 
two or more bits for every character. The difficulties 
with this scheme, however, are that it is more complex, 
requiring more sophisticated hardware at each end, 
and that no real standards exist which are adhered to 
by all or even most types of synchroilOus devices. We 
therefore decided to adopt per-character framing with 
start and stop bits even on synchronous lines. At a 
cost of some twenty percent of the bandwidth for 
framing, a very simple and general scheme is thus 
arrived at. A number of high speed terminal manu­
facturers, faced with the same problems, have arrived 
at a similar conclusion. 

Given these characteristics, then, the controller will 
connect to the great majority of normal terminal de­
vices such as Teletypes, alphanumeric CRT units, and 
modems, and also (with suitable remote interface 
units) to many peripheral devices such as card readers, 
line printers, and graphics terminals. Either full or 
half duplex devices can be accommodated. The stan­
dard TIP program cannot deal with a magnetic tape 
unit through the ::VILC. However, as a special option, 
and with the use of additional core memory, standard 
Honeywell tape drives can be connected to the TIP 
as normal peripherals. 

The individual terminal line levels are consistent 
with EIA RS-232C convention. Data rates and char­
acter length are individually set for each line by the 
the program. For incoming asynchronous lines, the 
program includes the capability for detecting char­
acter length and line data rate as discussed below. 

Logically, the controller consists of 64 input ports 
and 64 output ports. Each input/output pair is brought 
out to a single connector which is normally connected 
to a single device. However, by using a special "Y" 

MULTI-LINE CONTROLLER ,--------.----, 
I I 
I I 

I 
I 
I 

I UP TO 64 LINE I INTERFACE UNITS 

L _____ _ 

TO LOCAL 
TERMINALS 

J 

TO REMOTE 
TERMINALS 

Figure 6-Block diagram of TIP hardware 
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cable, the ports may go to completely separate devices 
of entirely different properties. Thus, input port 16 
may connect to a slow, asynchronous, 5-bit character 
keyboard while output port 16 connects to a high speed, 
synchronous display of some sort. In order to achieve 
this flexibility, the ]\tILC stores information about each 
input and each output port and the program sets up 
this information for each half of each port in turn as 
it turns the ports "ON." 

Several aspects of the MLC design are noteworthy. 
The central logic treats each of the 64 ports in suc­
cession, each port getting 800 ns of attention per cycle. 
The port then waits the remainder of the cycle (51.2 
fJ,s) for its next turn. For both input and output, two 
full characters are buffered in the central logic, the one 
currently being assembled or disassembled and one 
further character to allow for delays in memory ac­
cessing. 

During input, characters from the various lines 
stream into a tumble table in memory on a first come, 
first served basis. Periodically a clock interrupt causes 
the program to switch tables and look for input. 

Output characters are fed to all lines from a single 
output table. Ordering the characters in this table in 
such a way as to keep a set of lines of widely diverse 
speeds solidly occupied is a difficult task. To assist the 
program in this, a novel mechanism has been built into 
the MLC hardware whereby each line, as it uses up a 
character from the output table, enters a request con­
sisting of its line number into a "request" table in 
memory. This table is periodically inspected by the 
program and the requests are used in building the next 
output table with the characters in proper line se­
quence. 

The design of the terminal interface portion of the 
MLC is modular. Each Line Interface Unit (LIU) 
contains all the logic required for full duplex, bit serial 
communication and consists of a basic bi-directional 
data section and a control and status section. The 
data section contains transmit and receive portions 
each with clock and data lines. For asynchronous 
devices the clock line is ignored and timing is pro­
vide:l by the lVILC itself. (For received asynchronous 
characters, timing is triggered by the leading edge of 
the start bit of each character.) 

The control and status monitor functions are pro­
vided for modems as required by the RS-232C specifi­
cation. Four outputs are available for control functions 
and six inputs are available to monitor status. The 
outputs are under program control and are available 
for non-standard functions if the data terminal is not 
a modem. For example, these lines could be used to 
operate a local line printer. RS-232C connectors are 
mounted directly on the LIU cards. To allow for varia-
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tions in terminal and modem pin assignments, the 
signals are brought to connector pins via jumpers on 
the card. 

The central lVILC contains 256 ICs, many of which 
are ]\tISI and some of which are LSI circuits, and it is 
thus about the same complexity as the basic H-316. 
In addition each LIU contains 31 ICs. A Terminal 
IMP including the MLC and with a typical interface 
configuration to high-speed circuits and Hosts is, order 
of magnitude, a $100,000 device. 

THE TER]\tIINAL USER'S VIEW 

This section describes how a TIP user gains access 
to the network. The protocol described is of very 
recent origin and will undoubtedly change in response 
to usage which, as of this writing, is just commencing. 

In general a user must have some foreknowledge of 
the resource which he expects to access via the network. 
The TIP program implements a set of commands8 for 
connecting to and disconnecting from remote sites, 
but once a terminal is connected to a particular system, 
the TIP becomes transparent to the conversation 
unless specially signalled. This is equivalent to a time­
sharing system where the executive program is es­
sentially out of the picture during periods while the 
user is dealing directly with his own set of programs. 

Because of the large number of different terminal 
types used in the network, the concept of the Network 
Virtual Terminal was developed. This is an imaginary 
but well-defined type of terminal. The TIP translates 
typed data to virtual terminal code before shipping it 
into the network, and conversely translates the remote 
system's response back into the local terminal's code. 
Thus, each Host system must deal only with this 
single terminal type. 

When the user at a terminal needs to talk directly 
to his TIP instead of to the remote Host, he issues a 
command which is distinguished by the fact that it 
always starts with the symbol @. One or more words, 
perhaps followed by a single parameter, then identify 
the type of command. 

Normally a user will go through four more or less 
distinct stages in typing into the net. First, he will 
be concerned with hardware, power, dialing in, etc. 
Then he will establish a dialogue with the TIP to get 
a comfortable set of parameters for his usage. Next, 
he will instruct the TIP to make a connection to a 
remote Host, and finally, he will mostly ignore the TIP 
as he talks to the remote Host. 

One of the more interesting features of the TIP is 
that it permits great flexibility in the types of ter­
minals which may be attached to any port. This 



250 Spring Joint Computer Conference, 1972 

TABLE II-Tip Commands 

CLOSE 
close all outstanding connections 

HOST # 
focus attention on this host 0 <# <256 

LOGIN 
start the initial connection procedure to get Telnet 

connections 
SEND BREAK 

send a Telnet break character 
SEND SYNC 

send a Telnet sync character and an INTERRUPT 
SENDER message 

ECHO ALL 
local TIP-generated echo-TIP echoes everything 

ECHO NONE 
remote Host-generated echo-TIP will echo commands 

ECHO HALFDUPLEX 
terminal-generated echo-TIP echoes nothing 

FLUSH 
delete all characters in input buffer 

TRANSMIT EVERY # 
send off input buffer at least every #th character 

0<#<256 
TRANSMIT ON EVERY CHARACTER 

like TRANSMIT EVERY 1 
TRANSMIT ON LINEFEED 

send input buffer every time a linefeed encountered 
TRANSMIT ON MESSAGE-END 

send input buffer every time an EOM encountered 
TRANSMIT ON NO CHARACTER 

do not transmit on linefeed or EOM 
TRANSMIT NOW 

send off input buffer now 
DEVICE RATE # 

# is a 13 bit code specifying hardware rate and character 
size settings 

DEVICE CODE ASCII 
DEVICE CODE 2741 
DEVICE CODE EXECUPORT 
DEVICE CODE ODEC 

SEND TO HOST # 
RECEIVE FROM HOST # 
SEND TO SOCKET # 
RECEIVE FROM SOCKET # 

1 establis~ code 
r converSIOn 
J 

1 
establish parameters 
for manual initiation of 
J connections 

PROTOCOL TO TRANSMIT } 
PROTOCOL TO RECEIVE initiate connection 
PROTOCOL TO CLOSE TRANSMIT protocol manually 
PROTOCOL TO COSE RECEIVE J 

PROTOCOL BOTH 
PROTOCOL TO CLOSE BOTH 

# GIVE BACK 
1

abbreviations for 
simultaneous transmit 

I and receive protocols 

release control of captured device 
# DIVERT OUTPUT 

capture device # and divert this terminal's output to it 
ABORT LOGIN 

abort the outstanding initial connection procedure 

flexibility presents a problem to the program which 
must determine what kind of terminal (speed, char­
acter size, etc.) is attached to a gixen port before a 
sensible exchange of information is possible. To solve 
this problem, each terminal is assigned a special 
identifying character which the user types repeatedly 
when starting to use a terminal. When information 
starts to appear from a previously idle port, the TIP 
enters a "hunt" mode in which it interprets the ar­
riving characters trying various combinations of 
terminal characteristics. All except the proper com­
bination will cause the character to be garbled, pro­
ducing something other than one of the legal terminal 
identifying characters. When the TIP thus identifies 
the correct set (which generally requires the user to 
repeat the identifier less than half a dozen times), 
it types out 'HELLO in the terminal's own language. 

In the next stage, the user initializes certain conver­
sation parameters relating to message size and when 
to echo. He then establishes connection to a remote 
site using two commands which identify the desired 
remote site and the fact that the user wishes to be 
connected to the logger at that site. These commands 
are: 

@HOST15 

@LOGIN 

The LOG IN command actually sets in motion an 
elaborate exchange of messages between the TIP and 
the remote Host which normally result in a connection 
being made to that remote system. This command will 
be answered by an appropriate comment to the user 
indicating either that a connection has been made, that 
the remote site is not up, that it is up but actively re­
fusing to converse, or that it is up but not responding 
enough even to refuse the connection. 

Once a connection is established, the user types 
directly to the logger. The TIP does not execute the 
actual login since this procedure varies from site to 
site. 

Throughout the user-to-Host dialogue, commands 
remain available at any time. Prior to closing the con­
nection, the user must log out as required by the 
system he is using. He then gives the command 

@CLOSE 

which causes the TIP to close the connection, in­
forming the user when the process is finished. 

In addition to the above more or less standard pro­
cedures, there are a number of less usual commands 
which set such things as device rate, character size, 
code types, etc. Such commands are used by a terminal 
on one port in setting parameters for a non-interactive 
terminal, such as a printer or card reader, on some 



other port. Other special commands permit conversa­
tions directly between terminals on the same or dif­
ferent TIPs, allow for binary mode, etc. Table II is 
a list of the commands with a brief explanation. For 
details refer to Reference 8. Figure 7 gives an example 
of typical dialogue. 

THE SOFTWARE 

Because the terminals connected to a TIP com­
municate with Hosts at remote sites, the TIP, in ad­
dition to performing the IMP function, also acts as 
intermediary between the terminal and the distant 
Host. This means that network standards for format 
and protocol must be implemented in the TIP. One 
can thus think of the TIP software as containing both 
a very simpleminded mini-Host and a regular IMP 
program. 

Figure 8 gives a simplified diagrammatic view of the 
program. The lower block marked "IMP" represents 
the usual IMP program. The two lines into and out 
of that block are logically equivalent to input and 
output from a Host. The code conversion blocks are 
in fact surprisingly complex and include all of the 
material for dealing with diverse (and perverse) types 
of terminals. 

As the user types on the keyboard, characters go, 
via input code conversion, to the input block. Infor­
mation for remote sites is formed into regular network 
messages and passes through the OR switch to the 
IlVIP program for transmittal. Command characters 
are fed off to the side to the command block where 
commands are decoded. The commands are then "per-

Character typed just after terminal tUrned on. Used to 
identify the terminal type for the Terminal IMP program. 

@ HOST 1 

TIP indicates that terminal is ready for use. 

User tells Terminal IMP which Host to connect to. 

(Terminal IMP echoes extra carriage return line feed to 
indicate it has accepted a command.) 

@ LOGIN User tells Terminal IMP to form a connection. 

(TIP echoes extra carriage return line feed.) 

T R OPEN Terminal IMP has formed a connection. 

LOG ON:: This is UCLA r.7 t s greeting message. 

xxxx User identification. 

S:: • ABACUS: C 

STOP 

NORMAL EXIT 

User exits from UCLA r,7. 

LOG ON:: E7 closing message indicates user has logged off. 

@ CLOSE 

T R CLOSEO 

User detaches the Termin~l IMp· from computer being used 
(i.e. closes c'onnection). 

(TIP echoes extra carriage return line feed.) 

Terminal IMP has closed the connection. 

Figure 7-Typical terminal user dialogue 

Dialogue between 
terminal user 
and UCLA E7. 
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OUTPUT 

~ 
PER 

MESSAGE 

NETWORK 

Figure 8-Block diagram of TIP program 

formed" in that they either set some appropriate param­
eter or a flag which calls for later action. An example 
of this is the LOGIN command. Such a command in 
fact triggers a complex network protocol procedure, 
the various steps of which are performed by the PRO­
TOCOL block working in conjunction with the remote 
Host through the IMPs. As part of this process an 
appropriate special message will be sent to the terminal 
via the Special lVlessages block indicating the status 
(success, failure, etc.) of the procedure. 

Once connection to a remote Host is established, 
regular messages flow directly through the Input block 
and on through the IMP program. Returning responses 

. come in through the IMP, into the OUTPUT program 
where they are fed through the OUTPUT Code Con­
version block to the terminal itself. 

Storage for the TIP program, including the standard 
IMP program, is just over 20K. This is roughly as 
follows: 

Standard IlVlP Program with buffers 
& tables 

Special TIP code 
Tables of Parameters 
Buffer Storage for messages to and 

from terminals 
Miscellaneous-I/O buffers, con­

stants, etc. 

PERFORMANCE 

12,000 
2,650 
1,800 

1,880 

1,880 

The program can handle approximately 100 kilobits 
of one-way terminal traffic provided the message size 
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is sufficiently large that per-message processing is 
amortized over many characters. Overhead per message 
is such that if individual characters are sent one at a 
time there is a loss of somewhere between a factor of 
ten and twenty in bandwidth. A different way to look 
at program performance is to observe that the per­
character processing time is about 75 J.Ls. 

These figures ignore the fact that the machine must 
devote some of its bandwidth to acting as an IlVIP, 
both for terminal traffic and for regular network 
traffic. About 5% of the machine is lost to acting as an 
Il\IP, even in the absence of traffic. If there is network 
traffic, more of the machine bandwidth is used up. 
Five hundred kilobits of two-way phone line and 
Host traffic saturates the machine without any ter­
minal traffic*. 

In addition to bandwidth which goes into the IlVIP 
part of the job, another 10 percent of the (total) ma­
chine is taken up simply in fielding clock interrupts 
from the Multi-Line Controller. This again is band­
width used in idling even with no actual terminal 
traffic. 

The following formula summarizes, approximately, 
the bandwidth capabilities: 

P + H + 11 T :::; 850 

P = total phone line traffic (in kilobits/sec) 
wherein, for example, a full duplex 50 Kb 
phone line counts as 100; 

H = total Host traffic (in kilobits/sec) wherein 
the usual full duplex Host interface, with 
its usual 10 J.Ls/bit setting, counts as 200; 
and 

T = total terminal traffic (in kilobits/sec) wherein 
an ASCII terminal such as a (llO-baud) 
full-duplex Teletype (ASR-33) counts as 
twice its baud rate (i.e., 0.220 Kb). 

This means that it takes eleven times as much 
program time to service every terminal character as 
it does to service a character's worth of phone line 
or Host message. 

A further factor that influences terminal traffic 
handling capability has to do with the terminals 
themselves. Certain types of terminals require more 
attention from the program than others, independent 
of their speed but based rather on their complexity. 
In particular, for example, while an IBM 2741 nom-

* The number 500 kilobits is for full size (8000 bit) messages. 
Shorter messages use up more capability per bit and thus reduce 
the overall bandwidth capability. 

inally runs at 134.5 bits per second, the complexity 
is such that it uses nearly three times the program 
bandwidth that would be used in servicing a half­
duplex ASCII terminal of equivalent speed. Allow­
ances for such variations must be made in computing 
the machine's ability to service a particular configura­
tion. It must be borne in mind that all of these per­
formance figures are approximations and that the 
actual rules are extremely complex, and will change 
as the program matures. 

DISCUSSION 

As the ARPA Network grows, a number of areas 
of development seem likely to require attention. Cer­
tain of these are already pressing problems whereas 
others will begin to appear primarily as the network 
continues to grow and mature. 

Perhaps the most difficult aspect of a network such 
as this is the problem of reliability. A great deal of 
thought and effort has gone into trying to make the 
system reliable and network topology has been de­
signed with the need for redundancy in mind. N one­
theless the problem of keeping a large number of 
computer systems going at widely separated sites is 
non-trivial. An IlVIP's mean-time-between-failure 
(MTBF) has been on the order of one month; con­
siderably lower than expected. The problems arise 
from a variety of sources and the system is sufficiently 
complex that frequently the cause has been masked 
by the time the failure has been noted. Often the same 
failure will recur several times until the problem is 
identified and eliminated and this fact tends to decrease 
the apparent MTBF. In general a preponderance of 
the troubles stem from hardware failures, and we are 
currently modifying several noisy and/ or marginal 
portions of the I/O and interface hardware in hopes 
of obtaining significant improvement. 

Our strategy has generally been to spend time 
identifying the source of trouble, keeping the machine 
off the air if necessary, so that eventually the lVITBF 
will increase. This has often meant, however, that 
a "down" was much longer than it would have been, 
had the foremost goal been to get the machine running 
again immediately. With this strategy the average 
down time has been about 9 hours, giving rise to an 
average per-machine down rate of about 2 percent. We 
hope to improve this situation in the near future by 
providing improved faciliti~s for obtaining "program 
dumps" when a failure occurs. This will make it possible 
to bring machines back on the air almost immediately 
in many cases, without jeopardizing valuable de­
bugging data. 



A word about our experience with the phone lines 
appears appropriate here as well. We have apparently 
been an unusual, if not unique, customer for the com­
mon carriers in our degree of attention to line failures. 
Our ability to detect and report even brief outages has 
led through measured skepticism to eventual accept­
ance by the carriers. In general, tests have indicated 
that the phone line error rates are about as predicted, 
i.e., approximately one in 105• These occasional errors 
or error bursts do not appear to affect network per­
formance adversely. The IMP-to-IMP error checking 
procedure has not, to our knowledge, admitted a 
single erroneous message. We have, however, had 
some difficulty with lines which were simply out of 
commission from time to time for extended periods 
(hours or even days). The reliability of the phone lines 
is roughly equivalent to the reliability of the Il\IPs, 
based on the number and duration of outages. Down 
times have decreased as the carriers have come to 
accept our complaints as generally legitimate. Overall 
the performance of the telephone equipment does not 
appear to constitute a problem in network growth. 

From a strictly technical viewpoint we view the in­
corporation of higher bandwidth facilities as a natural 
and key part of network growth. While the present 
facilities are not saturated by the present loads, we 
view this situation as a temporary one and something 
of a period of grace. As the network continues to grow 
over the next few years traffic can be expected to in­
crease in a very non-linear fashion. Host protocol 
procedures (which have presented a sizable stumbling 
block to usage) are settling down so that software 
commitments can be made, and the advent of the 
Terminal IMP will bring an influx of new users who 
do not have the alternative of local resources. As a 
result we expect that traffic will begin to saturate 
some parts of the network. Terminal IMPs may well 
be called upon to service a larger number of terminals 
of higher bandwidth than can be handled by the 
present version. 

In anticipation of these requirements we are presently 
considering the design of a significantly faster and 
more modular version of the IMP. Its higher speed 
will permit it to take advantage of high speed (i.e., 
megabit and above) communication lines which the 
common carriers are currently developing. lVlore 
generally it will be able to service high bandwidth 
requirements whenever and however they occur within 
the net. We are currently studying a modular design 
which will permit connection of a greater number of 
interfaces than the present IMP can handle. While 
this work is only in the preliminary design stage, we 
feel that the interest and enthusiasm which have 
greeted the initial network suggest that it is not too 
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early to consider ways to cope with growing traffic 
requirements. 

Another area of network development which has 
already received a great deal of attention and will 
require much more in the future is that of technical 
information interchange between the sites. To the 
user, the resources which are becoming available are 
staggering if not overwhelming. It is very difficult for 
an individual to discover what, if any, of the mass of 
programs that will be available through the network 
may be of interest or of use to him. To aid in this 
process a number of mechanisms are being implemented 
and we are cooperating closely with these efforts. In 
particular, at the Stanford Research Institute a Net­
work Information Center (NIC) acts essentially as 
a library for documentation concerning the network. 
Here are maintained a number of pointer documents, 
specifically, (1) a Directory of Participants which lists 
critical personnel, phone numbers, etc., for each par­
ticipating site, (2) a catalogue of the NIC Collection 
which lists the available documents indexed in a 
variety of ways, (3) a Resource Notebook which is a 
compendium that attempts to familiarize the reader 
with available program resources at each of the par­
ticipating sites. 

Finally, there is the broad and exciting issue of how 
to cope with success. As the ARPA Network grows, 
and as diverse resources and users join the net, it is 
clear that a technology transfer must occur; the net­
work probably must shift from a government-sup­
ported research and development activity to an 
ongoing national service of some kind. However, the 
computer-communications environment in the U.S. 
is rather complex, and is populated with many legal, 
economic, and political constraints. Within this en­
vironment, it is not easy to perform the technology 
transfer, and many groups, including ARPA and BBN, 
have been considering possible alternative plans. We 
are optimistic that a way will be found to provide a 
suitable legal and political base for expansion of the 
present ARPA Network into a widely useful public 
communication system. 
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INTRODUCTION 

The ARPA N etwork (ARPANET) project brought 
together many individuals with diverse backgrounds, 
philosophies, and technical approaches from the fields 
of computer science, communication theory, operations 
research and others. The project was aimed at providing 
an efficient and reliable computer communications 
system (using message switching techniques) in which 
computer resources such as programs, data, storage, 
special purpose hardware etc., could be shared among 
computers and among many users.38 The variety of 
design methods, ranging from theoretical modeling to 
hardware development, were primarily employed 
independently, although cooperative efforts among 
designers occurred on occasion. As of November, 1971, 
the network has been an operational facility for many 
months, with about 20 participating sites, a network 
information center accessible via the net, and well over 
a hundred researchers, system programmers, computer 
center directors and other technical and administrative 
personnel involved in its operation. 

In this paper, we review and evaluate the methods 
used in the ARPANET design from the vantage of 
over two years' experience in the development of the 
network. In writing this paper, the authors have each 
made equal contributions during a series of intensive 

* This work was supported by the Advanced Research Projects 
Agency of the Department of Defense under Contract No. 
DAHC 15-70-C-0120 at the Network Analysis Corporation, 
Contract Nos. DAHC 15-69-C-0179 and DAHC-71-C-0088 at 
Bolt Beranek and Newman Inc., and Contract No. DAHC 
15-69-C-0285 at the University of California at Los Angeles. 
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discussions and debates. Rather than present merely a 
summary of the procedures that were used in the 
network design, we have attempted to evaluate each 
other's methods to determine their advantages and 
drawbacks. Our approaches and philosophies have often 
differed radically and, as a result, this has not been an 
easy or undisturbing process. On the other hand, we 
have found our collaboration to be extremely rewarding 
and, notably, we have arrived at many similar con­
clusions about the network's behavior that seem to be 
generally applicable to message switched networks. 

The essence of a network is its design philosophy, its 
performance characteristics, and its cost of implementa­
tion and operation. Unfortunately, there is no generally 
accepted definition of an "optimal" network or even of 
a "good" network. For example, a network designed to 
transmit large amounts of data only during late evening 
hours might call for structural and performance char­
acteristics far different from one servicing large numbers 
of users who are rapidly exchanging short messages 
during business hours. We expect this topic, and others 
such as the merits of message switching vs. circuit 
switching or distributed vs. centralized control to be a 
subject of discussion for many years.1,14,24,32,34,37 

A cost analysis performed in 1967-1968 for the ARPA 
Network indicated that the use of message switching 
would lead to more economical communications and 
better overall availability and utilization of resources 
than other methods.36 ,38 In addition to its impact on 
the availability of computer resources, this decision has 
generated widespread interest in store-and-forward 
communications. In many instances, the use of store­
and-forward communication techniques can result in 
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greater flexibility, higher reliability, significant tech­
nical advantage, and substantial economic savings over 
the use of conventional common carrier offerings. An 
obvious trend toward increased computer and com­
munication interaction has begun. In addition to the 
ARPANET, research in several laboratories is under 
way, small experimental networks are being built, and 
a few examples of other government and commercial 
networks are already apparent. 6 ,7,31,40,41,47,48,52 

In the ARPANET, each time-sharing or batch 
processing computer, called a Host, is connected to a 
small computer called an Interface Message Processor 
(IMP). The IMPs, which are interconnected by leased 
50 kilobit/second circuits,' handle all network com­
munication for their Hosts. To send a message to 
another Host, a Host precedes the text of its message 
with an address and simply delivers it to its IMP. The 
IMPs then determine the route, provide error control, 
and notify the sender of its receipt. The collection of 
Hosts, IMPs, and circuits forms the message switched 
resource sharing network. A good description of the 
ARPANET, and some early results on protocol develop­
ment and modeling are given in References 3, 12, 15, 
23 and 38. Some experimental utilization of the 
ARPANET is described in Reference 42. A more recent 
evaluation of such networks and a forward look is 
given in References 35 and 39. 

The development of the Network involved four 
principal activities: 

( 1) The design of the IMPs to act as nodal store­
and-forward switches, 

(2) The topological design to specify the capacity 
and location of each communication circuit 
within the network, 

(3) The design of higher level protocols for the use 
of the network by time-sharing, batch pro­
cessing and other data processing systems, and 

(4) System modeling and measurement of network 
performance. 

Each of the first three activities were essentially per­
formed independently of each other, whereas the 
modeling effort partly affected the IMP design effort, 
and closely interacted with the topological design 
project. 

The IMPs were designed by Bolt Beranek and 
Newman Inc. (BBN) and were built to operate in­
dependent of the exact network connectivity; the 
topological structure was specified by Network Analysis 
Corporation (NAC) using models of network per­
formance developed by NAC and by the University of 
California at Los Angeles (UCLA). The major efforts 
in the area of system modeling were performed at 

UCLA using theoretical and simulation techniques. 
Network performance measurements have been con­
ducted during the development of the network by 
BBN and by the Network l\1easurement Center at 
UCLA. To facilitate effective use of the net, higher 
level (user) protocols are under development by a 
group of representatives of universities and research 
centers. This group, known as the N et\vork Working 
Group, has already specified a Host to Host protocol 
and a Telnet protocol, and is in the process of com­
pleting other function oriented protocols.4 ,29 We make 
no attempt to elaborate on the Host to Host protocol 
design problems in this paper. 

THE NETWORK DESIGN PROBLEM 

A variety of performance requirements and system 
constraints were considered in the design of the net. 
Unfortunately, many of the key design objectives had 
to be specified long before the actual user requirements 
could be known. Once the decision to employ message 
switching was made, and fifty kilobit/second circuits 
were chosen, the critical design variables were the 
network operating procedure and the network topology; 
the desired values of throughput, delay, reliability and 
cost were system performance and constraint variables. 
Other constraints affected the structure of the network, 
but not its overall properties, such as those arising from 
decisions about the length of time a message could 
remain within the network, the location of IMPs 
relative to location of Hosts, and the number of Hosts to 
be handled by a single IMP. 

In this section, we identify the central issues related 
to IMP design, topological design, and network 
modeling. In the remainder of the paper, we describe 
the major design techniques which have evolved. 

IMP properties 

The key issue in the design of the IMPs was the 
definition of a relationship between the Il\1P sub net 
and the Hosts to partition responsibilities so that 
reliable and efficient operation would be achieved. The 
decision was made to build an autonomous subnet, 
independent (as much as possible) of the operation of 
any Host. The subnet was designed to function as a 
"communications system"; issues concerning the use of 
the sub net by the Hosts (such as protocol development) 
were initially left to the Hosts. For reliability, the 
IMPs were designed to be robust against all line failures 
and the vast majority of IMP and Host failures. This 
decision required routing strategies that dynamical!y 
adapt to changes in the states of IMPs and circuits, 



and an elaborate flow control strategy to protect the 
subnet against Host malfunction and congestion due to 
IMP buffer limitations. In addition, a statistics and 
status reporting mechanism was needed to monitor the 
behavior of the network. 

The number of circuits that an IMP must handle is a 
design constraint directly affecting both the structure 
of the IMP and the topological design. The speed of the 
IMP and the required storage for program and buffers 
depend directly upon the total required processing 
capacity, which must be high enough to switch traffic 
from one line to another when all are fully occupied. Of 
great importance is the property that all IMPs operate 
with identical programs. This technique greatly 
simplifies the problem of network planning and main­
tenance and makes network modifications easy to 
perform. 

The detailed physical structure of the IMP is not 
discussed in this paper.2 ,15 However, the operating 
procedure, which guides packets through the net, is 
very much of interest here. The flow control, routing, 
and error control techniques are integral parts of the 
operating procedure and can be studied apart from the 
hardware by which they are implemented. Most 
hardware modifications require changes to many 
IMPs already installed in the field, while a change in 
the operating procedure can often be made more 
conveniently by a change to the single operating 
program common to all IMPs, which can then be 
propagated from a single location via the net. 

Topological properties 

The topological design resulted in the specification of 
the location and capacity of all circuits in the network. 
Projected Host-Host traffic estimates were known at 
the start to be either unreliable or wrong. Therefore, 
the network was designed under the assumption of 
equal traffic between all pairs of nodes. (Additional 
superimposed traffic was sometimes included for those 
nodes with expectation of higher traffic requirements.) 
The topological structure was determined with the aid 
of specially developed heuristic programs to achieve a 
low cost, reliable network with a high throughput and 
a general insensitivity to the exact traffic distribution. 
Currently, only 50 kilobit/second circuits are being 
used in the ARPANET. This speed line was chosen to 
allow rapid transmission of short messages for inter­
active processing (e.g., less than 0.2 seconds average 
packet delay) as well as to achieve high throughput 
(e.g., at least 50 kilobits/second) for transmission of 
long messages. For reliability, the network was con­
strained to have at least two independent paths between 
each pair of IMPs. 
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The topological design problem requires consideration 
of the following two questions: 

(1) Starting with a given state of the network 
topology, what circuit modifications are required 
to add or delete a set of IMPs? 

(2) Starting with a given state of network topology, 
when and where should circuits be added or 
deleted to account for long term changes in 
network traffic? 

If the locations of all network nodes are known in 
advance, it is clearly most efficient to design the 
topological structure as a single global effort. However, 
in the ARPANET, as in most actual networks, the 
initial designation of node locations is modified on 
numerous occasions. On each such occasion, the 
topology can be completely reoptimized to determine a 
new set of circuit locations. 

In practice, there is a long lead time between the 
ordering and the delivery of a circuit, and major topo­
logical modifications cannot be made without sub­
stantial difficulty. It is therefore prudent to add or 
delete nodes with as little disturbance as possible to 
the basic network structure consistent with overall 
economical operation. Figure 1 shows the evolution of 
the ARPANET from the basic four IMP design in 1969 
to the presently planned 27 IMP version. Inspection of 
the 24 and 27 IMP network designs reveals a few 
substantial changes in topology that take advantage of 
the new nodes being added. Surprisingly enough, a 
complete "reoptimization" of the 27 IMP topology 
yields a network only slightly less expensive (about 
1 percent) than the present network design.28 

Network models 

The development of an accurate mathematical model 
for the evaluation of time delay in computer networks is 
among the more difficult of the topics discussed in this 
paper. On the one hand, the model must properly 
reflect the relevant features of the network structure 
and operation, including practical constraints. On the 
other hand, the model must result in a mathematical 
formulation which is tractable and from which mean­
ingful results can be extracted. However, the two 
requirements are often incompatible and we search for 
an acceptable compromise between these two extremes. 

The major modeling effort thus far has been the study 
of the behavior of networks of queues.2t This emphasis 
is logical since in message switched systems, messages 
experience queueing delays as they pass from node to 
node and thus a significant performance measure is the 
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Figure I-The evolution of the ARPANET 

speed at which messages can be delivered. The queueing 
models were developed at a time when there were no 
operational networks available for experimentation and 
model validation, and simulation was the only tool 
capable of testing their validity. The models, which at 
all times were recognized to be idealized statements 
about the real network, were nonetheless crucial to the 
ARPANET topological design effort since they afforded 
the only known way to quantitatively predict the 
properties of different routing schemes and topological 
structures. The models have been subsequently demon­
strated to be very accurate predictors of network 
throughput and indispensable in providing analytical 
insight into the network's behavior. 

The key to the successful development of tractable 
models has been to factor the problem into a set of 
simpler queueing problems. There are also heuristic 
design procedures that one can use in this case. These 
procedures seem to work quite well and are described 
later in the paper. However, if one specializes the 
problem and removes some of the real constraints, 
theory and analysis become useful to provide under­
standing, intuition and design guidelines for the original 
constrained problem. This approach uncovers global 
properties of network behavior, which provide keys to 

good heuristic design procedures and ideal performance 
bounds. 

DESIGN TECHNIQUES 

In this section we describe the approaches taken to 
the design problems introduced in the previous section. 
We first summarize the important properties of the 
ARPANET design: 

(1) A communications cost of less than 30 cents per 
thousand packets (approximately a megabit). 

(2) Average packet delays under 0.2 seconds through 
the net. 

(3) Capacity for expansion to 64 IMPs without 
major hardware or software redesign. 

(4) Average total throughput capability of 10-15 
kilobits/second for all Hosts at an IMP. 

(5) Peak throughput capability of 85 kilobits/second 
per pair of IMPs in an otherwise unloaded 
network. 

(6) Transparent communications with maximum 
message size of approximately 8000 bits and 
error rates of one bit in 1012 or less. 



(7) Approximately 98 percent availability of any 
IMP and close to 100 percent availability of all 
operating IMPs from any operable IMP. 

The relationships between the various design efforts 
are illustrated by these properties. The topological 
design provides for both a desired average throughput 
and for two or more paths to be fully used for com­
munication between any pair of Hosts. The operating 
procedure should allow any pair of Hosts to achieve 
those objectives. The availability of IMPs to com­
municate reflects both the fact that IMPs are down 
about 2 percent of the time and that the topology is 
selected so that circuit failures contribute little addi­
tional to the total system downtime. 

IMP design 

The IMP design consists of two closely coupled but 
nonetheless separable pieces-the physical hardware 
specification (based on timing and reliability considera­
tions and the operating procedure) and the design and 
implementation of the operating procedure using the 
specified IMP hardware. The IMP originally developed 
for the ARPANET contains a 16-bit one microsecond 
computer that can handle a total of about %: megabits/ 
second of "useful" information on a total of approxi­
mately one megabit/second of circuit capacity (e.g., 
twenty 50 kilobit/second circuits). Hardware is likely 
to change as a function of the required IMP capacity 
but an operating procedure that operates well at one 
IMP capacity is likely to be transferable to machines 
that provide different capacity. However, as a network 
grows in size and utilization, a m0re comprehensive 
operating procedure that takes account of known 
structural properties, such as a hierarchical topology, 
is appropriate. 

Four primary areas of IMP design, namely message 
handling and buffering, error control, flow control, and 
routing are discussed in this section. The IMP provides 
buffering to handle messages for its Host and packets 
for other IMPs. Error control is required to provide 
reliable communication of Host messages in the 
presence of noisy communication circuits. The design 
of the operating procedure should allow high through­
put in the net under heavy traffic loads. Two potential 
obstacles to achieving this objective are: (1) The net 
can become congested and cause the throughput to 
decrease with increasing load, and (2) The routing 
procedure may be unable to ::..lways adapt sufficiently 
fast to the rapid movement of packets to insure efficient 
routing. A flow control and routing procedure is 
needed that can efficiently meet this requirement. 
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Message handling and buffering 

In the ARPANET, the maximum message size was 
constrained to be approximately 8000 bits. A pair of 
Hosts will typically communicate over the net via a 
sequence of transmitted messages. To obtain delays of 
a few tenths of a second for such messages and to lower 
the required IMP buffer storage, the IMP program 
partitions each message into one or more packets each 
containing at most approximately 1000 bits. Each 
packet of a message is transmitted independently to 
the destination where the message is reassembled by 
the IMP before shipment to that destination Host. 
Alternately, the Hosts could assume the responsibility 
for reassembling messages. For an asynchronous IMP­
Host channel, this marginally simplifies the IMP'8 
task. However, if every IMP-Host channel were syn­
chronous, and the Host provided the reassembly, the 
IMP task can be further simplified. In this latter case, 
"IMP-like" software would have to be provided in 
each Host. 

The method of handling buffers should be simple to 
allow for fast processing and a small amount of program. 
The number of buffers should be sufficient to store 
enough packets for the circuits to be used to capacity; 
the size of the buffers may be intuitively selected with 
the aid of simple analytical techniques. For example, 
fixed buffer sizes are useful in the IMP for simplicity 
of design and speed of operation, but inefficient utiliza­
tion can arise because of variable length packets. If 
each buffer contains A words of overhead and provides 
space for M words of text, and if message sizes are 
uniformly distributed between 1 and L, it can be 
shown45 that the choice of M that minimizes the ex­
pected storage is approximately VAL. In practice, M 
is chosen to be somewhat smaller on the assumption 
that most traffic will be short and that the amount of 
overhead can be as much as, say, 25 percent of buffer 
storage. 

Error control 

The IMPs must assume the responsibility for pro­
viding error control. There are four possibilities to 
consider: 

(1) Messages are delivered to their destination out 
of order. 

(2) Duplicate messages are delivered to the 
destination. 

(3) Messages are delivered with errors. 

(4) Messages are not delivered. 
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The task of proper sequencing of messages for 
delivery to the destination Host actually falls in the 
province of both error control and flow control. If at 
most one message at a time is allowed in the net between 
a pair of Hosts, proper sequencing occurs naturally. A 
duplicate packet will arrive at the destination IMP 
after an acknowledgment has been missed, thus causing 
a successfully received packet to be retransmitted. The 
IMPs can handle the first two conditions by assigning 
a sequence number to each packet as it enters the 
network and processing the sequence number at the 
destination IMP. A Host that performs reassembly can 
also assign and process sequence numbers and check 
for duplicate packets. For many applications, the order 
of delivery to the destination is immaterial. For priority 
messages, however, it is typically the case that fast 
delivery requires a perturbation to the sequence. 

Errors are primarily caused by noise on the com­
munication circuits and are handled most simply by 
error detection and retransmission between each pair of 
IMPs along the transmission path. This technique 
requires extra storage in the IMP if either circuit 
speeds or circuit lengths substantially increase. Failures 
in detecting errors can be made to occur on the order of 
years to centuries apart with little extra overhead 
(20-30 parity bits per packet with the 50 kilobit/second 
circuits in the ARPANET). Standard cyclic error 
detection codes have been usefully applied here. 

A reliable system design insures that each trans­
mitted message is accurately delivered to its intended 
destination. The occasional time when an IMP fails and 
destroys a useful in-transit message is likely to occur 
far less often than a similar failure in the Hosts and has 
proven to be unimportant in practice, as are errors due 
to IMP memory failures. A simple end to end retrans­
mission strategy will protect against these situations, 
if the practical need should arise. However, the IMPs 
are designed so that they can be removed from the 
network without destroying their internally stored 
packets. 

Flow control 

A network in which packets may freely enter and 
leave can become congested or logically deadlocked and 
cause the movement of traffic to halt. 5,17 Flow control 
techniques are required to prevent these conditions 
from occurring. The provision of extra buffer storage 
will mitigate against congestion and deadlocks, but 
cannot in general prevent them. 

The sustained failure of a destination Host to accept 
packets from its IMP at the rate of arrival will cause the 
net to fill up and become congested. Two kinds of 

logical deadlocks, known as reassembly lockup and 
store-and-forward lockup may also occur. In reassembly 
lockup, the remaining packets of partially reassembled 
messages are blocked from reaching the destination 
Il\1P (thus preventing the message from being com­
pleted and the reassembly space freed) by other 
packets in the net that are waiting for reassembly space 
at that destination to become free. In a store-and­
forward lockup, the destination has room to accept 
arriving packets, but the packets interfere with each 
other by tying up buffers in transit in such a way that 
none of the packets are able to reach the destination. 17 

These phenomena have only been made to occur during 
very carefully arranged testing of the ARPANET and 
by simulation.49 

In the original ARPANET design, the use of soft­
ware links and RFNMS protected against congestion 
by a single link or a small set of links. However, the 
combined traffic on a large number of links could still 
produce congestion. Although this strategy did not 
protect against lockup, the method has provided ample 
protection for the levels of traffic encountered by the 
net to date. 

A particularly simple flow control algorithm that 
augments the original IMP design to prevent congestion 
and lockup is also described in Reference 17. This 
scheme includes a mechanism whereby packets may be 
discarded from the net at the destination IlVIP when 
congestion is about to occur, with a copy of each dis­
carded packet to be retransmitted a short time later by 
the originating Host's IMP. Rather than experience 
excessive delays within the net as traffic levels ar0 
increased, the traffic is queued outside the net so that 
the transit time delays internal to the net continue to 
remain small. This strategy prevents the insertion of 
more traffic into the net than it can handle. 

It is important to note the dual requirement for small 
delays for interactive traffic and high bandwidth for the 
fast transfer of files. To allow high bandwidth between 
a pair of Hosts, the net must be able to accept a steady 
flow of packets from one Host and at the same time be 
able to rapidly quench the flow at the entrance to the 
source IMP in the event of imminent congestion at the 
destination. This usually requires that a separate 
provision be made in the algorithm to protect short 
interactive messages from experiencing unnecessarily 
high delays. 

Routing 

Network routing strategies for distributed networks 
require routing decisions to be made with only in­
formation available to an IMP and the IMP must 



execute those decisions to effect the routing. 14.15 A 
simple example of such a strategy is to have each IMP 
handling a packet independently route it along its 
current estimate of the shortest path to the destination. 

For many applications, it suffices to deal with an 
idealized routing strategy which may not simulate the 
IMP routing functions in detail or which uses informa­
tion not available to the IMP. The general properties 
of both strategies are usually similar, differing mainly 
in certain implementation details such as the avail­
ability of buffers or the constraint of counters and the 
need for the routing to quickly adapt to changes in 
IMP and circuit status. 

The IMPs perform the routing computations using 
information received from other IMPs and local 
information such as the alive/dead state of its circuits. 
In the normal case of time varying loads, local informa­
tion alone, such as the length of internal queues, is 
insufficient to provide an efficient routing strategy 
without assistance from the neighboring IMPs. It is 
possible to obtain sufficient information from the 
neighbors to provide efficient routing, with a small 
amount of computation needed per IMP and without 
each IMP requiring a topological map of the network. 
In certain applications where traffic patterns exhibit 
regularity, the use of a central controller might be 
preferable. However, for most applications which 
involve dynamically varying traffic flow, it appears 
that a central controller cannot be used more effectively 
than the IMPs to update routing tables if such a 
controller is constrained to derive its information via 
the net. It is also a less reliable approach to routing 
than to distribute the routing decisions among the 
IMPs. 

The routing information cannot be propagated about 
the net in sufficient time to accurately characterize the 
instantaneous traffic flow. An efficient algorithm, there­
fore, should not focus on the movement of individual 
packets, but rather use topological or statistical in­
formation in the selection of routes. For example, by 
using an averaging procedure, the flow of traffic can be 
made to build up smoothly. This allows the routing 
algorithm ample time to adjust its tables in each IMP 
in advance of the build-up of traffic. 

The scheme originally used in the ARP A network 
had each IMP select one output line per destination 
onto which to route packets. The line was chosen to be 
the one with minimum estimated time delay to the 
destination. The selection was updated every half 
second using minimum time estimates from the neigh­
boring IMPs and internal estimates of the delay to each 
of the neighbors. Even though the routing algorithm 
only selects one line at a time per destination, two 
output lines will be used if a queue of packets waiting 
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transmission on one line builds up before the routing 
update occurs and another line is chosen. Modifications 
to the scheme which allow several lines per destination 
to be used in an update interval (during which the 
routing is not changed) are possible using two or more 
time delay estimates to select the paths. 

In practice, this approach has worked quite effectively 
with the moderate levels of traffic experienced in the 
net. For heavy traffic flow, this strategy may be 
inefficient, since the routing information is based on 
the length of queues, which we have seen can change 
much faster than the information about the change can 
be distributed. Fortunately, this information is still 
usable, although it can be substantially out of date and 
will not, in general, be helpful in making efficient 
routing decisions in the heavy traffic case. 

A more intricate scheme, recently developed by 
BBN, allows multiple paths to be efficiently used even 
during heavy traffic. I8 Preliminary simulation studies 
indicate that it can be tailored to provide efficient 
routing in a network with a variety of heavy traffic 
conditions. This method separates the problem of 
defining routes onto which packets may be routed from 
the problem of selecting a route when a particular 
packet must be routed. By this technique, it is possible 
to send packets down a path with the fewest IMPs and 
excess capacity, or when that path is filled, the one with 
the next fewest IMPs and excess capacity, etc. 

A similar approach to routing was independently 
derived by N AC using an idealized method that did not 
require the IMPs to participate in the routing decisions. 
Another approach using a flow deviation technique has 
recently been under study at UCLA.I3 The intricacies of 
the exact approach lead to a metering procedure that 
allows the overall network flow to be changed slowly for 
stability and to perturb existing flow patterns to obtain 
an increased flow. These approaches all possess, in 
common, essential ingredients of a desirable routing 
strategy. 

Topological considerations 

An efficient topological design provides a high 
throughput for a given cost. Although many measures 
of throughput are possible, a convenient one is the 
average amount of traffic that a single IMP can send 
into the network when all other IMPs are transmitting 
according to a specified traffic pattern. Often, it is 
assumed that all other IMPs are behaving identically 
and each IMP is sending equal amounts of traffic to 
each other IMP. The constraints on the topological 
design are the available common carrier circuits, the 
target cost or throughput, the desired reliability, and 
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TABLE 1-23 Node 28 Link ARPA 

Number of Number of Number of 
Circuits Combinations Cutsets 
Failed to be Examined 

28 1 1 
27 28 28 
26 378 378 
25 3276 3276 
24 20475 20475 
23 98280 98280 
22 376740 376740 
21 1184040 1184040 
20 3108105 3108105 
19 6906900 6906900 
18 13123110 

Q) 

13123110 ~ 17 21474180 w 21474180 
16 30421755 30421755 
15 37442160 37442160 
14 40116600 40116600 
13 37442160 37442160 
12 30421755 30421755 
11 21474180 21474180 
10 13123110 13123110 
9 6906900 6906900 
8 3108108 3108108 
7 1184040 1184040 

6 376740 349618 
5 98280 ~70547 

4 20475 ~9852 

3 3276 827 
2 378 30 
1 28 0 

the cost of computation required to perform the 
topological design. 

Since, there was no clear specification of the amount 
of traffic that the network would have to accommodate 
initially, it was first constructed with enough excess 
capacity to accommodate any reasonable traffic require­
ments. Then as new IMPs were added to the system, 
the capacity was and is still being systematically 
reduced until the traffic level occupies a substantial 
fraction of the network's total capacity. At this point, 
the net's capacity will be increased to maintain the 
desired percentage of loading. At the initial stages of 
network design, the "two-connected" reliability con­
straint essentially determined a minimum value of 
maximum throughput. This constraint forces the 
average throughput to be in the range 10-15 kilobits per 
second per IMP, when 50 kilobit/sec circuits are used 
throughout the network, since two communication 
paths between every pair of IMPs are needed. Alterna­
tively, if this level of throughput is required, then the 
reliability specification of "two-connectivity" can be 
obtained without additional cost. 

Reliability cOIllputations 

A simple and natural characterization of network 
reliability is the ability of the network to sustain 
communication between all operable pairs of IlVIPs. For 
design purposes, the requirement of two independent 
paths between nodes insures that at least two IMPs 
and/ or circuits must fail before any pair of operable 
IMPs cannot communicate. This criterion is independent 
of the properties of the IMPs and circuits, does not take 
into account the "degree" of disruption that may occur 
and hence, does not reflect the actual availability of 
resources in the network. A more meaningful measure 
is the average fraction of IMP pairs that cannct com­
municate because of IMP and circuit failures. This 
calculation requires knowledge of the IMP and circuit 
failure rates, and could not be performed until enough 
operating data was gathered to make valid predictions. 

To calculate network reliability, we must consider 
elementary network structures known as cutsets. A 
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cutset is a set of circuits and/or IMPs whose removal 
from the network breaks all communication paths 
between at least two operable IMPs. To calculate 
reliability, it is often the case that all cutsets must be 
either enumerated or estimated. As an example, in a 
23 IMP, 28 circuit ARPA Network design similar to 
the one shown in Figure 1 (d), there are over twenty 
million ways of deleting only circuits so that the 
remaining network has at least one operable pair of 
IMPs with no intact communication paths. Table 1 
indicates the numbers of cutsets in the 23 IMP network 
as a function of the number of circuits they contain. 

A combination of analysis and simulation can be 
used to compute the average fraction of non-com­
municating IMP pairs. Detailed descriptions of the 
analysis methods are given in Reference 44 while their 
application to the analysis of the ARPANET is dis­
cussed in Reference 43. The results of an analysis of 
the 23 IMP version of the network are shown in Figure 
2. The curve marked A shows the results under the 
assumption that IMPs do not fail, while the curve 
marked B shows the case where circuits do not fail. 
The curve marked C assumes that both IMPs and 
circuits fail with equal probability. In actual operation, 
the average failure probability of both IMPs and 
circuits is about 0.02. For this value, it can be seen that 
the effect of circuit failures is far less significant than 
the effect of IMP failures. If an IMP fails in a network 
with n IMPs, at least n-l other IMPs cannot com­
municate with it. Thus, good network design cannot 
improve upon the effect directly due to IMP failures, 
which in the ARPANET is the major factor affecting 
the reliability of the communications. Further, more 
intricate reliability analyses which consider the loss of 
throughput capacity because of circuit failures have 
also been performed and these losses have been shown 
to be negligible.28 Finally, unequal failure rates due to 
differences in line lengths have been shown to have 
only minor effects on the analysis and can usually be 
neglected.27 

Topological optimization 

During the computer optimization process, the 
reliability of the topology is assumed to be acceptable if 
the network is at least two-connected. The object of 
the optimization is to decrease the ratio of cost to 
throughput subject to an overall cost limitation. This 
technique employs a sophisticated network optimization 
program that utilizes circuit exchange heuristics, 
routing and flow analysis algorithms, to generate low 
cost designs. In addition, two time delay models were 
initially used to (1) calculate the throughput corre-
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sponding to an average time delay of 0.2 seconds, 
(2) estimate the packet rejection rate due to all buffers 
filling at an IMP. As experience with these models 
grew, the packet rejection rate was found to be negligible 
and the computation discontinued. The delay computa­
tion (Equation (7) in a later section) was subsequently 
first replaced by a heuristic calculation to speed the 
computation and later eliminated after it was found 
that time delays could be guaranteed to be acceptably 
low by preventing cutsets from being saturated. This 
"threshold" behavior is discussed further in the next 
section. 

The basic method of optimization was described in 
Reference 12 while extensions to the design of large 
networks are discussed in Reference 9. The method 
operates by initially generating, either manually or by 
computer, a "starting network" that satisfies the overall 
network constraints but is not, in general, a low cost 
network. The computer then iteratively modifies the 
starting network in simple steps until a lower cost 
network is found that satisfies the constraints or the 
process is terminated. The process is repeated until no 
further improvements can be found. Using a different 
starting network can result in a different solution. 
However, by incorporating sensible heuristics and by 
using a variety of carefully chosen starting networks and 
some degree of man-machine interaction, "excellent" 
final networks usually result. Experience has shown 
that there are a wide variety of such networks with 
different topological structures but similar cost and 
performance. 

The key to this design effort is the heuristic procedure 
by which the iterative network modifications are made. 
The method used in the ARPANET design involves the 
removal and addition of one or two circuits at a time. 
Many methods have been employed, at various times, 
to identify the appropriate circuits for potential addi­
tion or deletion. For example, to delete uneconomical 
circuits a straightforward procedure simply deletes 
single circuits in numerical order, reroutes traffic and 
reevaluates cost until a decrease in cost per megabit is 
found. At this point, the deletion is made permanent 
and the process begins again. A somewhat more 
sophisticated procedure deletes circuits in order of 
increasing utilization, while a more complex method 
attempts to evaluate the effect of the removal of any 
circuit before any deletion is attempted. The circuit 
with the greatest likelihood of an improvement is then 
considered for removal and so on. 

There are a huge number of reasonable heuristics for 
circuit exchanges. After a great deal of experimentation 
with many of these, it appears that the choice of a 
particular heuristic is not critical. Instead, the speed 
and efficiency with which potential exchanges can be 
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investigated appears to be the limiting factor affecting 
the quality of the final design. Finally, as the size of 
the network increases, the greater the cost becomes to 
perform any circuit exchange optimization. Decom­
position of the network design into regions becomes 
necessary and additional heuristics are needed to 
determine effective decompositions. It presently appears 
that these methods can be used to design relatively 
efficient networks with a few hundred IMPs while 
substantially new procedures will be necessary for 
networks of greater size. 

The topological design requires a routing algorithm 
to evaluate the throughput capability of any given 
network. Its properties must reflect those of an im­
plementable routing algorithm, for example, within 
the ARPANET. Although the routing problem can be 
formulated as a "multicommodity flow problem"lo and 
solved by linear programming for networks with 20-30 
IMPs,8 faster techniques are needed when the routing 
algorithm is incorporated in a design procedure. The 
design procedure for the ARP A Network topology 
iteratively analyzes thousands of networks. To satisfy 
the requirements for speed, an algorithm which 
selects the least utilized path with the minimum number 
of IMPs was initially used. 12 This algorithm was later 
replaced by one which sends as much traffic as possible 
along such paths until one or more circuits approach a 
few percent of full utilization.28 These highly utilized 
circuits are then no longer allowed to carry additional 
flow. Instead, new paths with excess capacity and 
possibly more intermediate nodes are found. The 
procedure continues until some cutset contains only 
nearly fully utilized circuits. At this point no additional 
flow can be sent. For design purposes, this algorithm is 
a highly satisfactory replacement for the more com­
plicated multi-commodity approach. Using the al­
gorithm, it has been shown that the throughput capa­
bilities of the ARPA Network are substantially 
insensitive to the distribution of traffic and depend 
mainly only on the total traffic flow within the network.8 

Analytic models of network performance 

The effort to determine analytic models of system 
performance has proceeded in two phases: (1) the pre­
diction of average time delay encountered by a message 
as it passes through the network, and (2) the use of 
these queueing models to calculate optimum channel 
capacity assignments for minimum possible delay. The 
model used as a standard for the average message delay 
was first described in Reference 21 where it served to 
predict delays in stochastic communication networks. 

In Reference 22, it was modified to describe the be­
havior of ARP A-like computer networks while in 
Reference 23 it was refined further to apply directly to 
the ARPANET. 

The single server DIodel 

Queueing theory20 provides an effective set of ana­
lytical tools for studying packet delay. IVIuch of this 
theory considers systems in which messages place 
demands for transmission (service) upon a single 
communication channel (the single server). These 
systems are characterized by A (T), the distribution of 
interarrival times between demands and B(t), the 
distribution of service times. When the average demand 
for service is less than the capacity of the channel, the 
system is said to be stable. 

When A (T) is exponential (i.e., Poisson arrivals), 
and messages are transmitted on a first-come first-served 
basis, the average time T in the stable system is 

"At2 
T= +t 

2(1-p) 
(1) 

where A is the average arrival rate of messages, t and t2 
are the first and second moments of B (t) respectively, 
and p = At < 1. If the service time is also exponential, 

l 
T=-

1-p 
(2) 

When A (T) and B (t) are arbitrary distributions, the 
situation becomes complex and only weak results are 
available. For example, no expression is available for T; 
however the following upper bound yields an excellent 
approximation19 as p~l: 

(3) 

where ua
2 and Ub2 are the variance of the interarrival 

time and service time distributions, respectively. 

Networks of queues 

Multiple channels in a network environment give 
rise to queueing problems that are far more difficult to 
solve than single server systems. For example, the 
variability in the choice of source and destination for a 
message is a network phenomenon which contributes to 
delay. A principal analytical difficulty results from the 
fact that flows throughout the network are correlated. 
The basic approach to solving these stochastic network 



problems is to decompose them into analyzable single­
server problems which reflect the original network 
structure and traffic flow. 

Early studies of queueing networks indicated that 
such a decomposition was possible ;50,51 however, those 
results do not carryover to message switched computer 
networks due to the correlation of traffic flows. In 
Reference 21 it was shown for a wide variety of com­
munication nets that this correlation could be removed 
by considering the length of a given packet to be an 
independent random variable as it passes from node to 
node. Although this "independence" assumption is not 
physically realistic, it results in a mathematically 
tractable model which does not seem to affect the 
accuracy of the predicted time delays. As the size and 
connectivity of the network increases, the assumption 
becomes increasingly more realistic. With this assump­
tion, a successful decomposition which permits a 
channel-by-channel analysis is possible, as follows. 

The packet delay is defined as the time which a 
packet spends in the network from its entry until it 
reaches its destination. The average packet delay is 
denoted as T. Let Zjk be the average delay for those 
packets whose origin is IMP j and whose destination is 
IMP k. We assume a Poisson arrival process for such 
packets with an average of 'Y jk packets per second and 
an exponential distribution of packet lengths with an 
average of 1/ p. bits per packet. With these definitions, 
if 'Y is the sum of the quantities 'Y jk, then21 

(4) 

Let us now reformulate Equation (4) in terms of 
single channel delays. We first define the following 
quantities for the ith channel: Ci as its capacity 
(bits/second) ; Ai as the average packet traffic it carries 
(packets/second); and Ti as the average time a packet 
spends waiting for and using the ith channel. By 
relating the {Ad to the {'Y jk} via the paths selected by 
the routing algorithm, it is easy to see that21 

(5) 

With the assumption of Poisson traffic and exponential 
service times, the quantities T i are given by Equation 
(2). For an average packet length of 1/ p. bits, t= 1/ p.Ci 

seconds and thus 

(6) 

Thus we have successfully decomposed the analysis 
problem into a set of simple single-channel problems. 
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A refinement of the decomposition permits a non­
exponential packet length distribution and uses Equa­
tion (1) rather than Equation (2) to calculate T i ; 

as an approximation, the Markovian character of the 
traffic is assumed to be preserved. Furthermore, for 
computer networks we include the effect of propagation 
time and overhead traffic to obtain the following 
equation for average packet delay22,23 

Here, 1/ p.' represents the average length of a Host 
packet, and 1/ p. represents the average length of all 
packets (including acknowledgments, headers, requests 
for next messages, parity checks, etc.) within the net­
work. The expression 1/p.'Ci+[(Ai/p.Ci)/(p.Ci-Ai)]+Pi 
represents the average packet delay on the ith channel. 
The term (Ai/p.Ci)/(p.Ci-Ai) is the average time a 
packet spends waiting at the IMP for the ith channel to 
become available. Since the packet must compete with 
acknowledgments and other overhead traffic, the 
overall average packet length 1/ p. appears in the 
expression. The term 1/ p.' C i is the time required to 
transmit a packet of average length p.'. Finally: K is 
the nodal processing time, assumed constant, and for 
the ARPA IMP approximately equal to 0.35 ms; 
Pi is the propagation time on the ith channel (about 
20 ms for a 3000 mile channel) . 

Assuming a relatively homogeneous set of C i and 
Pi, no individual term in the expression for delay will 
dominate the summation until the flow Ai/ p. in one 
channel (say channel io) approaches the capacity Cio. 
At that point, the term T io, and hence T will grow 
rapidly. The expression for delay is then dominated by 
one (or more) terms and exhibits a threshold behavior. 
Prior to this threshold, T remains relatively constant. 

The accuracy of the time delay model, as well as this 
threshold phenomenon was demonstrated on a 19 node 
network14 and on the ten node ARPA net derived from 
Figure 1 (c) by deleting the rightmost five IMPs. 
Using the routing procedure described in the last 
section28 and equal traffic between all node pairs, the 
channel flows Ai were found for the ten node net and 
the delay curves shown in Figure 3 were obtained. 
Curve A was obtained with fixed 1000 bit packets,* 
while curve B was generated for exponentially dis­
tributed variable length packets with average size of 
500 bits. In both cases A and B, all overhead factors 
were ignored. Note that the delay remains small until a 

* In case A, the application of Equation (1) allows for constant 
packet lengths (i.e., zero variance). 
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Figure 3-Delay VB. throughput 

total throughput slightly greater than 400 kilobitsl 
second is reached. The delay then increases rapidly. 
Curves C and D respectively represent the same 
situations when the overhead of 136 bits per packet and 
per RFNM and 152 bits per acknowledgment are 
included. Notice that the total throughput per IMP 
is reduced to 250 kilobits/second in case C and to 
approximately 200 kilobits/second in case D. 

In the same figure, we have illustrated with x's the 
results of a simulation performed with a realistic 
routing and metering strategy. The simulation omitted 
all network overhead and assumed fixed lengths of 
1000 bits for all packets. 

It is difficult to develop a practical routing and flow 
control procedure that will allow each IMP to input 
identical amounts of traffic. To compare the delay 

curve A with the points obtained by simulation, the 
curve should actually be recomputed for the slightly 
skewed distribution that resulted. It is notable that the 
delay estimates from the simulation (which used a 
dynamic routing strategy) and the computation (which 
used a static routing strategy and the time delay for­
mula) are in close agreement. In particular, they both 
accurately determined the vertical rise of the delay 
curve in the range just above 400 kilobits/second, the 
formula by predicting infinite delay and the simulation 
by rejecting the further input of traffic. 

In practice and from the analytic and simulation 
studies of the ARPANET, the average queueing delay 
is observed to remain small (almost that of an unloaded 
net) and well within the design constraint of 0.2 seconds 
until the traffic within the network approaches the 
capacity of a cutset. The delay then increases rapidly. 
Thus, as long as traffic is low enough and the routing 
adaptive enough to avoid the premature saturation of 
cutsets by guiding traffic along paths with excess capacity, 
queueing delays are not significant. 

Channel capacity optilllization 

One of the most difficult design problems is the 
optimal selection of capacities from a finite set of 
options. Although there are many heuristic approaches 
to this problem, analytic results are relatively scarce. 
(For the specialized case of centralized networks, an 
algorithm yielding optimal results is available. 11 ) While 
it is possible to find an economical assignment of 
discrete capacities for, say, a 200 IMP network, very 
little is known about the relation between such capacity 
assignments, message delay, and cost . 

To obtain theoretical properties of optimal capacity 
assignments, one may ignore the constraint that 
capacities are obtainable only in discrete sizes. In 
Reference 21 such a problem was posed where the 
network topology and average traffic flow were assumed 
to be known and fixed and an optimal match of capaci­
ties to traffic flow was found. Also, the traffic was 
assumed to be Markovian (Poisson arrivals and 
exponential packet lengths) and the independence 
assumption and decomposition method were applied. 
For each channel, the capacity Ci was found which 
minimized the average message delay T, at a fixed 
total system cost D. Since Ail J.i.. is the average bit rate on 
the ith channel, the solution to any optimal assignment 
problem must provide more than this minimal capacity 
to each channel. This is clear since both Equations (6) 
and (7) indicate that T i will become arbitrarily large 
with less than (or equal to) this amount of capacity. 
It is not critical exactly how the excess capacity is 



assigned, as long as C i > Ail J.l.. Other important param­
eters and insights have been identified in studying the 
continuous capacity optimization problem. For ex­
ample, the number of excess dollars, De, remaining 
after the minimum capacity Ail J.l. is assigned to each 
channel is of great importance. As De~O, the average 
delay must grow arbitrarily large. In this range, the 
critical parameters become p and n where p = 'Y I J.l.C is 
the ratio of the rate 'Y I J.l. at which bits enter the network 
to the rate C at which the net can handle bits and 
n = AI 'Y, where A = I)i is the total rate at which packets 
flow within the net. The quantity p represents a dimen­
sionless form of network "load" whereas n is easily 
shown to represent the average path length for a 
packet. 

As the load p approaches lin, the delay T grows very 
quickly, and this point p= lin represents the maximum 
load which the network can support. If capacities are 
assigned optimally, all channels saturate simultaneously 
at this point. In this formulation n is a design parameter 
which depends upon the topology and the routing 
procedure, while p is a parameter which depends upon 
the input rate and the total capacity of the network. 
In studying the ARP ANET23 a closer representation 
of the actual tariffs for high speed telephone data 
channels used in that network was provided by setting 
D = Li diC i where 0 ~ a ~ 1. * This approach requires 
the solution of a non-linear equation by numerical 
techniques. On solving the equation, it can be shown 
that the packet delay T varies insignificantly with a 

for .3 ~ a ~ 1. This indicates that the closed form 
solution discussed earlier with a = 1 is a reasonable 
approximation to the more difficult non-linear problem. 
These continuous capacity studies have application to 
general network studies (e.g. , satellite communications )33 
and are under continued investigation.25 ,26,46 

In practice, the selection of channel capacities must 
be made from a small finite set. Although some theo­
retical work has been done in this case by approxi­
mating the discrete cost-capacity functions by 
continuous ones, much remains to be done. I3 ,25 Because 
of the discrete capacities and the time varying nature 
of network traffic, it is not generally possible to match 
channel capacities to the anticipated flows within the 
channels. If this were possible, all channels would 
saturate at the same externally applied load. Instead, 
capacities are assigned on the basis of reasonable 
estimates of average or peak traffic flows. It is the 
responsibility of the routing procedure to permit the 
traffic to adapt to the available capacity,l4 Often two 

* Of course the tariffs reflect the discrete nature of available 
channels. The use of the exponent a provides a continuous fit 
to the discrete cost function. For the ARPANET, a~.8. 
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IMP sites will engage in heavy communication and 
thus saturate one or more critical network cutsets. In 
such cases, the routing will not be able to send addi­
tional flow across these cuts. The network will therefore 
experience "premature" saturation in one or a small set 
of channels leading to the threshold behavior described 
earlier. 

DISCUSSION 

A major conclusion from our experience in network 
design is that message switched networks of the ARPA 
type are no longer difficult to specify. They may be 
implemented straightforwardly from the specifications; 
they can be less expensive than other currently available 
technical approaches; they perform remarkably well as 
a communication system for interconnecting time­
sharing and batch processing computers and can be 
adapted to directly handle teletypes, displays and many 
other kinds of terminal devices and data processing 
equipment. I6 ,3o 

The principal tools available for the design of net­
works are analysis, simulation, heuristic procedures, 
and experimentation. Analysis, simulation and heuristics 
have been the mainstays of the work on modeling and 
topological optimization while simulation, heuristic 
procedures and experimental techniques have been the 
major tools for the actual network implementation. 
Experience has shown that all of these methods are 
useful while none are all powerful. The most valuable 
approach has been the simultaneous use of several of 
these tools. 

Each approach has room for considerable improve­
ment. The analysis efforts have not yet yielded results 
in many important areas such as routing. However, for 
prediction of delay, this approach leads to a simple 
threshold model which is both accurate and under­
standable. Heuristic procedures all suffer from the 
problem that it is presently unclear how to select 
appropriate heuristics. It has been the innovative use 
of computers and analysis that has made the approach 
work well. For designing networks with no more than a 
few hundred IMPs, present heuristics appear adequate 
but a good deal of additional work is required for net­
works of greater size. Simulation is a well developed tool 
that is both expensive to apply and limited in the overall 
understanding that it yields. For these reasons, simula­
tion appears to be most useful only in validating models, 
and in assisting in detailed design decisions such as the 
number of buffers that an IMP should contain. As the 
size of networks continues to grow, it appears that 
simulation will become virtually useless as a total design 
tool. The ultimate standard by which all models and 
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conclusions can be tested is experimentation. Experi­
mentation with the actual network is conceptually 
relatively straightforward and very useful. Although, 
experiments are often logistically difficult to perform, 
they can provide an easy means for testing models, 
heuristics and design parameters. 

The outstanding design problems currently facing 
the network designer are to specify and determine the 
properties of the routing, flow control and topological 
structure for large networks. This specification must 
make full use of a wide variety of circuit options. 
Preliminary studies indicate that initially, the most 
fruitful approaches will be based on the partitioning of 
the network into regions, or equivalently, constructing 
a large network by connecting a number of regional 
networks. To send a message, a Host would specify 
both the destination region and the destination IMP 
in that region. No detailed implementation of a large 
network has yet been specified but early studies of their 
properties indicate that factors such as cost, throughput, 
delay and reliability are similar to those of the present 
ARP ANET, if the ARP A technology is used.9 

Techniques applicable to the design of large networks 
are presently under intensive study. These techniques 
appear to split into the same four categories as small 
network design but approaches may differ significantly. 
For example, large nets are likely to demand the place­
ment of high bandwidth circuits at certain key locations 
in the topology to concentrate flow. These circuits will 
require the development of a high speed IMP to connect 
them into the net. It is likely that this high speed IMP 
will have the structure of a high speed multiplexor, and 
may require several cooperating processors to obtain 
the needed computer power for the job. Flow control 
strategies for large networks seem to extrapolate nicely 
from small network strategies if each region in the large 
network is viewed as a node in a smaller network. 
However, this area will require additional study as will 
the problem of specifying effective adaptive routing 
mechanisms. Recent efforts indicate that efficient 
practical schemes for small networks will soon be 
available. These schemes seem to be applicable for 
adaptive routing and flow control in networks con­
structed from regional subnetworks. The development 
of practical algorithms to handle routing and flow 
control is still an art rather than a science. Simulation is 
useful. for studying the properties of a given heuristic, 
but intuition still plays a dominant role in the system 
design. 

Several open questions in network design presently 
are: (1) what structure should a high bandwidth IMP 
have; (2) how can full use be made of a variety of high 
bandwidth circuits; (3) how should large networks be 
partitioned for both effective design and operation; 

and (4) what operational procedures should large 
networks follow? Much work has already been done in 
these areas but much more remains to be done. We 
expect substantial progress to be achieved in the next 
few years, and accordingly, the increased understanding 
of the properties of message switched networks of 
all sizes. 
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INTRODUCTION 

Much has been said about the mechanics of the ARPA 
Computer Network (ARPANET) and especially about 
the organization of its communications subnet. 1 ,2 ,3 ,4 ,5 

Until recently the main effort has gone into the imple­
mentation of an ARPANET user-level communications 
interface. Operating just above the communications 
subnet in ARPANET HOST Computers, this ARP A­
NET interface is intended to serve as a foundation for 
the organization of function-oriented communica­
tions.6 ,7 See Figures 1 and 2 for our view of a computer 
system and the scheme for user-level process-to-process 
communications. It is now appropriate to review the 
development of protocols which have been constructed 
to promote particular substantive uses of the 
ARPANET, namely function-oriented protocols. 

We should begin this brief examination by stating 
what we mean by the word "protocol" and how proto­
cols fit in the plan for useful work on the ARPANET. 
When we have two processes facing each other across 
some communication link, the protocol is the set of 
their agreements on the format and relative timing of 
messages to be exchanged. When we speak of a proto­
col, there is usually an important goal to be fulfilled. 
Although any set of agreements between cooperating 
(i.e., communicating) processes is a protocol, the proto­
cols of interest are those which are constructed for 
general application by a large population of processes 
in solving a large class of problems. 

In the understanding and generation of protocols 
there are two kinds of distinctions made. Protocols in 
the ARPANET are layered and we speak of high or 
low level protocols. High level protocols are those most 
closely matched to functions and low level protocols 
deal with communications mechanics. The lowest level 
software protocols in the ARPANET involve reliable 
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message exchange between ARPANET Interface 
Message Processors (IMPs). 2 ,5 A high level protocol is 
one with primitives closely related to a substantive use. 
At the lowest levels the contents of messages are un­
specified. At higher levels, more and more is stated 
about the meaning of message contents and timing. The 
layers of protocol are shown in Figure 3. 

A second way of structuring sets of protocols and 
their design is bound up in the word factoring. At any 
level of protocol are sets of format and timing rules 
associated with particular groupings of agreements. In 
the IMPs we find certain protocols pertaining to error 
handling, while others to flow control, and still others 
to message routing. At the ARPANET's user-level 
communications interface there are, among others, 
separable protocols associated with establishing con­
nections and logical data blocking. These protocols do 
not nest, but join as modules at the same level. 

Before moving on to consider the higher level func­
tion-oriented protocols, let us first make a few state­
ments about underlying protocols. There are three 
lower level software protocols which nest in support of 
the user-level communications interface for the ARP A­
NET. The lowest of these is the IMP-IMP protocol 
which provides for reliable communication among 
IMPs. This protocol handles transmission-error detec­
tion and correction, flow control to avoid message 
congestion, and routing. At the next higher level is the 
IMP-HOST protocol which provides for the passage 
of messages between HOSTs and IMPs in such a way 
as to create virtual communication paths between 
HOSTs. With IMP-HOST protocol, a HOST has 
operating rules which permit it to send messages to 
specified HOSTs on the ARPANET and to be informed 
of the dispensation of those messages. In particular, the 
IMP-HOST protocol constrains HOSTs in their trans­
missions so that they can make good use of available 



272 Spring Joint Computer Conference, 1972 

M 

p 

Terminal Control File System 

Termina 1 

Operating 

System 

Boundary 
Termina 1 

Figure 1-0ur view of a computer system 

communications capacity without denying such avail­
ability to other HOSTs. 

The HOST-HOST protocol, finally, is the set of 
rules whereby HOSTs construct and maintain com­
munication between processes (user jobs) running on 
remote computers. One process requiring communica­
tions with another on some remote computer system 
makes requests on its local supervisor to act on its 
behalf in establishing and maintaining those communi­
cations under HOST-HOST protocol. 

In constructing these low levels of protocol it was the 
intention to provide user processes with a general set 
of useful communication primitives to isolate them 
from many of the details of operating systems and 
communications. At this user-level interface function­
oriented protocols join as an open-ended collection of 
modules to make use of ARPANET capabilities. 

The communications environment facing the de­
signers of function-oriented protocols in the ARP ANET 

is essentially that of a system of one-way byte-oriented 
connections. Technically speaking, a "connection" is a 
pair: a "send socket" at one end and a "receive socket" 
at the other. Primitives provided at the user-level 
interface include: 

1. Initiate connection (local socket, foreign socket), 
2. Wait for connection (local socket), 
3. Send, Receive (local socket, data), 
4. Close (local socket), 
5. Send interrupt signal (local socket). 

Processes in this virtual process network can create 
connections and transmit bytes. Connections are sub­
ject to HOST-HOST flow control and the vagaries of 
timing in a widely distributed computing environment, 
but care has been taken to give user processes control 
over their communications so as to make full use of 
network parallelism and redundancy. The kind of 
agreements which must be made in the creation of 
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Figure 2-Two communicating processes 

function-oriented protocols relate to rules for estab­
lishing connections, to the timing rules which govern 
transmission sequences, and to the content of the byte­
streams themselves. 

USE OF REMOTE INTERACTIVE SYSTEMS 

The application which currently dominates ARP A­
NET activity is the remote use of interactive systems. 
A Telecommunications Network (TELNET) protocol 
is followed by processes cooperating to support this 
application.8 A user at a terminal, connected to his 
local HOST, controls a process in a remote HOST as if 
he were a local user of the remote HOST. His local 
HOST copies characters between his terminal and 
TELNET connections over the ARPANET. We refer 
to the HOST where the user sits as the using HOST, 
and to the remote HOST as the serving HOST. See 
Figure 4. 

At the using HOST, the user must be able to per­
form the following functions through his TELNET 
user process ("user-TELNET") : 

1. Initiate a pair of connections to a serving HOST, 
2. Send characters to the serving HOST, 
3. Receive characters from the serving HOST, 
4. Send a HOST-HOST interrupt signal, 
5. Terminate conn.ections. 

The user-TELNET needs to be able to distinguish be­
tween (1) commands to be acted on locally and (2) 
input intended for the serving HOST. An escape char­
acter is reserved to mark local commands. Conventions 
for the ARP ANET Terminal IMP (TIP) user­
TELNET are typical.9 

In most using HOSTs, the above functions are pro­
vided by a user-TELNET which is a user-level program. 
A minimal user-TELNET need only implement the 
above functions, but several additional support func-
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tions are often provided (e.g., saving a transcript of a 
session in a local file, sending a file in place of user­
typed input, reporting whether various HOSTs are or 
have been up). 

In the serving HOST it is desirable that a process 
controlled over the ARPANET behave as it· would if 
controlled locally. The cleanest way to achieve this 
goal is to generalize the terminal control portion (TCP) 
of the operating system to accept ARPANET terminal 
interaction. It is unpleasant to modify any portion of 
a working computer system and modification could be 
avoided if it were possible to use a non-supervisor 
process (e.g., "server-TELNET" or "LOGGER") to 
perform the job creation, login, terminal input-output, 
interrupt, and logout functions in exactly the same way 
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Figure 4-Data flow for remote interactive use 
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as a direct console user. Prior to the development of the 
ARPANET, no operating system provided these func­
tions to nOD-supervisor processes in anywhere near the 
required completeness. Some systems have since been 
modified to support this generalized job control scheme. 
See Figures 5 and 6. 

Efforts to standardize communications in the TEL-

N C P 

M 
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NET protocol focused on four issues: character set, 
echoing, establishing connections, and attention 
handling. 

The chosen character set is 7-bit ASCII in 8-bit 
fields with the high-order bit off. Codes with the high­
order bit on are reserved for TELNET control func­
tions. Two such TELNET control function codes are 
the "long-space" which stands for the 200 millisecond 
space generated by the teletype BREAK button, and 
the synchronizatiQn character (SYNCH) discussed be­
low in conjunction with the purpose of the TELNET 
interrupt signal. 

Much controversy existed regarding echoing. The 
basic problem is that some systems expect to echo, 
while some terminals always echo locally. A set of con­
ventions and signals was developed to control which 
side of a TELNET connection should echo. In practice, 
those systems which echo have been modified to include 
provision for locally echoing terminals. This is a non­
trivial change affecting many parts of a serving HOST. 
For example, normally echoing server HOSTs do not 
echo passwords so as to help maintain their security. 
Terminals which echo locally defeat this strategy, how-

Terminal Control 

LOGGER must be a background service program capable of initiating jobs 

Figure 6-Alternate data flow scheme for a server 
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ever, and some other protection scheme is necessary. 
Covering the password with noise characters is the 
usual solution. 

The HOST-HOST protocol provides a large number 
of sockets for each HOST, but carefully refrains from 
speeifying which ones are to be used for what. To estab­
lish communication between a user-TELNET and a 
server-TELNET some convention is required. The 
Initial Connection Protocol (ICP)lO is used: 

1. Connection is initiated from a user-TELNET's 
receive socket to a serving HOST's socket 1 
(a send socket). 

2. When the initial connection is established, the 
serving HOST sends a- generated socket number 
and closes the connection. This socket number 
identifies an adjacent socket pair at the serving 
HOST through which the user-TELNET can 
communicate with a server-TELNET. 

3. TELNET connections are then initiated be­
tween the now specified pairs of sockets. Two 
connections are used to provide bi-directional 
communication. 

Note that socket 1 at the serving HOST is in use only 
long enough to send another socket number with which 
to make the actual service connections. 

One of the functions performed by·a terminal control 
program within an operating system is the scanning of 
an input stream for attention characters intended to 
stop an errant process and to return control to the 
executive. Terminal control programs which buffer in­
put sometimes run out of space. When this happens to 
a local terminal's input stream, a "bell" or a question 

mark is echoed and the overflow character discarded, 
after checking to see if it is the attention character. See 
Figure 7. This strategy works well in practice,but it 
depends rather strongly on the intelligence of the human 
user, the invariant time delay in the input transmission 
system, and a lack of buffering between type-in and at­
tention checking. None of these conditions exists for 
interactive traffic over the net: The serving HOST can­
not control the speed (except to slow it down) or the 
buffering within the using HOST, nor can it even know 
whether a human user is supplying the input. It is thus 
necessary that the terminal control program or server­
TELNET not, in general, discard characters from a net­
work input stream; instead it must suspend its accept­
ance of characters via the HOST-HOST flow control 
mechanism. Since a HOST may only send messages 
when there is room at the destination, the responsibility 
for dealing with too much input is thus transferred back 
to the using HOST. This scheme assures that no charac­
ters accepted by the using HOST are inadvertently lost. 
However, if the process in the serving HOST stops ac­
cepting input, the pipeline of buffers between the user­
TELNET and remote process will fill up so that atten­
tion characters cannot get through to the serving 
executive. In the TELNET protocol, the solution to 
this problem calls for the user-TELNET to send, on 
request, a HOST-HOST interrupt signal forcing the 
server-TELNET to switch input modes to process net­
work input for attention characters. The server­
TELNET is required to scan for attention characters 
in its network input, even if some input must be dis­
carded while doing so. The effect of the interrupt signal 
to a server-TELNET from its user is to cause the buf­
fers between them to be emptied for the priority pro­
cessing of attention characters. 

To flip an attention scanning server-TELNET back 
into its normal mode, a special TELNET synchroniza­
tion character (SYNCH) is defined. When the· server­
TELNET encounters this character, it returns to the 
strategy of accepting terminal input only as buffer 
space permits. There is a possible race condition if the 
SYNCH character arrives before the HOST-HOST 
interrupt signal, but the race is handled by keeping 
a count of SYNCHs without matching signals. Note 
that attention characters are HOST specific and may 
be any of 129 characters-128 ASCII plus "long 
space"-while SYNCH is a TELNET control character 
recognized by all server-TELNETs. It would not do 
to use the HOST-HOST signal alone in place of the 
signal-SYNCH combination in attention processing, 
because the position of the SYNCH character in the 
TELNET input stream is required to determine where 
attention processing ends and where normal mode input 
processing begins. 
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FILE TRANSFER 

When viewing the ARPANET as a distributed 
computer operating system, one initial question is that 
of how to construct a distributed file system. Although 
it is constructive to entertain speculation on how the 
ultimate, automated distributed file system might look, 
one important first step is to provide for the simplest 
kinds of explicit file transfer to support early sub­
stantive use. 

During and immediately after the construction of the 
ARPANET user-level process interface, several ad hoc 
file transfer mechanisms developed to provide support 
for initial use. These mechanisms took two forms: (1) 
use of the TELNET data paths for text file transfer and 
(2) use of raw byte-stream communication between 
compatible systems. 

By adding two simple features to the user-TELNET, 
text file transfer became an immediate reality. By 
adding a "SCRIPT" feature to user-TELNETS 
whereby all text typed on the user's console can be 
directed to a file on the user's local file system, a user 
need only request of a remote HOST that a particular 
text file be typed on his console to get that file trans­
ferred to his local file system. By adding a "SEND­
FILE" feature to a user-TELNET whereby the con­
tents of a text file can be substituted for console type-in, 
a user need only start a remote system's editor as if to 
enter new text and then send his local file as type-in 
to get it transferred to the remote file system. Though 
crude, both of these mechanisms have been used with 
much success in getting real work done. 

Between two identical systems it has been a simple 
matter to produce programs at two ends of a connection 
to copy raw bits from one file system to another. This 
mechanism has also served well in the absence of a more 
general and powerful file transfer system. 

Ways in which these early ad hoc file transfer mech­
anisms are deficient are that (1) they require explicit 
and often elaborate user intervention and (2) they de­
pend a great deal on the compatibility of the file sys­
tems involved. There is an on-going effort to construct 
a File Transfer Protocol (FTP)1l,12 worthy of wide 
implementation which will make it possible to exchange 
structured sequential files among widely differing file 
systems with a minimum (if any) explicit user inter­
vention. In short, the file transfer protocol being de­
veloped provides for the connection of a file transfer' 
user process ("user-FTP") and file transfer server 
process ("server-FTP") according to the Initial Con­
nection Protocol discussed above. See Figure 8. A user 
will be able to request that specific file manipulation 
operations be performed on his behalf. The File Trans­
fer Protocol will support file operations including (1) 

M 

Background File Service Program or Server-FTP 

Figure 8-Data flow for file transfer 

list remote directory, (2) send local file, (3) retrieve re­
mote file, (4) rename remote file, and (5) delete remote 
file. 

It is the intention of the protocol designers to regu­
larize the protocol so that file transfer commands can 
be exchanged by consoles file transfer jobs engaged in 
such exotic activities as automatic back-up and dy­
namic file migration. The transfers envisioned will be 
accompanied with a Data Transfer Protocol (DTP)ll 
rich enough to preserve sequential file structure and in 
a general enough way to permit data to flow between 
different file systems. 

USING THE ARPANET FOR REMOTE 
JOB ENTRY 

A very important use of the ARPANET is to give a 
wide community of users access to specialized facilities. 
One type of facility of interest is that of a very powerful 
number-cruncher. Users in the distributed ARPANET 
community need to have access to powerful machines 
for compute-intensive applications and the mode of 
operation most suited to these uses has been batch 
Remote Job Entry (RJE). Typically, a user will generate 
a "deck" for submission to a batch system. See Figure 9. 
He expects to wait for a period on the order of tens of 
minutes or hours for that "deck" to be processed, and 
then to receive the usually voluminous output thereby 
generated. See Figure 10. 

As in the case of file transfer, there are a few useful 
ad hoc ARPANET RJE protocols. A standard RJE 
protocol is being developed to provide for job sub­
mission to a number of facilities in the ARPANET. 
This protocol is being constructed using the TELNET 
and File Transfer protocols. A scenario which sketches 
how the protocol provides the RJE in the simplest, 
most explicit way is as follows: 

Via an ARPANET RJE process, a user connects his 
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terminal to an RJE server process at the HOST to 
which he intends to submit his job "deck." Through 
a short dialogue, he establishes the source of his input 
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and initiates its transfer using the File Transfer Proto­
col. At some later time, the user reconnects to the ap­
propriate RJE server and makes an inquiry on the 
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Figure lO-Retrieval of RJE output 
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status of his job. When notified that his input has been 
processed, he then issues commands to the serving 
HOST to transfer his output back. 

We can of course imagine more automatic ways of 
achieving these same functions. A user might need only 
type a job submission command to his local system. 
Automatically and invisibly, then, the local system 
would connect and converse with the specified RJE 
server causing the desired output to later appear in the 
users file area or perhaps on a local line printer. The 
intention is to design the RJE protocol so that the ex­
plicit use can start immediately and the more automatic 
RJE systems can be built as desired. 

OTHER PROTOCOLS AND CONCLUSIONS 

One of the more difficult problems in utilizing a net­
work of diverse computers and operating systems is that 
of dealing with incompatible data streams. Computers 
and their language processors have many ways of 
representing data. To make use of different computers 
it is necessary to (1) produce a mediation scheme for 
each incompatibility or (2) produce a standard repre­
sentation. There are many strong arguments for a 
standard representation, but it has been hypothesized 
that if there were a simple way of expressing a limited 
set of transformations on data streams, that a large 
number of incompatibilities could be resolved and a 
great deal of computer-computer cooperation expedited. 

The bulk of protocol work is being done with the 
invention of standard representations. The TELNET 
protocol, as discussed, is founded on the notion of a 
standard terminal called the Network Virtual Terminal 
(NVT). The File Transfer Protocol is working toward 
a standard sequential file (a Network Virtual File?). 
So it is also with less advanced protocol work in graphics 
and data management. 

There is one experiment which is taking the trans­
formational approach to dealing with incompatibilities. 
The Data Reconfiguration Service (DRS) is to be 
generally available for mediating between incompatible 
stream configurations as directed by user-supplied 
transformations. 13 
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McROSS-A multi-computer programming system* 

by ROBERT H. THOMAS and D. AUSTIN HENDERSON 

Bolt, Beranek and Newman, Inc. 
Cambridge, Massachusetts 

INTRODUCTION 

This paper describes an experimental "distributed" 
programming system which makes it possible to create 
multi-computer programs and to run them on com­
puters connected by the ARPA computer network 
(ARPANET).1 The programming system, which is 
called McROSS (for Multi-Computer Route Oriented 
Simulation System), is an extension of a single­
computer simulation system for modelling air traffic 
situations2 developed by Bolt, Beranek and Newman, 
Inc. (BBN) as a tool for air traffic control research. 
The McROSS system provides two basic capabilities. 
One is the ability to program air traffic simulations 
composed of a number of "parts" which run in geo­
graphically separated computers, the distributed parts 
forming the nodes of a "simulator network." The 
second is the ability of such a simulator network to 
permit programs running at arbitrary sites in the 
ARPANET to "attach" to particular nodes in it for the 
purpose of remotely· monitoring or controlling the 
node's operation. 

The McROSS distributed programming system is 
unique in several ways: 

(a ) Use of McROSS generates inter-computer traffic 
in which a group of programs are engaged in 
substantive conversation. There is relatively 
little previous experience with such inter­
computer, program-to-program conversations. 

(b) The component nodes of a simulator network 
are not bound to particular ARPANET sites 
until simulation "run time." Thus on different 
runs the same distributed program can be dis­
tributed in different ways over the ARPANET. 
For example, in one run all the nodes of a simu-

* This work was supported by the Advanced Projects Research 
Agency of the Department of Defense under Contract No. 
DAHC-71-C-0088. 
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lator network might be run at BBX and on the 
next some might be run at BB~, others at 
RAND and still others at the University of 
Utah. This mode of using the ARPANET is 
significantly different from the normal one in 
which programs are bound to particular net­
work sites at program composition time. (The 
only constraint on the binding of nodes to 
ARPANET sites is the requirement that each 
node run on a PDP-IO under the TENEX 
operating system.5) 

(~) The responsibilities of a node in a simulator net­
work can be conveniently partitioned into sub­
tasks which can be performed more or less 
independently of one another. The McROSS 
implementation mirrors this partitioning. Func­
tions performed at the nodes are realized by 
groups of loosely connected, concurrently evolv­
ing processes. 

The distributed simulation system represents an 
initial step in an on-going research program which is 
investigating techniques to make it easy to create, run 
and debug computations involving the coordinated be­
havior of many computers. The McROSS system is 
intended to serve both as an experimental vehicle for 
studying problems related to distributed computation 
and as a tool for air traffic control research. Its two 
goals are well matched. A satisfactory solution to the 
nation's air traffic problems is likely to include a net­
work of airborne and ground based computers working 
together on a single distributed computation: the 
scheduling and control of aircraft maneuvers. Thus, the 
air traffic control problem is a rich source of interesting 
problems in partitioned computation which can be used 
to measure the usefulness of the distributed computa­
tional techniques developed. 

This paper is a report on one phase of a continuing 
research program. The intent is to describe interesting 
aspects of an experimental distributed programming 
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system and to share our experience with others con­
sidering the construction of such systems. The paper 
does no more than hint at how the McROSS system 
can be used in air traffic control research. 

The next section provides background useful for 
subsequent discussion of the distributed programming 
system. After than, the McROSS system is described, 
first in terms of the facilities it provides for creating 
distributed simulations, and then in terms of interesting 
aspects of its implementation. The paper closes with a 
discussion of some of the issues brought into focus by 
the experience of implementing and using a distributed 
programming system. 

COMPONENTS OF THE McROSS SYSTEM 

The main components of the distributed program­
ming system are: 

1. The ARPA computer network; 
2. The TEN EX operating system for the PDP-IO; 

and 
3. A simulation programn¥ng system known as 

ROSS (for Route Oriented Simulation System). 

These components became operational within 6-10 
months of one another, at which time it became feasible 
to implement the distributed programming system 
being described. 

The ARPANET 

The ARPA computer networkI,3,4 is a set of auton­
omous computer systems (hosts) which are intercon­
nected to permit resource sharing between any pair of 
them. The goal of the ARPANET is for each host to 
make its resources accessible from other hosts in the net 
thereby permitting persons or programs residing at one 
network site to use data and programs that reside and 
run at any other. Each host interfaces with the network 
through an Interface Message Processor (IMP) ,3 a 
small dedicated general-purpose computer. The IMPs, 
which reside at the various ARPANET sites, are con­
nected by 50 kilobit common carrier lines and are 
programmed to implement a store and forward com­
munication network. In passing from host A to host B 
a message passes from host A to IMP A, through the 
IMP communication network from IMP A to IMP B 
(in general passing through a number of intermediate 
IMPS) and finally from IMP B to host B. 

At each host there is a Network Control Program 
(NCP) whose function is to provide an interface be-

tween the network and processes within the host. The 
}~·CPs use the IMP store and forward network to pro­
vide processes with a connection switching network. 
Thus, they enable processes in different hosts to estab­
lish connections with one another and to exchange 
information without directly concerning themselves 
with details of network implementation such as the 
way in which hosts are connected to and communicate 
with IMPs. 

Information can flow in only one direction on an 
ARPANET connection. Thus, before two processes are 
able to engage in a dialogue they must establish two 
such connections between them. A connection is com­
pletely specified by its two ends which are called 
sockets. A network socket is itself uniquely specified by 
a host identifier and a socket identifier. The purpose of 
the socket identifier is to specify a process or group of 
processes within a host and a socket relative to that 
process or process group. Thus, it is useful to think of a 
socket as having a three component "socket name" of 
the form H. P . N. H is the "host" component which 
identifies an ARPANET host, P is the "process" com­
ponent which identifies a process group within Hand N 
is the "process-local" component which identifies a 
socket relative to P. In the sequel 

HI,PI.NI~H2,P2.N2 

is used to denote a connection between sockets 
HI. Pl. N I and H2. P2. N 2 where ~ indicates the direc­
tion of information flow over the connection. 

For a connection to be established between two 
processes each must request that it be established. There 
are two common ways in which connections are es­
tablished. In the first, the processes play symmetric 
roles. Each specifies, as part of a "request for connec­
tion" (RFC), the socket name at its end of the con­
nection, the socket name at the remote end of the 
connection and the direction of information flow. If the 
two RFCs "match" the connection is established. This 
connection procedure requires a priori agreement upon 
the sockets to be used for the connection. The second 
common connection procedure is used in situations in 
which one process wishes to provide some sort of service 
to other processes. The "serving" process establishes 
a ltstening socket within its host which is receptive to 
RFCs from any other process in the network and then 
"listens" for connection attempts. The serving process 
uses facilities provided by its NCP to detect the occur­
rence of a connection attempt and to determine its 
source. When such an attempt is made the serving 
process can choose to accept or reject it. This connec­
tion procedure requires that only one socket name, 
that of the serving process's listening socket, be known 



a priori. In the remainder of this paper 

[H.P.N~JL 

and 
[H.P.N~ JL 

are used to denote connections established in a listening 
state. 

The TENEX operating system 

TENEX5 is a time sharing system for the DEC 
PDP-I0 processor augmented with paging hardware 
developed at BBN. For purposes of this paper it is 
useful to describe TENEX in terms of the virtual 
processor it implements for each logged-in user (i.e., 
user time sharing job) . 

The instruction repetoire of the TENEX virtual 
processor includes the PDP-I0 instruction set with the 
exception of the direct I/O instructions. In addition, it 
includes instructions which provide access to virtual 
processor capabilities implemented by the combination 
of the TENEX software and hardware. 

The TENEX virtual processor permits a user job to 
create a tree-structured hierarchy of processes. Such 
processes have independent memory spaces and com­
putational power. At different stages in its lifetime a 
single user job ma)\ include different numbers of pro­
cesses in various states of activity. Several mechanisms 
for interprocess communication are provided by the 
TEN EX virtual machine. Processes can interact by 
sharing memory, by interrupts and by direct process 
control (e.g., one process stops, modifies and restarts 
another which is "inferior" to it in the hierarchy) . 

A memory space is provided by the virtual processor 
which is independent of the system configuration of 
core memory. Each process has a memory space of 
256K words which is divided into 512 pages each of 
512 words. A process can specify read, write and execute 
protection for pages in its memory space as it sees fit. 

The virtual machine includes a file system which 
provides a mechanism for storing information on .and 
retrieving it from external devices attached to TENEX. 
Processes refer to files using symbolic names, part of 
which identifies the particular device on which the 
file resides. The instruction set of the virtual machine 
includes operations for data transfer to and from files 
which a process can execute without explicitly arrang­
ing for buffering. 

The NCP resident in TEN EX makes the ARPANET 
appear to TENEX processes as an I/O device. The 
name of a "file" corresponding to a network connection 
includes the names of both the local socket and the 
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remote socket which define the connection. A process 
requests TENEX to estabJish a connection by attempt­
ing to open an appropriately named "network" file. 
The open attempt succeeds and the connection is es­
tablished if and when another process issues a matching 
RFC. TEN EX processes transmit and receive informa­
tion over network connections by executing the normal 
file data transfer instructions. 

ROSS 

ROSS is a programming system for modelling air 
traffic situations.2 It includes facilities for creating and 
running simulation experiments involving air traffic in 
an experimenter-defined airspace. The system is cur­
rently being used in a number of air traffic control re­
search projects. 

To create a simulation experiment the experimenter 
uses ROSS language forms to write a "program" which 
defines the geography of an airspace, the wind profile 
for the airspace, aircraft flight characteristics and a set 
of "route procedures." A route procedure consists of a 
sequence of one or more "instructions" for monitoring 
or controlling the progress of an aircraft through the 
simulated airspace. Execution of a route procedure is 
the ROSS counterpart of pilot and/or controller actions. 
The "flight" of a simulated aircraft through the air­
space is accomplished by the execution of a series of 
route procedures. ROSS includes "primitive" route 
procedures to "create" aircraft, "inject" them into and 
remove them from the simulated airspace as well as 
ones which cause aircraft to accelerate, turn, climb and 
descend. 

By compiling his program the experimenter creates 
a simulator for traffic in the airspace he has defined. 
To perform a simulation experiment the experimenter 
runs his program. The simulated airspace remains 
empty until the program is supplied with input which 
inject aircraft into the airspace and control their flight 
through it. Each input line the simulator receives is 
passed to an internal parsing mechanism which issues 
a call to an appropriate experimenter-defined or primi­
tive route procedure. The program can accept input 
from an on-line terminal, a predefined "scenario" file, 
or both. Input lines from the scenario file are identical 
to ones from the on-line keyboard with the exception 
that scenario file input lines include a time field which 
specifies the (simulated) time at which the program is 
to accept them. A user can manually "vector" aircraft 
through the airspace by supplying input at the on-line 
keyboard. 

A ROSS simulator can drive displays of the airspace 
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and, in addition, can generate output which can be 
written into files, typed on the on-line keyboard or 
sent back into the simulator input parser. 

THE McROSS PROGRAMMING SYSTEM 

The McROSS system provides the ability to define 
simulation experiments involving a number of airspaces 
or "simulation centers" which can be interconnected 
to form a simulator network. Adjacent centers in the 
simulator network are connected to one another by way 
of the ARPANET. The components of a simulator net­
work may run as user jobs distributed among different 
TENEXs or as different user jobs on the same TENEX. 
(As of January 1972 the ARPANET included five 
TENEX hosts.) 

Computational responsibility for performing a multi­
computer McROSS simulation is truly distributed. 
For example, as an aircraft flies from one airspace into 
an adjacent one the responsibility for simulating its 
dynamics shifts from one computer to another. 

Goals 

The McROSS system was implemented to achieve 
the following goals: 

1. Autonomy of parts: 
Individual components of a McROSS network 
should be able to operate independently of one 
another (to the extent that each is independent 
of the others for traffic). Furthermore, no center 
should be able to cause another to malfunction. 
Autonomy of parts enables a multi-computer 
simulation to run when only some of its compo­
nents are operational. Failure of a component 
center in a multi-center simulation results in 
degradation of the total simulation rather than 
forced termination of it. A beneficial side effect 
of autonomy is that individual centers can be 
partially debugged without running the entire 
simulator network. 

2. Deferral of process/processor binding: 
The binding of centers in a McROSS network to 
host computers in the ARPANET should be de­
ferred until run time. This goal can be stated in 
more general terms. The program for a dis­
tributed computation defines a logical configura­
tion made up of abstract relations between the 
computation's parts. A given execution of the 
program is accomplished by a particular physical 
configuration of computers. The two configura­
tions, logical and physical, are by necessity re-

lated. However, the programmer should have 
the option of specifying them separately. By 
deferring process/processor binding the con­
figurations can be separately specified. As a 
result the programmer is free while composing 
his program to concentrate on the logical struc­
ture he wants his program to define without 
concerning himself with details of the physical 
structure on which it is to be run. 

3. Capability for dynamic reconfiguration: 
In the course of a simulation it should be pos­
sible for adjacent centers to dynamically break 
and reestablish connections with one another. 
Furthermore, it should be possible for process/ 
processor binding to be changed during a simula­
tion. That is, it should be possible to change the 
physical location of a center from one 
ARPANET host to another. The ability to dy­
namically reconfigure makes it possible to re­
move an improperly operating center from the 
simuLator network and replace it with another at 
the same ARPANET host or at a different one. 

4. Decentralization of control: 
McROSS is to be used as a tool for investigating 
distributed computation. Among the subjects to 
be studied are methods for controlling such com­
putations. I n particular, various techniques for 
distributing control responsibilities among the 
parts of a computation are to be experimentally 
investigated. It is important, therefore, that 
operation of the McROSS system not require a 
central control mechanism for coordinating 
simulator networks. Stated somewhat differ­
ently, the only components required for a 
McROSS simulation should be simulation cen­
ters defined by McROSS programs. The realiza­
tion of this goal, which makes experimentation 
with distributed control possible, should not 
preclude experimentation with centralized 
control. 

5. Remote monitoring capability: 
A McROSS simulator network should provide 
ports through which its components are acces­
sible to any ARPANET host. An appropriately 
programmed process running at any ARPANET 
hostfthould be able to "attach" to a component 
of a simulator network to monitor and control its 
operation. A remote monitoring process should 
be able to: 

a. obtain sufficient information to display traffic 
in the airspace it is monitoring. 

b. serve as the on-line keyboard for the center 
it is monitoring; 



c. "detach" from one center and "attach" to 
another in the course of a simulation run. 

M eRO S S as seen by the user 

A McROSS simulator network is defined by a pro­
gram composed of a "network geometry" sub-program 
and sub-programs corresponding to each of the centers 
in the network. 

The network geometry sub-program defines the logi­
cal geometry for a simulator network. Conceptually, a 
network is composed of nodes and arcs. Nodes in a 
McROSS network are simulation centers and arcs are 
duplex connections between centers. Figure 1 shows a 
four node simulator network which could be used to 
simulate air traffic between Boston and N ew York. The 
following geometry sub-program defines that network: 

netbegin 
neteen BOSTRM, BOSCEN, NYCEN, 

NYTRM 
neteon BOSTRM, BOSCEN 
neteon BOSCEN, NYCEN 
neteon NYCEN, NYTRM 

netend 

The neteen statement declares that the network con-

BOSTRM 

NYTRM 

Figure I-A simulator network which could be used to simulate 
air traffic between Boston and N ew York 
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tains four nodes (Boston terminal control, Boston en 
route control, N ew York en route control and X ew 
York terminal control). The netcon statements declare 
the three arcs; netbegin and netend serve to bracket the 
geometry declarations. 

In general, the sub-program for each center has four 
parts: 

• a route procedure module 
• a local geography module 
• a wind profile module 
• an aircraft characteristics module. 

In addition to defining procedures followed by air­
craft as they fly through a center's airspace, the route 
procedure module includes routines specifying how the 
center interacts with its neighbors. Information ex­
change between adj acent centers. is accomplished by 
sending messages across the connection between them. 
A center handles messages from neighboring centers by 
submitting them to its input parsing mechanism. Such 
messages are treated identically to input from its on-line 
console and scenario file. 

The ability of adjacent centers to interact depends 
upon the state of the connection between them as each 
sees it from its end of the connection. A center may 
consider a connection to be in one of three states: 

1. uninitialized: 
the "physical location" of the neighbor IS 

unknown; 
2. closed: 

the "physical location" of the neighbor is known 
but the connection is not capable of carrying 
messages (either because it has not yet been 
established or because it has been broken); 

3. open: 
the connection may be used for information ex­
change with the neighbor. 

In the current implementation of McROSS the 
"physical location" of a neighbor includes both the 
ARPANET host the center is running on (e.g., BBN) 
and the identification of the user it is running under 
(e.g., Jones). 

McROSS provides the operations init, eonn,dseonn 
and abort for changing the state· of a connection. The 
effect these operations have on the end of a connection 
is illustrated by the state transition diagram of Figure 2. 

Consider the geometry for the Boston-New York 
simulation. Execution of 

eonnBOSTRM 
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dsconn 

Figure 2-Transition diagram for the state of the end of a 
connection showing the effect of the operations init, conn, 

dsconn and abort 

within the BOSCEN initiates an attempt to open a 
connection with BOSTRM. The connection attempt 
succeeds if a matching conn is executed by the 
BOSTRM center. The effect of executing 

dsconn NYCEN 

within the BOSCEN center simulator is to break the 
connection between the NYCEN and BOSCEN centers 
by forcing both ends of it into the closed state; abort 
works in an analogous manner. Execution of the init 
operation results in a center-user dialogue in which the 
human user is asked by the center program to specify 
the physical location of the neighbor. 

Two language primitives are provided for sending 
messages from one center to another. One takes a single 
operand, a message, which it sends to every neighbor 
whose connection is in the open state. The other takes 
two operands, a message and the name of a neighboring 
center. If the connection to the center is open, the mes­
sage is sent to the center; otherwise the operation has 
no effect. Because they are submitted to the input 
parsing mechanism care must be taken that messages 
sent to a neighbor are formatted correctly. 

McROSS includes operations which can be used by 
a center to obtain information about the simulator I 

network and its immediate neighbors. For example, 
tllere is a primitive which produces a list of all nodes in 
the network (i.e., all centers declared by the netcen 
declaration); another one produces a list of all neigh­
boring centers for which connections are in the open 
state. In addition, a center can examine the state of the 
connection to each of its neighbors individually. 

The local geography module defines the airspace of a 
center by specifying names and locations (x-y coordi­
nates) of important geographic features such as naviga-

tional aids, obstructions and airports. In addition it 
includes a declarative statement which names the simu­
lation center. For example, the geography module for 
the BOSTRM center would include the declaration 

atccen BOSTRM. 

This declaration has the effect of binding the identifier 
THISIS to the name BOSTRM. Thus in the BOSTRM 
center THISIS is bound to BOSTRM while in the 
NYTRM center it is bound to NYTRM. Route pro­
cedures which access the simulator center name can ,be 
written in terms of THISIS to enable their use at any 
center in a simulator network. 

A properly authorized process at any ARPANET 
host can attach to a center in a McROSS simulator 
network and request output from it and direct input 
to it thereby monitoring and controlling its operation. 
McROSS center programs are prepared to offer two 
kinds of service to remote monitors: 

1. broadcast service: 
Centers continuously broadcast certain informa­
tion to morntors attached to them. Presently 
centers broadcast flight parameters of each air­
craft in their air space (speed, heading, altitude, 
x-position, y-position, acceleration, aircraft id) 
and the (simulated) time. A remote monitor 
can use broadcast information to drive a display 
of traffic in a center's airspace or it can record 
it for later analysis. 

2. demand service: 
Each center is prepared to respond to certain 
specific requests from monitors. In the current 
implementation a monitor can request that a 
center: 
a. transmit its map of the airspace (which can 

be used as background for displaying the 
center's air traffic) ; 

b. stop the continuous broadcast; 
c. resume the continuous broadcast; 
d. treat the monitor as its on-line keyboard by 

directing keyboard output to the monitor 
and accepting input from it; 

e. cease treating the monitor as its on-line 
keyboard; 

f. break its connection with the monitor. 

The monitoring facility has proven useful both for 
debugging and for demonstration purposes. One diffi­
culty a user faces in debugging a multi-center simula­
tion is determining what is happening at centers sus­
pected to be malfunctioning. A monitor, constructed 
appropriately, can serve as a "graphical probe" and be 



used to watch the operation of first one suspect center 
and then another. For example, we have used such a 
monitor to follow the trajectory of an aircraft as it 
passes through several centers. 

By enabling processes at arbitrary ARPANET sites 
to observe and control McROSS simulations, the 
monitoring facility provides a mechanism for· using 
hardware and software features which are unique to 
various network installations. By using monitors which 
play an active role in his simulations a McROSS user 
can experiment with different ways of partitioning 
computational and control responsibilities in air traffic 
situations. He could, for example, experiment with a 
monitor built to provide a weather advisory service for 
simulator centers. Such a monitor would presumably 
have access to an on-line weather data base. (A weather 
data base to be accessible through the ARPANET is 
currently being designed. 10) To perform its service for a 
center the monitor would attach to the center, request­
ing that" the center broadcast aircraft flight parameters 
to it and accept input lines from it. It would then 
"watch" the airspace of the center and send instructions 
to it, as necessary, to vector aircraft around severe 
weather. 

Unless he chooses to do so, the simulation program­
mer need not concern himself with remote monitoring 
beyond specifying at simulation run time which centers 
in his network are to be receptive to remote monitors. 
Monitors themselves are not part of the McROSS 
system. McROSS merely provides a mechanism for re­
mote monitoring. No effort has been made to provide 
linguistic features within the McROSS system to make 
it easy to write programs to do monitoring. 

THE McROSS IMPLEMENTATION 

Some interesting aspects of the McROSS imple­
mentation are discussed in'this section. The section 
focuses on strategy rather than detail. The result is a 
simplified but nonetheless accurate sketch of the 
implementation. 

The ROSS implementation 

Implementation of McROSS was accomplished by 
extending the existing ROSS simulation system. A 
ROSS simulation consists of initialization, simulation 
and termination phases. The simulation phase is imple­
mented as a loop. Each pass through the loop repre­
sents a "tick" of the clock which maintains simulation 
time. On each tick the simulator: 

1. parses and interprets input directed to it from 
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SOCKETS 

(I 
HA 'PA 'SAS 1 - I ". oP. oR.A 'I 

CENTER CENTER 
A B 

"A OPA 0 ... 1 - I"·op.os .. 

Figure 3-Schematic of center-center connection between ad­
jacent centers A andB. SAB, RAB, SBA and RBA are assigned at 
program translation time; HA , HB, P A and P B are determined 

at run time 

its scenario file and on-line console since the 
last tick; 

2. interprets the route procedure each aircraft is 
currently following; 

3. advances each aircraft along its trajectory tak­
ing into account the aircraft's speed, acceleration 
and heading and the wind profile of the airspace; 

4. directs output generated since the last tick to 
the appropriate devices; 

5. performs actions necessary to maintain the local 
display of its airspace: 

6. increments the simulated time. 

A ROSS simulation can be run either in a "real time" 
mode in which simulated time is locked to real time, 
or in a "hyper fast" mode in which the simulation pro­
ceeds as iast as it can. 

Process/processor binding and center-center connections 

Connections between pairs of simulator network 
centers are duplex. Each center-center connection is 
implemented by two ARPANET connections. More 
specifically, an open connection between centers A and 
B is realized by the two ARPANET connections (see 
Figure 3): 

HA. P A. SAB~HB' PB. RBA 

HA. P A. RAB~ HB. PB. SBA 

To establish such a center-center connection two pairs 
of matching RFCs must be issued by centers A and B. 
To issue the correct RFCs A must know HB, PB, RBA 
and SBA; similarly, B must know HA, P A, RAB and SAB. 
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The host (H) and process (P) components of the 
socket names for a center-center connection cannot be 
determined until run-time because process/processor 
binding is deferred until then. However, the process­
local components (R and S) of the socket names can be 
pre-assigned and, in fact, the effect of the declarations 
in the network geometry sub-program for a particular 
McROSS network is to do exactly that. 

The process local components for the four socket 
names corresponding to a center-center connection are 
always the same whereas the host and· process compo­
nents may change from run to run or even within the 
same run if either neighbor is involved in a dynamic 
reconfiguration. 

When a center's end of a center-center connection is 
in the uninitialized state the host and process compo­
nents of the socket names corresponding to the remote 
end are unknown to it. To move its end of a connection 
from the uninitialized state. the center engages in a 
dialogue with the user requesting from him the physical 
location of the neighbor. After successfully completing 
the dialogue the center has sufficient information to 
issue the two RFCs required of it to establish the 
connection. 

Center-monitor connections 

The connection between a center C and an attached 
remote monitor M is realized by two ARPANET con­
nections. One of them 

Hc. Pc. SCM~HM. PM. R MC 

is a "broadcast" connection used for continuously 
broadcasting information to M. The other 

[Hc.Pc.R~ JL 

is a "request" connection maintained by C in a listening 
state for M to use to make requests of C. Each monitor 

Each center willing to service monitors maintains as 
an "attach" socket a send socket in a listening state 
(see Figure 4.a). The attach socket for C could be 
denoted 

[Hc.Pc.A~JL 

The process local component (A) of the name for at­
tach sockets is the same for all centers and is "well­
advertised." Therefore, if M knows the physicalloca­
tion of C it can issue an RFC for C's attach socket. 
The effect of such an RFC is to establish the connection 
(Figure 4.b) 

Hc.Pc.A~HM,PM.RM 

Upon detecting an RFC for its attach socket, C notes 
HM and PM and transmits SCM and R over the connec­
tion. Next both C and M break the connection and 

(0) 

(b) CENTER 
C 

CENTER 
C 

Hc'Pc'A : 

listening 

---+ 
I HM'PM'RM 

MONITOR 
M 

attached to C has its own broadcast connection but (c ) CENTER ---+ MONITOR 
Hc'PC'SCM : IHM,PM'RMC C may share a request connection with other monitors. 

To make a request of C, M connects to the request 
socket, transmits its request over it and then closes the 
request connection, freeing it for use by other monitors. 
The action taken by C of course depends upon the re­
quest. If the request were for the display map, C would 
transmit the map data over the broadcast connection 
toM. 

Before the RFCs required to establish a center­
monitor connection between C and M can be issued 
C must know H M, PM and RMc and M must know 
Hc, Pc, SCM and R. To obtain the required information, 
M and C engage in a connection protocol which is 
similar to the "initial connection protocol" developed 
by the ARPANET network working group.6 

M 

.-.-
HC'PC'R listening 

-Hc ·Pc·A listening 

(d) 
CENTER ---+ MONITOR 

Hc''C'SCM ~ ,HM'PM'RMC C M 

40-

Hc'Pc'R listening 

Figure 4-Schematic of connection protocol exchange between 
center C and monitor M 



issue the RFCs necessary to establish the broadcast 
connection (Figure 4.c) 

Hc. Pc. SCM~HM' PM:. R MC 

where RMc=f(RM), a pre-agreed upon function of R M. 
C, if it has not done so previously for another monitor, 
sets up the listening connection 

[Hc.Pc.R~ JL 
and finally, reestablishes its attach connection so that 
other monitors can attach to it (Figure 4.d). Currently 
the process-local components for ARPANET socket 
names are numbers and f is taken to be 

f(x) =x+2. 

If RM rather than f(R M) were used for R MC a race 
condition would result when M and C attempt to estab­
lish the broadcast connection. The race involves the 
order in which the connection with socket H M. PM. RM 
would be closed and reopened by C and M. In particu­
lar, the current TENEX NCP is such that an attempt 
by· C to open the network file corresponding to its end 
of the (broadcast) connection 

Hc. Pc. SCM~HM . PM. RM 

before M closes the network file corresponding to its 
end of the connection 

Hc.Pc.A~HM.PM.RM 

would fail. Use of f(R M) for RMC avoids the race. A 
similar race condition, discovered in an early version 
of the ARPANET initial connection protocoJ,7 is 
avoided in the current protocol by the same technique.s 

Process structure at M cROSS centers 

A McROSS center is realized by a collection of co­
operating, asynchronously evolving, sequential pro­
cesses. The collection corresponds to a partitioning of 
the center's responsibilities into more or less indepen­
dent sub-tasks. It includes: 

1. a process (SIM) to perform the ROSS functions; 
2. a process (CONN) for each center-center con­

nection to establish and maintain the connection; 
and 

3. a monitor server process (MONSER) to service 
remote monitors. 

The CONN process at center A corresponding to the 
center-center connection to center B is responsible for 
establishing ARPANET send and receive connections 
with B. After it establishes the center-center connection 
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Figure 5-The process hierarchy which implements a McROSS 
simulation center with n neighbors 

with B the CONN process maintains the connection. 
When messages from B arrive it passes them on to the 
SIM process for parsing. 

The job of the MONSER process at a center is 
twofold: to engage in an initial connection protocol ex­
change with monitors attempting to attach to the 
center and to respond to requests made by attached 
monitors. 

The processes at a center exist in a hierarchy (see 
Figure 5). The hierarchical structure is less the result 
of anyone process being more important than any 
other than it is a consequence of the TENEX con­
straint that process groups be hierarchically arranged. 
During initialization the SIM process creates the 
MONSER and CONN processes. Thereafter, the pro­
cesses evolve more or less independently. 

The process structure at each center helps achieve 
autonomy of parts. The CONN processes and the 
MONSER process serve to protect the SIM process by 
insulating it from direct interaction with other centers 
and remote monitors. 

Protocols 

The current implementation of the TEN EX NCP 
is such that if a center were to unilaterally break a con­
nection with a neighbor (by closing the two correspond­
ing ARPANET connections) it could leave processes 
in the neighboring center in an irrecoverable state. For 
example, a process in the neighbor sending information 
across the connection at the time it is broken would 
"feel" the close as if it had executed an illegal instruc­
tion. To prevent such situations McROSS centers en-
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gage in a protocol exchange prior to breaking 
connections. 

The center-center protocol is relatively simple. To 
perform an abort or dsconn operation a center sends its 
neighbor a "request for abort" or "request for dis­
connect" message and waits until it receives ani ac­
knowledgment before actually breaking the connection. 
Existence of the center-center protocol has two major 
implications. The first is that a center-center connection 
has more states than the three noted earlier. The addi­
tional states are transient ones which the connection 
passes through as the center and its neighbor advance 
through protocol exchanges initiated when one attempts 
to change the state of the connection. The transient 
states are invisible to the McROSS user. Immediately 
after a dsconn (or abort) is initiated the SIM process 
treats subsequent operations involving the connection 
as if the connection were already in the closed (or 
uninitialized) state. The second implication is that 
center-center connections carry "control" messages 
used in center-center protocol exchange in addition to 
"ordinary" messages intended for the receiver's parsing 
mechanism. The CONN process for each connection 
must be prepared to recognize and respond appropri­
ately to both kinds of messages. 

McROSS centers expect remote monitors to observe 
a center-monitor protocol. In addition to the connec­
tion and request procedures described earlier, the 
center-monitor protocol includes a disconnection pro­
cedure much like the· one used in the center-center 
protocol. 

I nterprocess communication 

To perform their tasks the processes at a simulation 
center must interact occasionally. For example, the 
arrival of a message from a neighbor requires inter­
action between the SIM and CONN processes. The 
CONN process receives the message and passes it onto 
the SIM process for parsing and interpretation. 

One way the processes interact is through shared 
memory. For example, the SIM and CONN processes 
have read and write access to a shared "connection 
table." There is an entry in the table for each center­
center connection which includes the state of the con­
nection, a semaphore9 and other information relevent 
to the connection. Use of the table is coordinated by 
strict adherence to a convention which requires every 
"critical" access (every write access and certain read 
accesses) to an entry to be bracketed by P (lock) and 
V (unlock) operations on the entry's semaphore. 

The situation arising at a center when a neighbor 
attempts to break connection ",ith the center is a 

typical one which requires interprocess communication. 
The CONN process corresponding to the center-center 
connection receives a "request for disconnect" message 
from the neighbor. Center-center protocol requires the 
CONN process acknowledge the request so that the 
neighbor can break the connection. The purpose of the 
protocol exchange is to warn the center that the con­
nection is about to be broken and that it should no 
longer attempt to use it. Therefore before it acknowl­
edges the neighbor's request it is important that the 
CONN process communicate this information to the 
other processes at its center. The CONN process does 
this by the following sequence of actions: 

P(CONNECTION SEMAPHORE); 
set connection-state to "not open"; 
V(CONNECT10N SEMAPHORE); 
acknowledge neighbor's request 

As long as processes at the center perform the following 
sequence of actions to send over center-center connec­
tions there is no danger of sending after the connection 
has been closed: 

P(CONNECTION SEMAPHORE); 
if connection-state = open 

then send 
else abort the send; 

V(CONNECT10N SEMAPHORE) 

Stated somewhat differently, sending over a center­
center connection should be regarded as an operation 
which involves a "critical" read access of the corre­
sponding connection table entry. 

In addition to memory sharing, direct process control 
is used as a mechanism for interprocess communication 
in the McROSS system. Because of its superior position 
in the process hierarchy the SIM process can exert 
direct control over the other processes. A few situations 
occur in which it does so. For example, when a center­
center connection has been closed or aborted (via 
dsconn or abort) the SIM process forces the correspond­
ing CONN process to halt. If and when an attempt is 
initiated to reestablish the connection (via conn) 
SIM restarts it. 

SOME OPEN QUESTIONS 

This section briefly discusses questions representa­
tive of ones which have arisen in the course of using 
the McROSS system. The questions have been resolved 
to the extent that useful simulations can be performed 
using McROSS. However, none has been resolved in a 



totally satisfactory manner. The intent of this section 
is to leave the reader with an appreciation for the issues 
raised by these questions; a thorough discussion of 
them is well beyond the scope of this paper. 

Synchronization 

Simulated time is important in the operation of the 
McROSS system. In particular, whenever an inter­
action between adjacent centers occurs it is important 
that the clocks kept by the centers show approximately 
the same time. Time synchronization is a specific ex­
ample of the general problem of control in ~istributed 
computation. It is compounded by the fact that centers 
can start up and shut down independently of one 
another. A centralized approach to synchronization 
has been used with success in McROSS simulations. 
In it, one center acts as a synchronizer for an entire 
simulator network. When a center starts up it connects 
to the synchronizer and receives a synchronization 
message from it. Thereafter, to stay in synch with 
other centers in the network, the center makes use of 
the real time clock in the computer it runs on. A dis­
tributed approach to synchronization which does not 
require a synchronizing center is under consideration. 

Locally unknown names / 

N ames that are well defined within a simulator net­
work as a whole are not necessarily defined at every 
node in the network. How should references to such 
names occurring within centers in which they are not 
defined be handled? For a specific example in which 
such a reference is reasonable, reconsider the (four node 
network for simulating Boston-New York traffic. A 
user controlling the simulator for Boston Terminal who 
is manually vectoring an aircraft leaving Logan airport 
might reasonably issue the clearance 

fly (V205, PAWLING) 

which specifies that the aircraft is to follow Victor Air­
way #205 to Pawling. Assume that V205 is defined 
within the geography modules for BOSTRM, BOSCEN 
and NYCEN and the PAWLING is defined within 
NYCEN but not within BOSTRM or BOSCEN. The 
BOSTRM center can't fly the aircraft to Pawling be­
cause Pawling is not defined within its airspace. Ideally 
it should fly the aircraft along V205 to the boundary 
of the BOSCEN airspace and then hand it off to the 
BOSCEN simulator. Certainly it should be able to do 
better than report an error and abort the route pro­
cedure. Techniques for handling references to locally 
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unknown names in certain limited contexts are being 
investigated. However, the general problem of handling 
such references is an open question. 

Program residence 

Where should the program (route procedures) re­
quired to fly an aircraft through several simulator 
centers reside? Should the program be associated with 
the aircraft and passed with it from center to center or 
should parts of the program be distributed among the 
relevant centers? The approach\ currently used in 
McROSS simulations is to distribute the program and 
pass only the aircraft and its flight parameters from 
center to center. 

Interruption and resumption of route procedures 

Aircraft frequently interrupt their flight plans tem­
porarily in order to avoid severe weather or heavy 
traffic. The simulation analogy to a flight plan is the 
route procedure. How should a center handle interrup­
tion and subsequent resumption of route procedures? 
Interrupting the execution of a route procedure in 
order to follow another one is not difficult. The diffi­
culty arises in determining how to appropriately resume 
the interrupted procedure. In general, the point of in­
terruption is inappropriate as a resumption point. A 
considerable amount of (simulated) time can elapse 
between interruption and resumption during which the 
flight parameters (position, speed, altitude and head­
ing) of the aircraft can change significantly. Therefore, 
the usual programming technique of saving the "state" 
when an interrupt occurs and restoring it after the 
interrupt has been handled is inadequate. The inter­
ruption/resumption problem is made more complex by 
the possibility that between interruption and resump­
tion the aircraft may fly out of the airspace of one 
center and into the airspace of another. The current 
McROSS implementation is not prepared to handle 
interruption and subsequent resumption of route 
procedures. 

Error handling techniques for distributed systems 

The question of how to handle error situations in a 
distributed computational system is a challenging one. 
In McROSS considerable attention has been given to 
making nodes in a simulator network autonomous. The 
strategy for handling errors is to try to achieve a 
"local" error recovery whereby a node attempts to pre­
serve its autonomy. As a result, while the actions it 
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takes are locally optimal in the sense that its continued 
operation is insured, they may be sub-optimal in the 
more global context of the entire simulation network. 

Errors occurring in inter-node messages are simply 
handled in the current McROSS implementation. Re­
call from an earlier section that inter-node messages 
are submitted to the parsing mechanism of the destina­
tion node. When a node receives a message which is 
syntactically incorrect or semantically meaningless 
(to it) from a neighbor, it reports the error on its 
on-line keyboard, sends a message to the neighbor caus­
ing the error to be reported on the neighbor's on-line 
keyboard, and ignores the message. This procedure is 
locally satisfactory in the sense that it guarantees that 
messages which are not well-formed cannot cause the 
node to malfunction. However, if the incorrect message 
from the neighbor is one critical to the outcome of the 
simulation, this procedure is not globally acceptable. 
Ideally, upon detecting an error in a message, the node 
should engage in a dialogue with its neighbor in an 
attempt to resolve the error. The difficulty in imple­
menting this strategy is that it is frequently unclear 
what should be done to resolve an error. Often the 
cause has been masked by the time the error is detected. 

While the simple techniques used in McROSS for 
error handling have proven adequate, it is clear that 
more effective techniques can be developed. 

CONCLUDING REMARKS 

The results of the work reported in this paper are ap­
plicable in two areas. 

One area is research in air traffic control. Researchers 
can use the McROSS system to conduct simulation 
studies preliminary to the design of an automated 
mUlti-component air traffic control system. For ex­
ample, McROSS could be used to evaluate various 
ways of partitioning responsibility among components 
of such a system. Or, it could be used to compare differ­
ent strategies for automated scheduling and control of 
aircraft. Because it exhibits autonomy of parts and the 
ability to dynamically reconfigure, it could be used to 
experimentally study the behavior of failure handling 
techniques for a multi-center system under various air 
traffic loads. 

The other area is the design and implementation of 
distributed computation systems. The results in this 
area are incomplete and tentative consisting prjmarily 
of insights and attitudes developed from the experience 
of building and using a distributed computation system. 
These are summarized by reviewing the goals for the 
McROSS system in terms of problems they posed and 
techniques useful in realizing them. 

Of the five goals, autonomy of parts and deferral of 

process/processor binding were the most significant in 
terms of effort required to achieve them and· influence 
on the appearance of the system to users. Given their 
realization, the other three goals (the ability to dy­
namically reconfigure a simulator network, decentrali­
zation of control and ports for monitoring) were rela­
tively easy to achieve. 

The strategy of implementing parts of the distributed 
computation by process groups rather than solitary 
processes contributed significantly to achieving au­
tonomy of parts. The multi-process implementation 
made it possible to dedicate certain processes at a node 
to maintaining an interface with other nodes and to 
dedicate other processes to performing functions crucial 
to the node's existence. In addition to insulating vital 
internal node functions from the actions of other nodes, 
the functional modularity resulting from multi-process 
nodes had the effect of reducing the complexity of the 
implementation: each individual process being con­
siderably less complex than an entire node. The multi­
process capability which the TENEX operating system 
supports for each user- job was invaluable in carrying 
out the multi-process strategy. It is unfortunate that 
few operating systems allow users to create and main­
tain process structures. 

Equally useful in realizing autonomy was the estab­
lishment of and strict adherence to protocols for part­
part interactions. A center can expect monitors and 
adjacent centers which are functioning properly to ob­
serve protocol and can therefore interpret a breach of 
protocol as a warning that the offender may be mal­
functioning. A consequence of the multi-process imple­
mentation of nodes is that interprocess communication 
occurs within McROSS at two levels: inter-node and 
intra-node. Use of a protocol for intra-node interactions 
helps insure that internal node data bases always ac­
curately reflect the condition of the node's interface 
with other nodes. A useful implementation rule was to 
reject any technique whose success depended upon the 
order in which events in different centers or in different 
processes within the same center occur. 

The major problem in implementing deferred process/ 
processor binding was providing a way for parts of the 
computation to determine the location of logically ad­
j acent parts at run time. The solution used in the 
current McROSS implementation, which requires run 
time interaction with the user, is not totally satisfac­
tory. A more satisfactory alternative might be for each 
part to engage in a network-wide search for logically 
adjacent parts. 

We expect to see a trend toward distributed multi­
computer systems in the future. By its existence 
McROSS demonstrates that the construction of such 
systems is currently feasible. 
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Extensions of packet communication technology 
to a hand held personal terminal 

by LAWRENCE G. ROBERTS 

Advanced Research Projects Agency 
Arlington, Virginia 

INTRODUCTION 

Electronic communications technology has developed 
historically almost completely within what might be 
called the circuit switching domain. Not until the last 
decade has the other basic mode of communication , 
packet switching, become competitive. Thus, as a tech­
nology, packet communication has only begun to be 
explored. Circuit switching can be defined in the broad 
sense as the technique of establishing a complete path 
between two parties for as long as they wish to com­
municate, whereas packet switching is where the com­
munic~tion is broken up into small messages or packets, 
attaching to each packet of information its source and 
destination and sending each of these packets off inde­
pendently and asynchronously to find its way to the 
destination. In circuit switching all conflicts and alloca­
tions of resources must be made before the circuit can 
be established thereby permitting the traffic to flow 
with no conflicts. In packet switching there is no dedi­
cation of resources and conflict resolution occurs during 
the actual flow perhaps resulting in somewhat uneven 
delays being encountered by the traffic. Clearly, without 
the speed and capability of modern computers, circuit 
switching represented a cheaper and more effective 
way to handle communications. For radio frequency 
assignment and telephone exchanges the resource allo­
cation decisions could be made infrequently enough 
that manual techniques were originally sufficient. Also, 
since voice was the main information being communi­
cated, the traffic statistics were sufficiently compatible 
with this approach to make it quite economic for the 
period. Packet switching of a kind, the telegram per-. ' slsted throughout this period but due to the high cost 
of switching and the limited demand for fast message 
traffic never attracted much attention. 

For almost a century circuit switching dominated 
the communications field and thus dominated the de­
velopment of communications theory and technology. 
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N ow, within the last decade or less, the advances in 
digital computers and electronics have, in many cases, 
reversed the economic balance between circuit and 
packet communication technology. Perhaps the best 
proof of this is the economy of the ARPA N etworkl- 6 

for country-wide computer to computer communica­
tion, but many other examples are beginning to appear 
such as the University of Hawaii's ALOHA System7 

utilizing packet radio transmission for console com­
munications and the experiments with digital loops for 
local distribution. However, most of the experiments 
with packet communications have been undertaken by 
computer scientists, and it is not even generally recog­
nized yet in the communications field that a revolution 
is taking place. Even where the knowledge of one of 
these experiments has penetrated the communications 
field, it is generally written off as a possibly useful new 
twist in communications utilization, and not recognized 
as a very different technology requiring a whole new 
body of theory. Throughout the development of the 
ARPA Network, communication engineers compared it 
with conventional circuit switched systems but, per­
haps unconsciously, used rules of thumb, statistics and 
experience applicable only to circuit switched systems 
as a basis for comparison. A century of experience and 
tradition is not easy to ignore and in fact should not be 
ignored, only it should be properly classified and segre­
gated as resulting from a different technology. 

Packet corp.munication technology is only beginning 
to be explored but already it is clear that the design of 
all forms of communications channels and systems 
should be rethought. As an example of the kind of 
difference packet communications can make in a per­
haps unexpected area, the design of a personal terminal 
will be explored in some detail. Although such a ter­
minal has never been built, it is most likely completely 
feasible to build and would provide many unique 
advantages. 
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HAND HELD PERSONAL TERMINAL 

Let us start with the goal of providing each individual 
with a pocket-sized, highly reliable and secure com­
munications device which would permit him to send 
and receive messages to other individuals or to co­
puters. Leaving the consideration of design alternatives 
muntil the end, a device fulfilling these objectives is as 
follows: 

Output 

Text or graphics displayed on a 2.8"X I" plasma 
panel with 80 dots per inch resolution. The screen, 
divided into 7 X 10 dot rectangles, using 5 X 7 characters 
would hold 8 lilies of 32 characters each for a total of 
256 characters. Text this size is almost the same size as 
typewriter print, except that the lines are closer to­
gether. The plasma panel has internal storage and is 
digitally addressed to write or erase a point. 

Input 

Five capacity or stress sensitive buttons used by the 
five fingers of one hand simultaneously to indicate one 
of 31 characters. This five finger keyboard technique 
was developed by Doug Englebart at SRP to permit 
users to type with only 'one hand while working on a 
display console. Recently the keyboard has become 
fairly widely used at SRI due to its great convenience. 
Training time for a new user is evidently less than a 
day and speeds of 30 words per minute can be achieved.9 

Although somewhat slower than a good typist (72 
speed) the speed is clearly sufficient for a terminal 
device even at 10 words/minute. 

Transmission 

Each input character will be transmitted to a central 
controller station using the random access radio trans­
mission techniques developed at the University of 
HawaiU The 5 bit character is embodied in a 64 bit 
packet containing: 

30 bits-Terminal Identification Number 
8 bits-Character plus alternation bit, or Count 
2 bits-Type of packet (CHAR, ACK, CNT, 
ERR, ST ERR) 

24 bits-Cyclic Sum Check 
64 bits 

All terminals transmit their packets independently and 
asynchronously on a single frequency and the receiver 

at the central controller merely listens for a complete 
packet which has a correct sum check. If two terminals' 
transmissions overlap the sum check will be wrong, and 
the terminals will retransmit when they find they don't 
receive an acknowledgment. Retransmission time-out 
intervals are randomized between the terminals to 
avoid recurrence of the problem. Upon receipt of a good 
packet, the central station transmits a display-ac­
knowledgment packet back to the terminal on a second 
frequency. This 144 bit packet contains a 70 bit display 
raster field and an 8 bit position on the screen. The dis­
play raster is a 7 X 10 dot array for the character sent 
in and the position includes 3 bits for vertical by 5 bits 
for horizontal. Current position information for each 
active user is kept by the central station by user ID in 
a hash table. Thus, the individual terminal needs no 
character generation logic, position advancement logic, 
or any other local verification of the input since the 
response from the central station both acknowledges the 
character and displays it in an input text line at the top 
of the display. If a character display-acknowledgment 
is somehow lost in transmission the terminal will con­
tinue to time-out and retransmit the character. The 
central station must somehow differentiate this from 
a new character. This is achieved by an alternation 
bitlO,ll in the terminal's packet which is complemented 
for each new character. On a repeat the bit is the same 
as previously and the central station just retransmits 
the same character and posi tion again. When a pre­
arranged terminating character is sent the central 
station examines the message and takes an appropriate 
action. Considerable flexibility exists here, all(~ opera­
tional modes could be established. However, the first 
message of a sequence should contain a destination as 
the first item. This might be the ID of another terminal 
in the same area, it might be the address of a service 
computer or it might be the ID of another terminal 
halfway around the world. In the latter two cases, a 
more global network such as the ARPA Network comes 
into play. It would be perfectly feasible for a message 
to another terminal to be sent to a central or area-coded 
directory computer to locate the particular control 
station the other terminal was near. Note that the loca­
tion of neither man was given to the other, only the 
message and the ID of the sender. (Based on ARPA 
Network cost estimates and international satellite tariff 
trends, such a message exchange should cost less than 
0.1 cents, independent of distance.) 

Reception 

At any time when a message destined for a terminal 
arrives at the central control station, a transmission to 



the terminal may begin, character by character, each 
in its own 144 bit packet as follows: 

30 bits-Terminal Identification Number 
70 bits-7X 10 dot pattern, character display 
8 bits-position of character 
1 bit -alternation bit 
1 bit -broadcast mode 
3 bits-Message Type (Response, initial, 
normal) 

8 bits-Characters Left in message 
24 bits-Cyclic Sum Check 

144 bits 

The terminal must always be checking all transmission 
to detect those with its ID and a correct sum check. 
When one occurs which is not a "response" to an input 
character, a message is being sent. The first character 
of a message is marked type "initial," and has the 
count of the remaining characters. Each character is 
displayed where the central station placed it. Following 
the "initial" character "normal" characters are checked 
to make sure the count only decreases by one each time. 
After the character with count zero, an acknowledg­
ment type packet is sent by the terminal. If this is lost 
(as it may be due to conflicts) the central control will 
retransmit the final character over again without com­
plementing the alternation bit until it is acknowledged 
( or it determines the station is dead). If a count is 
skipped the terminal sends a CNT ERR message with 
the count of the character expected. The transmitter 
then starts over at that count. If a "normal" type char­
acter is received before an "initial" type a ST ERR 
message is sent and the message is restarted. A broad­
case bit is included which overrides the ID check for 
general messages. 

Security 

Since all transmissions are digital, encryption is pos­
sible and would be important no matter what the appli­
cation, military or civilian. Most private uses such as 
personal name files, income-expense records, family 
conversations, etc., would be far more sensitive than 
current computer console use. 

Bandwidth 

Personal terminals for occasional use for message ex­
change, maintaining personal files, querying computer 
data bases for reference data, etc., would not lead to 
very heavy use, probably no more than two query­
responses per hour. The query we might estimate at 64 
characters in length and the response at 256. (Clearly 
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256 character response could also consist of an 80 X 
224 point graphic display since each character is sent as 
a full 7 X 10 raster.) The average bandwidth consumed 
by each terminal is therefore 2.3 bits/second trans­
mitted and 25.6 bits/second received. The random ac­
cess technique used for transmission requires the chan­
nel bandwidth to be six times the average bandwidth 
actually utilized in order to resolve all conflicts prop­
erly. Thus, the terminal transmission bandwidth con­
sumption is 14 bits/second, still less than the receiver 
bandwidth needed. Thus, the central control station's 
transmitter bandwidth is the limiting factor assuming 
equal bandwidths on both transmitter and receiver. If 
a 50KHz bandwidth is used for each and modulated 
at 50K bits/sec, then a total of 2000 terminals can be 
accommodated. Of course this number depends on the 
activity factor. At one interaction every two minutes a 
data rate equal to average time shared console use is 
obtained and even at this activity 130 terminals can be 
supported, more than most time-sharing systems can 
support. With 50 KB channels, the time required to 
write 256 characters is about one second. Lower band­
widths require increased time, thus, 10KB (5 sec WrIte 
time) would be the lowest bandwidth reasonable. Even 
at this bandwidth, with the estimated 2 interactions 
per hour, 400 terminals could be supported. 

COMPARISON 

Comparing the effect of the packet technology with 
the same terminal operating with preassigned Fre­
quency or Time Division Multiplexed channels (ignor­
ing the losses due to TDM sync bits or FDM guard 
bands) the circuit oriented terminal would require a 
40 bit/sec transmit channel and a 4KB receive channel 
if a 5 sec write time is to be achieved. For 400 terminals 
with a 5 sec write time, the circuit method would re­
quire a total of 16 Megabits/sec bandwidth whereas the 
packet method only requires 20 Kilobits/sec band­
width. Thus, the circuit technology requires a factor of 
800 more bandwidth than the packet technique. Of 
course, the circuit mode terminals could interact more 
often within the same bandwidth right up to continual 
rewrite of the display every five sec, but you would 
have to massively reshape the user statistics to suit the 
technology. 

Another possibility, to design the terminal so that it 
performed more effectively in a circuit oriented mode, 
would be to put character generation logic and position 
logic in the terminal. This would considerably increase 
the cost of the terminal, which originally had very little 
logic except shift registers. The result of adding this 
logic, however, is to reduce the bandwidth by a factor 
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of 10 to 1.6MB or still 80 times the packet technique. 
The same logic would help. reduce the packet size but, 
in order to maintain the graphic output capability and 
gross simplicity, it does not seem to pay. 

CONCLUSION 

As can be seen from the example, packet technology is 
far superior to circuit technology, even on the simplest 
radio transmission level, so long as the ratio of peak 
bandwidth to average bandwidth is large. Most likely, 
the only feasible way to design a useful and economi­
cally attractive personal terminal is through some type 
of packet communication technology. Otherwise one is 
restricted to uselessly small numbers of terminals on 
one channel. This result may also apply to many other 
important developments, only to be discovered as the 
technology of packet communication IS further 
developed. 

REFERENCES 

1 L G ROBERTS B D WESSLER 
Computer network development to achieve resource sharing 
SJCC 1970 

2 F E HEART R E KAHN S M ORNSTEIN 
W R CROWTHER D C WALDEN 
The interface message processor for the ARP A network 
SJCC 1970 

3 L KLEINROCK 
Analytic and simulation methods in computer network design 
SJCC 1970 

4 H FRANK I T FRISCH W CHOU 
Topological considerations in the design of the ARPA 
computer network 
SJCC 1970 

5 S CARR S CROCKER V CERF 
HOST-HOST communication protocol in the ARPA network 
SJCC 1970 

6 L G ROBERTS 
A forward look 
Signal Vol XXV No 12 pp 77-81 August 1971 

7 N ABRAMSON 
THE ALOHA System-Another alternative for computer 
communications 
AFIPS Conference Proceedings Vol 37 pp 281-285 
November 1970 

8 D C ENGELBART W K ENGLISH 
A research center for augmenting human intellect 
AFIPS Conference Proceedings Vol 33 p 397 1968 

9 D C ENGELBART 
Stanford Research Institute Menlo Park Calif (Personal 
communication) 

10 W C LYNCH 
Reliable full-duplex file transmission over half-duplex 
telephone lines 
Communications of the ACM Vol 11 No 6 pp 407-410 
June 1968 

11 K A BARTLETT R A SCANTLEBURY 
P T WILKINSON 
A note on reliable full-duplex transmission over half-duplex 
links 
Communications of the ACM Vol 12 No 5 pp 260-261 
May 1969 



An overview of programming languages 
for specialized application areas 

by J. E. SAMMET 

IBM Corporation 
Cambridge, Massachusetts 

INTRODUCTION 

There are more than 165 different programming lan­
guages in use in the United States today, where only 
higher level languages are considered as programming 
languages. If assembly languages were considered in 
this total it would obviously be much higher. The total 
number would be still greater if programming languages 
in use outside the United States were included. (They 
are excluded here only because of the difficulty of ob­
taining accurate and sufficiently detailed information.) 
As individuals, and as an industry, we should ask our­
selves, "What is the reason for this enormous prolifera­
tion?", particularly since many of these languages 
claim to be "general purpose." Some languages do 
serve a wide variety of users and applications, whereas 
others are restricted in intended· usage. The languages 
which have few users are usually in that category be­
cause (a) they are basically for a narrow application 
area which has relatively few users* or (b) information 
about the language has not been widely disseminated, 
or (c) the language and/or its implementation is in­
effective and/or has inadequate support, or (d) the 
language is implemented only on a computer not widely 
used. The purpose of this paper is to provide some of 
the background and perspective on the existence, 
classifications, and general characteristics of those lan­
guages which are oriented toward a specialized appli­
cation area. 

The earliest of the major "specialized languages" 
seems to be APT, developed at MIT by 1955, for 
numerical machine tool control. A small program­
shown in Figure I-illustrates in an intuitive way the 
type of language with/which this paper is concerned. It 
is perhaps unfortunate-but is certainly quiM true-

* Some languages which have a narrow area of intended usage 
may actually have a large number of users, e.g., COGO. 
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that one of the major reasons for the proliferation of 
programming languages is that designing and imple­
menting languages are fun, and there is a very large 
NIH (Not Invented Here) factor that makes even 
minor deficiencies in an existing language a justifiable 
cause for the development of a new one. This repre­
sents the less productive aspect of the proliferation. 
However, the important cases (meaning the languages 
widely used) fulfill a bona fide need for a language 
that can be used by people who don't really understand 
programming. The specialized languages help these 
people work in their own professional jargon. The moti­
vation for the development usually comes when indi­
viduals find that for each existing language there are 
facilities that they want, and which they think the 
language should legitimately contain, but which are not 
basically available in the language. It is important to 
emphasize the "not basically available" aspect, as well 
as recognizing that there is a value judgment involved 
on this issue. There are certainly cases where FOR­
TRAN has been used to write payroll programs but it 
is unlikely that anybody would seriously contend that 
such usage was appropriate; alternatively, people 
should not condemn FORTRAN for being ill-suited 
for writing data processing applications since that was 
not its intent. Similarly, COBOL has been used to 
generate differential equation programs, but that is 
certainly a perversion of its major intent. Thus, in con­
sidering whether an existing language should be used 
for a particular problem, its avowed intent must be 
kept well in mind. This applies not only to the syntax 
and semantics of the language itself, but also to the 
type of the machine or environment for which it was 
designed. A language suitable for use in a batch system 
is not necessarily well-suited for use in an interactive 
mode, even though a compiler or an interpreter for the 
language can indeed be put into a time sharing system. 
Similarly, a language which provides very good inter-
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2 3 4 5 678 

Part to be cut 

Part Program 

CUTTER/I 
TOLER/.005 
FEDRAT/80 
HEAD/l 
MODEll 
SPINDL/2400 
COOLNT/FLOO D 
PTI = POINT/4, 5 

FROM/(SETPT = 

POINT/I,I) 

INDIRP/(TIP 
POINT/I, 3) 

BASE::: LINE/TIP, AT 
ANG L, 0 

GOTO/BASE 
TL RGT, GORGT/BASE 

GOFWD/(ELL I PSI 
CENTER, PTI, 3, 2, 0) 

GOLFT/(LINE/2, 4, 1, 3,), 
PA S T, BA S E 

GOTO/SETPT 
COOLNT/OFF 
SPINDL/OFF 
EN D 

FINI 

Explanation 

Use a one inch diameter cutter. 

Tolerance of cut is .005 inch. 

Use feed rate of 80 inches per minute. 

Use head number 1. 

Operate tool in mode number 1. 

Turn on spindle. Set at 2400 rpm. 

Turn on coolant. Use flood setting. 

Define a reference point, PT1, as the point 
with coordinates (4, 5). 

Start the tool from the point called SETPT, 
which is defined as the point with coordi­
nates (1, 1). 

Aim the tool in the direction of the point 
called TIP, which is defined as the point 
with coordinates (1,3). 

Defined the line called BASE as the line 
through the point TIP which makes an angle 
of 0 degrees with the horizontal. 

Go to the line BASE. 

With the tool on the right, go right along 
the line BASE. 

Go forward along the ellipse with center at PT1, 
semi-major axis = 3, semi-minor axis = 2, and 
major axis making an angle of 0 degrees with 
the horizontal. 

Go left along the line joining the points 
(2,4) and (1,3) past the line BASE. 

Go to the point SETPT in a straight line. 

Turn off coolant flow. 

Turn off spindle. 

fhis is the end of the machine control unit 
operation, 

and the finish of the part program. 

Source: Hori, S. Automatically Programmed Tools, Armour Re­
search Foundation of Illinois Institute of Technology, 
AZ-240, Nov. 1962. 

Figure 1-APT (machine tool control) 



active facilities does not necessarily provide the broad 
flexibility and control normally found (or needed) in 
batch programs of great complexity. 

In order to more explicitly establish the level of 
language that is being discussed, the defining charac­
teristics of a higher level language are considered to be 
the following: (1) machine code knowledge is unneces­
sary, i.e., the user does not have to know the machine 
instructions available on any computer; (2) there must 
be good potential for converting a program written in a 
higher level language onto another machine; that is 
equivalent to saying that the language must be basically 
machine-independent (but since we know that no 
languages to date are completely machine-independent, 
what is being stipulated is a good potential for con­
version to another computer); (3) there must be an 
instruction explosion, i.e., for most of the statements 
that the user writes in the higher level language, the 
computer (through a compilation or interpretive pro­
cess) should generate many more machine instructions; 
(4) the notation of the higher level language should be 
more problem-oriented than that of an assembly lan­
guage, i.e., it should be more "natural" for the class of 
problems being solved. 

MEANING OF, AND STATISTICS ON, 
APPLICATION-ORIENTED LANGUAGES 

Terminology 

Many people refer to special-application-oriented 
languages as "special purpose" languages. This is mis­
leading since the term "special purpose" really applies 
to a single or a limited set of objectives. For example, 
one might design a language that was intended to be 
very easy to use (e.g., BASIC). On the other hand, 
a major objective of the language might be easy and 
rapid compilation (e.g., MAD). Alternatively, the ob­
jective might be a language in which it was easy to 
generate efficient object code. Finally, as a particular 
type of "special purpose," a language might be designed 
to be useful for a specific application area. 

Another term which is frequently used for the class 
of languages discussed in this paper is "problem­
oriented." This is bad terminology, because all pro­
gramming languages are problem-oriented. The main 
distinctions pertain to the width or narrowness of the 
problem area involved. 

In the most fundamental sense, all programming 
languages are "application-oriented." Every program­
ming language which has been developed has been 
aimed at a particular class of applications, which may 
be narrow or broad. In the latter case,· the so-called 
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general purpose languages such as PL/I and ALGOL 
68 attempt to be suitable for every application area and 
they clearly don't succeed. This is not surprising when 
one considers the enormous variety of uses to which 
computers are put today, including calculation of space 
trajectories, medical diagnosis, inventory control, nu­
merical machine· tool control, graphic displays, and 
movie animation. With the sole exception of medical 
diagnosis, all of these applications have fairly general 
(e~g., FORTRAN, COBOL) or very specialized (e.g., 
APT) languages used for their solutions. Hence, it is 
inaccurate to refer to· some programming languages as 
"application-oriented" while others are not. All pro­
gramming languages are application-oriented, and the 
only question that can meaningfully be asked is 
"what type of application?". The answer can be narrow 
or broad, and also can be classified by either technique 
or application area, or both. For example, matrix 
manipulation is both a technique and a class of appli­
cations, depending on your viewpoint. (This is of 
course analogous to the concept that one person's pro­
gram is somebody else's subroutine.) 

In contrast with the technique and/or application of 
mathematics, one might consider the application area 
of technical computation with engineering as a major 
subcategory; underneath the latter can be logical de­
sign and civil engineering (which in turn has subdivi­
sions of structural engineering and coordinate geom­
etry). In parallel with engineering we might have 
astronomy. The area of computations in medicine could 
be considered a subset of technical computations, or 
might be considered a major category. It is really up 
to the individual as to how fine a line he wants to draw. 
Table I represents one possible schematic, and the 
reader can easily develop similar tables to reflect his 
own approach to problem areas. It is important to note 

TABLE I-A Schematic for Types of Application Areas 

Mathematics 
Numeric 

Matrices 
Partial Differential Equations 

Non-numeric 
Matrices 
Partial Differential Equations 
Polynomials 

Technical 
Engineering 

Logical Design 
Civil Engineering 

Structural Engineering 
Coordinate Geometry 

Astronomy 
Medical 
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that the distance of the observer from an application 
area affects his view of it. Thus, civil engineering is one 
application area from the viewpoint of a computer 
scientist, but has many levels and subdivisions for a 
person involved in building bridges. 

Another method of classifying the application areas 
is through the realization that some types of applica­
tions involve a particular specialized discipline or 
specific technology, whereas others are specialized but 
can be used across many areas. Illustrations of the 
former include civil engineering, movie animation, 
social science, etc., whereas the latter include simula­
tion, graphics, etc. A more complete list is given in 
Table II. 

This paper specifically deals with, and includes in the 
category of "languages for specialized application areas," 

TABLE II -Categories and Statistics on Languages for 
Special Application Areas 

Number of Languages 
Pre 1966 1966-1971 

1-2 3-5 over 5 1-2 3-5 over 5 

Specialized Application 
Disciplines 

automated equipment X X 
checkout 

civil engineering X X 
computer assisted X X 

instruction 
logical design (including X X 

simulation of digital 
computers) 

machine tool control X X 
movie animation X X 
real time/process X X 

control 
social science/ X X 

humanities 
systems programming X X 

Narrow Applications 
A cross M ultiDiscipll:nes 

computer aided design X X 
graphic and on-line X X 

display 
query (excluding data X X 

base management 
systems) 

simulation-continuous X X 
(including block 
diagrams and 
analogue computers) 

simulation-discrete X X 

all programming languages except those specifically in­
tended for mathematical computations (both numeric 
and non-numeric, i.e., formula manipulation), business 
data processing, string and list processing, or any com­
binations of these. (The use of a language outside its 
intended application area does not cause it to be con­
sidered specialized, nor change the definition of its 
primary intended use.) This list of excluded categories 
is certainly debatable on the grounds of what it does 
and doeS' not contain. The applications cited seem so 
fundamental to the use of computers that none should 
be considered as being specialized. Of the categories of 
specialization (discussed later) only simulation seems 
to have a reasonable potential for consideration as 
fundamental, and at this point in time such a conclu­
sion does not seem justified to the author. Note also 
that systems programming is considered one of the 
specialized application areas; this view refutes the con­
cept which has been expressed by some people that a 
language can only be considered good if it can be used 
to write its own compiler. 

The terms "special-application-languages" and 
"application-oriented languages" will be used in this 
paper as synonyms for the phrase "languages for 
specialized application areas." 

Specific application areas and statistical trends 

In Table II is a list of special application areas which 
have had programming languages developed for them. 
Some statistics are also given; the latter are presented 
in categories rather than specific numbers in order to 
show trends. It is virtually impossible to obtain a com­
pletely accurate count because of the existence of dia­
lects, multigeneration languages (e.g., SIMSCRIPT I, 
1.5, II, 11.5, and II Plus), and the differences between 
dates of definition, implementation, and actual usage. 
The distinction between pre-1966 and more recent 
years largely reflects existence on second generation 
computers. However, not all languages on second gen­
eration computers were implemented on third genera­
tion machines. The most complete lists of languages 
available-although they are by no means perfect or 
complete-are in References 15, 16, 17, 18. Discussions 
of almost all those languages developed by 1967 are in 
Reference 14, Chapter IX. 

General statistical trends 

As indicated just above, it is virtually impossible to 
obtain accurate statistics. This is due not only to the 
language generation problem but also to the fallibility 



of any single human attempting to track this field. Until 
we get some scientific methodology for defining lan­
guage generations, dialects, etc., and until a reliable re­
porting system is developed, the most we can hope for 
is some statistical trends. (See Reference 19, for a first 
attempt at dealing with the dialect problem.) 

The trends that can be observed are all based on 
References 15, 16, 17, 18. While the figures cited have 
inaccuracies and in particular are based on date of in­
clusion of a language in the roster rather than its actual 
development, it seems fair to state that all the errors 
are probably consistent and hence relatively unbiased. 

The first year in which any serious attempt was 
made to list "all" the special-application-oriented lan­
guages was 1968. In each of the four years 1968-1971 
the number of special application languages was ap­
proximately 50 percent of the total number of languages 
listed. The latter were 82, 125, 139, and 164 in the four 
cited years. In 1969, 1970 and 1971 the total number of 
new languages added from the previous year was be­
tween 35 and 40 each year. In 1970 and 1971· the per­
centage of new special-application-languages was be­
tween 40 and 60 percent of all the new ones. * In both 
1970 and 1971 the number of special-application­
languages dropped from the roster (meaning clear non­
use of the language) was about 50 percent of the total 
number of languages dropped. (The latter numbers 
are small, ranging between 5 and 10 percent of the 
total. ) 

These numbers are presented because of the trends 
they indicate, and certainly should not be used as defini­
tive representations of the actual situation. For that 
reason these figures were deliberately not presented in a 
table or graph because that would imply more accuracy 
than is justified. 

NEEDS TO BE MET IN DEVELOPING 
THE LANGUAGES 

There are several needs which must be met by a new 
language or a modification of an existing one. The 
major needs are functional capability, a style suitable 
fer the application area, and efficiency. 

Functional capability 

The inclusion of specific functional capability is 
probabl~ the single most important need to be met by 

* A similar figure for 1969 would be very misleading because the 
1968 Roster did not contain any of the languages developed for 
CAl and their inclusion in 1969 perverts the statistics. 
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the application-oriented languages. Most of the defi­
ciencies in a particular language . actually reflect the 
omission of functional capabilities which a certain class 
of users need. For example, the FORTRAN user often 
wishes to do character manipulation, the COBOL user 
might wish to do floating point calculations, and the 
PL/I user might wish to do simulation. In considering 
functional capability, the three major issues are (a) 
the specific features which must be included (i.e., com­
mands and data types), (b) the distinction between 
subroutines and a specific language facility, and (c) the 
facilities provided by the system. Each of these is now 
discussed in more detail. 

Specific features 

The specific features representing the functional 
capability of any language are the operations (i.e., 
commands) to be performed, and the data types. The 
kinds of operations to be provided depend completely 
on the application area, and of course must be con­
sistent with the data types. As a very simple example, 
the existence of floating point numbers is extremely 
important in any language to be used for scientific 
computation, whereas they have little or no importance 
for business data processing. Therefore, the existence 
of a floating point or complex number data type is a 
functional requirement of many scientific problems, and 
naturally there must be executable statements which 
can operate on these data types. A less elementary 
example occurs in the civil engineering field where the 
ability to calculate the point of intersection of the 
tangents to two circles may be deemed important 
enough to incorporate directly into the language. 
Furthermore, a "point" with coordinates might be de­
fined as a data type with operations provided to calcu­
late areas. In the case of an application involving 
simulation, some indication of time and time-depen­
dencies in both the data types and commands is abso­
lutely crucial. In the case of a language developed for 
animated movies, the user must be able to address and 
manipulate pointers or markers on a screen. In the 
general area of graphics, a "graphical" data type is 
normally needed. 

Subroutine versus language facility 

Since all major languages have a subroutine capa­
bility of one kind or another, the question can legiti­
mately be asked as to why the needs cannot simply be 
met through adding subroutines rather than either 
developing a new language or adding syntax and se-
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mantics to the existing language. It must be emphasized 
very strongly that there is a fundamental difference be­
tween functional capability (which can be represented 
either directly in the languages or via subroutines) and 
specific language facilities. 

The easiest way to show this· is by means of an ex­
ample within the field of mathematics. (Since this was 
ruled out earlier as not being specialized, its use here is 
primarily to illustrate the concept of subroutines versus 
specific language facilities.) Suppose a person wished 
to do MATRIX addition in a language like FORTRAN. 
One could add a subroutine to perform those calcula­
tions and then invoke this facility by writing 

CALL MATADD (A, B, C) 

This is fundamentally different in several ways from 
writing something of the following kind: 

DECLARE A, B, C MATRICES 
C=A+B 

In the first instance, the user (meaning both the writer 
and reader of the program) has lost a certain mnemonic 
advantage and furthermore has the difficulty of remem­
bering the· types, sequence, and restrictions on the 
parameters that he is using. In this particular example, 
the main difficulty is to remember whether the stated 
call would provide A as the sum of Band C, or C as the 
sum of A and B; this is something which must be re­
membered or looked up in a manual. In the second ex­
ample, what is happening is far clearer. In addition to 
the lack of "problem-oriented notation" inherent in us­
ing the CALL or equivalent statement, there are imple­
mentation difficulties and inefficiencies relative to link­
ages. In many cases, there is a great deal of extra code 
generated to invoke a subroutine, although the latter 
may in fact be quite small and would be more efficient 
placed in line. Unless the compiler is very sophisticated, 
it is likely to generate the linkage coding rather than 
placing the subroutine in line. 

While subroutines dO,serve a very useful purpose in 
making additional functional capability available to the 
user, they should not be viewed as substitutes for addi­
tions to a language. 

SysteIn provided facilities 

Another aspect of functional capability is the built-in 
facility of the language and its associated compiler to 
do things which might need to be programmed in 
another language. For example, in the languages for 
computer assisted instruction, it is assumed that they 
will be used in an interactive mode and hence the lan-

guage translators automatically provide for input and 
output from a terminal without the programmer having 
to specify much (if anything) about input/output. 
Furthermore, certain types of control flow are assumed 
by the system and handled automatically. In the case 
of graphic languages, the language (and its processor) 
automatically provide the necessary instructions to the 
graphics equipment. 

Style suitable for application area 

In the development of languages for special applica­
tion areas, the style plays a major role, primarily be­
cause the users are normally not professional program­
mers. Style in a programming language has many 
facets, ranging from personal views on the importance 
(or non-importance) of blanks and punctuation, to the 
use (or non-use) of a GOTO command, to the selection 
of a particular word for getting input data (e.g., READ 
vs. GET). The major identifiable elements of style are 
vocabulary, personal preferences, and requirements 
affecting style. 

Vocabulary 

The second * most important need in an application­
oriented language is the vocabulary or professional 
jargon that is involved. The whole raison d' etre of 
many languages for specialized application areas is to 
allow the user to write his specialized jargon in a natural 
manner. Whereas he can certainly develop subroutines 
to accomplish what he wants, the ability to use his own 
terminology in a style natural to him is of paramount 
importance. It is normal that a person outside a par­
ticular area will find the nomenclature confusing or not 
understandable. All figures in this paper reflect this 
issue, i.e., the programs as written are generally not 
understandable to any reader outside the specific ap­
plication area. 

Personal preferences 

It is unfortunate-but quite true-that in the de­
velopment of one of these special-application-Ianguages, 
the personal preferences of the developer have a signifi­
cant effect, although they should of course be sub­
ordinated to the functional requirements and the vo­
cabulary. For example, people who wish to have short 
data names and short statements in a language because 

* The first is the functional capability. 



they like that style may be forced into a different mode 
because the professional jargon of the field constantly 
uses long words. (In some systems, e.g., COGO, both 
short and long forms of key words are allowed to pro­
vide short cuts for experienced users.) The choice of a 
fairly rigid format versus a free form, or the selection 
of specific key words (e.g., READ versus GET) can 
sometimes make the difference between successful 
usage of the language versus constant unhappiness by 
the users. In some instances, people have strong views 
on punctuation and will change an existing language 
to eliminate (or include) punctuation in lieu of some 
other syntactic restriction. (It has been said facetiously 
that by choosing the correct subset of PL/I one merely 
has FORTRAN with semicolons.) 

Background and past experience with specific equip­
ment often have a strong personal influence. People 
who have used punched cards extensively tend to favor 
rigid formats with card columns used as syntactic de­
limiters. Those who have used on-line terminals gen­
erally tend to favor free form. Even in this latter case, 
there. is considerable difference of opinion on the value 
of limiting each statement to the length of a single line. 

The use of very simplistic styles, as illustrated in 
Figure 2, primarily consisting of a single key word at 
the beginning of a line, followed by some parameters, 
certainly forces one to reconsider the border line be­
tween programming languages and powerful macros. 
Certainly such a style is generally not "problem­
oriented" which was described as one of the character­
istics of a higher level language. However, such lan­
guages (e.g., COGO-see Figure 2) can be justified as 
higher level languages because of the distance of these 
operations from normal machine code. Thus, there is a 
large amount of information built into the compiler or 
the interpreter to perform specific functions which are 
directly related to an application (rather than merely 
enhancing normal machine code) . 

It should be emphasized that there is little or no 
way of determining which of two styles is better; in 
virtually every case it is a matter of individual taste, 
preference, previous usage, and jargon common to the 
application area. 

Requirements affecting style 

It should not be thought that all matters of style are 
arbitrary; some are influenced or forced by specific re­
quirements of equipment-particularly the character 
set. In other cases, the intended use may affect the 
style of the language and environment will have a very 
specific effect. If the language is to be used in an inter-
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Point 1 
(l000., 2000.) 

STORE 1 
LOCATE/AZIMUTH 7 1 
LOCATE/AZIMUTH 95 1 
AREA 1 7 
PAUSE 

Explanation: 

Po in t 7 
(7, 7) 

\ 
\ 

\ 
? \ . \ 
12" \ 

1000. 
256.17 
350.00 
95 

\ 
\ Point 95 

(7, 7) 

2000. 
45 15 28 

102 35 12 

Small COGO program for figure shown. In the figure above, given 
the coordinates of point 1, the length and azimuth (clockwise 
angle from north) of lines 1-7 and 1-95, the COGO program shown 
computes the coordinates of points 7 and 95 and the area of the 
triangle. In the program, the second line reads: Locate point 7 by 
going from point 1 a distance of 256.17 at an azimuth of 45 degrees 
15 minutes 28 seconds. 

Source: Fenves, S. J. "Problem-Oriented Languages for Man­
Machine Communication in Engineering," p. 48. 
Reprinted by permission from Proceedings of the IBM 
Scientific Computing Symposium on M an-Machine 
Communications, Data Processing Division, 320-1941, 
© 1966 by International Business Machines 
Corporation. 

Figure 2-COGO (civil engineering) 

active mode, it is pointless to be highly concerned 
about card columns. On the other hand, if the primary 
use of the language involves relatively simple state­
ments and a large number of numeric parameters or 
data, then it may be most effective to orient the style 
of the language toward card columns. 

In some instances, the style can be justified on fairly 
concrete grounds. For example, in situations where 
time is critical (e.g., command and control) there may 
be much more need for brief fixed formats with little 
flexibility. In other areas where documentation plays 
an important role, the desire may be for lengthy free 
form syntax which clearly conveys the meaning of the 
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program to a large number of persons long after the 
program is written. 

Efficiency 

It is obvious that one of the reasons for developing 
these application-oriented languages is efficiency. This 
involves the efficiency which comes both from ease of 
writing the programs and from suitable processors. 

One major way in which an attempt is made to in­
crease efficiency is to delete unwanted parts of a maj or 
language while (perhaps) adding on the functional 
capability (in the form of new language elements). 
While the person or group which has a large language 
available to them is under no obligation to use all of its 
facilities, it is perfectly clear that they are paying for 
the implementation of these unwanted features. The 
common and obvious practical solution to this problem 
is merely to have a compiler which implements a sub­
set of a language, and this is frequently done. However, 
to the extent that the individual or group wants to 
clearly define a certain subset of syntax and semantics 
and give it a name, he has in effect defined a new lan­
guage. It is not true that all languages can have subsets 
properly defined, if a program written in the subset is 
also to run on a compiler for the full language. 

The ways in which suitable processors can be ob­
tained are discussed in the next section. 

DESIGN PARAMETERS OF SPECIAL 
APPLICATION LANGUAGES 

The design parameters of the languages for special 
application areas essentially reflect the needs which 
were discussed in the previous section. Thus, the func­
tional capability, a style suitable for the application 
area, and efficiency are clearly design parameters. How­
ever, there are two additional issues which were not 
discussed in the previous section but which are very 
significant in the development of these languages, 
namely the methods actually used to design and imple­
ment the languages. It is well-known that those issues 
are important in the design of any language, but they 
are perhaps more significant in the languages within 
the scope of this paper because the intended users are 
not professional programmers and hence are less likely 
to be tolerant of unnecessary idiosyncrasies. In more 
general languages, some of the idiosyncrasies are (un­
fortunately) forced into existence by the methodology 
used for language design and/ or implementation. 
Finally, it is possible to summarize the potential lan­
guage requirements. 

Methods of defining language 

There are three basic methods for defining a language. 
The first is the most obvious-namely, a straightfor­
ward definition. In this instance, the individual or group 
merely sits down and writes out a definition of the 
language. Depending upon their sophistication and the 
complexity of the language, they may use something 
like Backus Normal Form, or alternatively may simply 
use ordinary English and examples. A special case of 
this method involves making specific changes to an 
existing language, which may involve addition, dele­
tion, changes, or all of these. 

The second method of defining a language is through 
an extensible language system. This is an area which 
has become increasingly important over the past few 
years, although there is not much evidence of practical 
systems or significant usage as yet (see Reference 1). 
In this situation, the developer of the language for a 
special application area is limited in two ways. First, he 
is limited by the inherent style and capability of the 
base language, and second, he is constrained by the 
mechanism given to him to produce the extensions. If 
the extension facilities do not allow new data types to 
be added, then he is limited to the syntax and func­
tional operations of new commands. For example, any 
macro system (e.g., PL/I) tends to allow new com­
mands and/or new syntax to be developed but does 
not provide for new data types. Alternatively, other 
extensible systems, e.g., IMps allow for both new 
commands and new data types, but do not allow for 
major changes in language style or format. 

The third method of defining the language is via some 
system. In this case, which seems to' be the most im­
portant and the most promising, the user or applica­
tion programmer stat_es his wishes to a person who can 
be defined as a "language designer" who then interacts 
with a system which produces relatively easily a lan­
guage definition which meets the needs of the original 
user or programmer. While many people have talked 
about this for years, relatively little has actually been 
accomplished-see a later section. In the long run, it is 
clear to me that we must allow the user ample facilities 

/ to easily define and implement his own language sub­
ject to whatever constraints and quirks he may have. 
The key word here is "easily" and that is the major 
difficulty in achieving the general goal. 

Methods of implementation 

Just as there are several different ways of defining a 
language, so there are different broad techniques for 



implementing them, and to some extent (but not en­
tirely) they match the methods of defining the lan­
guage. The first and most obvious method of imple­
mentation is a specific compiler or interpreter. This 
would tend to be used most often in a case where a 
language had been designed from scratch. Second, 
paralleling exactly the use of extensible languages is the 
extensible language compiler or equivalent facility. 
This method might conceivably be used with a language 
designed in another way, but it is highly unlikely to be 
applicable. A third possibility is a very powerful macro 
assembler which then allows the user quite a bit of 
flexibility in terms of jargon, lists of parameters, etc., 
but gives him virtually no flexibility in style and overall 
format. Finally, roughly corresponding to the user­
defined language via a system, is a system which gener­
ates a compiler or interpreter. This method of imp le-

TABLE III-Considerations in Language Design 

Syntax 

1. Form 
Free 
Fixed tabular, as in report writers or decision tables 
Rigid with required parameters, i.e., essentially macro style 

2. Punctuation 
Critical with many symbols or not very significant 
Blank character is critical delimiter or not significant 
Single or multicharacter 

3. Identifiers and Key Words 
Single or few characters vs. lengthy 
Abbreviations optional vs. not allowed 
Specialized vocabulary 

4. Full power of a language like PL/I (for systems programming) 
5. Declarations-see under Data 

Data 

1. Types 
Specialized to application, e.g., length 
Many vs. few 
Implicit vs. specifically declared 
Determined by position in statement 

2. Declarations 
Grouped by attribute vs. grouped by data item 
Implicit from other syntactic rules 
Default conditions 

Semantics 

1. Specialized computational routines 
2. Non-standard use of common characters (e.g., plus sign) 

Program/Control Structure 

1. Generally quite simple with no block structure nor compound 
statements 

2. Very powerful (for systems programming) 
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mentation can be used even with the first case where 
the individual has designed and defined the language 
from scratch. The compiler generators that have been 
the vogue for many years come close to satisfying this 
requirement in theory, although none seem to do it in 
practice. (See a later section.) 

Potential language requirements 

A brief summary of requirements (or considerations) 
for potential desired language features is shown in 
Table III. Obviously, anyone language will only use 
some of these. However, it is possible to find at least 
one specialized language which requires or uses each of 
these approaches or features. 

SOME SPECIFIC APPLICATION AREAS 
WITH EXAMPLES 

Almost all special application areas tend to look 
small and homogeneous when viewed from outside, but 
large and filled with differing problems and issues when 

qu Who discovered America? 
aa Ericson 
ab Leif Ericson 
ty Your answer would be accepted by some. 
ca Columbus 
ty Yes 
wa Ponce de Leon 
ty No. He looked for the "Fountain of Youth." 

Try again. 
un bl 

Explanation: 

Example uses the aa and ab operation codes. If the student 
enters a response of "Ericson," or "Leif Ericson," the message 
"Your answer would be accepted by some," is typed to the 
student. After the aa or ab match, the system continues to scan 
statements until it finds the un statement. It then types the 
contents of buffer 1. If the student responds with an answer 
which does not match an aa, ab, ca, or wa statement, only the un 
argument (the contents of buffer 1) is typed to the student. The 
contents of buffer 1 might be, "Please try again." Using a buffer 
in this way saves the author from repeatedly entering the same 
text for many un statements in the course. 

Source: Reprinted by permission from p. 17, Coursewriter III for 
System/360, Version 2, Application Description Manual, 
Data Processing Division, H20-0587, © 1969 by 
International Business Machines Corporation. 

Figure 3-COURSEWRITER III 
(computer assisted instruction) 
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viewed by those familiar with the field. A very good 
illustration of this can be seen merely by glancing at the 
papers. on numerical control programming languages. lO 

Even though one language-namely APT -predomi­
nates, there are still enough technical issues surround­
ing its utility and implementation to cause the existence 
of numerous other languages. In particular, 32 others 
are listed.H 

In the field of computer-assisted instruction, there 
are over 30* languages utilizing different syntactic and 
conceptual approaches. Just glancing at Figures 3 and 
4, for Coursewriter and FOIL, respectively, shows 
the wide variety of style, ranging from two-letter 
mnemonics to a PL/I-like language. A comparison of 
CAl languages can be found in Reference 23. 

The situation in graphics is similar, but with another 
dimension of concept involved. In the computer­
assisted instruction application area it can reasonably 
be argued that the application is unique and that there 
is little relevance to existing languages of somewhat 
wider purpose, e.g., FORTRAN, COBOL. (However, 
even in the CAl situation, the case can be made for 
the desirability of control statements, conditionals, and 
numeric calculations expressable by formulas as in 
FORTRAN.) In the field of graphic languages there is 
certainly a special facility that can be used by many 

TY WOULD YOU LIKE TO CONTINUE THE 
EXERCISE? 

ACCEPT 
IF 'NO', GO TO FINISH 
IF 'YES, OK' 

NUM=NUM+1 
GO TO NEXT 

GO BACK PLEASE ANSWER YES OR NO 

Explanation: 

The TY causes the indicated typeout to be made. If the student 
responds with a NO there is a branch to a statement labeled 
FINISH. If either YES or OK are typed in the variable NUM 
has 1 added to it and control is transferred to the statement 
labeled NEXT. Any answer not including YES, NO, or OK 
causes the typeout from the system of PLEASE ANSWER YES 
OR NO and a return of control to the ACCEPT statement. 

Source: Hesselbart, J. C. "FOIL- A File-Oriented Interpretive 
Language," Proceedings of the 23rd National Conference 
of the Association for Computing Machinery, 1968, p. 94. 
© 1968 Association for Computing Machinery, Inc. 
Reprinted by permission. 

Figure 4-FOIL (computer assisted instruction) 

* Not all of these are listed in Reference 18. 

applications (including, for example, computer-assisted 
instruction). The technical approaches and issues in 
graphics are as diverse as in other applications. In this 
case more of an argument can be made for providing 
the facilities as extensions to existing languages, e.g., 
GRAF,5 which is an extension of FORTRAN. How­
ever, most developers went to the other extreme with 
entire new languages, for example General Purpose 
Graphic Language.9 (See Figures 5 and 6, respectively.) 
Some languages take a middle ground by retaining 
some of the style of more popular languages, such as 
ALGOL or FORTRAN, but by no means accept com­
patibility with them as a constraint. (See for example 
Euler-G12.) In each case the developer of the language 
was reflecting his view of how graphic information 
should be stored internally, and the most effective way 
in which it could be displayed and manipulated on a 
screen. In this application area, the physical environ­
ment plays a major role in the development of the 
language; thus the existence of lightpens, keyboards, 
push-buttons, etc., must be supported-if they are to be 
used by the graphic language. 

SYSTEMS FOR DEVELOPING LANGUAGES 
FOR SPECIAL APPLICATION AREAS 

It is unfortunate, but appears to be a fact, that 
there are no currently available systems which have 
actually been used in a practical way for the develop­
ment of a significant number of languages (and their 
processors) for special application areas. It is not even 

DISPLAY A, B, PDQ, POLE (11), K72A (7, 2, 4) 
PDQ=A+POINT (0, XY2)+B 
K72A(2, 1,3) = PLACE (0,1) +PRINT 13, 

(YY (I), 1= 1, 8) + PLACE (100, 200) 

Explanation: 

The names in the DISPLAY statement are display variables. 
PDQ is assigned the value which is obtained by first generating 
the graphic orders of A followed by the orders generated by the 
built-in function POINT, followed by the orders generated by 
B. Similarly, the value of K72A(2, 1, 3) is obtained by taking each 
of the graphic orders indicated in turn. The built-in display 
function POINT generates orders for plotting the point with 
indicated coordinates; the built-in function PLACE changes the 
beam position without plotting, and PRINT plots the indicated 
string of characters. 

Source: Based on examples in "GRAF: Graphic Additions to 
FORTRAN," A. Hurwitz and J. P. Citron, Proceedings 
of the Spring Joint Computer Conference, 1967. 

Figure 5-GRAF (addition to FORTRAN to do graphics) 
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(A, B+D) 

BEGIN WINDOW (A, B, C, D) 
RECT (A, B, C, D) 
AA=A+C/2 
BB=B+D/2 (A, BB) ~ 

LINE AA, B; AA, B+D 
LINE A, BB; A+C, BB 
END 

Explanation: 

(A, B) (M, B) (A+C, B) 

A subroutine WINDOW is defined where A and B are the coordinates of one corner of a rectangle and 
C and D represent the horizontal and vertical dimensions. The subroutine to draw a rectangle is called 
and executed. The drawings of these windows are to have horizontal and vertical lines midway in the 
window so AA and BB compute the coordinates of the midpoints. The LINE commands cause the 
"midway" lines to be drawn. 

Source: Kulsrud, H. E. "A General Purpose Graphic Language," Communications of the ACM, Vol. 11, 
No.4, April 1968, p. 253. © 1968 Association for Computing Machinery, Inc. Reprinted by 
permission. 

Figure 6-General purpose graphic language 

clear that any of the systems now in prototype stage 
will ever be satisfactory for that purpose. Virtually all 
of the systems known to the author have one or more 
of the following characteristics: (1) they require a 
compiler expert for their use; (2) they have been used 
to produce some minor variations on "normal" lan­
guages such as FORTRAN, ALGOL, etc.; (3) they are 
not really intended to be used to develop the types of 
languages discussed in this paper; (4) they give lip 
service-although little else-to the concept of allowing 
the average user to be able to define his own language 
and easily get a processor for it. 

In theory, any compiler-compiler, meta-compiler or 
similarly designated system could be used for this pur­
pose. However, there is a different emphasis in most of 
those developed to date. They have been designed pri­
marily to provide an easy means of implementing known 
and widely used languages (e.g., FORTRAN, COBOL, 
ALGOL, PL/I) rather than as a tool for the develop­
ment of new languages with uncommon requirements, 
and their processors. Thus the major considerations 
have pertained to efficiency of the resulting compiler, 
with an easy way to make minor changes in the syntax. 
A discussion of the past and potential use of such sys­
tems or translator writing systems in general is beyond 

the scope of this paper. A good survey is given in 
Reference 3. 

Although no systems seem to have been widely, or 
even significantly, used for developing the types of 
languages within this paper, several have had limited 
use and/or have such intent for the future. A brief 
description of these will now be given. 

(a) ICES 
The Integrated Civil Engineering System (ICES) 

provides an overall system within which many language 
processors suitable for civil engineering can reside and 
use common facilities. I3 There is also the capability of 
allowing the user to define new languuges, or add facili­
ties to one of the existing languages. This is done by 
means of the Command Definition Language (CDL). 
Although CDL has not been used very much in practice, 
at least one language, namely STRUDL,22 was de­
veloped using it. (A brief but relatively accessible 
summary of ICES, including CDL, is in Reference 
14.) 

(b) REL 
The Rapidly Extensible Language (REL) System 

was (and is) intended for use by researchers in the 
fields of complex social and environmental processes.20 
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It has a powerful English grammar, thus permitting 
individuals to communicate with the computer in a 
fairly "natural" language. In 1970 an experimental 
system was in operation on the IBM System 360/50 
and was used to develop an animated film language and 
also by some social scientists. 

(c) PLAN 
The Problem Language ANalyzer (PLAN) has many 

facets to it, but the only one of interest in this context 
is its facmty to allow the user to define simple new 
languages in an easy manner.6 A version providing 
graphics support allows the user to develop his language 
at an IBM 2250 and also provides him with many 
built-in graphics facilities. 7 

(d) UAL 
The User Adaptive Language (UAL) is another at­

tempt to provide a user with the ability to dynamically 
create and modify a language in an interactive mode.4 

This system provides the user with fairly sophisticated 
programming concepts (e.g., lists), but does not require 
him to use them. 

(e) SDF 
The Syntax Definition Facility (SDF) allows the 

user to define his language by means of illustrative 
sentences.2 The sYEtem indicates whether the input is 
ambiguous or contradictory to earlier information. By 
late 1971, it had been used primarily to implement the 
syntax of fairly standard language subunits, e.g., 
arithmetic and Boolean expressions. 

(f) Extensible Languages 
All extensible languages should-in theory-be usable 

for creating specialized languages. By late 1971, none 
seem to have been used in this way. See Reference 1. 

BRIEF COMMENTS ON THE FUTURE 

It seems unfortunate but true that the proliferation 
of higher level languages is likely to continue at about 
the same rate. The reason for this is that some of the 
causes and motivations behind the development of 
these languages rest in quirks of human nature rather 
than technological progress or lack thereof. Thus, as 
long as people find it fun to develop languages, as long 
as they want something which is specifically tailored 
exactly to their needs, and as long as they are going to 
find picayune faults with the existing languages, there 
is very little that technical progress can do to reduce 
the number of languages. On the other hand, there are 
some areas in which improved technology will have an 
enormous effect. For example, the existence of good 

extensible language systems, or good systems which can 
easily generate a language and its translator based on 
appropriate input from a language designer, will have 
a considerable effect. We might even envision special­
ized language generators, i.e., a system designed to 
allow the easy creation and implementation of lan­
guages in a single application area, e.g., CAl, graphics. 
ICES13 is a simple attempt in this direction for civil 
engineering. 

In the opinion of this author, the ease and efficiency 
of using a language particularly suited to a specific 
application area is a desirable result which outweighs 
the disadvantages of the proliferation. A thorough dis­
cussion on the pressures and resources involved in the 
future development of these specialized languages is 
given in Reference 20. 

SUMMARY 

This paper has defined and discussed the class of lan­
guages which are designed for use in specialized appli­
cation areas. These languages include about half of all 
higher level languages used in the United States at the 
time of this writing. A discussion of terminology showed 
why some of the commonly used terms for this class of 
languages are technically inappropriate. 

The major needs to be met in developing these lan­
guages were shown to be functional capability, deletion 
of parts of an existing language, and a suitable style. 
Two specific application areas, namely CAl and 
graphics, were used to illustrate the existence of signifi­
cantly different language styles within the same appli­
cation area. Although there are a number of systems 
which purport to allow the user to easily define and 
implement his own language, and they are mentioned, 
none have actually been significantly used. A few brief 
comments on the future indicate that the proliferation 
serves a useful purpose and will continue. 
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The future of specialized languages 

by F. B. THOMPSON and B. H. DOSTERT 

California Institute of Technology 
Pasadena, California 

INTRODUCTION 

The prediction of the future, like the review of the 
past, has as its sole usefulness, the organization and 
purposeful direction of the present. Thus, in situations 
where there is rapid change, as there certainly is in the 
field of computing, prediction-though more difficult­
is all the more necessary. Suppose that you, as a com­
puter specialist, are considering whether to design and 
implement a language for your own special application 
area or to consolidate your programming within the 
framework of a single, general language. You will cer­
tainly want your decision to be responsive to, though 
perhaps not dictated by, your perception of the direc­
tions computers and computing will be taking. 

Our own perception concerning programming lan­
guage development rests on two considerations. The 
first consideration is to understand the nature of the 
pressures that will bring about change. New languages 
for specialized application areas don't just happen; 
they arise because of a felt need, a dissatisfaction with 
trying to write programs for a specialized domain using 
programming languages not specifically tailored to 
that domain. Our first task, then, is to understand the 
essential nature of this need. 

The second consideration on which our perception of 
future developments rests is to assess the technological 
and economic restraints and resources for change. Big 
computers, batch processing, and further professional­
ization of programmers will stimulate certain trends in 
programming language design; mini-computers, inter­
active processing, and widespread knowledge of pro­
gramming will stimulate different trends. Thus, our 
second task will be an assessment of the major develop­
ments i~ hardware and software, and of the economic 
environrv-ent within which the pressures for change will 
be resolved. 

These considerations should then put us into a posi­
tion where we can bring into some focus what to expect 
in language development for specialized application 
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areas. The past and current situation has been reviewed 
by Jean Sammet in An Overview of Programming 
Languages for Specialized Application Areas. 19 Our final 
task, therefore, is to identify the major trends these 
developments are likely to take in the future. 

SOURCES OF PRESSURE FOR LANGUAGE 
DEVELOPMENT 

In talking about languages for computing, we should 
first like to consider certain aspects of the nature of 
language. To do this it will be useful to develop an 
analogy between a language, on the one hand, and the 
design engineer's laboratory, on the other. Imagine 
yourself to be an electrical engineer designing a new 
computer central processing unit. As your design pro­
gresses, you and your team actually construct a model 
or "breadboard" out of flip-flops, amplifiers, "and" 
gates and other components. You wire these together 
often using clips rather than solder, because as you try 
out your design, you may wish to modify it as your 
breadboard model reveals unexpected relationships 
and possibilities for improvement. This model has a 
second important function: it expresses in a most 
articulate way the sum total of ideas contributed by 
the various members of the design team and is thus a 
vehicle for communication between them. 

The design engineer's laboratory provides a great 
variety of basic components and the means of hooking 
them together into meaningful arrays. As the design 
proceeds, selection is made of certain components and 
they are built into combinations that express the func­
tions that the designer wishes to execute. The same is 
true of a language. A language is based upon a great 
variety of basic concepts and its syntax is the means of 
hooking them together into meaningful arrays. As a 
programmer proceeds, he selects certain components, 
building them into combinations that express the func­
tions that he wishes to execute. This then is the analogy 
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between design laboratory and programming language 
we now wish to exploit. 

Suppose you were called upon, as a computer special­
ist, to develop the configuration of a new computer for 
your installation. You would have to choose the main 
CPU, the size of high speed memory, what peripherals 
you would want, etc. Suppose you were told that the 
components you had at your disposal were diodes, re­
sistors, capacitors and the like and that you had to 
build your computer installation from this point up. 
You would surely go about your job far differently 
than if you had been provided as building blocks the 
major pieces of computer equipment available from 
computer manufacturers. Consider these two situations 
carefully. If you had diodes and resistors you would 
have to be a different kind of engineer than if you had 
disk drives and printers to work with; your design 
would take considerably longer, and your expectation, 
design considerations and final output would be dis­
tinctly different. Our activities, the direction of our 
thinking, our efficiency, and our results are all greatly 
influenced by the basic components with which we 
must work and the means at our disposal for building 
them into more meaningful structures. 

These same observations apply with equal force to 
the languages we use in dealing with our various prob­
lem areas. Language is the principal tool of our con­
ceptual processes. And different styles of thought reflect 
and are reflected in the languages we use. Notice the 
correlation between artificial intelligence and LISP; 
engineering mathematics and FORTRAN or PLjI; 
operating systems programming and assembly language. 
This notion that language conditions the modes of 
thought is not new. Benjamin Whorf, the MIT chemist­
turned-linguist, expresses the matter in the following/ 
words: 

"We dissect nature along lines laid down by our 
native languages. The categories and types that 
we isolate from the world of phenomena we do not 
find there because they stare every observer in 
the face; on the contrary, the world is presented 
in a kaleidoscopic flux of impressions which has 
to be organized by our minds-and this means 
largely by the linguistic systems in our minds." 1 

Whorf was referring, of course, to natural languages. 
But surely there is every reason to suspect that the 
programming languages we use will also have an effect 
on the kinds of problems and the character of the pro­
grams to which we apply the computer. 

To illustrate this interdependence, consider the rela­
tion between languages and the kinds of management 
information systems that are currently in vogue. The 
original development of concepts for dealing with busi-

ness data came at a time when punch cards and mag­
netic tape were the only large size repository for ma­
chine readable data. Thus the whole nomenclature of 
sequential files, fields, records, file update, report gen­
eration, etc., became an integral part of the language of 
data processing and the conceptual environment for 
the development of COBOL. Now we find that the 
inertia resulting from these common language concepts 
inhibits the acceptance of new systems based upon 
random access to data and time shared environments. 
A whole generation of programmers, information sys­
tems designers, and middle management people have 
come to think of systems for formatted file management 
and report generation as coextensive with management 
information systems, even though such systems are a 
travesty on what management wants and needs. 

If Whorf's hypothesis is true, it can be turned around 
and applied in reverse. We, ourselves, build the arti­
ficial languages for programming computers. As lan­
guage builders, we will have significant effects on those 
who use them. Thus, when we apply this Whorfian 
notion to artificial languages we ourselves can build, a 
new perspective opens up. The computer is a uniquely 
powerful instrument for conceptual design and struc­
turing. The "special application" languages we provide 
are the major interface between the "designer" and this 
powerful design laboratory. The conceptual elements 
and syntactic tools made available to him cannot but 
influence the effectiveness, even the direction, his work 
will take. 

Who is this "designer" in the case of the computer? 
He is the industrial manager who is seeking to direct 
the intricate interactions of product lines, production 
capabilities, markets and finance. He is the anthro­
pologist searching for those causal laws of human be­
havior that lurk within his voluminous data on family 
relationships, vocational histories and patterns of 
ownership. He is the test engineer whose task is to 
chart the strengths and weaknesses of an aircraft wing 
from the thousands of data points of a destructive test 
procedure. He is the government agency head whose 
response to public need is dependent on his sensitivity 
to changing conditions as reflected in census statistics 
and spot surveys. Can we indeed say that all of these 
are well served by FORTRAN or PLjI? Is it not obvi­
ous that the basic conceptual elements of each of these 
diverse areas of computer application are themselves 
equally diverse, each with their own logical interrela­
tionships and implicit assumptions? This logic and 
these assumptions can be built once and for all into the 
software support of a special application language. 
They can exist at that tacit level which is natural for 
the given application area and free the creative mind of 
the manager, researcher or engineer to build his pro-



grams on a conceptual platform appropriate and natural 
for his concerns. 

We would like to illustrate this point by a reference 
to experience in the area of theorem proving on the 
computer. The resolution strategies of Robinson2 and 
their refinement by a number of researchers has pro­
gressed to the point where interesting applications can 
be made to highly restricted areas such as the control 
of robots that move blocks.3,15 However, application of 
theorem proving to problems of everyday business ap­
pears to be a long way away. One of the reasons for 
this is the necessity, if theorem proving is to give 
realistic results, to describe in specific axioms the very 
large number of tacit assumptions that are implicitly 
understood in these areas. Using explicit statements of 
these assumptions turns out to be very much more 
expensive in processing time than building them im­
plicitly into heuristics and procedures. Think of the 
task of stating all of the tacit assumptions that underly 
just the personnel files of a modern business. But these 
same assumptions, known implicitly to the applica­
tions programmer, are built into the procedures for 
processing that data. To be sure, these procedures are 
specific to the application area. Indeed it is just such 
idiosyncratic procedures that become embodied as the 
interpretive routines of a language which is "natural" 
to such a specialized area. An example is the inclusion 
of efficient differential equation solving algorithms in 
applied mathematics systems such as NAPSS,4 algo­
rithms that are automatically invoked in response to 
natural syntax for the expression of such an equation. 
From there on, they are no longer conscious considera­
tions in further program writing, or processed internally 
as axioms. They are now implicit, pressed down below 
the level of the explicit considerations of the researcher 
or manager who is using his own natural language. 
There are two advantages here. One is the advantage 
that accrues to the user inthe efficiency of his language 
in dealing with matters th~t are directly of his concern. 
The second is the advantage in the underlying process­
ing algorithms that make use of the underlying implicit 
assumptions of the domain. These enormous economic 
advantages that the computer can thereby put at the finger­
tips of the specialist in his area are the true source of the 
pressure for special application languages. 

THE PRESENT RESOURCE ENVIRONMENT 

When the computer was the scarce resource and 
programming was the domain of a small community of 
professionals-and indeed these conditions still resid­
ually apply-the powerful multipurpose language was 
the natural tool for man/computer communication. 
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But this situation has been changing. We will examine 
four significant developments in this regard. 

Training of computer scientists 

In the first place, our universities are turning out a 
swelling stream of graduates in each of the various 
professions who, over and above their professional 
specialty, are also knowledgeable in computing. Our 
major schools, and even many smaller institutions, in­
clude as an integral part of their professional curriculum 
creditable courses in programming and computer sys­
tems. So far, most of these are limited to a few widely 
used algebraic languages such as FORTRAN. How­
ever, more and more, specialized languages are being 
taught: COBOL in business schools, LISP in psy­
chology, SIMSCRIPT5 in industrial management, 
various applied mathematics languages, such as 
NAPSS,4 in areas of engineering, data analysis lan­
guages, such as SPSS,6 in the social sciences. 

More important than the large number of students 
taking these computing courses is that much smaller 
minority in the various disciplines who take the more 
advanced courses in the computer science curriculum. 
They go into their professional areas fully competent 
to bring to their disciplines the full power of the com­
puter, and they are highly motivated to do just that. 
It is these cross disciplinary people who will spawn the 
new languages for their specialized application areas. 
They will know the conceptual elements and implicit 
logic essential to their substantive discipline and they 
will also know how to embody these within efficient 
programs and with linguistic sophistication reflecting 
their training in computer science. 

Let's review a case history in this regard. Dr. Harry 
Markowitz received his doctor's degree in economics, 
concentrating in areas which required a high degree of 
knowledge of mathematics and computing. At the 
RAND Corporation his work involved the development 
of some economic models and their implementation on 
the computer. He then became one of the leading 
scientists in the RAND logistics project where he was 
instrumental in the development and application of 
simulation techniques. Subsequently Markowitz worked 
within the executive office of the General Electric 
Company, applying digital simulation to manufactur­
ing and corporate problems. As he developed his simu­
lation programs, his style and program organization 
became clearer and more modularized. Also, the scope 
of application of his work grew. Upon returning to the 
RAND Corporation, it was natural for him to distill 
from all of the various simulation programs he had 
written and supervised, a general technique that was 
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widely applicable. The result was one of the first and 
still one of the best discrete simulation languages, 
SIlV[SCRIPT. 5,20 

The number of such able, interdisciplinary people 
need not be large to make a significant impact, and 
both the number and quality are growing. 

Advances in hardware 

The second development we would like to cite is in 
the hardware area. The price of computers and periph­
eral equipment continues to come down. There will, of 
course, always be the super-jobs which can utilize un­
limited amounts of computer time. However, as com­
puter costs drop, not only is the market widened, but 
the experienced user can afford to shift more of his 
task onto the computer and thus demand that the 
computer do more for him. One form of this extra 
service is to move the man/machine interface closer to 
the man. One of the principal ways this can be accom­
plished is through the development of languages that 
are more natural for the various application areas. 

However, more significant than the general down­
ward trend of cost per cycle time is the advent of the 
mini-computer. Many project teams in industry, in the 
university and other research institutions, in all walks 
of life are now finding they can afford their own com­
puter. Up to now the main market for mini-computers 
has been in areas of process control or in connection 
with special input devices and sensing equipment. 
Those applications of computers which are not tied 
directly to special sensors or control devices but which 
require complex application programs have ~ended ~o 
gravitate to central computing centers wIth thelr 
large programming staffs and facilities for batch pro­
cessing the many debugging runs that characterize 
application software development. But the cost ad­
vantage of one's own mini-computer which avoids the 
growing overhead costs of the big computer centers will 
tend to reverse this. A preliminary look indicates that 
very high level conversational languages can be imple­
mented as dedicated mini-computer systems. 

The development of effective programming languages 
for specialized application areas can be instrumental 
in the opening up of sizable markets for the mini-com­
puters. As these versatile devices are brought to bear 
on the sophisticated problems of competent profes­
sionals with their small group of captive programmers, , . . 
we can again and again expect to see the evolutlOn 
from special application programs, to module libraries, 
to monitors, to special application languages. Once 
such languages are developed, they stimulate similar 
installations elsewhere. The heavy attendance at spe-

cialized area sessions at computer conferences attest to 
the interest in learning about just such developments. 
Because of the low cost and considerable capability of 
the mini-computer, one can expect a general shift to­
ward single user installations with a corresponding 
increase in independence and innovation. The result 
cannot help but have a considerable effect on the de­
velopment of languages for specialized application 
areas. 

Developments in systems programming 

The third general area of development is that of sys­
tems programming of which extensible programming 
language research is a part. Here the rapid growth of 
interest and importance of extensible programming 
languages is a key development that will have a pro­
found effect on the proliferation of specialized applica­
tion languages.21 To see this, one needs to be aware of 
the nature of the problems that those working in the 
area of extensible languages are attacking. The deep 
problems of this domain have to do with the building 
of optimizing compilers. It is no great trick for the ex­
perienced systems programmer to build a programming 
language that provides for complex structures declara­
tions, at least when he can implement these without 
consideration of run time efficie~cy or storage manage­
ment. The real problems are how to achieve optimi­
zation of both storage and computing efficiency. 
Important inroads into this difficult and central area 
are being made. We cite, for example, the work of 
Cheatham and his group at Harvard. 7 

As work progresses on extensible programming lan­
guages, one of its primary applications will surely be to 
the definition of higher and higher level languages, 
languages that include more and more implicit struc­
turallogic, indeed languages that fit closely the special­
ized needs of significant application areas. The ability 
to produce such languages efficiently and at the same 
time to retain reasonable levels of optimization in the 
actual encoding provides a powerful tool for specialized 
language building. These specialized application lan­
guages need not be limited to domains outside comput~r 
science. The language Planner, developed by the Artl­
ficial Intelligence Group at MIT,8 is an excellent ex­
ample of such a language to be used by computer 
scientists themselves. In this case it is built on LISP 
which is surely an example of an extensible language. 

Science of linguistics 

The fourth area of development is linguistics itself. 
Weare indeed learning more and more about the struc-



tures of languages and the underlying reasons why 
language is such a powerful tool for conceptual struc­
turing and communication. In particular, we are rapidly 
gaining sufficient knowledge of the mechanisms of 
natural language so that useful segments of natural 
language can be understood and responded to by the 
computer. Our own work on the REL system is a good 
example of where this is being successfully accom­
plished. 9,10 In our system, we combine results from re­
cent work in theoretical linguistics, namely modern 
deep case grammar as developed by Fillmore,l1 with an 
efficient application of the notions of syntax-directed 
compiling. We believe we are only a very few years 
away from an English driven system for conversational 
data analysis with levels of efficiency that will markedly 
improve upon present formal language batch systems. 
Another system, that of Terry Winograd at MIT has 
demonstrated the ability to control intelligently the 
complex behavior of a robot in response to directions 
given in a comprehensive subset of natural English. 

The importance of these types of systems does not 
lie in some magical quality of "English." There is a 
rather general understanding by computational lin­
guists working on actual systems that "natural" lan­
guages are full of idiosyncratic notions and expressions 
that derive from the particular domain of discourse for 
which they are adapted. What is important about this 
natural language research is not the vocabulary, which 
is surely not a universal of the native fluent speaker. 
Rather the important insights from this research con­
cern syntactic mechanisms and their interaction with 
semantics. We have referred to the need in a language 
not only for the right conceptual elements but for a 
sufficiently powerful syntax that will allow the efficient 
expression of interrelationships, as indeed is found in 
natural language. 

Natural language has a variety of powerful mecha­
nisms for combining conceptual elements. Ambiguity 
is an excellent example. Usually, when ambiguity in a 
language is mentioned, one thinks of ambiguous sen­
tences. However, consider how ambiguity is involved in 
phrases, i.e., segments of sentences. In the phrase: 

"the computer just moved into the laboratory" 

the words "computer," "moved," and "laboratory" are 
essentially all ambiguous when standing alone in that 
they do not designate a unique piece of equipment, 
action or location. The phrase "moved into the labora­
tory" also could be used in many contexts where it 
would have quite different meanings. However, the 
above phrase, when taken as a whole and in context is 
not ambiguous at all. This ability to use general nouns 
and verbs in such a way as to balance off their ambigu­
ous referents to achieve in a parsimonious way a totally 
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unambiguous description is a powerful and Ubiquitous 
tool of natural language, and one that is not difficult at 
all to include in computer languages where the context 
is delimited to a specialized application area. Thus, 
work on natural language will indeed go far in providing 
both understanding and specific techniques for building 
specialized application languages with sufficient ex­
pressiveness to truly serve as effective design labora­
tories for conceptual structuring. 

Our growing knowledge of computational linguistics 
goes beyond knowledge of natural language to all areas 
of language communication. In particular in the domain 
of graphic languages and man/machine communica­
tions using graphic consoles, specialized man/machine 
communication languages have been and surely will 
increasingly be developed. 

The rapid growth in linguistic knowledge will stimu­
late advances beyond the immediate effect of more 
effective computer languages and language systems. 
When a domain of human knowledge expands as lin­
guistic knowledge is expanding today, it has far reach­
ing consequences. The simulation of more effective 
systems built upon these new linguistic insights, insights 
that span from English syntax to psycholinguistics and 
the mechanisms of language acquisition, cannot help 
but be great. And greater understanding has always 
led to higher degrees of specialization, specialization 
that spells efficiency. 

TRENDS IN PROGRAMMING LANGUAGES 

The pressures and developments discussed in the 
previous two sections give evidence that programming 
languages for specialized application areas will continue 
to proliferate. Moreover, they imply several more 
specific trends. We shall identify and examine several 
of these. 

As knowledge of linguistics grows and the applica­
tion of computers to specialized areas continues, we 
realize that our old algebraic languages-FORTRAN, 
ALGOL, PL/I-are really quite special purpose after 
all. Certainly there is a need for good algebraic lan­
guages in physical science and engineering. However, 
other language developments, for example LISP, have 
already demonstrated the need for programming lan­
guages with quite different characteristics. 

The attempt to include in PL/I a wide range of data 
structure declaration capabilities has led to an inter­
esting and perhaps significant development. PL/I has 
not replaced FORTRAN for writing special applica­
tion programs. It does appear that it is being used by 
some systems programmers and by programmers who 
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are writing languages for special application areas. The 
problem with using PL/I for these systems program­
ming purposes is that the resulting code is not suffi­
ciently optimized. But it is exactly in this area of 
optimizing compilers that progress of the greatest im­
portance is being sought in extensible language research. 
The confluence of these developments will lead to a 
movement toward powerful system programming 
languages of the extensible type. They will be based 
upon our increasing understanding of the nature and 
importance of data structure. 

The advent of these systems programming languages 
will mean that we will have greatly increased ability to 
create languages that are carefully tailored to the con­
ceptual and structural needs of specialized areas. The 
mini-computer, the computer utility and the general 
lowering of computing costs are creating a ready market 
for such language developments. 

Thus we foresee that systems programmers will be 
turning away from their traditional preoccupation 
with the architecture of, and compilers for, classical 
algebraic programming languages. System programming 
will turn more of its attention to the efficient imple­
mentation of a much wider class of language mecha­
nisms and the building of these mechanisms into a far 
more diverse family of application languages. These 
developments will obviously be greatly influenced by 
the spreading acceptance of conversational, interactive 
computing. 

A second major trend will be toward natural language 
systems. We emphasize that by natural language we do 
not mean the general English of some mythical native 
fluent speaker. By natural we mean computer languages 
which reflect the conceptual elements and the syntax 
of the application areas in which they are employed. 
These languages will be specialized languages, idio­
syncratic, reflecting the physical as well as the con­
ceptual environment in which they are to be employed. 
For example, they will be influenced by the kinds of 
terminals or displays to be used, whether they refer to 
very large files of data, whether the application area 
naturally employs advanced mathematics, the inter­
active reaction times required, etc. 

There are two technical characteristics, however, 
which many of these languages for specialized applica­
tion areas will share. First they will tend more and 
more in the years ahead to be problem definition lan­
guages rather than procedural languages. The distinc­
tions between problem definition languages and pro­
cedural·languages is extensively discussed in the com­
puter science literature without definitive conclusions.12 

Thus it will do no harm if we add to that discussion a 
distinction that we feel to be an important one. A 
procedural language talks essentially about the com-

puter; statements in such a language are instructions 
to the computer about what it is to do. A problem 
definition language talks essentially about the domain 
of application; statements in such a language either 
describe, ask for descriptions or direct the computer 
concerning the subject matter of the application. It 
appears to us that higher level languages and languages 
for more highly specialized languages tend to be closer 
to problem definition than to procedural languages. We 
feel that there will be an increasing trend toward 
problem definition languages. 

The second technical characteristic that we foresee 
is a trend toward natural language syntax. English 
as a programming language has been discussed for 
a good number of years and often fervently wished 
for but thought of as something for the distant fu­
ture.13, 24, 22 Through these same years solid progress 
has been made-in theoretical understanding of 
linguistic structure, in computational linguistic prac­
tice, and toward operational English language sys­
tems. 9,10,15,16,17 Pragmatic work on machine translation 
has been showing practical results,18 contrary to some 
expressed opinions. As a result, the next few years will 
see operational systems for specialized areas where the 
structure of the language is closely related to our native 
English. Once this capability has been conclusively 
demonstrated, prejudice against it will be forgotten 
and we will make use of the powerful syntactic mecha­
nisms of na,turallanguage in many application areas. 

SUMMARY 

Return for a final look at the Whorfian hypothesis, 
that language shapes the thought and culture of those 
who use it. As we develop powerful systems program­
ming languages for application language development, 
as we incorporate the power and expressibility of natural 
language syntax into our application languages, as the 
economic costs of hardware and language software 
come down, and particularly as our rapidly expanding 
knowledge of linguistics continues to grow, a new 
dimension in artificial language development will come 
into being. We will recognize that language design is a 
powerful means of direction and control. The tasks of 
professionals can and will be directed by the languages 
they must use in communicating with their computers. 
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AMBUSH-A case history in language design 

by STEPHEN W ARSHALL 

Applied Data Research, Inc. 
Wakefield, Massachusetts 

INTRODUCTION 

AMBUSH is a language in which the user can describe 
a materials-processing/transportation network in an 
allegedly readable form. The AMBUSH Compiler 
transforms this description into a set of linear equations 
and inequalities and edits this set into an input file for 
a linear programming package. 

Although the language is powerful enough to handle 
both materials-processing and transportation, its design 
is heavily biased toward processing, with transportation 
expected to appear only occasionally, around the 
"edges" of the network. Thus, a typical subject for 
AMBUSH description might be a very complex oil 
refinery with a few arcs representing transport of crude 
oils into and final products out of the refinery. 

AMBUSH was designed by Applied Data Research 
for the Shell Oil Company, to facilitate the preparation 
of very large linear programming problems. This 
project followed a long history of experimental language 
design by Shell and its contractors, which had yielded 
a very valuable crop: Shell was able to summarize, 
fairly confidently and economically, the set of meanings 
to be expressed. The present language is the result of 
collusion (and sometimes collision) between Shell's 
body of experience and ADR's background in language 
and compiler design. 

AMBUSH, as actually designed and implemented, 
represents a conscious compromise between two styles 
of language design: the "template" style, with a large 
set of different statement types, corresponding roughly 
one-to-one to the kinds of utterances the user is ac­
customed to; and the recursive style, in which the 
designer hunts for a minimal number of logical primi­
tives sufficient to express all meanings and devises the 
shortest (in number of types) and most highly recursive 
grammar possible for combining the primitives. This 
stylistic tension and, indeed, the historical sequence 
from pure template languages toward more recursive 
ones exhibited in the AMBUSH project are, we believe, 
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common characteristics in the development of lan­
guages for new problem areas. 

Whenever any body of informal discourse about a 
subject is analyzed in order to create a formal language 
for saying the same things, the primary effort is con­
centrated on verifying that the formal language under 
creation is complete-that one can express every 
meaning-with little concern for ease of use or its close 
relative, grammatical simplicity. The first requirement 
is met by letting the language arise from, and comparing 
it to, a large body of utterances in the informal dis­
course. The loom of this body of utterances generally 
causes the second criterion-essentially that of lin­
guistic "goodness"-to be quickly reinterpreted to 
mean superficial similarity to the informal language. 
Forms in the slowly developing formal language are 
adjudged good insofar as they "look like" the corre­
sponding forms in the informal one. This perfectly 
natural criterion generally leads to first-cut designs 
which, although very valuable (for they effect the 
desired formalization), usually exhibit certain char­
acteristic properties: 

a. A syntax which is "broad" rather than "deep." 
By this we mean that they tend to have a large 
variety of different, special syntactic forms­
each aping a familiar English one-rather than a 
small number of forms and a small set of rules 
for recursively combining them. 

b. A proliferation of reserved identifiers, each of 
which once again apes a commonly used word 
in the informallangul:ltge, even when several of 
these identifiers may be logically identical in 
function. 

c. Extremely rigid format requirements, which 
mechanically copy the forms in which informal 
information is currently expressed. 

These properties tend to characterize languages 
which, however easy to read, are very difficult to learn 
to write in, since each type of utterance has its own 
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special construction rules and its own reserved identi­
fiers; difficult to compile, since the grammars are so 
broad; and difficult to extend, since the grammars are 
so non-uniform and format-controlled. 

It has been our general experience that a first-cut 
language design should be viewed as a formal char­
acterization of the class of required utterances, rather 
than as an end product. What is required next, of course, 
is a redesign embodying deliberate infusion of the 
recursive style. The ever-present danger is the obvious 
one of going too far: users are willing to change their 
habits only so much, and a language which demands a 
complete reorganization of their styles of thought and 
expression sets an unacceptably high price, for perfectly 
understandable reasons. 

In this paper we do eventually present a skeletal 
grammar of the AMBUSH language, as it was actually 
implemented. Our primary purpose, however, is not to 
describe a language. Rather we intend to treat the 
AMBUSH project as a case history of the language 
design process, which may give substance to our general 
remarks about the shift from template to recursive 
style. 

We begin by summarizing how an engineer thinks 
about his model of an oil refinery: the appearance of 
his graph, the kinds of assertions he makes about flow 
in the graph, the packages of information he thinks of 
as single elements of model description. We then 
describe, in general terms, the structure of languages in 
the template style for expressing the engineer's mean­
ings. Next we reexamine the engineer's utterances from 
the point of view of a designer in the recursive style, 
concerned with logical minimality and searching for 
opportunities to shorten the grammar by the use of 
recursion. In this last section, the general outline of the 
final grammar of AMBUSH takes shape. Then we 
present that grammar, so that the reader can verify our 
claim that AMBUSH is indeed a compromise: a lan­
guage· basically in the recursive style, but with elements 
of the template style still remaining, to render it more 
familiar-looking, and thus more palatable, to the user. 

HOW THE ENGINEER DESCRIBES HIS 
MODEL 

The directed graph 

An engineer conceives of his model as a directed 
graph (with no self-loops), with labels on the nodes and 
arcs. [The bracketed examples in this paragraph refer 
to the figure in Appendix I.] The nodes of the graph 
are labeled with the names of the processing units of a 
plant or refinery, or the staging points of a transporta-

tion network ['EGG.PLANT,' 'BLEND.UNEX,' 
'DEPOT']. The arcs of the graph represent the paths 
of flow of the various materials in the model. Each arc 
is a path for exactly one material and is labeled with the 
name of that material ['Exotic Liquid,' 'Unexciting 
Prod.']; if several materials flow from one node to 
another, there will be several "parallel" arcs (arcs with 
a common head node and a common tail node) between 
the nodes [Universal Solvent and Residue both flow 
from ICE.PLANT to BLEND.UNEX]. Node names 
are unique (no two nodes bear the same name), while 
arc names are not (several arcs may bear the same 
name: the same material may flow in numerous arcs of 
the graph [Residue flows from ICE. PLANT to 
BLEND.UNEX, to TRUCK, and to DEPOT1, and 
from DEPOT1 to DEPOT2]). Parallel arcs must have 
different labels: that is, there can be but one arc carry­
ing a given material from a given node to a given other 
node. 

Thus, an arc of the graph is completely specified by 
an ordered triple of names: (node name, arc name, 
node name). 

The variables of the model correspond to the arcs of 
the graph or, more precisely, to the flow along the arcs. 
That is, the engineer states his restrictions on the model 
and his costs in terms of flows on arcs, and seeks an 
optimal solution stated in terms of flows on arcs. 

The arcs of the graph will become the columns of a 
conventional LP matrix; the restrictions on the model 
will become rows of the matrix; and the various costs 
incurred in the model will become the objective func­
tion(s) of the matrix. 

Restrictions on flow in the graph 

Material balance 

In general, at every node of the graph which possesses 
both inputs and outputs, the engineer wishes to relate 
the various flows entering to the flows leaving the node. 
These relations are conventionally expressed, in the LP 
matrix, as a set of "material balance equations" (rows). 
Each equation expresses the total amount of a single 
material flowing out of a node as a linear expression in 
the flows of the materials entering the node. The 
coefficients of such an expression are called "yield 
factors," and the engineer thinks in terms of these 
yield factors. It is important to note that a single 
material balance equation, while a natural element 
(a single row) of the. LP matrix, does not necessarily 
correspond to a natural single utterance for the engineer. 
He may, for example, refer to a handbook of standard 
processing units which contains an array (inputs vs. 



outputs) of yield factors, each of whose columns 
corresponds to a single equation; or an array of outputs 
vs. inputs, with rows corresponding to equations; here 
the entire array corresponds to a single utterance for 
the engineer. On the other hand, the engineer may 
assemble his description of material balance at a node 
from several sources, each of which supplies a few yield 
factors-each factor associated with an input/output 
pair-in no particular order. In sum, the engineer's 
natural utterance is an arbitrary subset of the yield 
factors at a single node, or a complete array of these 
yield factors organized in either of two ways. 

Quantity restrictions 

The engineer may set a limit (maximum, minimum, 
or fixed amount) on the total flow through a set of arcs. 
Each such restriction becomes a row of the LP matrix. 
It is noteworthy that the set of arcs in a single restric­
tion is not at all arbitrarily chosen, but is always either 
a subset of the arcs entering a single node or a subset 
of those leaving a single node. This limitation imposes 
no logical restriction on the engineer, for he can always 
introduce further arcs and nodes so as to create a set of 
input arcs to a single node (or even a single arc) whose 
flow will be precisely equal to the sum of the flows in an 
arbitrary set of arcs. The point here is not that a certain 
kind of arc set is logically sufficient, but rather that it is 
the only kind that the engineer in fact uses as a domain 
for quantity restrictions. 

"Quality" restrictions 

The engineer may set a limit on the value of some 
physical property for the mixture of the flows on several 
arcs. For example, three arcs might carry three different 
materials each with a certain specific gravity. The 
engineer wishes to restrict the relative flows on the three 
arcs so that the specific gravity of the total flow satisfies 
some limit (maximum, minimum, or fixed value). If 
we denote the flows in the different arcs by !i and the 
respective specific gravities by gi, the engineer is setting 
a limit on the value of Li!igi/ Li!i. Once again) as 
with the quantity restrictions, the set of arcs is always 
either a subset of the arcs entering, or a subset of the 
arcs leaving, a single node. 

Ratio restrictions 

The engineer may set a limit on the ratio of the total 
flow in one set of arcs to the total flow in another set of 
arcs. Again, it is a feature of user behavior that the 
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union of the two sets of arcs referenced in a single ratio 
restriction is always a subset of the arcs entering or a 
subset of the arcs leaving a single node. 

Cost and income 

The engineer may wish to state that flow along certain 
arcs incurs cost or generates income. Eventually, all 
his remarks of this kind will become the objective 
function of the LP problem, a linear expression in flows 
on arcs which is to be minimized. The engineer's typical 
utterance does not correspond to an entire objective 
function, but rather to the supply of a single coefficient 
value for the objective function; such a coefficient value 
may apply to one arc or to a set of arcs: thus, the 
engineer may say, in effect, "flow on any of this set of 
arcs costs $3.50 per unit flow." It is no serious distortion 
of user behavior to say that the set of arcs to which a 
single cost/income coefficient applies is always either a 
subset of the arcs entering, or a subset of the arcs 
leaving, a single node. 

TEMPLATE-STYLE LANGUAGES 

Even from the rather brief picture given above of the 
engineer's view of his model, it should be clear that he 
has a fairly large number of different-or what he 
believes are different-kinds of things to say. He must 
be able to describe a graph, supply a set of yield factors, 
supply an array of yield factors in input/output form, 
supply the array in output/input form, state quantity 
restrictions on the output side of a node, or the input 
side, assign cost to an arc, assign income to an arc, and 
so forth. 

It is important to note that, although the difference 
between some two elements of this list may seem quite 
trivial to the reader (input/ output form versus 
output/input form of an array of yield factors, for 
example), the difference may look enormous to the 
engineer, who obtains the two kinds of information 
from different sources, uses them in different modeling 
contexts, and discusses them in a different vocabulary. 
In our effort to summarize the engineer's utterances 
concisely, we have made use of logical similarities 
between utterances which might, to him, look quite 
different. Thus, in our description of quantity restric­
tions, we took advantage of the fact that to set a 
quantity maximum is not unlike setting a quantity 
minimum. In some real problem, however, all the 
maxima may come from physical limitations (pipeline 
capacities, say), while all the minima may reflect 
business obligations (requirements to buy at least so 
much from various suppliers). The engineer in this 
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situation is not working with maxima and minima 
(which even sound similar) but with capacities and 
obligations, which he may customarily treat with quite 
dissimilar vocabularies. 

A common characteristic of the early language designs 
for the description of these models was a strong ten­
dency to preserve, more or less uncritically, the many 
logically empty distinctions between "different kinds" 
of information. Thus, such a language would typically 
consist of a large number of dissimilar-looking templates, 
composed of reserved words; each template would 
correspond to one of the different kinds of information, 
and the reserved words would guarantee a familiar­
looking quasi-sentence appropriate to that kind. The 
holes in the templates were to be filled with nothing 
more complex than lists of numbers or lists of names. 

It would be grossly unfair to early workers in the 
area to suggest that the number of templates in any 
real language design was anywhere near as large as 
completely uncritical acceptance of the engineer's 
discriminations would have implied. Considerable, and 
quite fruitful, effort was devoted to the reduction of this 
number to even more manageable limits. Nonetheless, 
it is fair to say that even the latest of the pre-AMBUSH 
languages retained all the stigmata of the template 
approach: 

a. An extremely broad and shallow grammar: a 
very large number of syntactic types at the 
"statement" level, with almost no phrases in 
common (above the level of name list or number 
list) . 

b. A very large number of reserved words. 
c. Inconsistencies of lexical style: the use of 

punctuation marks as separators when the 
templates were to look sentence-like, the use of 
spaces or position-on-card to delimit symbols if 
the templates were to look like arrays. 

d. Prefix characters to signal statement type: since 
the templates possessed little or no common 
phrase structure, the . analyzer was likely to 
consist of many essentially independent recog­
nizers entered through a common switch and 
thus a prefix character was required to control 
the switch. 

ANOTHER LOOK AT THE ENGINEER'S 
UTTERANCES, BY DESIGNERS IN THE 
RECURSIVE STYLE 

Reduction in variety of user's statement forms 

Let us set aside for the moment the problem of 
specifying the structure of the graph itself, and confine 
our attention to those of the engineer's utterances 

which include numerical information-these are the 
statements of restrictions or remarks about cost and 
income. The most striking fact about these numerical 
assertions is that each concerns an extremely small 
portion of the whole graph. Thus, a remark about 
material balance always talks about a subset of the 
arcs entering or leaving a single node; and the other 
numerical assertions only refer either to a subset of the 
arcs entering, or a subset of the arcs leaving, a single 
node. 

This immediately suggested the possibility of turning 
the language "inside out" in the following sense: 
instead of having one statement type per "kind of 
information," each containing its subgraph specification 
after its own fashion, we could have a far smaller 
number of statement types, one per kind of subgraph, 
each containing the kind-of-information specification 
in a more uniform fashion. This inversion had several 
attractions: 

a. It dropped to a lower syntactic level the vast 
array of special forms, with their reserved words 
and need for special recognizers; above this 
level, phrase structure could be quite simple and 
uniform. 

b. It simplified the job of persuading the user of the 
logical emptiness of many of his discriminations; 
if the template for pipeline capacities looks com­
pletely different from that for purchase obliga­
tions, with reserved words scattered non­
analogously throughout the two forms, it is hard 
to convince him that they are logically similar; 
if, however, he sees the differences entirely 
embodied-reserved words and all-in two short 
phrases which fit in exactly the same larger 
structure, he becomes far more willing to drop 
the reserved words for his 10 different kinds of 
quantity restriction and simply say "maximum" 
or "minimum." 

c. It became trivial (indeed, almost inevitable) in 
grammar design, and very palatable to the 
engineer, to take advantage of the symmetry 
between the inputs of a node and its outputs. 
The syntactic type for discussing the one could 
look identical to that for discussing the other, to 
within a reserved word or two. 

d. It suggested some interesting possibilities of 
nested information. The engineer frequently had 
several things to say about the same subgraph, 
or about two subgraphs, one of which was a 
proper subgraph of the other. We could perhaps 
arrange our grammar to permit him to nest his 
sub graph specifications, and to associate with 
each nesting level a set of (say) restrictions. 



The redundancy of graph specification 

A notable feature of the numerical assertions de­
scribed above (the restrictions and income/ cost 
utterances) is that, whether they be written in engi­
neer's jargon, some template language, or in some new, 
recursive language, they inevitably contain information 
about the structure of the graph. This is perhaps 
obvious, for-as we have earlier indicated-every 
numerical assertion must contain a specification of the 
sub graph to which the assertion applies. 

Thus, to say that the maximum amount of M flowing 
out of A is less than five surely suggests that the graph 
contains a node named A with at least one arc labeled 
M leaving it. Every numerical assertion contains some 
such topological information, and the set of such 
information collected from all assertions appeared to 
yield a fairly good picture of the overall shape of the 
graph. Initially, this redundancy was expected to 
provide a check: the topological implications of each 
assertion might be verified against a previously given 
graph description. 

Then a further observation was made. A very large 
number of the nodes in a graph did not represent either 
processing units or staging points, but were essentially 
formal: they represented "pools" of intermediate 
products. Within a model, the engineer deals with two 
kinds of materials: the "pooled" ones, like intermediate 
products in a refinery, such that any consuming node 
can obtain them from any producing node; and the 
non-"pooled" ones, like raw materials and final 
products, which flow from each producing node to 
certain consuming nodes, and no others. For each 
pooled material, the engineer establishes a single pool 
represented by a node, with arcs to the node for each 
producer and arcs from the node for each consumer. 

Moreover, since our user population modeled very 
large refineries with only a small amount of transporta­
tion at the edges of the graph, it turned out that 
virtually all materials in a typical model were of pooled 
type. This implied that, if we required the user to 
declare explicitly his non-pooled materials (which 
should be but a small burden, for they were not nu­
merous), the Compiler could draw far stronger topo­
logical inferences from his numerical assertions than we 
had originally thought. Thus, from the example given 
earlier in this section, one can deduce not only that at 
least one arc carries M out of A, but-if M is pooled­
that the arc must go to the pool for M and must be 
unique (since parallel arcs must have different labels). 

This analysis led to the conclusion that the set of 
topological implications contained in all the engineer's 
numerical utterances amounted to a virtually complete 
description of the graph, and thus separate statement 
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types designed for graph specification were quite un­
necessary. True, there might be an occasional piece of 
graph left ill-defined after the numerical statements 
were written, but our statements for making numerical 
assertions were going to incorporate the specification of 
little sub graphs to which a set of numerical remarks 
would apply. If we simply permitted these types to 
contain an empty set of numerical remarks, we would 
have a mechanism for describing little subgraphs, 
thereby filling in the holes in the graph definition. 
(The fact that this degenerate form would be inappro­
priate for describing a whole graph was entirely 
irrelevant. ) 

THE GRAMMAR OF AMBUSH 

The grammar of AMBUSH derives directly from the 
observations of the preceding section. There is no 
statement type intended exclusively for graph descrip­
tion; there are three statement types for making 
numerical assertions, differentiated semantically by 
the kinds of arc set (subgraph) they discuss: 

a. The YIELDS statement, for discussing the 
inputs and outputs of a node; this is used ex­
clusively for the supply of yield factors. 

b. The SENDS statement, for discussing subsets of 
the arcs leaving a node; this is used for all 
numerical assertions except the supply of yield 
factors. 

c. The TAKES statement, for discussing subsets 
of the arcs entering a node. 

(N ote: In this section, we have permitted ourselves the 
liberty, in stating our rules of grammar, of using, 
without definition, the types (identifier) and (numex), 
which latter type corresponds to "numeric expression.") 

The YIELDS statement 

GraInInar 

(row):: = (identifier), (numex) I (row), 
(numex) 

(row list): : = (row) I (row list), (row) 

(name list): : = (identifier) I (name list), 
(identifier) 

(yields statement): : = (identifier) RUNNIN G 
(name list) YIELDS 
(row list) I (identifier) 
YIELDS (name list) 
RUNNIN G (row list) 
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ExaInples 

a. UYIELDS Sl, S2, S3 
RUNNING S4, .1, .4, .5, 

S5, .6, .1, .1 
b. URUNNING S4, S5, 

YIELDS Sl, .1, .6, 
S2, .4, .1, 
S3, .5, .1 

c. U RUNNING Sl YIELDS S2, .4, S3, .5 

Discussion 

It should be clear from the first two examples (which 
are identical in meaning) that the grammar has been 
designed to facilitate supply of a large array of yield 
factors in either input/output or output/input form. 
The more "linear" style, exhibited in Example c, for 
the supply of a few yield factors, is identical gram­
matically to the array style. 

It should be noted that the grammar demands that 
the set of yield factors supplied in a single statement 
always correspond to some array (the cross product of 
a set of inputs and a set of outputs), however small. 
This requirement is made less troublesome than might 
appear, for the Compiler systematically fails to dis­
tinguish between a yield factor of zero and no yield 
factor at all. Thus, the engineer can, for example, write 
one statement to cover all but one of the yield factors 
at a node (representing the missing one by zero) and a 
second statement to supply the omission. 

The SENDS statement 

GraInInar 

a. Modifier 
(limit):: = MAX 1 MIN 1 FIX -

(qlimit):: =QMAX 1 QMIN 1 QFIX 
(cost):: = COST 1 COSTO 1 COST11 

... 1 COST91 
INCOME 1 INCOMEO I 
INCOME11·· .1 
INCOME9 

(quantity phrase): : = (limit) (numex) 
(quality phrase): : = (identifier) (qlimit) 

(numex) 
(ratio phrase): : = (limit) (numex) 

(stream/node factor) 
(cost phrase):: = (cost) (numex) 

(modifier):: = (quantity phrase) 1 

(cost phrase) 1 

(quality phrase) 1 

(ratio phrase) 

b. SENDS Statement 
(stream/node factor): : = (identifier) I 

( (stream/node 
expression) ) 

(stream/ node term): : = (stream/node 
factor) 1 

(stream/ node 
term), 
(modifier) 

(stream/node expression): : = (stream/node 
term) I 
(stream/ node 
expression), 
(stream/node 
term) 

ExaInples 

(sends clause): : = SENDS 
(stream/node 
expression) TO 
(stream/ node 
expression) I 
SENDS 
(stream/ node 
expression) 

(sends statement): : = (identifier) 
(sends clause) 

a. Modifier 

1. MAX 50 
2. SPEC.GRAVQFIX .75 
3. MAX .5 (M!, M2) 

4. COST3 -3.50 
5. INCOME33.50 

b. SENDS Statement 

1. U SENDS A, MAX 50 
The maximum quantity of A output by 

U is 50 . 
2. U SENDS (A, MAX 50, MIN 40, B, MAX 

50), COST 3.50 
The maximum quantity of A output by 

U is 50. 
The minimum quantity of A output by 

U is 40. 
The maximum quantity of B output by 

U is 50. 
A cost of 3.50 is incurred per unit of either 

A or B flowing out of U. 
3. U SENDS (A, MAX 50, MIN 40, B, MAX 

50), COST 3.50 TO X, MAX 10, Y, MIN 10 
All the meanings included in Example 

2, plus: 



The total flow of A or B from U to X has a 
maximum of 10. 

The total flow of A or B from U to Y has a 
minimum of 10. 

4. U SENDS A, B TO X 
This example includes no numerical asser­

tion, and is thus "degenerate." It 
informs the Compiler that there is one 
arc carrying A, and another carrying B, 
from node U to node X. 

5. U SENDS A, MAX .5 (B, C, MIN 10) 
The minimum quantity of C output by 

U is 10. 
The quantity of A output by U is ne more 

than .5 times the total quantity of B 
and C output by U. 

Discussion 

The four varieties of modifier correspond to the four 
kinds of numerical assertion (other than supply of 
yield factors) covered in earlier sections: quantity, 
quality, and ratio restrictions and income/cost asser­
tions. The large number of reserved words in the 
definition of (cost) derives from the desire of the user 
to define several objective functions and from his 
preference not to treat an income as a negative cost 
(modifier Examples 4 and 5 are identical in meaning). 

Each modifier must apply to a certain subgraph (set 
of arcs) of the graph and the only difficulty in under­
standing the SENDS statement is that of learning the 
rules which determine to which sub graph a given 
modifier applies. 

First it should be noted that every SENDS statement 
begins with an identifier; this names a node of the 
graph, which we will-in this section-call the "subject 
node" of the statement. The word SENDS indicates 
that we are discussing arcs leaving the subject node. 
Next follows a stream/node expression in which appear 
identifiers which are the names of physical materials. 
Within tliis expression, such a name M is to be read as 
shorthand for "the set of all arcs carrying M out of the 
subject node," and thus defines a subgraph. 

The syntactic type (stream/node factor) corresponds 
to the notion of subgraph. If a given stream/node 
factor is a single identifier, we have already indicated 
what subgraph is meant. If the factor is a parenthesized 
expression, the sub graph meant is the union of the 
subgraphs defined by all material names found in the 
expression. Thus the stream/node factor (Ml' M2) is to 
be read as "the set of all arcs carrying either Ml or M2 
out of the subject node." 

The reader will observe that the type (stream/node 
term) is defined as a single (stream/node factor) 
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followed by an arbitrarily long list of modifiers (with 
appropriate separation by commas). The meaning here 
is that each modifier in the list is to be independently 
applied to the subgraph defined by the factor. 

In sum, then, the recursive nature of the (stream/node 
term) definition permits application of a set of modifiers 
to a single subgraph; the recursion in (stream/node 
factor) definition (i.e., the ability to parenthesize a 
(stream/node expression) to make a new factor) 
permits nested sub graph definition; and, finally, the 
recursive structure of a (stream/node expression) 
permits assertions about overlapping or disjoint sub­
graphs to be included in the same statement (so long as 
each subgraph is a subset of the arcs having the subject 
node) . 

The engineer may continue his statement, after the 
stream/node expression, with the reserved word TO 
followed by a second stream/node expression. In this 
latter expression, the identifiers are the names of nodes; 
each identifier N acts as shorthand for "the set of all 
arcs carrying any of the materials named in the first 
stream/node expression from the subject node to the 
node N," and thus defines a subgraph. The rules for 
applying modifiers to factors, treating parenthesization 
as subgraph union, etc., are exactly as before. 

The TAKES statement 

Grallllllar 

(takes clause):: = TAKES (stream/node expression) 
FROM (stream/node expression) I 
TAKES (stream/node expression) 

Exalllples and Discussion 

The TAKES statement is completely analogous to 
the SENDS statement, both grammatically and 
semantically. With appropriate substitution of TAKES 
and FROM for SENDS and TO, the examples of the 
previous section will be correct. With similar sub­
stitutions in the discussion section, that section will 
work also. 

Final notes on the grammar 

The basic skeleton of AMBUSH consists of the three 
statement types described above and a few declarations: 
notably, one to list non-pooled materials and another 
for the supply of physical property values for materials 
which participate in quality restrictions. 

The language has a full macro capability, including 
the insertion, at macro-expansion time, of actual 
parameters for formal parameters in the macro defini-
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tion. Macros are, of course, used for abbreviation and 
to reduce copying errors. But they also serve as a way 
to parametrize a model: an identifier may be used in 
place of any numeric quantity, and its value may be 
changed from run to run. Other methods of parametriza­
tion, without recompilation, are also available. 

For the sake of completeness, it should be added that: 

a. The Compiler treats the AMBUSH program as 
a string, and consumes 72-column card images 
stringwise without format requirements. 

b. AMBUSH (like many languages without a 
statement terminator) has a statement initiator 
(the # character) . 

c. An AMBUSH program is bracketed by the 
reserved strings BEG IN and END. 

d. An AMBUSH identifier is built of alpha­
numerics and the period character; the initial 
character must be alphabetic and the character 
limit is twelve. 

e. An AMBUSH number is a string of up to 14 
digits among which at most one decimal point 
may appear. 

f. All arithmetic is performed in floating point. 
g. Numeric expressions are built in the customary 

way out of numbers, the four arithmetic opera­
tors, parentheses, and the special functions 
EXP and LOG. Unary minus is permitted. The 
evaluation rule is left-to-right and gives equal 
precedence to * and / and equal precedence to 
+ and-. 

h. A comment may be inserted between any two 
tokens of the language (roughly, in any place a 
space would be allowable). The comment is 
delimited by < and >; the # sign is prohibited 
within comments so that, when the programmer 
neglects to close his comment, it will be closed 
automatically by the initiator of the next 
statement. 

AMBUSH AS A COMPROMISE IN STYLES 

It should be clear to the reader that the grammar of 
AMBUSH follows fairly directly from the observations 
made in Section 4, and in general exemplifies the 
recursive style: 

a. The grammar clearly reflects the search for a 
logically minimal description of the user's 
utterances. 

b. The syntax is "narrow" (a small number of 
types at the statement) level and "deep" (highly 
recursive, at least within the SENDS and 
TAKES statements). 

c. There are relatively few reserved words. 
d. Lexical strategy is uniform; the input is treated 

as a string. 

On the other hand, there still remain certain elements 
of template style; for example: 

a. The two forms of YIELDS statement (input vs. 
output and output vs. input) are a logical 
redundancy. 

b. The reserved words QMJN, QMAX, and 
QFIX could be replaced by MJN, ~![AX and 
FIX. The <qlimit) forms remain as a reflection 
of the user's habits of thought: a quantity limit 
is somehow different from a quality limit. 

Finally, it should be noted that the grammar we 
have given above is incomplete. Most of the differences 
between that grammar and AMBUSH as actually 
implemented come from the deliberate introduction 
of a few totally redundant templates to reduce the 
language's unfamiliarity. The interested reader will 
find several examples of these templates in the sample 
problem in Appendix 1. 

The reader will probably have noticed a feature 
which makes AMBUSH rather different from most 
languages which programmers use: there are no impera­
tive statements in the language. All the sentences the 
programmer writes are in the indicative mood: they are 
either declarations, giving global information about the 
materials which flow in the network, or are local state­
ments about individual nodes of the network. Thus the 
language is not algorithmic-there is no flow of control, 
no modification of values in the course of computation. 
This implies that the order of inputting sentences to 
the compiler is irrelevant, and this is essentially true. 
(The exception is that, if conflicting numerical values 
are given, the last one input is used.) 

STATUS 

The AMBUSH Compiler was written for the IBM 
360/65 and has since been moved to the 360/85; it was 
designed to interface with the IBM LP package 
(MPS and MPSX). By the Fall of 1971, it had also 
been moved to the UNIVAC 1108, and was being 
shaken down on that hardware. 

The AMBUSH Compiler was delivered near the end 
of 1969, and has been in regular use by Shell since that 
time. We understand that, as of late 1971, there were 
approximately 35 qualified AMBUSH programmers at 
Shell. The language is, apparently, fairly easy to learn, 
since fully half of the 35 received no formal instruction: 
they were given a language manual and a certain amount 
of hand-holding by more experienced users. 



The language appears to permit the expression of 
most meanings fairly naturally, although occasional 
user models have exhibited structures which were 
unanticipated at language design time (and thus 
expressible only clumsily). The frequency of the need 
for tricks and clumsy expressions tends to reduce with 
time, since the need arises less from the nature of the 
application than from the habits of thought of the user. 
Experience with a new language inevitably alters the 
style of thought. Clear understanding of the problem 
comes to mean clear expressibility of the problem in the 
programming language. 

Applied Data Research has been licensed by Shell to 
market the AMBUSH package in the United States 
and Canada. Initial explorations of the suitability of 
the language for various classes of LP users were 
under way at the end of 1971. 
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APPENDIX I: EXAMPLE PROBLEM 

A simple problem in processing/transportation 
typical of the process industries follows. While only a 
small problem, it permits invoking most of the 
AMBUSH syntactic forms. The AMBUSH description 
(a listing of the input to the A1VIBUSH Compiler) 
follows the statement of the problem itself. 

A few statement forms are used in this example 
which are not described in detail in the paper, or in the 
skeleton grammar. The reader will probably under­
stand them immediately from the problem description, 
but in any case, some explanatory notes are given fol­
lowing the listing. 

Statement of problem 

Choose the most profitable set of operations for the 
following situation. 
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The Archetype Manufacturing Company Inc., 
operates two processing plants: 

1. ICE processing plant 
2. EGG processing plant 

The ICE plant operates with an inexpensive raw 
material which is obtainable as follows: 

SOURCE 

Arkansas 
Louisiana 

MAXIMUM 
AVAILABILITY, 

COST $/TON TONS/DAY 

7.00 120 
7.50 300 

Furthermore, Archetype has a long term contract with 
the Louisiana supplier guaranteeing the purchase of at 
least 180 tons/day at the $7.50/ton price. The ICE 
plant can process up to 250 tons per day of raw materials 
at a cost of $.20 per ton yielding three products as 
follows: 

PRODUCT 

Gas 
Universal Solvent 
Residue 

RAW MATERIAL SOURCE 
ARKANSAS LOUISIANA 

.10 

.70 

.20 

.12 

.74 

.14 

The EGG plant operates with a more expensive raw 
material obtained as follows: 

SOURCE 

Alaska 
Labrador 

MAXIMUM 
AVAILABILITY, 

COST $/TON TONS/DAY 

20.00 100 
25.00 150 

The EGG plant has capacity to process all the raw 
material available at a cost of $.50 per ton and produces 
two streams. 

PRODUCT 

Exotic Liquid 
Reject 

RAW MATERIAL SOURCE 
ALASKA LABRADOR 

.60 

.40 
.70 
.30 

The process requires .11 tons fuel gas per ton of raw 
material. The fuel gas must be obtained from the ICE 
plant. Any fuel gas not used in the EGG plant must be 
burned on site. 

The Exotic Liquid can be blended with Universal 
Solvent to produce Exotic Product which has the 
following specification requirements. 

Blue Color Index 
Specific Gravity 

EXOTIC PRODUCT 
SPECIFICATIONS 

12.0 Minimum 
1.1 Maximum 
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The corresponding properties of the two components 
are: 

Exotic Liquid 
Universal Solvent 

BLUE COLOR 
INDEX 

11.5 
10.0 

SPECIFIC 
GRAVITY 

1.2 
0.9 

In order to meet the blue color index, Blue Dye 
must be added. One gram of Blue Dye will raise the 
blue color index of one ton of Exotic Product. 7 units 
and will have an insignificant effect on specific gravity. 
Blue Dye costs $.80 per gram. 

Universal Solvent can also be blended with Reject 
from EGG plant and Residue from ICE plant to make 

MAX PIPELINE FLOW 

TONS/DAY 

Unexciting Product. The blend has the following 
formula: 

Universal Solvent 
Reject 
Residue 

.25 

.45 

.30 

All Reject must be disposed of in this manner. Any 
remaining Universal Solvent and/or Residue may be 
sold as produced. 

All products leave Archetype by Pipeline except 
Residue which can also be removed by Truck. Pipeline 
carries products to Depot 1 and from there to Depot 2. 
Pipeline pumping limitations for each product and 
prices and demands at each depot are given below. 

SALES 

DEPOT 1 DEPOT 2 
ARCHETYPE/ DEPOT 1/ DEMAND NET PRICE DEMAND NET PRICE 

PRODUCT DEPOT 1 DEPOT 2 TONS/DAY $/TON 

Exotic Product 
Universal Solvent 
Unexciting Product 
Residue 

500 
400 
450 
300 

225 
175 
200 
125 

125 Max. 
60 Max. 

120 Max. 
Unlimited 

Note that the pipeline capacity effects are cumula­
tive. That is, 250 tons/day of Exotic Product plus 150 
tons/ day of residue would be permissible, but would 
use all of the capacity. 

Residue removed by truck costs Archetype $.50/ton 
for hauling it away. In addition, handling problems 
limit to 30 tons/day the Residue disposed of as Res­
idue. 

40 
30 
15 
3 

Egg 

TONS/DAY $/TON 

120 Max. 
20 Fix. 
80 Fix. 

Unlimited 

35 
25 
10 
3 

The AMBUSH statements describing this problem 
follow. The AMBUSH compiler will convert these 
statements into a matrix which can be optimized by an 
LP code to give the combination of operating choices 
which will maximize profit by Archetype. Figure I-Archetype Manufacturing Company Process flow 
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SENDS 

< RAW 
< > 

MATERIAL SLATE > 
ARKAN,IE.R.M. COST 7.00. 
LOUIS,IE.R.M, COST 7.50, 
AI..ASK.EX.R.M. COST 20.00. 
LABRA,lX.R.M, COST 25.00. 

• COST .80 
< > 

"'CEPL.ANT 
< PROCESSING UNITS > 

,MAX 250. COST ,20 

"ICEPL.ANT RUNNING 
YIELDS 
FUEL..GAS • 
UNI.SOLVENT, 
RES'DUE 

"EGGPLANT .COST .50 

"EGGPLANT RUNNING 
YIELDS 
EXOTlc.L.JQ • 
REJECT 

IEGGPLANT TAKES 

( 

"PROP: BCINDEX. 
STREAM 
EXOTIC.LIQ • 
UNl.SOLVENT. 
SLUE.ovE 

18LENDEXOT 

1 1 .5 • 
10.0 • 

.7 

TAKES 

< > 
ARKAN.IE.R.M. LOUIS.IE.R.M 

.10 

.70 

.20 
< > 

< > 

• 12 
.7'+ 
.1"+ 

ALASK.EX.R.M, LABRA.EX.R.M 

.60 

.'+0 
< > 

fUEL..GAS 

< > 
PRODUCT 8L.ENOS 

SPEC.GR 

1 .2 • 
0.9 • 

< > 
CEXOTIC.LIQ • 

.70 

.30 

• fIX .11 

> 

UNI,SOLVENT 

MAX 120 
MAX 300, MIN 180. 
MAX 100 
MAX ISO 

CALASK.EX.R.M • 
LABRA.t:X.R.M) 

• BLUE,DYE ) . 
BCINDEX "MIN 12 • SPtC.GR QMAX 1 • 1 

ISLENDUNEX 
BLENDING 

UN,I.SOI..VENT. 
REJECT 
RESIDUE 

MAKES 
< > 

UNEXCIT.PROD 

.25 
,'+5 
.30 
< > 

( ACCUMULATE EXCESSES> 
IPOOLlRES1DUE) SENDS RESiDUE TO 

TRuCKS, • COST ,50) 
< > 

"SOLVENT.XES TAKES UNI,SOlVENT 
"BURNING TAKES fUEL.GAS 

"DEPOTl 

< > 
< DISTRIBUTE fINISHED PRODUCTS> 
TAKES EXOTIC.PROD fROM 

UNEXCIT.PROD fROM 
xES.SOL.VENT fROM 
EXCESS,RESID fROM 

(RESID,[XCESS. 
,MAX 30 

8L.ENDEXOT 
BLENDVNEX 
SOL.VENT,XES 
RESIp,~XCESS 
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100 
200 
300 
"00 
SOO 
600 
700 
800 
900 

1000 
1100 
1200 
1300 
1 .. 00 
lSOO 
1600 
1700 
1800 
1900 
2000 
2100 
2200 
2300 
2'+00 
2S00 
2600 
2700 
2800 
2900 
3000 
3100 
3200 
3300 
3'+00 
3S00 
3600 
3700 
3800 
3900 
'+000 
.. 100 
.. 200 
.. 300 
.... 00 
.. 500 
.. 600 
.. 700 
"+800 
.. 900 
5000 
5100 
S200 
SlOO 
5"+00 
5500 
5600 
5700 
5800 
5900 
6000 
6100 
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"OEPOTI 
"SALES,2 

TAKES 

SENOS 
TAKES 

EXOTIC,PROD , 
UNEXCIT.PROO, 
XES.SOLVENT • 
EXcESS.RESIO, 

FDUR,PROOUCT 
,xpTIC,PROP , 
UNEXCIT,pROD, 
XES.SOLVENT , 
EXCESS,RESID, 

< > 

INCOME 
INCOME 
INCOME 
INCOME 
fROM 
TO 
INCOME 
INCOME 
INCOME 
INCOME 
FROM 

~o.o 
15.0 
30.0 
3.0 

35.0 
10.0 
25,0 

3.0 

,MAX 126. 
,MAX 120. 
,MAX 60. 

DEPOTI 
OEPOT2 

,MAX 120, 
,F'X 80, 
,F'IX 20, 

DEPOT2 

, , 

6200 
6100 
' .. 00 
6S00 

< SET 
SENDi 
TAKES 

PIPELINE CAPACITY LIMITATIONS> 

6600 
6700 
6800 
6900 
7000 
7100 
7200 
7300 
7"00 
7S00 .PSEUOONOO£ 

"OEPOTI 
UNEX.PL.CAP ,SOLVE,PL.CAP ,RESlO,PL.CAP 

(UN[X,PL.CAP ,FIX CSOO/~SO • 1) UN£XC1T,PROO, 
SOLVE,PL,CA' ,FIX (SOO/~OO • 1) XES.SOLVENT , 
MESIC,PL,CAP ,F1X (S00/300 • 1) EXCESS,RES10. 
~XOTIC.PROD ),MAX SOO 

7600 
7100 
7800 
7900 
8000 
8100 
8200 
8')00 
8 .. 00 

TAKES CUNEX,PL.CAP ,FIX (22S/200 • 1) UNExelT.PROO, 
SOLVE.PL.CAP ,fIX (22S/17S • 1) XES.SOLVENT , 
REsIO"L,CAP ,FIX (225/125 • 1) EXCESS.RESID, 
EXoTIC,PROD ),MAX 225 

Notes to the listing 

Card numbers: 

400,500: These illustrate the form of simple declara­
tions-a declarative reserved word, followed by a 
colon, followed by a list of identifiers used as 
names of materials. Note that FOUR. PRODUCT 
is a list of four material-names by virtue of the 
MACRO definition on cards 200-300. 

400: NOPOOL tells the compiler not to automatically 
set up a POOL node for the material(s) named in 
the declaration. This implies that arcs carrying 
these materials must have both end points specified 
(see cards 5800-6100 for the FOUR. PRODUCT 
materials). Compare this to cards 2000, 3100, and 
5500 which together describe the handling of 
FUEL.GAS: ICEPLANT "yields" it (to its 
pool), and EGGPLANT and BURNING "take" 
it (from the pool). 

500: The material BLUE.DYE is declared to be an 

additive. This informs the compiler that the 
quantity of blue dye coming into a node (card 
4100) has no effect on material-balance calcula­
tions, but only on quality determinations. 

1600,2400: This is a shorthand statement for applying 
modifiers to the total capacity or throughput of a 
node. Formally, such a statement is interpreted by 
the compiler as a degenerate form of the TAKES 
statement, with the modifiers applying to the set 
of all input arcs to the node. 

3500-3900: This declaration gives, for each relevant 
material, the coefficient to be used in "quality" 
calculations, described in an earlier section. 

4400-4800: This is one of the "totally redundant 
template statements" retained in the language 
because of its familiarity; the MAKES ... 
BLENDIN G statement is a variant of the YIELDS 
statement, used to describe a node which produces 
a single material, by giving the "recipe" for its 
product in terms of its inputs. 



The data-text system-An application language for the 
social sciences 

by D. J. ARMOR 

Harvard University 
Cambridge, Massachusetts 

INTRODUCTION 

The enormous growth of special applications software 
has been the subject of much speculation and debate. 
While many of the developments are natural expan­
sions into new application areas, many computer spe­
cialists argue that applications programming is a prime 
example of the tendency to reinvent the wheel. No 
area receives this accusation more than that of statisti­
cal packages or languages, particularly those developed 
for applications in the social and behavioral sciences. 
A recent study by Hugh F. Cline shows that in 130 
universities which grant higher degrees in these fields, 
there are over 170 such packages or languages in use.! 
This is more than one per university! Noone could 
possibly maintain that all of these systems are unique; 
the duplication of effort has been rampant. 

Now that I have said that, I want to take the other 
side. While I cannot defend outright duplication, I 
want to present some of the reasons why many of these 
developments were necessary and why they represent 
a significant stage in the evolution of computer soft­
ware. In illustrating my argument, I will draw upon 
examples from the Data-Text system, a data processing 
and statistical analysis language developed at Harvard.2 

Although other systems could be used to make the 
same points, Data-Text may represent the most com­
prehensive attempt in this field to date. Besides, since 
I helped to develop it, I know it better than others! 

EARLY DEVELOPMENTS 

One insight into the rationale behind Data-Text and 
other similar attempts can be gained by considering the 
origin of languages like FORTRAN. Why was FOR­
TRAN developed and why did it become so popular? 
All modern computers have had symbolic machine or 
assembler languages since at least the IBM 704 genera-
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tion. Why did the symbolic machine languages fail to 
suffice for all application software, being supplanted 
almost exclusively by FORTRAN for problems involv­
ing numerical computations? In retrospect the answers 
are obvious. First, programming in a machine language 
requires a good deal of detailed knowledge of the in­
ternal structure of the machine; second, the atomistic 
nature of the instruction set means a great deal of pro­
gramming effort even for simple mathematical ex­
pressions-not to speak of the coding required for 
routine input-output procedures. For the engineer or 
scientist with a particular type of mathematical expres­
sion to evaluate, the investment of time and energy in 
learning and programming in machine language was 
costly. FORTRAN and other languages like it solved 
this problem for many· quantitative applications in the 
physical sciences. FORTRAN was relatively machine 
independent (at least by the end of the 1950's) and 
could be learned very quickly by those with some back­
ground in mathematics. Most mathematical formulas 
could be expressed in a fairly natural way, and most of 
the troublesome clerical problems of I/O were handled 
with a minimum of complexity (at least in comparison 
with machine language solutions). In other words, the 
FORTRAN-type languages were "natural" languages 
for those programmers working in numerical mathe­
matical applications. The same can be said of many 
other languages, such as COBOL in the business realm 
and SNOBOL in the field of text processing. 

For many other fields, however, FORTRAN is not a 
"natural" language. In the social and behavioral 
sciences, where mathematical proficiency is not pre­
dominant, a great many statistical analyses are com­
monly used even though their mathematical bases are 
not fully comprehended by the user. Two examples are 
the techniques of regression analysis and factor analy­
sis. The first requires inversion of a matrix of correlation 
coefficients, and the second requires extraction of 
eigenvalues and eigenvectors. Although a competent 
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social scientist can understand the results of these 
analyses, very few actually understand the mathe­
matical techniques which are required to derive the 
results. (In defense of the social scientist, I should 
hasten to add that a great number of physical scientists 
I have known are likewise in the dark.) Even in the 
case of less complex statistical methods, many re­
searchers are not able to provide precise computational 
formulas without careful review of a statistics textbook. 

The result of this is that the social scientist finds it 
difficult to program in a language which requires that 
he provide the mathematical or statistical formulas for 
all of his ordinary analyses. Thus languages like 
FORTRAN, ALGOL, BASIC, PL/I, and COBOL are 
not natural languages for the social scientist. I think 
this argument can be extended to other fields as well 
where standard algorithms exist for data analysis prob­
lems. In these cases, if a language is to earn the label 
"natural," it should embody terms or macros which 
call in these entire algorithms, just as FORTRAN calls 
in a routine in response to a function name such as 
SQRT or LOG. In other words, FORTRAN and similar 
languages are natural languages for the programmer 
who wants to implement a statistical or mathematical 
algorithm, but they are not natural languages for those 
who simply want to apply those algorithms to analyze 
a particular set of data. 

I do not want to give the impression that the only 
limitation of FORTRAN -type languages has to do with 
statistical algorithms. There are a variety of other data 
processing problems which are commonplace in the 
social sciences which can be extremely tedious to pro­
gram in FORTRAN. One example is the problem of 
missing observations. These occur whenever a variable 
cannot be measured for a given subject or some other 
unit of analysis. There are a variety of standardized 
procedures which a social scientist follows to deal with 
this problem but no general language that I know of has 
implemented them. Another problem has to do with a 
variety of farily common transformations which social 
scientists apply to their variables but which do not 
exist in the FORTRAN-type languages. Perhaps the 
most common of these is what we call "recoding" of an 
original measurement. This involves transforming the 
original values of a variable into some arbitrary set of 
new values, as when we want to collapse a continuous­
type variable into one with a small number of values or 
categories. Although these kinds of transformations 
can be coded in a FORTRAN-type language, they can 
frequently lead a fairly lengthy and repetitive program. 
As we shall illustrate, a recoding operation in Data­
Text stands in the same relationship to the necessary 
FORTRAN steps as an algebraic formula in FOR­
TRAN stands in relation to the necessary steps in a 

machine language. The same can be said for a number 
of other transformational capabilities commonly avail­
able in the more popular social science languages. 
Finally, there are a number of other data processing 
and routine clerical problems which are not easy to 
handle without special languages. Included are full 
labeling of variables and their values (or categories), 
input of multiple-punch data, selecting or sampling 
sub-sets of the input data, and controls to classify the 
input data into an arbitrary number of sub-groups. 

The earliest attempts to solve some of these problems 
for the social scientists led to the development of 
"canned" programs. By "canned" program I mean one 
written-usually in FORTRAN-to perform a particu­
lar statistical analysis, but written so that it can be 
used over and over again by different researchers with 
different data. A user prepares "control" or "param­
eter" cards which specify the necessary information 
about his data (e.g., number of variables) and any 
options which are available; the control cards are used 
by the program to read in the data properly and to 
produce the desired results. Canned programs are still 
used widely by social scientists today, and for some 
applications canned programs continue to be the most 
efficient computational solution. 

As canned programs became a popular method of 
computer analysis, collections or "packages" were put 
together at various locations (usually university re­
search centers) and distributed to researchers at other 
locations. The oldest, most well-known and widely used 
of these collections is the BMD series, started by Dixon 
and his associates at UCLA.3 The BMD collection for 
the IBM System/360 contains over 40 programs for 
almost every type of standard statistical analysis found 
in applied statistics textbooks. Another collection for 
the IBM System/360 is the OSIRIS package.4 De­
veloped at the University of Michigan, OSIRIS repre­
sents a significant advance in that the canned programs 
are "integrated" into one large system which recognizes 
a "standardized" data file. A file of data can be de­
scribed and then any number of different statistical 
routines can be requested which use that file. 

The canned program approach still leaves many 
problems unsolved for the social scientist. While canned 
programs have largely solved the problem of knowing 
complicated statistical algorithms, little relief is gained 
for the many other data processing problems which I 
have mentioned (special transformations, missing ob­
servations, labeling, and the like). Moreover, two new 
problems have surfaced. Both of these problems result 
from the fact that most canned program developers are 
not professional programmers, and therefore they are 
usually more interested in the statistical algorithm than 
in program elegance. 



The first problem is that all kinds of arbitrary restric­
tions are placed upon various parameters in the 
problem-the number of variables allowed, the number 
of subjects, the number of values or categories of vari­
ables, the number of analyses, etc. I wonder how many 
hundreds of researchers have had a 110-variable factor 
analysis problem with a program which would accept 
only 100 variables; or a cross-tabulation requiring 60 
cells with a program limited to 50? This would be like 
a FORTRAN programmer being limited to a total of 
5 DO-loops or to arbitrary subscript limits of 50. Of 
course, any language has some limitations, but all good 
compilers do dynamic core allocation so that limits are 
encountered only when available memory is exhausted. 
Most canned program limits are due to programmer 
short-cuts such as fixed dimension statements. 

Second, little effort is given to making the control 
cards "readable" to the analyst in the sense that 
FORTRAN is readable to a programmer. Most control 
cards consist of arbitrary numeric codes in fixed-format 
positions. It is practically impossible to remember the 
set-up procedures from one run to another without 
a program write-up literally in front of you. For the 
data analysts, having to "read" these control cards is 
somewhat analogous to a FORTRAN programmer 
having to read a hexadecimal dump in order to interpret 
the steps in his program. 

THE DATA-TEXT SYSTEM 

The Data-Text system was designed to solve some 
of these problems and limitations of the package ap­
proach. Data-Text is designed to be a "natural" lan­
guage for the social scientist, just as FORTRAN is a 
natural language for those familiar with mathematical 
expressions. In this sense, I think Data-Text represents 
a further stage in the evolution of "problem-oriented" 
computer languages. With Data-Text, the social scien­
tist can request complex data analyses as easily as the 
engineer can write complex formulas in FORTRAN. 
The first version of the Data-Text system was designed 
by Couch and others for the IBM 7090/94 series, and 
it became operational in 1963-64.5 This version became 
widely used at more than 20 universities and research 
centers during the middle 1960s. A substantially re­
vised version of Data-Text has been designed and pro­
grammed for third generation computers and a version 
for the IBM System/360 series became operational in 
the spring of 1971.* 

* The original Data-Text system was supported by grants from 
the National Science Foundation (# GS287 & GS1424). The 
revised Data-Text system was made possible by a grant from the 
National Institutes for Mental Health (#MH15884) and by 
donated computer time from the Harvard Computing Center. 
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It should be mentioned that in the latter part of the 
1960s other computer systems with similar design 
goals appeared. One example is the Statistical Package 
for the Social Sciences (SPSS), created by Nie and his 
associates at Stanford University and the University of 
Chicago.6 Other social scientists have begun experi­
menting with interactive (or "time-sharing") data 
analysis systems, such as Meyers' IMPRESS system at 
Dartmouth College,7 Miller's DATANAL system at 
Stanford,s the ADM INS system at MIT,9 Shure's 
TRACE system at SCD and UCLA,1O the Brooking's 
Institution BEAST,!! and Kuh's TROLL system.12 

The unique aspects of the Data-Text system in rela­
tion to other computer systems is its ability to handle 
very complicated data processing problems and ex­
tremely intricate statistical analyses with a minimum 
of technical knowledge about the computer and a 
minimum of familiarity with statistical formulas and 
algorithms. The requirements for a user are: (1) that 
he have a concrete research problem which demands a 
standard statistical analysis of data; (2) that the data 
are recorded in some systematic format on IBM 
punched cards (or certain other media, such as mag­
netic tape or disc); (3) that he understands the type of 
statistical analysis required for his problem; and (4) 
that he knows the names· of the appropriate statistical 
analysis procedures. Given such a situation, Data-Text 
can be used for defining or transforming input variables, 
for giving them appropriate descriptive labels, and for 
requesting a great variety of different statistical analy­
ses. The variable definitions and statistical analysis re­
quests are made in a flexible, easy-to-learn "natural" 
language which makes heavy use of terms familiar to 
most social science researchers. Data processing features 
include automatic missing observation procedures, in­
put and manipulation of multipunched data, sub­
grouping controls, and many others. 

A sample of the Data-Text language is probably the 
easiest way to introduce this idea and to show how 
Data-Te){t differs from FORTRAN-type languages. 
Assume that a researcher has collected data from a 
group of several hundred college students (the actual 
number is not important). The data might include 
measurements of age, sex, race, father's education, 
family income, college class, an ability test score, ex­
pected work after college, several yes-no questions re­
garding current political-social issues, and a series of 
questions about school activities. We will assume that 
the non-numeric measures (for example, sex) have been 
given codes of some kind (for example, 0 for male, 1 for 
female) and that the data has been punched onto IBM 
cards with two cards for each person. The Data-Text 
instructions shown in Figure 1 define the set of original 
variables, derive some new variables as transformations 
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Col. 1 

*DECK COLLEGE STUDENT STUDY 
*READ CARDS 
*CARD(1-2)FORMAT / UNIT =COL(1-4},CARD =COL(5) 
* AGE = COL( 5- 6/1) = AGE OF STUDENT 
*SEX = COL( 7/1) = STUDENT'S SEX(O = MALE/1 = FEMALE) 
*RACE= ACOL( 8/1) = RACIAL BACKGROUND(B=BLACK/W=WHITE/O=OTHER) 
*INCOME= COL(10-14/1) = FAMILY INCOME 
*CLASS = COL(15/1) = COLLEGE CLASS(l =FRESH/2 =SOPH/3 =JUNIOR/4 = SENIOR) 
*ABILITY = COL(27-28/1) =SCHOLASTIC APTITUDE TEST 
*ITEM(1-4) = COL(31-34(4)/1) = WILLING TO BE DRAFTED (1 = YES/2 =NO)/ 
* APPROVE OF SDS POLICIESO/ 
* LIKE NIXONO/ 
* LIKE AGNEWO 
*ACTIVITY(1-50) = COL(6-55(50)/2) = SCHOOL ACTIVITIES(0=NO/1 = YES) 
*VAR (1)= COL( 9/1) = FATHER'S EDUCATION(1=SOME HS/2=HS/3=SOME COLLI 
* 4=BA/5=BEYOND BA) 
*V AR (2) = COL(21/1) = FUTURE PLANS (0 = GRAD SCHOOL/1 = PROF SCHOOL/ 
* 2 =BUSINESS/3 =TEACHING/4 = OTHER/ 
* 5=DON'T KNOW) 
*VAR(3) = MEAN ITEM(1,3-4) = PRO-ESTABLISHMENT SCALE 
*INDEX= SUM ACTIVITY(1-50) = ACTIVITIES INDEX 
*VAR(4) = 1 IF VAR(1) =4,5 AND INCOME GREATER THAN 20000 = SOCIAL CLASS INDEX 
* (1 =UPPER/2 =MIDDLE/3 = LOWER) 
*OR = 3 IF V AR(l) = 1,2 AND INCOME LESS THAN 10000 
*OR= 2 
*VAR(5) = RECODE(A) VAR(2) = FUTURE PLANS lI(l =SCHOOL/2 = WORK) 
*CODE(A) = (0,1 =1/2-4=2/5 = BLANK) 
*V AR(6) = (ABILITY / AGE) *100 = AGE-GRADED ABILITY 
*CHANGE(1-10) = POSTEST(l-lO) - PRETEST(1-10) 
*WRITE DATATEXT DISC 4 
*COMPUTE STATISTICS(AGE, INCOME, ITEM, VAR(6», SKEW 
*COMPUTE T-TESTS(ABILITY, VAR(3», GROUP BY SEX 
*COMPUTE FREQUENCIES 
*COMPUTE CORRELATIONS(ACTIVITY), TEST 
*COMPUTE CROSSTABS(VAR(2), ITEM BY SEX, RACE, CLASS), CHI SQUARE 
*COMPUTE REGRESSION(ABILITY ON AGE, SEX, VAR(l), INCOME), GROUP BY CLASS 
*COMPUTE ANOVA(SEX BY RACE BY VAR(4», ABILITY 
*START 

Figure I-A sample data-text program 

Col. 80 

* 
* 
* 

* 

* 
* 

* 

of the original set, and request several types of statisti­
cal analyses. (In many cases these instructions are 
punched onto IBM cards, one instruction per card. In 
other instances, they might be lines typed at a remote 
typewriter console.) 

The instructions fall into several types. The in­
struction 

*DECK COLLEGE STUDENT STUDY 

is a header instruction which signifies the start of a set 
of Data-Text instructions and which provides a title 
that will appear on every page of computer print-out. 

The next two instructions relate to I/O operations: 

*READ CARDS 
*CARD(1-2)FORMAT/UNIT=COL(1-4), 

CARD=COL(5) 

cards), while the FORMAT provides information 
about the number of cards per student and some 
special identification fields. The term CARD (1-2) 
indicates 2 cards per subject; the term UNIT refers to 
a field in each card for identifying the unit of analysis 
(such as a subject number); the term CARD refers to 
a field for identifying the different data cards for each 
UNIT. Thus, this example indicates two cards per 
UNIT, a subject number in columns 1 to 4 of each 
card, and a card number in column 5. Although there 
is some syntactic similarity to FORTRAN in these two 
instructions, their effect is quite different. First, no 
looping controls are required around the READ in­
struction; all data cards will be processed automatically 
according to the other operations specified in the pro­
gram.* Second, the FOR1VIAT instruction in this ex-

The READ identifies the mode of data input (punched 
* A special *SELECT ... IF instruction is available for selecting 
sub-sets of the data file; see Figure 2. 



ample only provides information about the number of 
cards per subject and the identification fields; variable 
fields are defined in separate instructions. Moreover, if 
the UNIT and CARD fields are specified as in the 
example, the cards for each subject are automatically 
checked for consistent subject numbers and card se­
quence (taking the first subject as the prototype). 
These checking operations are extremely important for 
some of the large-scale survey research studies. 

The next set of instructions define the variables to be 
used in the statistical analysis requests. For example, 
the instruction 

*SEX= COL(7/1) 
= STUDENT'S SEX(O=MALE/l=FEMALE) 

defines a variable named SEX which appears in column 
7 of card 1 for each subject. It also gives a user-supplied 
descriptive label and, within the parentheses, it de­
scribes the values actually punched in column 7 and 
relates them to user-supplied category labels (e.g., 0 = 
MALE means that O's were punched to represent 
males). The ability to specify labels and values enables 
an analyst to construct a true "machine readable" code­
book for his data set. Moreover, the use of the variable 
and category labels is not confined to the instruction 
listing; they are also used in all computer print-out of 
statistical results which use the variables and/or their 
categories. 

Alphabetic-coded variables can be indicated by pre­
ceding the COL-specification with the letter "A": 

*RACE=ACOL(8/1) 
=RACIAL BACKGROUND 

(B=BLACK/W=WHITE/O=OTHER) 

This definition indicates a variable which was coded in 
column 8 with the letter values B, W, and O. 

Entire arrays of variables can also be defined without 
the use of explicit looping controls, as in the example 

* ACTIVITY (1-50) = COL (6-55 (50) /2) 
=SCHOOL ACTIVITIES 

(O=NO/l= YES) 

In this case the variable and value descriptions will 
apply to all 50 variables in the array. The example 
*ITEM ( 1-4) shows how several variables can be de­
fined with the same value descriptions but different 
variable labels. 

The example in Figure 1 illustrates several of the 
special transformation capabilities of Data-Text. While 
the logical and arithmetic transformations used to 
create VAR( 4) and VAR(6) resemble those available 
in most" languages, the special functions MEAN, SUM 
and RECODE used in defining V AR(3), INDEX, and 
V AR (5) are unique. The MEAN and SUM are "sum-
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mary" functions which operate across the variables for 
a given subject, so that an average score (for the 
MEAN) and a count (for the SUM) are derived for 
each subject in the sample. Again, no looping controls 
are necessary for these operations. 

The RECODE function embodies a great deal of 
power. It works in conjunction with a code statement 
(*CODE(A) in the example) which specifies the re­
coding equations. Each equation consists of a series of 
original values together with the new value they are to 
be assigned in the transformed variable. Thus, only two 
instructions are required to transform one set of values 
into any combination of new values. Although this 
kind of operation is programmable in FORTRAN, it 
requires a great many assignment, IF and GO TO 
statements. 

One of the equations in the *CODE statement is 
5 = BLANK. The term BLANK is a special constant 
in Data-Text which denotes a missing observation. 
This means that a subject with a score of 5 in VAR(2) 
will be treated as missing in V AR (5). BLANK value8 
are automatically assigned to variables for subjects 
with blank columns in the input data fields. That is, if 
columns 5 and 6 in card 1 are blank for a given subject, 
then a BLANK value is automatically assigned to the 
AGE variable for that case. Regardless of where 
BLANK values come from, they are handled automat­
ically in all transfomation and statistical routines. A 
series of default rules exist which are appropriate to the 
type of transformation or the type of statistical pro­
cedure. For example, BLANK's are ignored by the 
MEAN function in the VAR(3) instruction, so that 
the average is taken only of non-BLANK values. In the 
VAR(6) instruction, however, which uses a regular 
arithmetic expression, the opposite is true: if either of 
the arguments ABILITY or AGE is BLANK for a sub­
ject, then the result is BLANK. In most of the statisti­
cal routines indicated by the COMPUTE instructions, 
the default is to ignore BLANK values; but options 
exist which will do other things (like excluding a subj ect 
from the analysis if any variable has a BLANK value) . 
This automatic processing of missing observations has 
proved to be an extremely valuable feature in social 
science applications. 

Before turning to the statistical controls, another in­
struction should be noted. The instruction 

*CHANGE(I-10) =POSTEST(I-10) 
-PRETEST(l-lO) 

illustrates what we call a "list" expression. The sub­
traction operator is applied element-wise to the two 
argument lists, so that each variable in the CHANGE 
array is the difference between the POSTEST and 
PRETEST variable in the corresponding list position. 
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*DECK COLLEGE STUDENT STUDY-SECOND RUN 
*READ DATATEXT DISC 4 
*LEVEL =ORDER ABILITY = ABILITY LEVEL(0-9 =LOW /10-24 = MIDDLE/OVER 24 =HIGH) 
*SELECT UNIT IF SEX = 0 
*COMPUTE CROSSTABS(LEVEL BY RACE, CLASS), CHI SQUARE 
*START 

Figure 2-Using a data-text file 

Lists of variables can be combined into any arbitrary 
arithmetic expression, and the expression is evaluated 
for each element in the list. This provides a very power­
ful transformational ability without the necessity of 
looping controls. 

The COMPUTE instructions are commands for 
statistical analyses on the variables defined in the pre­
ceding instructions. The statistical procedure is re­
quested by name, such as T-TEST or CROSSTAB or 
CORRELATION. Generally speaking, the only pa­
rameters required are the lists of variables to be in­
cluded in the analysis and any special options which are 
desired. The instruction 

*COMPUTE STATISTICS(AGE, INCOME, 
ITEM, VAR(6)), SKEW 

will compute means, standard deviations, and the 
number of nonmissing observations for each variable in 
the list across the whole sample of students; the option 
SKEW will also cause a measure of skewness to be 
computed. The instruction 

*COMPUTE CORRELATIONS(ACTIVITY), 
TEST 

will cause a 50 by 50 matrix of product-moment corre­
lations to be computed for the array ACTIVITY(1-50), 
and the TEST option will result in a statistical test of 
significance for each correlation. 

While there is some resemblance here between the 
COMPUTE instruction and a subroutine call in many 
languages, the analogy cannot be pushed too far. First, 
the "arguments" include reference only to the variable 
names and not to the many other quantities and arrays 
which are used by the routine, such as variable labels, 
value description, number of categories, and so forth. 
Second, and more important, some of the statistical 
requests have special key words embedded in the vari­
able list which must be encoded by a special compiler 
tailored to each statistical procedure. 

For example, in the instruction 

*COMPUTE REGRESSION (ABILITY ON AGE, 
SEX, VAR(l), INCOME), 
GROUP BY CLASS 

the key word ON indicates the independent variables 
(AGE, SEX, VAR(l), INCOME) on which the de­
pendent variable (ABILITY) is. to be regressed. The 

G ROUP option indicates the analysis is to be carried 
out on the four college class subgroups defined by the 
CLASS variable. In the COMPUTE ANOVA In­
struction, * 

*COMPUTE ANOVA(SEX BY RACE BY 
VAR( 4)), ABILITY 

the key word BY indicates a 3-way factorial analysis 
of variance design with ABILITY as the dependent or 
criterion measure. In other words, the COJ\1PUTE 
instructions are also expressed in a natural language 
which contain operators and a syntax meaningful to 
each particular analysis. 

All of the statistical routines are almost literally 
without limitations. Correlation matrices are not 
limited to available core; a cross-tabulation can be 
n-ways, with no limit to n; a variable used for classifi­
cation purposes in a cross-tabulation, an anova, or in 
the GROUP BY option can have any number of cate­
gories; and if all the analyses requested will not fit in 
available core, the data is automatically saved in in­
ternal form so that repeated passes can be made over 
the data to satisfy all the requests. These features re­
duce the frustrations often encountered with other 
statistical packages which have established arbitrary 
parameter limitations. 

It is rarely the case that an analyst will obtain all of 
his statistical results in a single run. Sometimes the 
same data set will be analyzed several dozen times. 
Data-Text offers a method for saving all of the defined 
variables, labels, and data in a standardized binary 
file. Since no compilation, transformation, and data 
conversion needs to be done, the time required to 
process this file is substantially less than the time it 
takes to process the original raw data. * In our sample 
program, the instruction 

*WRITE DATATEXT DISC 4 

creates a standardi~ed file for this set of data. 
Input of a DATATEXT file does not preclude the 

use of the full transformational language. New vari-

* The term ANOV A is a fairly standard abbreviation for "analysis 
of variance." 
* The savings range from 50 percent to 90 percent of CPU time, 
depending upon the size of the data file (the larger the file, the 
greater the savings). 



NIMH DRUG STUDV DATA 

LISTING OF CONTROL CA~DS 

*OECK NIMH DRUG STUDY DATA 
"REAO CARDS 
"CARD fORMAT/ UNIT= COL< 1-4). CARD= COL< 5-6) 

*" "* SYMPTOMS (1-14) ARE PRE-TREAT~ENT ~ATlNGS OF SCHIZOPHRENIC SYMPTOMS. 
"" THEIR RANGES ARE FROM 1-8 TO 1-4S. WHERE A HIGH SCORE INDICATES A MORE 
.. SEVERE RATING. 

4 "SYMPTOM (!) 
5 "SYMPTOM (2) 
6 "SYMPTOM (3) 
7 "SYMPTOM (4) 
8 "SYMPTOM (S) 
9 "SYMPTOM (6) 

10 "SYMPTOM (7) 
11 "SYMPTOM (8) 
IZ "SYMPTOM (9) 
13 "SYMPTOM (10) = 
14 "SYMPTOM (11) = 
15 "SYMPTOM (lZ) = 
16 "SYMPTOM (13) = 
11 "SYMPTOM (14) = 

COLl7-8) = HOSTILITY 
COLl9-10) = DISORIENTATION 
COLlll-IZ)= GUILT 
COL< 13-14) = AUDITORY t'ALLUCINATION 
COLl IS-16) = AGITATION 
COLl 17-18) = SLOWED SPEECH 
COL< 19-Z0) = DELUSIONS OF GRANDEUR 
COL (ZI-Z2) = INDIFFERENCE 
COL (23-24) = INCOHERENT SPEECH 
COLl2S-26) = PRESSURE OF SPEECH 
COL<27-28) = PERSECUTION 
COLl 29-30) = HEIlEPHRENIC 
COl( 31-32) = NON-AUDITORY HALLUC IN. 
COL (33-34) = MEMORY DEFECT 

"" THE FOLLOWING TWO VARIABLES ARE PRE-TREATMENT RATINGS OF OVER-ALL 
"" ILLNESS. THE V ARE SCORED SO THAT A 7 MEANS MOST SICK 

"" 18 "ILLNESS(!)= COLlSO)= DOCTORS ILLNESS RATING (I-7=RANGE) 
19 "ILLNESS(2)= COLlS4)= NURSES ILLNESS RATING (I-7=RANGE) 

"" "" THE IMPROVEMENT RATINGS ARE TRANSFORMED SO THAT A 7 MEANS MOST IMPROVED 

"" 20 "RATlNG(Jl= 8-COL(52)= IMPROVEMENT--DOCTORS (I-7=RANGE) 
21 "RATlNG(2) = 8-COL(56) = IMPROVEMENT--NURSES (I-7=RANGE) 
22 "DRUG = COLlS7)= DRUG TREATMENT (I=PLACEBO/2=CHLORPRO./3=FLUPHEN./4=THIORID.) 
23 "SEX = COL<S9) = (1=MALE/2=FEMALE) 
24 "CLASS= COL< 64) = SOCIAL CLASS (J=UPPER/2=MIODLE/3=LOwER MIDDLE/4=LOwER) 
2S "COMPUTE STATISTICS 
26 "CD'IPUTE ANOVA (DRUG BY SEX), RATING (Jl 
27 "CO"PUTE ANOVA (RATER IlY DRUG)' REPEATEO MEASURE (Jl 

"FACTOR (RATER) = (DOCTOR/NURSE) 
"MEASURE (I) = RATING (1-2) = IMPROVEMENT RATING 

28 "START 

Figure 3-Sample output from a data-text run 

abIes can be derived from existing variables just as in 
a regular run. Figure 2 shows a run using the DATA­
TEXT file created in the first example. A new variable, 
LEVEL, is derived by collapsing the existing variable 
ABILIT Y using the special collapsing function 
ORDER. Some new cross-tabulations are requested, 
and the SELECT instruction will restrict processing to 
the sub-group of males. It is clear from this example 
that using a DATATEXT file results in a much shorter 
and simpler program. 

NIMH DRUG STUDY DATA 

BASIC STATISTICS 

VARIABLE DESCRIPTION NAME MEAN SO N 

HOSTILITY SYMPTOM (1) 13.590 9.086 2S6 
DISORIENTATION SYMPTOM(2) 1.431 1.216 256 
GUILT SYMPTOM(3) 12.413 1.181 256 
AUDITORY HALLUCINATION SYMPTOM (4) 1.539 5.089 256 
AGITATION SYMPTOM(S) 18.684 8.620 256 
SLOWED SPEECH SYMPTOM(6) 14.293 9.453 256 
DELUSIONS OF GRANDEUR SYMPTOM(7) 4.134 1.492 256 
INDIFFERENCE SYMPTOM(8) 6.121 4.599 256 
INCOHERENT SPEECH SYMPTOM (9) 2.189 1.112 256 
PRESSURE OF SPEECH SYMPTOM<lO) 10.820 1.401 256 
PERSECUTION SYMPTOM (11) 13.021 5.814 256 
HEBEPHRENIC SYMPTOM (12) 3.535 2.091 256 
NON-AUDITORY HALLUCIN. SYMPTOM (13) 2.387 1.060 256 
MEMORY DEFECT SYMPTOM (14) 2.258 2.126 256 
DOCTORS ILLNESS RATING ILLNESS (1) 5.213 0.914 2S6 
NURSES ILLNESS RATING ILLNESS (2) 5.230 0.815 256 
IMPROVEMENT --DOCTORS RATING(ll 5.680 1.141 256 
IMPROVEMENT--NURSES RATING(2) 5.46S 1.144 254" 
DRUG TREATMENT DRUG 2.539 1.105 256 

SEX 1.500 0.501 256 
SOCIAL CLASS CLASS 2.138 1.065 252" 

TOTAL NUMBER OF UNITS ACCEPTED 256 

Figure 3b 
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NI"H DRUG STUDY OAT A 

T>lU-WAY STATISTIC5 fO~ RATING!I) 

DRUG 
lJRUG TREATMENT 

PLACEt:lO 

CHLORPRO. 

FLUPHEN. 

THIORID. 

MEAN 
EFFECT 

Su 

',EAN 
EFfECT 

5iJ 

>1£AN 

EFFECT 
SI) 

t-1ALt 
1 

Sol i:> 
0.2/)/1 
1.107 

26.000 

'>. '>0[' 
-ro.143 

n."29 
34.000 

5.Btl9 
-0.077 

0.979 
310.000 

H.MALE 
2 

I 
I 

4.b97 I 
-0.2"8 I 

1.':>91 I 
33.uOO I 

I 
5.903 I 
00143 I 
0.901; I 

31.000 I 
I 

b.lbl I 
u.077 I 
0.8;>0 I 

31.uOO I 
I 

,·'E.A,'J 5.931< 6.152 I 
EFFECT -').04" O.041l I 

S,l 0.'114 0.-.06 I 
" 32.000 33.(01) I 

RO" 
MAR('INALS 

4.-'0b 
-0.763 

5.702 
0.032 

b.02':> 
0.356 

6.0,+5 
fJ .375 

-----------------------------------------------------1-----------
COLUMN MARGINALS MEA'" 

EFFECT 
':>.610 

-0.0S-. 

J 
S.72'l I 
0.0"9 I 

':>.669 

MA~GINALS A~E U"'wEIGHTED AVE~AGE" OF CELL MEANS. 

Figure 3c 

As I have noted, the use of labeling specifications 
illustrated in Figures 1 and 2 is not confined to a pro­
gram listing. All of the Data-Text statistical routines 
use the labels to produce readable output. Since the 
sample programs were hypothetical, we cannot show 
output for them. However, Figure 3 illustrates partial 
output from an actual run using real data. The Data­
Text program which defines the variables and requests 
the analyses is shown on the first page of output. * The 
remaining pages show the output resulting from the 
STATISTICS and ANOVA instructions. 

NIMH DRUG STUDY DATA 

UNWEIGHTED MEANS ANALYSIS OF VARIANCE TABLE FOR RATING!!) 

CLASSIFYING FACTO~S 
DRUG URUG TREATr-1ENT 
~Ex 

UNIT SU~JECTS OR UNITS Of ANALYSIS 

C:;OURCE SUM Of SQUARES MEAN SQUARE 

~~~G 54.012 3 18.004 
DRUG X SEX 

0.881 I 0.881 
UNIT 

&.383 3 2.128 
~70. 700 248 1.092 

TOTAL 331.Y76 1.302 

AN ASTERISK (*) MARKS TtiE EFFECT USED IN TE.STING THE PRECEDING EffECTS 

256 UNITe; WERE READ IN FO~ THIS ANALYSIS. 
256 UNIT5 WERE USED IN THIS ANALYSIS. 

NOTE:. THE SUMS OF SQUARES AH:E CALCULATED ASSUMING ALL CELL COUNTS EQUAL 

Figure 3d 

F-TEST SIGNIFICANCE 

16.494*.* UNDER 0.001 
0.807 0.370 
1.949 0.123 

NOT TESTED 

31.74 (THE HARMONIC MEAN 

Of" CELL NtS) 

* The instructions which begin with double asterisks (**) are 
comment cards. 
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LIMITATIONS OF THE DATA-TEXT 
SYSTEM 

While a computer system may look good on paper, 
any real implementation always involves sacrifices and 
compromises. Some of the more obvious limitations and 
deficiencies involve the actual number of features 
which are available. Our investment of time and energy 
in making certain features as flexible as possible meant 
that other features could not be developed. In the 
transformational language, for example, there are no 
DO-loop and variable subscript capabilities. While the 
list expressions and summary functions available in 
Data-Text make these features less crucial than in 
other languages, on occasion a very complex transfor­
mation is desired for which these controls would be 
useful. Perhaps the best way to solve this would be to 
permit a subroutine call to a regular FORTRAN rou­
time. The addition of such a feature would substantially 
enhance the transformational power of Data-Text 
(or any other social science language). 

On the statistical side, we have confined the system 
to what might be called "standard" statistical routines 
that enjoy a wide usage in the social sciences. Some of 
the packaged program collections mentioned earlier 
(BMD, OSIRIS) offer many more statistical rout~nes 
(discriminant function analysis, canonical correlatIOn, 
Guttman scaling, etc.). This limitation is not a fatal 
one, however, since in Data-Text it is possible to write 
out a new transformed data set which can be fed into 
these other routines. But it would be more convenient 
to have all statistical analysis within the same inte­
grated system. * 

One of the major goals of the revised Data-Text sys­
tem is machine independence. Therefore, almost all 
coding was done in a standard subset of FORTRAN 
IV. This fact coupled with the heavy overhead common 
to all large systems means that Data-Text is fairly 
slow and bulky. The load module requires about 200 
tracks of an IBM 2314 disc, and although it has been 
extensively overlaid, the minimum region size is about 
200K (250K is sufficient to run most jobs). Regarding 
speed, Data-Text is far more expensive to run than a 
FORTRAN program written to perform the same 
specific task. For example, the run illustrated in Figure 
3 required 637 accesses and 20 seconds of CPU time on 
an IBM 360/65. In determining cost effectiveness, of 
course, one must take into account the time to do the 
programming. An argument about the cost of Data-

* The Cambridge Project under way at MIT and Harvard 
represents one very comprehensive attempt to do this on a 
time-sharing system. 

Text versus FORTRAN is not dissimilar to the same 
one about FORTRAN versus assembler language. 

Another implication of machine independence is 
that we were confined to a basic subset of special sym­
bols. This is one of the reasons (although not the only 
one) why our syntax may look strange to some lan­
guage designers. The symbols = ) / ( are used heavily 
as separators and sometimes with different meaning. 
Slashes mean division in arithmetic statements, but 
they are also used to separate di fferent category la bels 
and recoding transformations. * Another reason for 
"strange" syntax has to do \vith maintaining upward­
compatibility with the original Data-Text system. In 
the original system there was no *START instruction 
to separate instruction cards from data cards; instead, 
instructions were recognized by an * in column 1. Since 
we tried to keep the revised version compatible, we 
inherited this feature. 

COMPARISON WITH OTHER SYSTEl\1S 

I have noted that there are other systems developed 
for social science data analysis 'which are similar to 
Data-Text. Accordingly, there is a great deal of interest 
in the potential user community in the differences 
among the systems. While there is not sufficient room 
to present a detailed comparison here, some of the 
major differences can be summarized. I must state at 
the outset that I am not an unbiased observer in this 
regard, and knowledgeable users may well have differ­
ent opinions. 

Since Data-Text was developed primarily as a batch 
system, the biggest differences are with interactive 
systems. We can take Il\1PRESS7 as a popular repre­
sentative. The main advantage of Il\1PRESS is that 
its command structure assumes that a student or re­
searcher is in front of a console requesting one kind of 
analysis at a time. The result is that a great deal of 
communication can occur to help guide the analysis. 
This is extremely valuable for teaching purposes. For 
the researcher doing large-scale runs on his own data, 
however, most time-sharing systems (including IM­
PRESS) lack a variable definition and labeling capa­
bility which works on raw data. The raw data is put 
into a standardized, labeled form as a separate step 
(and without a language); in Data-Text this step is 
integrated with the transformational and statistical 
language. Also, most time-sharing systems are under­
standably less concerned about fixed parameter limits. 

* Commas could not have been used without making certain 
expressions look confusing; for example, consider (1 = 2/2, 3, 
5 = 1) on a CODE statement. 



Space is generally at a premium, and it is not uncom­
mon to find fairly low limits on the number of cells in 
a table, the number of variables in a regression, and 
so forth. 

The package collections such as BMD3 and OSIRIS4 
are also quite different from Data-Text. For one thing, 
they offer many more statistical or analytic routines 
than Data-Text. Also, since they are really sets of 
individual programs, there is no system overhead and 
jobs can generally be executed in a smaller region and 
with much less CPU time than the same jobs in Data­
Text. On the other hand, the lack of integration means 
that a lot of information has to be repeated for each 
separate analysis; that the control cards for different 
routines often have different syntax; and that, like 
time-sharing systems, variable definitions and trans­
formations using raw data comprise a step separate 
from the analysis. 

The system most similar to Data-Text is SPSS. Both 
are batch-oriented; both are integrated so that variable 
definition, transformation, and statistical analysis in­
structions are given in the same program; and both 
overlap considerably in their analytic routines. 

Aside from syntax, the major differences in the trans­
formational language have to do with speed versus 
power. Unlike Data-Text, SPSS does not have list ex­
pression or summary function capability, and it does 
not handle missing observations automatically in all 
variable transformations. This means that a SPSS pro­
gram will generally require many more statements 
than Data-Text if there are conditions which require 
these features. On the other hand, for simple problems 
which do not need these features SPSS will take much 
less CPU time. 

While analytic routines such as cross-tabulation, 
regression, and factor analysis are fairly similar in 
both systems, SPSS alone has Guttman scaling, partial 
correlations, and histograms. Data-Text alone has 
scatterplots, t-tests, and a generalized analysis of vari­
ance routine; the latter makes it possible to request just 
about any kind of analysis of variance design with a 
simple language tailored to this statistical procedure. 
Also, the Data-Text cross-tabulation routine will 
handle multivalued variables which can arise from 
multiple-choice response categories in a survey (it can 
also read in and transform multiple-punched cards). 
A more important difference for some researchers 
may be the parameter-free character of the Data...;Text 
routines. The size of the matrix for the Data-Text 
correlation and factor analysis routines is not limited by 
available memory. This means that even in relatively 
small work space (e.g., 70K) a 500-by-500 (or one of 
any size, for that matter) correlation matrix or factor 
analysis can be computed. 

The Data-Text System 341 

THE IBM SYSTEM/360 IMPLEMENTATION 

A brief amount of information about the imple­
mentation of Data-Text will supply perspective. Data­
Text is a "compiler/interpreter" system programmed 
largely in ANSI FORTRAN IV on the IBM System/ 
360 and 370 (a version is also underway for the CDC 
6000 series). * During the compile phase the variable 
definitions and transformations are compiled into an 
intermediate language, and the statistical COMPUTE 
requests are encoded into sets of internal signals. Dur­
ing a second phase, the intermediate language is oper­
ated on by an interpreter for each unit of analysis to 
produce the final variables for the statistical routines. 
In addition, this set of variables is passed to each of the 
requested statistical routines for accumulation of the 
necessary quantities according to the encoded signals 
(e.g., sums, sums of squares, etc.). In the third and 
final phase each statistical routine computes and prints 
out their respective results using the accumulations 
from the second phase and the encoded signals from 
the compile phase. 

The avoidance of fixed parameter limits in statistical 
routines is achieved in several ways. First, if there are 
more COMPUTE requests than there is room in avail­
able memory to accumulate the necessary quantities, 
then the data for the variable in question is automati­
cally saved in a special file and subsequent passes are 
made over the file until all statistical requests are satis­
fied. Second, the programs for each statistical pro­
cedure are written using "dynamic" core allocation. 
That is, all accumulation arrays are linear, and sub­
scripting is accomplished by use of linear subscript 
functions. Therefore, each statistical routine will use 
only as much space as is absolutely necessary for the 
analysis requested. Finally, certain statistical routines 
are programmed to use scratch data set space if neces­
sary to process a request that will not fit in available 
memory. For example, the factor analysis routine will 
compute and save a correlation matrix in "pieces" if the 
whole matrix does not fit in available memory; the 
factoring is likewise computed in a iterative procedure 
which processes successive "pieces" of correlation 
matrix. 

SUMMARY AND CONCLUSIONS 

I began by stating that while there has been a lot of 
duplication of effort in the field of social science soft­
ware, much of it was necessary for the normal develop-

* Major parts of the non-statistical systems design and program­
ming has been carried out by Cambridge Computer Associates, 
Cambridge, Massachusetts. 
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ment of the field. Perhaps that claim can be better 
understood now. The standard languages distributed 
routinely by the hardware manufacturers did not meet 
many of the special statistical needs of social and be­
havioral scientists. The result was that almost every 
university computing center developed a package of 
canned programs to meet these needs. As the solutions 
became somewhat standardized, it became possible to 
develop more comprehensive languages like Data­
Text and SPSS. By combining procedures for many 
different data processing tasks into one integrated lan­
guage, these systems offer users considerably more 
power and convenience. 
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LSI-Implications for future design and architecture 

by S. F. DENNIS and M. G. SMITH 

IBM Thomas J. Watson Research Center 
Yorktown Heights, N ew York 

INTRODUCTION 

We attempt to justify a number of ways in which we 
believe LSI is most likely to affect systems design and 
architecture. It is not only the physical componentry 
of systems that will undergo change, but also our think­
ing, as an industry, about the goals, methods, uses and 
people associated with data processing. LSI will enlarge 
the scope of computer usage, while simultaneously re­
ducing and altering the human effort required to install 
and use systems. 

More specifically, we will review the major factors 
that motivate and limit the use of LSI. We will examine 
how LSI will change the distribution of costs in systems, 
and thereby change our present priorities in design and 
architecture. We will mention some general hardware 
functions, and as an illustration of some of these, we will 
explore how hardware and software might be structured 
in a large-scale teleprocessing system in the future. 

WHY IS LSI EXCITING? 

LSI takes many forms, directed to both logic and 
memory. For our purposes, it is hundreds and thousands 
of circuits or memory cells per chip. LSI is usually 
implemented via semiconductor technology, e.g., bi­
polar or field-effect technology (FET), but conceptually 
could include the magnetic "bubble" technology. 

Probably the most interesting property of LSI is its 
potential cost. The trade and engineering literature 
reflects a pattern1 ,2,3 which can be reduced to a crude 
rule-of-thumb cost model. It assumes that the level of 
integration chosen at any given time is such as to pro­
duce a modest chip yield' at a cost comparable to the 
cost to package that level of integration. * We will 

* Slices of silicon, called wafers, have patterns of hundreds or 
thousands of circuits or memory cells which, when the wafer is 
diced, become chips. These chips are first packaged, typically one 
to a package, and subsequently interconnected by higher-level 
packaging into logic or memory subsystems. 
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calibrate our rule-of-thumb model at the $0.0003/ 
memory cell (bit) recently proj ected for the field-effect 
transistor random access memory (FET RAM) by Bob 
Noyce of Intel. 3 (The authors also believe this is pos­
sible.) A plausible "good" wafer cost is projected to be 
somewhere around $25. (A "good" wafer is one that 
passes quality control tests.) Ten good chips might be 
an acceptable yield per wafer. 

We conjecture that LSI costs will break down as 
follows: 

Chip Costs: 

$25/wafer 
$2.50/chip. 

10 good chips/wafer 

The part number cost, i.e., the cost to generate and 
handle a different part type, ** must also be included. 
Thus, assuming comparable a packaging cost, and a 
part number generation cost term for "N" parts, the 
overall chip part cost is: 

part number cost 
$2.50/chip+$2.50/chip package+ N 

Therefore, the cost of a circuit, assuming n circuits per 
chip, is: 

1( part number cost) 
~ $5.00+ N 

By selecting a part number cost, introducing relative 
densities for the various technologies and the type of 
part (i.e., logic, Read-Only Memory [ROM], Random 
Access Memory [RAM], etc.), and estimating produc­
tion quantities, we can project the costs which form the 
basis for our considerations. 

First, we examine part number cost. If this cost is 
high, then LSI designs for all but high production parts 

** The part number costs are those costs attributed to the 
uniqueness of a part, starting after the logic design and con­
tinuing through the fabrication, testing and handling of the part. 
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TABLE I-Postulated Device Costs 

Semiconductor 
Hardware 

ROS 
RAM (FET) 
RAM (Bipolar) 
Logic (FET) 
Logic (Bipolar) 

Mfg. Cost Per Circuit or Cell in Cents 
Number of Parts per Part Number 

Circuits 
or Cells 

Per Chip 10 100 10,000 

64,000 0.16 0.023 0.008 
16,000 0.66 0.09 0.032 
4,000 2.6 0.38 0.13 
2,000 5.3 0.75 0.25 
1,000 10.0 1.5 0.5 

will be questionable or prohibitive.4 ,5 This might in­
spire novel design approaches in which like parts could 
be used. On the other hand, we believe that design 
automation techniques will bring part number costs 
eventually to something like $1000, as opposed to tens 
of thousands of dollars in the past. The pressures to 
make LSI a tool of the designer rather than his master 
will certainly bring this about. 

The next step is to estimate densities. For example, 
in random access memory, FET designs have been re­
ported with 4000 cells per chip. In recent years, inte­
gration levels have more than doubled every year, and 
while obstacles in photolithography and packaging 
certainly exist, there are at least several more doublings 
likely. (Further, the densities used below are not the 
most optimistic estimates in the industry.) 3 Based 
upon a $1000 part number cost and the rule-of-thumb 
formula given above, we might expect to see the follow­
ing costs of LSI manufacture (Table I) : 
These costs could be thought of as representative of 
maximum yield-density configurations in that pushing 
performance in any of the five hardware categories 
would result in higher costs: higher performance logic 
or memory variations might cost considerably more. 
In addition, not all components could be expected to be 
produced in the same quantities; we would expect to 
see RAM components produced in very high quantities, 
whereas logic components would usually be produced in 
small quantities-a notable exception being logic for 
use in terminals. 

IMPLICATIONS FOR SYSTEM COMPONENTS 

What do these costs mean to CPU implementation? 
It has been estimated that there are around 100,000 
digital processors in use today. Since most processors 
are small, let us suppose that there are about 5000 
circuits and 20,000 bytes of main memory per machine. 
For today's processors with tomorrow's manufacturing 

costs of 0.5¢ a circuit and 0.03¢ per bit, the total logic 
and memory requirements for 100,000 processors would 
cost only $2.5 million for logic and only about $5 
million for memory. Additional perspective is gained 
by examining what these costs would do to a "typical" 
large system. In Table II, vve define a hypothetical 
contemporary system and apply costs to the various 
components typical of those in industry today. Then 
we reprice these components in terms of the conjectured / 
LSI prices and our best guesses about the other com­
ponents.5 Smaller reductions are assumed in other than 
memory and logic costs, since we do not foresee tech­
nological breakthroughs in those costs. 

Although the late 70's cost of some of the key com­
ponentry could be one-fiftieth that of today's cost, the 
overall cost ratio (today:late 70's) is about 6 to 1. With 
peripheral equipment added in, the ratio might be 
more nearly 3 : 1. 

Cost of ownership 

But this view ignores non-hardware expenses. If we 
look at system cost as classic "cost of ownership" 
(Figure 1), we see that the static costs of planning, 
programming and operations bring the cost reduction 
to only 28 percent. Of course, 28 percent is not to be 
callously ignored. 

However, even "cost of ownership" is not the total 
cost. For example, data acquisition, its conversion to 
machine-readable form, and preparation of machine 
output for an ultimate consumer's use may cost a sub­
stantial amount in comparison with "cost of owner­
ship." Further, the increasing complexity of our present 

TABLE II-A Hypothetical Large Processor 

Today Late 70's 

Percent of Percent of 
System System 

Cost Cost Cost Cost 

Main Memory $120K 32 $ 2.7K 4 
1M byte 

Special 40K 11 2.0K 3 
Memories 

Logic 70K 19 1.2K 2 
Special Circuits 25K 7 1O.OK 15 
Higher Level 35K 9 1O.OK 15 

Packaging 
Power Supplies 40K 11 20.0K 30 

& Cooling 
Other 40K 11 20.0K 30 

$370K ,,-,100 $65.9K ",100 



systems design is adding to the costs of installing, ex­
tending and maintaining systems and of adding new 
applications. So, even the 28 percent is an overly 
optimistic estimate. 

Cost of terminals 

Since terminal costs will become steadily more im­
portant, we need to try to forecast them. 6 We define a 
hypothetical terminal, in this case a display terminal,7 

and assume the hardware required, along with prices 
retrieved from trade journals, circa 1970. Again, by 
applying our rule-of-thumb LSI projections to LSI 
parts, and lesser reductions to other components, we 
have approximately a 3-to-1 reduction, as shown in 
Table III. 

Clearly, significantly more logic and memory func­
tion could be supplied at a modest additional cost, 
providing the user with more terminal function per 
dollar, rather than merely with lower cost components 
per se. 

GENERAL SYSTEMS IMPLICATIONS OF 
LSI COSTS 

It is evident that LSI moves the major cost compo­
nent of computer systems away from CPU-Memory 
and toward other system components. What effect 
should this have on our techniques? Novel systems or 
architectural approaches probably are now more fea­
sible, but conventional approaches are also greatly 
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Figure I-The usual costs of ownership 
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TABLE III-Display Terminal Cost Conjecture 

CRT Head $ 75 $ 60 
Character Generator 50 2 
Logic (1200 Circuits) 240 6 (.5¢/ckt) 
Storage 10K 90 5 (.05¢/cell) 
Special Circuits 100 50 
Higher Level Packaging 50 25 
Power 200 80 
Keyboard 150 80 
Other 145 86 

TOTAL $1100 "'$400 

enhanced. Evolutionary changes are certainly easiest 
to project-but also should be expected. As we see it, 
the general implications are these: 

I nterface capabilities-LSI gives us the opportunity 
to use low-cost logic and buffers for functional modu­
larity and standardization. These features will improve 
ease of designing, installing, expanding, servicing and 
using systems, and will greatly increase flexibility. But, 
as always, there will be bottlenecks (e.g., response 
time) which can limit the number of functional inter­
faces-or require certain bypasses. However, providing 
a degree of universality to system components gives us 
the opportunity to build more components alike. This 
helps build up quantities per part number and aids in 
limiting the proliferation of development efforts. Such 
universality requires additional logic, because a part 
number has to be more versatile, but it is of benefit in 
reducing development costs. 

Memory/logic clocking implications-One potential 
effect of LSI is the opportunity for design simplifica­
tion afforded by a machine with equal memory and 
logic clock cycle times,8 such as was the case in the days 
of tube computers. This possibility comes from using 
the faster bipolar memory (or a bipolar "cache" mem­
ory with additional slower memory), or smaller semi­
conductor memories which can be overlapped to gain 
speed with little penalty in cost. However, the access 
time is a higher percentage of the total cycle time than 
in core memories, leaving a smaller percentage for ad­
dress generation or any logic operations on the accessed 
data.9 To offset this requires relatively faster logic if 
the same functions are to be retained. An alternative is 
to limit the number of levels of logic, using higher 
memory speeds and simpler architecture. Either of 
these alternatives limits the economies of scale in going 
to higher performance machines. Of course, the option 
to not exploit the full memory speed-cost p::>tential re­
mains. The trade-offs are between speeds of logic and 
speeds of memory. 
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Interaction Among Costs, Task Management and 
Availability: 

The Era of Multi-processors 

1. Costs-At any technological point in time, there 
is an optimum processor size. The old rule that 
"bigger and faster" means "greater performance 
per dollar" does not hold over all combinations 
of conditions. In fact, at the high-power end of 
the spectrum today, cost approaches a linear 
relation with computing power. 

2. Task Management and Software-Some features 
of programming systems can be simplified, if the 
speeds of processors and data storage devices can 
be brought closer together. If no more CPU re­
source is wasted by allowing the CPU to idle 
during a file read than would be consumed in 
overhead by task-switching, then it is preferable 
to let the processor idle-because of the potential 
reduction of time spent writing and debugging 
both operating systems and application pro­
grams. One way to approach this condition is to 
parallel-process with "slow" CPU's rather than 
single-process with a "fast" one. For example, 
a I-million instructions per second (MIPS) 
processor executing 10,000 instructions per file 
access would be wasting only 10 percent of its 
time if it waited for a one millisecond average 
access time device, while a 5 MIPS processor 
idling during reading the same device would 
waste 50 percent of its time. In the past, we have 
multiprogrammed the "fast" CPU's to avoid 
waste because CPU costs were non-linear with 
speed. We have conserved CPU power by pro­
gramming effort, but it may be time to reverse 
those factors, and multi-process instead. 

3. Availability-Availability can be brought to any 
given level (excluding perfect!) by increasing 
the level of multi-processing. 

Also, there will be workloads beyond the capacity of 
any processor that we will ever build; at this point, 
multiprocessing becomes a requirement, not an option. 
Of course, the processors might be packaged together 
under one cover; on the other hand, it might be prudent 
to separate them geographically to prevent non­
hardware-caused reliability problems. 

Software/firmware/hardware trade-offs-We hardly 
need to be reminded that micro-programming tech­
niques will be important, and they are already widely 
accepted. LSI projections further enhance these tech­
niques, particularly in writable control stores which 
offer greater flexibility. Many functions in teleprocess-

ing systems today are handled by software, e.g., line 
control, bit handling, etc., but performance often war­
rants hardware solutions. Higher-level control programs 
and language programs in hardware or software become 
more realistic.13 This will be the direction as the in­
dustry matures. 

Extension of computer usage 

There are a number of not necessarily independent 
ways in which LSI will extend the use of CPU's and 
memory: 

• Broadening the user base in conventional areas. 
• Extending small machine with large machine 

functions. 
• Providing new and additional functions. 
• Providing universality, standardization, flexibility. 
• Meeting new performance criteria. 
• Opening new application areas. 

There is evidence of each of these today. Broadening 
the user base in conventional areas simply implies 
selling more systems to more users for established appli­
cations, usually at the small end of the line. More 
interesting is the addition of typicaJly larger-machine 
functions to smaller machines,4,5,8,10 e.g., more sophisti­
cated instructions, memory protection, instruction 
retry. Such features could add an order of magnitude 
in logic and memory to today's small systems. 

Adding function to existing systems is conceptually 
an extension of the aforementioned. For example, func­
tion will be directed at improving data acquisition and 
use, at extending the ability of a system to self-diagnose 
and reconfigure, at providing communications func­
tions and security, or at converting current software 
functions. Clearly, this is an open-ended category and 
suggests the basis for many times present hardware 
levels. 

Meeting new performance criteria, we believe, means 
placing higher priority on response time, availability, 
ease of installation and use-rather than on throughput. 
These objectives will require new approaches, and more 
logic and memory can profitably be put to use in their 
pursuit. 

New application areas will be developed. However, 
there are many applications which are presently on the 
shelf because of either time or economic reasons. It is 
already apparent that environmental monitoring and 
control is an important area for development. Attempts 
at "duplicating" human function, e.g., constructing 
capable robots, will undoubtedly consume much cir­
cuitry. These today are analog functions and require 



two to three orders of magnitude more components 
when done digitally. Still, it is becoming more and more 
economical to digitize, and examples are well-known in 
the data transmission area. Other known areas such as 
pattern and speech recognition will consume extensive 
hardware when we exploit them to their fullest. 

In the next section we will use a specific system, 
namely, a highly interactive data processing system, to 
illustrate the impact of LSI technology. 

A HIGHLY INTERACTIVE TELEPROCESSING 
(TP) SYSTEM 

One motivation for looking at this system is that we 
believe that ultimately there will be very large systems 
serving tens of thousands of users. The users will be 
indifferent and largely oblivious to the fact that they 
are using a computer system. They probably won't 
even call their terminals "terminals"; names such as 
"fact-finder," "stockinfo," and "smart mart" are more 
likely. In particular, these people will probably not be 
programmers, mathematicians, engineers, scientists, or 
accountants. Their applications will be logically 
trivial-at least from a systems person's point of view. 
What we today might expect to be a command language 
will be the jargon of their particular environment, and 
they will be largely innocent about how the data they 
reference was acquired or is organized. 

The interesting features of the system are that (1) 
there will be a very high traffic rate, (2) the traffic will 
have to do mainly with references to or updates of a 
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data base, and (3) response to an inquiry will have to 
be within no more than 1-2 seconds to satisfy the users 
psychologically. The terminals might be displays, key­
boards, badge readers, etc.-with or without "intelli­
gence." A high degree of reliability will be required, 
and we will not want to manually reprogram each such 
system for each environment. Airline reservations sys­
tems are a current example of such systems, but other 
systems of even larger size are destined for such areas 
as the financial, securities, and retail industries. 

We postulate here an example of a hypothetical, 
highly interactive system for further discussion-in 
terms of potential LSI impact. The system is to have 
10,000 terminals, and performance requirements are 
as follows: 

Peak Message Rate 
Simple Inquiry 
Simple Update 
Complex Inquiry and 

Update 
Data Base 
Response Time (Simple 

Inquiry and Update) 
Availability 

200 msgs/sec. 
30 percent 
50 percent 
20 percent 

10 billion bytes 

1-2 sec. 
1 failure/day with 

2 min. recovery. 

(In a real case, there should be additional qualifica­
tions on availability and recoverability.) 

Some provision must be made for batch processing. 
Also, we have to look at data integrity, security, ease 
of installation, provision for growth and change, pro­
vision for on-line evaluation, etc.-each an area where 
hardware additions could contribute improvements. 

Figure 2 illustrates the principal functions as we will 
describe them. Relating to current-day techniques, the 
peak load assigned to the central server can be pro­
jected to be the following: 

Messages/sec. 
File Accesses/sec. 
I/O Instructions/sec. 
TP Access, Instructions/sec. 
Instructions/sec. Total 

200 
1000 
2.5X106 

1.5X106 

5X106 

For the purposes of this illustration, we assume that 
the configuration, in contemporary terms, uses four 
processors of the type described in Table II, plus two 
stand-by/batch processors (one might use fewer, but 
larger, processors). Using other component prices from 
reference sourcesll and our previous assumptions about 
changes in costs, we compute the cost comparison 
change shown in Table IV. 
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TABLE IV-A HypotheticallO,OOO-Terminal Configuration 

Cost Units* Cost Units* 
Circa 1970 Late '70's 

Terminals (10,000) 59 20 60% 
Lines and Modems 6 

4 12 
Multiplexors 1 
CPU Processor(s) 7 

2 6 
Channels, etc. 3 
Main Memory 4 

.3 1 
Bulk Memory 7) 

Files 10 5 15 
Other 3 2 6 

100 Units ,,-,33 Units 100% 

* Units: Equivalent to percentage of Circa 1970 costs. 

Perhaps the most conspicuous feature of Table IV 
is the dominance of terminal costs. Secondly, perhaps, 
is the relative disappearance of the main and bulk 
memory costs. Next is the relatively small proportion 
of costs dedicated to transmission. 

While the configuration assumed does not exist, it is 
at least realistic in the 1970 time frame, with some 
performance compromises. It is somewhat similar to an 
airlines reservation configuration in terms of the geo­
graphic assumptions made. The degree of terminal 
clustering achievable, relative to line requirements, 
makes it possible today to keep the percentage of trans­
mission costs modest. However, it is assumed that line 
costs will not go down in cost as fast as the other com­
ponents, and thus could constitute a higher percentage 
of costs-an opportunity for LSI to provide further 
concentration. 

Even at the relatively low function level of 1200 
logic gates per terminal, there is on the order of ten 
times as much cumulative logic at the terminals as at 
the central facility-and even more than 10 times as 
much memory if we use semiconductor storage at a dis­
play terminal for refresh memory. Clearly, it would be 
easy to increase these ratios significantly-if additional 
hardware at terminals could be utilized productively. 

Just as important is the fact that with terminals 
dominating costs, and with logic and memory costs 
decreasing anyway, it will be less painful to add more 
function to the central facilities in support of systems 
which are more responsive and easier to install, use, and 
maintain. Of particular note here, again referring to 
Table IV, is the fact that the cost of a 20-fold increase 
in the size of main (and bulk) storage in the late 70's 
would still be possible within the indicated 1970 prices. 

Figure 3 shows the response time breakdown that we 
would expect today, given a two-to-six second response 
time range and assuming relatively simple inquiry and 
update applications and moderate loading conditions. 
(The more conventional implementations would prob­
ably not achieve the one-to-two second response times 
we have postulated.) 

The polling delay is half of the average polling cycle, 
initiated from the concentrator. The delays on the 
transmission lines are due to line speeds, message 
lengths, and queued waiting for the lines. Actual time 
delays in transmission are relatively negligible. Con­
centrator delays are principally queueing delays, with 
actual processing times in the 10 to 100 ms range. 
Central processing times are also mainly waiting times, 
particularly waits for file access, but also for channels 
and for processor service. Again, tens or hundreds of 
milliseconds are the range of actual processing times 
needed, subject, of course, to the processors' speed and 
the job to be processed. 

I t should be clear that these times are satisfactory 
for many applications; however, our contention is that 
a substantial segment of the potential user community 
will want response times in the one or two second range, 
or perhaps faster, at least for simple inquiry-update 
messages. 

Design for the late 70's 

Most systems used for interactive requirements to­
day have been built upon batch systems. There have 
been attempts to achieve good throughput with ac­
ceptable response times. On this base, we are now 
adding more sophisticated user-oriented functions, in 
the area of data management, for example. In the 
future we must do more. The question is: "How far can 
we continue to build up the processing requirements on 
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Figure 3-Factors in response time 



the present base, and maintain, much less reduce, 
response times?" 11 We believe there are significant 
changes possible based upon the advances in LSI 
technology. 

Present systems attempt to conserve processor re­
sources. As we have said before, multiprogramming 
lets us use the processor while it would have been 
otherwise waiting on file accesses. Many-terminal sys­
tems, airlines for example, require us to maintain many 
messages active in the CPU concurrently, up to 50 in 
some systems. Caring for these messages is complex, 
and it is this type of complexity that causes much of 
the problems of installability, maintainability, etc.12 In 
the future, processors, including memory, do not need 
to be conserved to the same degree. 

LSI opens new possibilities which we could not con­
sider in the past, particularly if we can appropriately 
partition the data bases (as we can in some environ­
ments today) . We can bring the CPU speeds and ran­
dom access speeds into better balance, we can afford to 
let the CPU idle during file reads and reduce the soft­
ware and system complexity. The path to arriving at 
the balance appears to embrace (1) keeping the CPU 
suitably slow, (2) making direct access storage suitably 
fast, and (3) paralleling CPU's and direct access devices 
sufficiently to absorb traffic. In an environment where 
cost is nearly linear with CPU power, we can make the 
choice of reducing complexity at no cost, and into the 
bargain get increased reliability and perhaps improved 
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security. Conceptually such a system might look like 
Figure 4. 

Communications processing 

The many functions relating to the handling of 
input and output messages may give rise to separate 
communication processors. The precise role of these 
processors in the total teleprocessing picture, and par­
ticularly the interface to other central processing func­
tions, has not been universally defined. In fact, the 
communication processor function should be redefined 
in the context of the total teleprocessing requirement, 
including response times, to assure that there is no 
unnecessary data handling, and that the communica­
tion processor does, in fact, efficiently complement the 
central processors. Here LSI will permit us to build the 
necessary buffers and other interface hardware to 
afford a clean interface between the communications 
functions and other processing requirements, thus re­
ducing device dependence and improving interprocessor 
communication. 

Line attachment is another area where LSI will help. 
This area includes the physical attachment, modem 
functions, switching, i.e., functionally getting the in­
formation on and off lines and into and out of registers. 
Interface standards (EIA) usually have to be met, a 
variety of line speeds accommodated, and, often, pro­
visions must be made for using the dial telephone 
network. 

At the line end of the communications processor, we 
have a choice between hardware and software. The 
10,000 terminals, for example, will require many con­
nections-and in the past this would have been very 
expensive. This would have been particularly true if we 
had implemented sophisticated equalization equipment 
as well as the other modem functions digitally. On the 
other hand, done strictly with software, these functions 
would require extensive processing and processing 
times. Fast response time requirements and LSI costs 
make hardware the clear choice. 

LSI has also made another communication processor 
design choice easier. Here, a writable control store 
(WCS) approach gives the flexibility needed to exist 
with the many variations found in practice, i.e., termi­
nal and line types, line disciplines, formats, etc. When 
communications processors must be ·fast, bipolar tech­
niques can be used for the WCS-and perhaps for their 
main memories as well. 

The communications network 

Communicating between the central site(s) and the 
terminal in the many-terminal system can be a rela-
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tively expensive proposition but in most cases it need 
not be. In the example of Table IV, it will be about 
12 percent of the cost. This is a function of the distri­
bution of terminals-and since in most applications 
terminals tend to be clustered, there is the opportunity 
for the terminals to share fewer transmission lines. 
This enables us either to use lower speed communica­
tions lines more effectively or to afford to use a broader 
transmission channel, where the potential costs per bit 
transmitted are significantly lower. 

Concentration of line sharing can take place in 
several places, including the central site, intermediate 
remote points, and multiple-terminal sites. Concen­
trators, since they amortize their costs over more than 
one terminal, provide us with the opportunity to make 
them far more sophisticated, and LSI will help us to 
add the optimum amount of function. Functions 
directed toward increased availability might take the 
form of off-site processing capability, alternate path 
routing, forward error correction and backup storage. 
For our interactive teleprocessing example, the response 
time requirement forces us to limit queues, particularly 
on slow lines. LSI can help here by enabling us to extend 
line capacity (through multilevel modem equalization, 
error correction, etc.), or to speed up communications 
processing. Again, we can under-utilize facilities more 
economically to combat queue build-up. 

Figure 3 shows a plausible breakdown of delays for 
a 1970 configuration. (There are faster airline systems 
but they are configured somewhat differently and are 
otherwise specialized.) If we have a one-second re­
sponse time objective, some reduction in nearly all of 
the time components must be realized, but the use of 
additional hardware for faster polling and message 
processing makes the overall one-second response time 
very reasonable. 

Terminal functions 

With the assumption that LSI will enable us to ex­
pand terminal function significantly, what will it mean 
for the future terminal? Clearly, the minimal function 
of the terminal is its I/O: keyboard, printer, display, 
etc.; the I/O control; the basic communication func­
tions including code conversion, serial/parallel con­
version, and parity checking. We can expand these 
functions by adding character, line, and message 
buffering; various modem functions; line control; se­
curity provisions. Further expansion could include local 
user prompting, message format editing, header genera­
tion, and a variety of more sophisticated error control 
and automatic retransmission features. Continuing 
further, the high availability features of error correc-

tion, diagnostic ability, even self-repair, could be con­
sidered. Pre-processing, such as syntax checking and a 
limited degree of local problem solving, is a natural 
extension-continuing upward to significant stand­
alone power. 

To arrive at some idea of the level of logic complexity 
addressed here, we list in Table V the rough number of 
logic circuits (gates) and storage units (cells) associ­
ated with the various listed functions. (The reader 
should realize that the numbers are highly variable, 
subject to the particular application and the perform­
ance required. In addition, the functional hardware 
requirements are not necessarily additive since there 
mayor may not be sharing of hardware, and in the 
more complex functions the option to perform them by 
mixes of software and hardware is generally warranted. ) 
Hardware counts are rounded to the nearest 100. 

Two of the more dynamic ranges in, Table V are 
those of "Forward Error Correction" and the "Modem" 
functions, which could include very sophisticated for­
ward error correction techniques and automatic equali­
zation. It is not difficult to envision the use of sub­
stantially more logic and memory in the terminal. For 
example, if we add 10,000 circuits and 100,000 bits of 
memory at the projected costs (and also increment 
some of the other costs), the terminal will still be 
cheaper than its 1970 forerunner. 

LSI will afford us the opportunity to define and 
economically design many functional interfaces. These 
interfaces will enable us to design terminal controllers, 
terminal I/O devices, and stand-alone terminals with 
extensive functional modularity-and to do this with­
out jeopardizing the low-cost single-terminal require­
ment. Likely interfaces include the line-modem inter­
face, the modem-data link control (DLC) interface, 
the DLC-terminal function-and eventually, the termi­
nal I/O device interfaces. By choosing the appropriate 

TABLE V-Hardware Requirements of Typical Functions 

Function 

Basic I/O Control 
Display Character Generation 

(ROS) 
Display Refresh (CRT) 
Basic Communications Functions 
Extended Line Control Functions 
Forward Error Correction 
"Modem" Function 
Line and Message Buffering 
Editing Functions 
Calculator Functions 
"Typical" Small Computer 

Gates 

100-200 
<50 

<50 
100-200 
500-1000 
400-20,000 
200-10,000 
<50 
200-400 
100-500 
2000-4000 

Cells 

<50 
1000-8000 

1000-25,000 
<50 
<50 
4000-6000 
100-10,000 
200 & up 
500-3000 
500-3000 
16,000-64,000 

plus files 



sub-function hardware modules, the controller is 
tailored to suit the appropriate line, the number and 
mix of terminal I/O devices, and other general func­
tional requirements. Even within the smallest hard­
ware module a degree of generality must exist which 
supports the standard interfaces. However, as our cost 
example illustrates, we can afford a significant increase 
in logic or memory count before we have a substantial 
increase in overall terminal cost. 

SUMMARY 

We have looked into the future of projected LSI logic 
and memory costs. The implications to the industry are 
dramatic. Without additional applications, the cost of 
the hardware base is a fraction of the cost of today's 
base. There will be an increased search for new applica­
tions and a change of emphasis on performance factors. 
LSI will support an era of greater accommodation of 
the user's desires, as opposed to forcing user conformity 
to machine-and data processing will be extended to a 
much larger user base. 

Some important design and architecture trends are 
motivated by the need to meet other than batch process­
ing and throughput requirements-for example, re­
sponse time, availability, installability, usability. LSI 
will aid in establishing needed interfaces for both user 
and manufacturer, support the evolution of multiple 
processors, accelerate the use of firmware, and add 
many new functions to systems, some converted from 
software. It will not significantly restrict design freedom 
if the part number generation costs are as low as 
projected. 

While LSI alone has not solved all problems, it has . 
shifted the emphasis, changed the scale, enabled us to 
do some things better. "Large" will become larger, 
costs will be lower-and exploiting our new environ­
ment will be the major challenge. 
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The rationale for logic from semiconductor memory 

by W. H. DAVIDOW 

Signetics Memory Systems 
Sunnyvale, California 

INTRODUCTION 

Memory is the LSI component which we know best 
how to fabricate. Compared to other LSI (Large Scale 
Integrated) circuits, it is almost "standard", and be­
cause of the regular interconnection patterns which 
exist between memory cells, it can achieve very high 
component densities and is relatively inexpensive to 
make. 

A product such as a 4096-bit Bipolar ROS (Read Only 
Store) has some rather remarkable characteristics. 
When used properly, it can: 

1. Become the logical equivalent of about 500 gates. 
2. Be packaged efficiently in small 16 and 24 pin 

packages. 
3. Dissipate about 1 lVIW per equivalent gating 

function. 
4. Be customized for about $1.50 per gating func­

tion. 

These benefits can only be obtained by using new logic 
design techniques which have not been extensively used 
in the past. One of these techniques is microprogram­
ming. A great deal has been written about this technique 
but it has not really found wices}read application. 

In this paper we will provide a brief introduction to 
microprogramming and then show how this technique, 
used in conjunction with semiconductor memory, can 
greatly reduce the cost of the control portion of a digital 
system. 

INTRODUCTION TO MICROPROGRAMMING 

The idea of microprogramming is normally attributed 
to Wilkes.1 His stated objective was to provide "a sys­
tematic alternative to the usual somewhat ad hoc pro­
cedure used for designing the control system of a digital 
computer."2 Actually, many logic devices being imple-
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mented today are far more complex than the computers 
which are deriving benefits from microprogrammed im­
plementation. Some experts today are forecasting that 
most complex logic systems of the future will use micro­
programmed techniques for the same reasons that moti­
vated computer designers to select this alternative. 

In a general sense, any sequential logic device can be 
viewed as transferring information from one set of 
storage elements to another through a logic network. 
In the case of a computer, the execution of an instruc­
tion involves a sequence of information transfers from 
one register in the processor to another, some of which 
take place directly and some through an adder or other 
logical network. A machine or computer instruction is 
made up of a number of these transfers which Wilkes 
likened to a program and hence, he termed the indi­
vidual steps microinstructions and the sequence of steps 
a microprogram. 

The mechanism Wilkes suggested for implementing 
the system is shown in Figure 1. The microprogram was 
held in a read-only diode memory or control store which 
is shown as consisting of two matrices A and B. The 
outputs of matrix A were used to control the transfers 
between the various registers. The outputs from matrix 
B were passed through a delay and were then used as 
inputs to a decoding tree. These inputs to the decoding 
tree directed the timing pulses to the next selected data 
line in the control store. Information from the sign 
flip-flop of the accumulator was used to select alternate 
paths through matrix B and hence to change the next 
selected data line in the memory. This is represented by 
one of the lines from matrix A which branches before it 
enters matrix B. The signals coming from matrix A 
control arithmetic gates, register paths, etc. Wilkes 
viewed these as incremental logical operations and 
called them micro-operations. A collection of these 
operations performed at one time was a microinstruc­
tion. 

Wilkes' example segmented the microprogrammed 
control into two parts-one for operating the gates 
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Figure I-Wilkes' model of microprogrammed device 

which control the data paths, and the other for selecting 
the next step in the control sequence. Today all micro­
programmed devices are organized in a similar fashion. 
The essence of designing a good microprogrammed sys­
tem is the selection of the proper strategies for data 
paths and logic function control, as well as the imple­
mentation of the control sequence section. 

Figure 2 shows a simplified computing element. In 
reality it could be a word-organized single-address 
stored program computer. In this over-simplified ver­
sion, assume the control portion of the machine gen-

AC . ACCUMULATOR 

Figure 2-Simple microprogrammed machine 

TABLE I-Microinstructions for simple machine 

CODE MEANING 

MARM Gate MAR onto M bus 

MB RM Gate MB R onto M bus 
PCO Gate PC onto 0 bus 
lAD Gate IA (instruction address) onto 0 bus 

ACO Gate AC onto 0 bus 
Read memory into MBR 

W Write MBR into memory 

PLUS Add M bus to 0 bus in adder and place on S bus 
OTS Gate 0 bus through adder to S bus 
MTS Gate M bus through adder to S bus 
ON E Gate 0 bus through adder to S bus and add one 
SMAR Gate S bus into MAR 
5MBR Gate S bus into MBR 
SPC 
SIR 

SAC 

Gate S bus into PC 
Gate S bus into I R 

Gate S bus into AC 

JMP Jump to address in address field of microinstruction 

JIFO Jump to address in address field of microinstruction if AC = 0 

JOPC Jump to address of. OP code field 

erates the signals shown in Table I. These signals are 
called micro-operations. By combining these, instructions 
can be generated. Assume further that the control 
portion of the machine contains a ROS (Read Only 
Store) and that words are read from the ROB under 
the control of an address register. Words are read from 
the ROB in sequence unless one of the Jump instructions 
(JMP, JIFO or JOPC) is executed. 

Figure 3 shows an example of a ROB instruction word 
with the appropriate fields labeled. The symbolic 
representations of the micro-operations are shown under 
the fields in which they appear in the microinstruction 
word. There are of course many different microinstruc­
tion formats. For example, the Interdata Mod IV or 
Micro 810 computers use 16 bit formats, whereas sys­
tems such as the IBM 360/85 use 128 bit formats. 

Figure 4 shows a microprogram in which the contents 
of memory are added to the accumulator in the following 
manner: 

Line 1 The contents of the program counter are 
transferred to the memory address register. 

Line 2 The instruction is read from memory into 
the memory buffer register. 

Line 3 The instruction is transferred from the 
memory buffer register to the instruction 
register. 

MEMORY JUMP ADDER M'SUS D BUS SBUS 
JUMP i: 

CONTROL INSTRUCTION CONTROL CONTROL CONTROL CONTROL 
ADDRESS :! 

FIELD ' 

R JMP PLUS MARM PCD SMAR 

W JIFO MTS MBRM lAD 5MBR 

JOPC ONE ACD SPC 

DTS SIR 

SAC 

Figure 3-Representation of a microinstruction word 



Line 4 The control of the microprocessor is deter­
mined by the operation code of the instruc­
tion. 

Line 5 The contents of the address portion of the 
instruction register are transferred to the 
memory address register. 

Line 6 The desired data is read into the memory 
buffer register. 

Line 7 The memory buffer register is added to the 
accumulator and the result stored in the ac­
cumulator. 

Line 8 One is added to the program counter so it is 
ready to fetch the next instruction and the 
result is stored in the program counter. 

Line 9 Control of the microprocessor is transferred 
to start the next sequence. 

This example does not really discuss how the ROS is 
controlled. It merely points out that a control memory 
can emit signals capable of controlling the data paths in 
a system. The real essence of microprogramming is 
focused on controlling the address sequencing of the 
control memory itself. 

CONTROL AND SEQUENCING OF THE 
CONTROL STORE 

In every microprogrammed device there must be some 
logic which controls the ROS and does the basic system 
timing. The complexity of this logic depends to a high 
degree on the microprogrammed implementation. In a 
microprogrammed device with short ROS words where 
very few bits in the microprogrammed instruction word 
are devoted to determining the next instruction, the 
control logic will become fairly sophisticated. In these 
systems a ROS program counter will generally exist and 
the control logic will ensure that the next ROS control 
word is selected by augmenting the program counter 
by one just as the program. counter is augmented in a 

MEMORY JUMP ADDER MBUS DBUS S BUS 
JUMP 

ADDRESS 
CONTROL INSTRUCTION CONTROL CONTROL CONTROL CONTROL FIELD 

DTS PCD SMAR 

R 

MTS MBRM SIf! 

JOPC 

DTS lAD SMAR 

EXECUTE R 

PLUS MBRM ACD SAC 

ONE PCD SPC 
RETURN 

JMP START 

Figure 4-Microprogram to add contents of memory to 
accumulator 

! 
f 

I 
'\ 
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Figure 5-Two-address source for microprocessor address register 

typical computer system. In microprogrammed devices 
with longer words, the control will be conceptually 
simpler. For example, if each instruction contained the 
address of the next instruction, there would be no need 
for a program counter, only a ROS address register. 

Wilkes' basic implementation shown in Figure 1 gen­
erated the address to read out the next microinstruction 
directly from the output of the B matrix. Therefore, if 
there were 1024 words of ROS, the output from this 
matrix would be a 10-bitcode used to designate one of 
these words. While this technique is adequate, it fails to 
couple the microprocessing device in a tight fashion to 
its external environment and leads to an inordinately 
long response to an input stimulus. To see this, consider 
the problem of interpreting a 5-bit code and branching 
to one of thirty-two points determined by the code. This 
is the type of operation which occurs in interpreting the 
operation code of a computer. In the Wilkes' model, 
each bit must be tested separately and a branch must 
be taken at each step. This involves 5 separate tests, 
one for each bit and 31 branch-type instructions in a 
decision tree, plus an additional 32 branch instructions 
to get to the starting point of the various routines. 

Wilkes' group suggested introducing multiple address 
sources. This greatly simplifies and speeds the solution 
to the above problem. To see this, consider the ROS 
address register shown in Figure 5 where the bits Ri 
are output from the address selection section of the 
ROS. Consider the bits Sj as bits from another register 
(for example, the instruction register in a computer). 
In order to interpret a 5-bit code, one need only let the 
bits Rll to R5 select the starting address of a table in 
memory which contains 32 starting addresses of ROS 
sequences. The bits S4 to So could select anyone of 32 
entries in this table which could direct the microprocess­
ing element to the proper location. Instruction decoding 
could, therefore, be accomplished with one microinstruc­
tion. 

The importance of this technique goes far beyond the 
concept of instruction decoding. Any set of conditions 
could be introduced as an input in the low-order bit 
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Figure 6-Typical ROS timing 

positions and therefore, this represents one technique 
for developing a fast response based on the status of the 
external environment. For the example above, anyone 
of 32 alternative courses of action could be taken in 
response to an input. This action could be initiated in 
one microinstruction cycle. With today's semiconductor 
memories, microprocessors with 100 nanoseconds cycle 
times are easily constructed, so that a response to an ex­
ternal stimulus can begin very quickly. 

Figure 6 shows the timing in a typical microprogram­
med system. The first set of timing pulses strobes the 
output from the ROS into the output buffer register. 

As soon as the output buffer has· settled, the execu­
tion of the microinstruction can begin. This is indicated 
in the second line of the timing diagram. The execution 
time will be long enough to permit the most basic micro­
instruction execution to take place. However, some of 
the longer operations might take two or more micro­
instruction times to execute. For example, suppose the 
time to gate data from source registers to the adder 
and to perform an "add" is 300 nanoseconds. If the 
basic microinstruction cycle is 150 nanoseconds, then 
an add operation would require two microinstruction 
times. This could be accomplished by executing the 
same microinstruction twice with the exception that 
data would not be stored in the destination register 
until the second instruction is executed. Another way to 
handle long instruction execution times is to let the 
microinstruction have a bit or bits which will be used to 
extend the microinstruction execution time. Still 
another obvious way for simpler systems is to merely 
let the longest instruction dominate the timing. For 
example, if 300 nanoseconds is the longest register-to­
register cycle time, then the basic cycle could be 
selected as 300 nanoseconds. In most cases, however, a 
system will have certain microinstructions which re­
quire several basic machine cycles. For example, a fast 
microprogrammed device may be hooked to a slow core 
memory which has an access time of 800 nanoseconds 
compared with a basic microinstruction execution time 
of 200 nanoseconds. It is desirable to have some inter-

locks which enable this type of delay to be conveniently 
accommodated. 

The fourth line in Figure 6 shows the time at which 
the ROS address register is loaded. This timing pulse 
will set the ROS address register. If a conditional 
branch is going to be executed, the logical decision must 
be made during the time shown in line 3 for the branch 
to be executed within the given cycle. Obviously, this is 
not always possible. For example, if a branch is to be 
made on overflow, it is likely that the information will 
not be developed by the adder until it is too late to 
enable a branch decision to be made for that instruction. 
Consequently, one instruction and one instruction 
execution time is lost because the branch decision must 
be made on the next instruction. 

The fifth line of the timing diagram shows the time 
devoted to the access of the ROS. One reason for the 
importance of fast access in the ROS can now be under­
stood. The shorter the access time, the more time is 
available for making decisions. Since a high percentage 
of microinstructions contain conditional branches, many 
instructions and instruction times can be saved by mak­
ing the access time as small a percentage of the basic 
control cycle as is possible. 

ADVANTAGES OF MICROPROGRAMMING 

There are many reasons why it is desirable from a sys­
tems point of view to employ microprogramming. Some 
of these are: 

1. Reduction of random logic, resulting in more 
structured organization. 

2. Emulation of a number of devices (not just 
another processor) can be carried out by a single, 
general-purpose device. 

3. Diagnostics and service aids may be implemented 
easily in the control portion of the system. 

4. Field changes can be made easily by changing 
the contents of control stores. 

5. Special-purpose adaptations can be made of a 
device by changing a few program cards. 

6. The logical complexity of a device can be in­
creased at lower cost than in a conventional sys­
tem. 

7. Final system definition can be postponed to a 
later time in the design cycle. 

8. Documentation and service training costs can be 
reduced. 

The prime motivation for interest in microprogram­
ming today appears to be one of economy. To under-



stand why, an analysis must be made of the cost of 
putting an IC (Integrated Circuit) into a system. 

The direct cost of putting an IC into a system is over 
$1.00. Figure 7 shows a breakdown of these costs which 
one experienced manufacturer of digital systems con­
siders reasonable. When all of the direct costs in fabri­
cating a system are taken into account, such as indicator 
lamps, maintenance panels, system cabling, etc. ,and 
the total system manufacturing cost is divided by the 
number of IC's, one frequently arrives at a figure of 
$2.00 per IC. The $1.05 cost of Figure 7 will be used dur­
ing the rest of this discussion because there seems to be 
general agreement that getting rid of one IC will usually 
save a manufacturer that much money. 

It is interesting to note that under the assumption of 
Figure 7, even if IC's were free, the total manufacturing 
cost could be reduced by only 30 percent. Assuming 

-IC 

- Incoming Inspection 

-P C Card 

-Component Insertion and Fabrication 

_Board Check Out 

-Connector 

-Capacitor 

-Wiring 

- Power Supply 0 $1.00 I Watt 

- Cabinetry ICard Guidesl Fans/etc. 

.30 

.05 

. 25 

.03 

.05 

.05 

. 03 

.09 

.10 

.10 

$ 1.05 

Figure 7-System cost for a 16 pin DIP on 88 pin 60 IC board 

designers continue to use conventional IC's and packag­
ing approaches in design of their systems, there will be 
small, if not significant, decreases in the manufacturing 
cost of digital systems. 

If one assumes that the average IC contains 3 gating 
functions, then the direct cost per gate installed in a 
system will be on the order of 35¢. 

For the most elementary type of devices, random 
control logic will always be the most economical way to 
design a system. If, for example, a device can be con­
trolled by a single pre-set counter, it is impractical to 
become involved in the intricacies of microprogrammed 
control. This is because a microprogrammed device has 
a base cost associated with the address sequencing and 
memory selection circuitry which is incurred no matter 
how simple the device is. This is shown in Figure 8. 
Properly designed semiconductor control storage has 
most of the memory selection circuitry integrated into 
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COMPLEXITY -

Figure 8-Cost comparison of conventional and 
microprogrammed control 

the memory element arid this greatly reduces the base 
cost. 

Figure 8 shows the cost of microprogrammed control 
increasing slowly with the number of sequencing cycles. 
This is because each additional sequence cycle will, in 
general, require one additional word of control store . 
If, for example, the control memory of a device uses 32 
bit words and the control store costs only 0.25¢/bit, as 
such devices will in the future, then the cost of an addi­
tional control cycle is only 8¢ . 

The cost of conventional control in Figure 8 is shown 
increasing at a fairly fast rate. One can see that if an 
additional control cycle required only one additional 
gating function or some type of storage element to dis­
tinguish it from all the other control states, then at 
least one gate or 35¢ in direct cost must be added to the 
system cost. For this simple example, the cost of con­
ventional control increases at over four times the rate 
per sequencing cycle of microprogrammed control. 

I 1¢/BIT O.5¢/BIT O.25¢/BIT 

- IC (4096 BIT ROM) 40.00 20.00 10.00 

- Inca'ming Inspection .50 .50 .50 

-PC Card .25 .25 .25 

- Component Insertion and Fabricat ion .03 .03 .03 

- Board Check Out .15 .15 .15 

-Connector .05 .05 .05 

-Wiring .12 .12 .12 

-Power Supply $ 1.00 I Watt .50 .50 .50 

-Cabinetry I Cord Guidesl Fans I etc. .10 .10 .10 
$41.70 $21.70 $11.70 

Figure 9-Cost of ROM in microprogrammed system 
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There are a few hard facts to back up any estimates 
of the efficiency of microprogrammed devices, but most 
designers seem to agree that somewhere between 8 and 
16 bits of ROM can be used to replace a gating func­
tion. If 16 is considered to be a pessimistic number and 
8 an optimistic one, then a 4096-bit ROM is capable of 
replacing between 256 and 512 gating functions. This 
ratio provides a great incentive to the designer to employ 
microprogramming. 

Figure 9 shows the direct cost of putting a 4096-bit 
ROM in a microprogrammed system, assuming costs 
per bit of 1 ¢, 0.5¢ and 0.25¢. If R bits of ROl\1 replace 
a single gating function, then the dollars saved by em­
ploying a single 4096-bit ROM at 0.25¢/bit are: 

SAVINGS = 0.35 X (4~6) - $11.70 

where $11.70 represents the cost of the ROM shown in 
Figure 9. These savings are plotted in Figure 10 for 
various costs of ROlVl. 

While 12 bits is probably a realistic number per gating 
function replaced, it is interesting to note that the break­
even points for 1¢, 0.5¢ and 0.25¢ per bit ROMS are 
36, 66, and 122 bits. With a 4096-bit bipolar ROM 
there can be a tremendous margin of error in the as­
sumptions, and still have microprogramming be the 
most economical approach to system design. 

Other savings result as well. These are tabulated in 

O~ ______ ~ __ ~ __ L-______________ ~~ 

10 15 20 25 30 35 

Figure lO-Number of ROM bits to replace a gate function 

BITS PER GATE FUNCTION 

8 12 16 
OPTIMISTIC REALISTIC PESSIMISTIC 

NO. OF DIPS 
170 114 85 SAVED 

PC CARDS SAVED 3 2 1.5 60 DIPS/BOARD 

POWER SAVED 12.8 8.5 6.4 
IN WATTS 

VOLUME SAVED 150 IN3 100lN3 751N3 
IN IN 3 

DOLLARS SAVED $168 $119 $83 PER 4096 BIT ROM 

Figure ll-Savings by using O.25~/bit ROM in 
microprogrammed control of digital system 

Figure 11. For example, if one assumes 12 bits of ROM 
will replace a gate function, then the use of 4096-bit 
ROl\fs in the control portion of a digital system will 
save about 114 packages, 8.5 watts of power and 100 
cubic inches of volume in addition to $119 per 4096-bit 
ROlVl employed. 

CONCLUSION 

The true promise of LSI has not been realized in most 
digital systems simply because it has been unappealing 
to use custom designed parts in all but the highest vol­
ume applications. lVlicroprogramming techniques used 
in conjunction with semiconductor memory can provide 
many of the benefits of LSI for a broad class of sys­
tems. The designer, to take advantage of this new com­
ponent, will, however, have to change many of his de­
sign techniques and philosophies. 
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SYMBOL hardware debugging facilities 

by M. A. CALHOUN 

Kansas State University 
M~nhattan, Kansas 

INTRODUCTION 

The SYMBOL system is a full-scale working demon­
stration of an ALGOL-like, high-level, general-purpose, 
procedural language and a multi-processing, multi­
programming operating system implemented directly 
in hardware.1 ,2,3,4 The results have proven the versa­
tility of the design, construction, and testing tech­
niques that were developed to enable a small number of 
people to implement such a major system in a reasonable 
time and at a relatively low cost. 

Although the last items in the project to be developed, 
the methods used to test and debug SYMBOL were 
not the least important; delivery of the finished system 
would have been much delayed if more conventional 
methods of manual excitation and probing had been 
used. To facilitate fuller understanding of these testing 
techniques, a brief description of the architecture and 
physical characteristics of SYMBOL will be given 
first, followed by a more detailed description of the 
test facilities. 

SYMBOL HARDWARE AND ARCHITECTURE 

Logic in SYMBOL is implemented with Comple­
mentary Transistor Micro-Logic (CTpL), a positive 
AND/OR logic family with wired-OR capability at 
every output except that of the flip-flop. 5 ,6 The im­
portance of the wired-OR capability must be empha­
sized: there are a significant number of two-way 
wired-OR ties with sources throughout the six-foot 
long main frame; if discrete OR gates had been re­
quired, the size of the finished system would have been 
considerably larger and its simple bus-oriented or­
ganization would not have been possible. 

The dual-inline CTpL integrated circuits are as­
sembled on about 110 large two-sided printed circuit 
boards with plated-through holes (see Figure 1). These 
boards contain all of the logic components in the 
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system and are easily removed for incorporation of 
logic changes using discrete wire "patches" to the 
original printed circuitry. Figure 2 illustrates sche­
matically how the boards are mounted between a pair 
of parallel two-sided printed circuit "motherboards". 

Communication between boards is provided by two 
groups of 200 parallel printed circuit bus lines on the 
motherboards, the "connect" bus and the "bypass" 
bus. These buses provide all required system inter­
connections except for cables to peripheral devices 
and to the console. Physically, each large board can 
contact up to 200 bus lines and have the remaining 
200 lines bypass it. A signal on the bypass bus may 
cross over a signal on the connect bus between board 
positions to allow a board to contact the corresponding 
position on the adjacent board or, alternatively, to a 
board several slots distant. In addition, either or both 
buses may have continuity breaks to isolate groups of 
boards. 

There were eleven such isolated groups of boards in 
the original system, where each such Autonomous 
Functional Unit (AFU) acts as a specialized processor 
(see Figure 3). The Main Bus, a Ill-wire subset of the 
400 wires on the motherboards, runs the full length of 
the system and connects to each AFU. The lines in 
this time-shared, global communication path are 
distributed as follows: 

64 bidirectional data lines 
24 bidirectional address lines 
10 bidirectional priority lines 
6 operation code lines 
5 terminal number lines 
1 system clock 
1 system reset 

In order to fully appreciate the operation of the 
debugging facilities and the interactions between these 
facilities and SYMBOL, it is necessary first to under-
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Figure 1-TypicaI12" X 17" two-sided printed circuit board with 
logic additions and changes made with discrete wires 

stand the various modes of communication which exist 
between the eleven AFU's. The foundation for this 
understanding is the knowledge that everything of 
importance that happens within an AFU eventually 
has some effect on the Main Bus. When the Instruc­
tion Sequencer finishes processing one instruction and 
needs another, a request to the Memory Controller 
is sent via the lVlain Bus. If the Arithmetic Processor 
runs out of data, a call for more goes to the Memory 
Controller. In both cases, information returned from 
the Memory Controller is sent over the Main Bus. If 
an input device completes its operation, the Channel 
Controller notifies the Interface Processor via the 
Main Bus. When the Translator is done with compila­
tion of a program, the System Supervisor is notified 
via the Main Bus. Even if a processor fails cata­
strophically and refuses to function at all, the absence 
of lVlain Bus transfers originating from that AFU over 
a short period of time (20 clock cycles, perhaps) can be 
detected. Thus it can be said that whatever controls 
or watches the Main Bus thereby controls or watches 
SYMBOL. This cQncept of the Main Bus and the 
kinds of information that are transmitted through it 
are key features in the design of the total system and 
in the functioning of the debugging facilities. 

Four distinct types of bus usage are possible. They 

are: 

AFU to Memory Controller requests 
Memory Controller to AFU returns 
AFU to AFU transfers 
Control exchange cycles 

All Main Bus transfers are priority sequenced, where 
the priority bus coordinates the usage of the other buses. 
When an AFU desires to use the Main Bus, it raises 
it priority line and simultaneously checks to see if 
there are any higher priority requests pending; if there 
are none, it uses the bus on the following cycle. AFU 
to AFU cycles, used only between sections of the 
Central Processor, are also controlled by the priority 
bus: the Central Processor assumes the Main Bus is 
available for a private "sneak" cycle if no priority 
lines are raised. Control exchange cycles are used to 
communicate control information between the System 
Supervisor and the other AFU's. During a control cycle, 
the Main Bus lines have preassigned uses, with certain 
lines used to start and stop each AFU, others to indicate 
the completion of an AFU task, etc.; during a given 

Figure 2-Physical organization of SYMBOL illustrating 
placement of large logic boards between parallel printed circuit 

motherboards 



cycle, any combination of the paths can be used simul­
taneously. 

SYMBOL DEBUGGING 

The testing operations required in the development 
of a large system can be divided naturally into several 
fairly specific stages. The test functions vary as the 
system progresses from the research and development 
stage, to the prototype stage, to the production stage, 
and finally to the customer support stage. The empha­
sis on testing during these stages shifts from one in 
which strong support is given to engineering design 
checkout, to one which gives strong support to bad­
part identification. System development within each 
stage requires component, board, AFU, and system 
testing functions; these functions are not always 
clearly distinct, but they can be considered separately 
for convenience. The discussion which follows il-
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Figure 3-Block diagram of the SYMBOL system showing the 
original eleven autonomous functional units all connecting to 

the main bus 
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lustrates the major requirements for testing in a re­
search and development environment, with other 
aspects of testing discussed to a lesser extent. 

Component testing 

Component testing is normally an incoming inspec­
tion operation. The integrated circuit devices used in 
SYMBOL were checked both statically and dynamically 
upon receipt for two main reasons: (1) The devices 
often had a long lead time for procurement, and an 
incoming inspection allowed immediate replacement 
orders to be made for bad devices. (2) The environment 
in which the devices were used (printed circuit boards) 
is one which has a high time (and therefore cost) 
penalty for replacing a device that should not have 
been installed in the first place. 

The tests included a static check of the logic the 
device was supposed to implement, the on/off delay 
times from threshold to threshold, a check on the 
ringing tendencies, operation of the device when 
driven by a minimum clock pulse (where applicable), 
and the operation of the device under minimum and 
maximum power supply limits. These tests were made 
on a breadboarded device tester which, while adequate, 
was not very efficient, especially from a human factors 
viewpoint. In particular, the tester was capable of 
making only one class of measurements at a time; if 
a device required two classes of measurements, it had 
to be retested in a second pass. This resulted in a low 
throughput rate since about half of the time required 
to test a device was spent in manually transferring it 
from the source bin to the tester and from the tester 
to the "accept" or "reject" bin. Fortunately, better 
component testers are now available with good human 
factors design and automatic device transporters for 
quick and efficient incoming inspection. 

Except for perhaps 100 devices received in the last 
few weeks of the project, all 18,000 integrated circuits 
in SYMBOL were given a thorough incoming inspec­
tion. It is safe to say that these last 100 devices caused 
more trouble during debugging than the first 18,000. 
This was sufficient proof of the absolute necessity for 
complete incoming component testing for future proj­
ects. 

Board testing 

Two maj or kinds of errors should be detected and 
corrected through board testing before a board is 
placed into a system. As in most system development, 
construction errors of various kinds will be discovered. 
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These errors will include fabrication errors such as 
drawing mistakes, missing or misplaced holes in the 
printed circuit, solder bridges, and misplaced com­
ponents, to name just a few. In addition, there will 
also be system design errors ("oversights"?) which 
must be found and corrected. The scope of this problem 
was extremely large for SYMBOL boards because of 
their great number (110), their size (maximum of 220 
integrated circuits), and their limited number of signal 
contact points (250). Considerable development is still 
necessary before automatic computer test generation is 
economically feasible for this size of board: current 
programs might require two hours to generate complete 
tests for about one-fifth of the logic on a board, and the 
difficulty of the task increases considerably with in­
creasing size. Such costs could not be justified for 
this prototype system. If the problem were altered 
from an exhaustive test of all of the logic on a board 
to a test of all the used states of the logic, it might very 
well prove economically feasible. In particular, in a 
production environment, the cost of such test genera­
tion could be amortized over many systems since the 
same test sequence would be used over and over again. 
However, even though the isolation and correction of 
fabrication errors before system checkout began would 
have allowed more efficient debugging, it was felt that 
the amount of effort required for a thorough precheck 
could not be justified for this one-of-a-kind system. 
Thus, after a relatively cursory examination of each 
board for obvious errors (such as solder bridges) by 
experienced technical help, the board was returned to 
the designer for simple logic verification in a manual 
test station before proceeding to AFU or system test. 
This board test station has been described elsewhere.4 

Subsystem and system test 

Subsystem testing was the process of debugging a 
complete Autonomous Functional Unit as a unit. Each 
AFU performs, by itself, some function in the complete 
system, and, in a sense, is a stand-alone unit. Except 
for the Memory Re claimer , a two-board AFU which 
was extensively (but not completely, as it turned out) 
simulated using the FAIRSIM* system, most AFU's 
were too large to allow simulation as a unit; therefore, 
subsystem test was the first time at which all of the 
boards in an AFU were run together. By this time most 
of the fabrication errors had been detected through 
board testing, although there were always a few left 
to find. 

* Fairchild Digital Simulation program for Computer Aided 
Design. 

Subsystem testing could take many forms and could 
be performed in many different ways. An extension 
of the board test station was conceived where all boards 
of an AFU could be inserted into one module and a 
manual test performed. This sort of testing might 
have been useful in some limited areas such as verifying 
the basic cycling of control logic or the basic register 
transfers within an AFU, but, in general, a complete 
AFU test in this sort of test station would be very 
difficult, inefficient, and time consuming. Recognizing, 
then, that a thorough job of AFU testing was not 
desirable or even practical, subsystem and system 
testing were combined into the same operation and 
were essentially carried on simultaneously. 

System testing was quite a prolonged process and 
involved a wide spectrum of activities from the initial 
startup of each of the AFU's on through to the final 
operation of the full system. The debugging of SY1VI­
BOL encountered many unique problems analogous 
to trying to test both a central processing unit and an 
operating system simultaneously on a more conven­
tional computer. Unfortunately, self-diagnostics were 
impractical until late in the project because the con­
struction schedule was such that Input/Output equip­
ment was one of the last items to become operational. 
Some way of automatically exercising and/or monitor­
ing various AFU's and portions of the system and of 
recording the results of these tests was absolutely neces­
sary; in response to these needs, the first System Tester 
was developed. 

SYSTEM TESTER 

The System Tester consisted of three major elements: 
a programmable minicomputer, a logic interface and 
bus multiplexer between the minicomputer and SYM­
BOL, and a comprehensive set of computer programs 
which could control (and be controlled by) events 
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Figure 4-Block diagram illustrating connection of the 
programmable control computer to SYMBOL through 

the system tester interface 



occurring on the Main Bus. The configuration is sche­
maticallyrepresented in Figure 4. 

The minicomputer was an IBM 1130 with an 8192 
word, 16 bits per word, memory (3.6 microsecond cycle 
time), a removable disc, a console keyboard and type­
writer, a card reader/punch, a Data Products 80-
column high-speed line printer, and a Storage Access 
Channel. The standard software supplied with the 
system (Disk Monitor Version II, Level 3) was used 
throughout the project. 

The hardware interface consisted of four large logic 
boards between a pair of short motherboards mounted 
in a small separate enclosure (along with the necessary 
power supplies, cooling fans, etc.), placed adjacent to 
one end of the SYMBOL main frame. Short cables 
were used to connect the Main Bus to the interface, 
and a somewhat longer and thinner cable connected 
the interface to the control computer. The interface 
to the line printer was located on a fifth board in this 
same module. 

The System Tester interface logic was divided into 
four basic sections. The first was a fairly small one 
which consisted of a number of TT~L inverters which 
were the logic level buffers between the control com­
puter and the CT~L logic in the rest of the system. Sec­
ond was a set of control interface registers and Input/ 
Output logic which communicated with the control 
computer. The third section was another set of data 
registers which could be loaded and unloaded by com­
mands from the control computer and which were used 
to transfer data to and from the Main Bus. The last 
section was the control logic which obeyed the priority 
rules of the Main Bus and included system reset and 
clock controls. 

In addition to the 111 Main Bus lines, four extra 
lines were allocated to a System Test Mode which was 
distributed throughout the system and decoded by 
certain AFU's to provide additional control of several 
of the more complex operations. Different test modes, 
for example, could completely turn off a particular 
AFU or could force serial instead of parallel opera­
tion of all the AFU's. The discrepancy between the 
speed of the control computer's 16-bit data channel 
and the considerably larger Main Bus was resolved by 
allowing the interface to turn off the SYMBOL clock 
momentarily each time data was transferred to or from 
the interface buffer registers. Although control of the 
clock in this manner significantly lowered the execution 
speed of SYMBOL, all logic sequences were still exe­
cuted in the same order with respect to each other, 
except for real-time peripheral devices, no matter what 
the actual clock speed. 

The third major element of the System Tester was a 
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language called DEBUG (what else!) and a set of pro­
grams which interpretively executed this language to 
control the interface as directed by input from the user; 
details of the language are given below. The actual 
interface and interrupt-servicing subroutines were 
written in assembly language while the majority of the 
remaining programs were written in FORTRAN. How­
ever, as new features were added to the system during 
the development period, the limited memory of the 
control computer was exhausted several times; each 
time, another routine was converted from FORTRAN 
to assembly language in order to free additional space. 
Notwithstanding this severe memory limitation, only 
rarely was a language feature removed, and then only 
after assurances from all users that the feature really 
was not being used. 

In addition to the specific language features de­
scribed below, many specialized programs were written 
(normally in FORTRAN) to provide formatted memory 
dumps, save-restore capability between the removable 
disc and SYMBOL memory, and other convenient 
features. 

DEBUG LANGUAGE 

The following sections describe the DEBUG language 
and the operation of the System Tester in some detail 
and especially attempt to convey some of the flavor 
of the system. The past tense is used because the 
System Tester was replaced by a special-purpose AFU, 
the Maintenance Unit (to be described later) and thus 
no longer exists. 

The interpretive DEBUG processor accepted com­
mands from punched cards. Each command consisted 
of an instruction element followed by a list of zero or 
more data elements. The format was relatively free 
form, with all blanks (spaces) ignored except in a 
string data element. Each element was separated from 
the preceding one by a comma or an equal sign. The 
last element was terminated by a period. Comments or 
other information following the period were ignored 
(a comment card was one whose first non-blank charac­
ter was a period). Blank cards could be included in the 
deck for readability. 

Extensive error checking was performed by the 
DEBUG processor, although very little error recovery 
was attempted because of the paucity of memory. When 
a mistake was discovered, the main response was an 
indication on the output listing of its nature. The 
system's action after an error was not predicted. In 
addition to a listing of the input commands and error 
messages, other messages of an informative nature and 
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TABLE I-List and Description of Programmed Register and 
Interface Hardware Register Mnemonics Recognized 

by the DEBUG Processor 

Programmed Register Mnemonics 
COMB-Address last formed by a COMBINE command 

COUNT-Number of Main Bus transfers monitored in tracing 
SPL TG-Group-link word address from a SPLIT command 
SPL TP-Page address from a SPLIT command 

SPLTW -Word address from a SPLIT command 
ZERO-Infinite source of zeros 

Interface Hardware Register Mnemonics 
MP-Monitored SYMBOL priority bus lines 
OP-Memory operation code last transmitted or error 

code last received 
PL-Page-list currently specified (the mnemonic PAGE 

LIST could also be used) 
PRIOR-Priority of the System Tester (any of the AFU's 

could be simulated) 
RADR-Address last returned from SYMBOL 
RCVX-Patchable register last received from SYMBOL 

RDATA-Data last returned from SYMBOL 
TN-Terminal number currently in use (TERMINAL 

NUMBER could also be used) 
XADR-Address last transmitted to SYMBOL 

XDATA-Data last transmitted to SYMBOL 
XMTX-Patchable register last transmitted 

the results of any action taken could be obtained on 
the line printer. 

Data elements 

A data element could have one of the following forms: 

1. A hexadecimal constant formed by the character 
"/" followed by zero or more hexadecimal digits. 
Only the last 16 were retained. A typical example 
is /0079 004F CO 02D63B, where blanks have 
been included for readability. If fewer than 16 
digits were entered, the result was right-justi­
fied. For left-justification ("contraction" is a 
good mnemonic) the last digit could be followed 
by an apostrophe and a character to designate 
the "fill" digit. Examples are /FF'O, where the 
leftmost byte is all ones and the rest are zeros, 
and /'A, a word of alternating ones and zeros. 

2. A positive decimal number formed by zero or 
more decimal digits. Two examples are 0 (zero) 
and 18 446 744 073 709 551 615, the largest 
possible 64-bit number. 

3. An alphanumeric string formed by a string­
start indicator (an apostrophe) followed by 
zero to eight characters. To allow for character 
codes not represented on a keypunch, triplets 

composed of an escape character (the @) fol­
lowed by a two-hex-digit coding of the desired 
character could be included in the alphanumeric 
string. 

4. A data element could also be a register mnemonic 
formed by a single letter "A" through "Z" or a 
word chosen from a list of programmed registers 
or interface hardware registers which had 
specific predefined uses. The single-letter pro­
grammed registers were for temporary storage 
of data, addresses, etc., as the user desired. They 
could be initialized, cleared, etc., only by DE­
BUG commands or by being explicitly named 
in a Memory Control or System Supervisor 
command. A list and description of the multi­
letter register mnemonics is given in Table I. 
Programmed registers A through Z and ZERO 
and hardware registers XDATA and RDATA 
were eight-byte (64 bit) registers. To refer to 
fewer than eight bytes,. the mnemonics could be 
followed by a subscript from·O through 7 en­
closed in parentheses. Subscripts 3, 4, 6, and 7 
implicitly referenced a single-byte datum. Sub­
scripts 0 and 2 referred to a two-byte page 
address, and subscripts 1 and 5 referenced three,.. 
byte word addresses. No subscript implied 
context-dependent use of some or all of the full 
64-bit register. 

5. And finally, a data element could be empty or 
null if it were formed by two consecutive ter­
minators or two terminators separated only by 
blanks. 

The System Tester was a combination hardware/ 
software system. To execute each command, the 
DEBUG processor transferred the contents of the 
indicated programmed registers to the appropriate 
hardware registers in the interface and initiated the 
proper operation. Although a data element could be 
left unspecified, the corresponding hardware interface 
register still participated in the operation; its contents 
were simply the value remaining from the previous 
operation. These registers could be initialized, set, 
cleared, etc., by DEBUG commands or by implicit 
side effects of various Memory Controller or System 
Supervisor operations. 

Instruction elements 

An instruction element was a mnemonic chosen from 
a predefined list; only the first five characters of mne­
monics containing more than five characters were used 
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TABLE II-List of All DEBUG Main Bus Transfer Commands with Data Elements Explicitly Identified by the 
Corresponding Default H~rdware Interface Register Mnemonic 

Command 

AG, XADR, RADR. 
AGOO, RADR. 
AGOl, RADR. 
AG 10, XADR, RADR. 
DE, XADR. 
DS, XADR. 
DL, XADR. 
FD, XADR, RADR, RDATA. 
FF, XADR, RADR, RDATA. 
FL, XADR, RADR, RDATA. 
FR, XADR, RADR, RDATA. 
IG, XADR, RADR. 
RG, XADR, RDATA. 
RGO, RDATA. 
SA, XADR, RADR, XDATA. 
SD, XADR, RADR, XDATA. 
ST, XADR, RADR, XDATA. 
SO, XADR, RADR, XDATA. 
SS, XDATA, XADR, OP, RDATA. 

Function 

Assign group 

Delete end of group 
Delete string 
Delete page list 
Fetch direct 
Fetch and follow 
Follow and fetch 
Reverse follow and fetch 
Insert Group 
Reclaim group 

Store and assign 
Store direct 
Store and insert 
Store only 
Control exchange cycle 

~ 

Card 
Reader 

Side Effects 

RDATA=O 
XADR=RDATA=O=PL 
XADR=RDATA=O 

RDATA=O=PL 
RADR=RDATA=O 
RADR=RDATA=O 
RADR=RDATA=0 

RDATA=O 
RADR=O 

XADR=RADR=O 
RDATA=O 
RDATA=O 
RDATA=O 
RDATA=O 

Line 
Printer 

for recognition. Most commands were order dependent, 
and data elements had to be listed in the exact order 
shown (or not listed at all). Data elements to the right 
of the last one of interest to the user did not need to 
be indicated. An example of each Main Bus command, 
with data elements explicitly identified by the default 
hardware interface register mnemonic, is given in 
Table II. ~ ___ ~o~i~_~~it~~ ___ 

In addition to the simple Main Bus commands, there 
were 38 other commands available to the user to 
provide for explicit control of the System Tester en­
vironment; control of the hardware interface registers; 
maintenance of the files stored on the control computer's 
disc; loading, reading, writing, and testing of SYM­
BOL's memory; monitoring of SYMBOL; and de­
cision making within DEBUG. These commands are 
summarized in Table III, where reserved mnemonics 
are shown in capital letters, and parameters and ex­
planatory notes are given in lower case letters. 

MAINTENANCE UNIT 

To provide an independent maintenance and de­
bugging capability, the System Tester was replaced by 
another AFU, the Maintenance Unit. Figure 5 sche­
matically illustrates the final system configuration as 
delivered to Iowa State University. Input/Output 
equipment, controlled by a logic switch, is shared be­
tween the Maintenance Unit and a high-speed batch 
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Figure 5-Schematic representation of the final system including 
the maintenance unit and a high-speed terminal sharing common 

input/output peripherals 
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TABLE III-DEBUG Macros and Commands for Controlling the System Tester 

Control of the general test environment 

CLEAR TO ZERO, unordered list of registers. 
COMBINE, page number, group number, word number, COMB. Address generator 
EJECT. Skipped output listing to a new page 
END. Signaled end of a testing session 
EQUATE, old mnemonic=new mnemonic. Corrected simple keypunch errors 
HELLO, user's identification. Identified beginning of a test session 
LIST ALL. Permitted printing of everything 
LIST ERRORS ONLY. Only error messages were printed 
MOVE, destination = source. Register-to-register transfers 
PAUSE, number of milliseconds. A timed delay. 
PRINT, unordered list of registers. 
REGISTER STATUS. Printed contents of interface registers 
REPEAT LAST MEMORY COMMAND, number of times. With XADR=RADR each time 
SET, register = value. Register initialization 
SPLIT, source, SPLTP, SPLTG, SPLTW. Address decomposer 
STOP. Press "START" on console to continue 
WATCH, unordered list of hardware interface register mnemonics. 

Control of the hardware interface 

LOAD BUS AND STEP CLOCK, XDATA, XADR, OP. Single-step bus control 
START CLOCK. Let SYMBOL free-run 
STEP CLOCK AND PRINT CONTENTS OF MAIN BUS, number of times. 
STOP CLOCK. Force SYMBOL to halt 
SYSOFF. Ccntraction of "system off" 
SYSON. Contraction of "system on" 

Maintenance of files stored on control computer's disc 

DELETE, FILE no 
FILE STATUS. 
RESTORE, FILE n. 
SAVE, FILE n. 

Deleted a previously saved file 
Gave status of all files on disc 
Loaded SYMBOL memory and DEBUG status 
Stored SYMBOL memory and DEBUG status 

Loading, reading, writing, and testing of SYMBOL memory 

FIND, beginning address, ending address, data, mask. Searched for data 
INITIALIZE, first address, last address, datum. Loaded memory with datum 
LIST, beginning address, ending address. Dumped memory on line printer 
LOAD, beginning address, ending address, ordered list of data elements. 
TEST CORE, XDATA, number of times. High-speed repetive memory test 
ZERO CORE. Cleared SYMBOL memory to all zeros 

Monitoring of SYMBOL 

PREPARE TO TRACE, unordered list of AFU names. Set up for trace mode. 
TRACE, XDATA, XADR, OP, unordered list of conditions for exiting. 

Decision making within DEBUG 

GO TO, label. Skipped cards until label was found 
IF, data, mask, condition, skip flag, number of cards. Decision maker 
LABEL, user-chosen label. Provided target for a GO TO command 

terminal. The Maintenance Unit console, with START, 
STOP, INHIBIT LIST, and RESET switches, is 
integrated into the SYMBOL console. A simple punched 
card input, easily produced at a keypunch or through 
another processor called SUPERBUG (written in 
FORTRAN for an IBM System /360) is used to direct 

the hardwired Maintenance Unit. To preserve the 
results of all prior testing, all DEBUG card decks were 
converted to equivalent SUPERBUG decks through 
a modified version of DEBUG which used the System 
Tester and SYMBOL in the translation process. The 
essential features of this control language are given 



below in hopes that they will provoke additional 
ideas. 

The Maintenance Unit is a card-driven character 
processor where each card contains one or more com­
mands. The command format is space independent, but 
parameters are order dependent. The first non-blank 
character on a card is the command code. Parameters 
(if any) are separated fron each other by a dash (minus 
sign). Two consecutive dashes (with zero or more in­
tervening spaces) indicate an (optional) missing param­
eter, in which case the register contents remaining from 
the previous command are used. The first semicolon 
on a card terminates processing of further characters 
from the card (i.e., human-readable comments, se­
quence numbers, etc., may follow a semicolon) and 
the command is executed with parameters received 
before the semicolon (a semicolon is automatically 
generated at the end of a card if none were previously 
found). Because of minimized decoding logic, the only 
valid characters before a semicolon are the hex digits 
o through F, the dash, and the (ignored) space. 

Maintenance unit hardware 

Table IV describes the hardware registers contained 
in the Maintenance Unit. In the table and in the fol­
lowing descriptions, each upper case character in a 
register mnemonic represents a single card column. 

During operation, XXXXXX and Q are cleared to 
zeros before each new command is read. RRRRRR, 
RC, and DDDDDDDDDDDDDDDD are preserved 
from one instruction to another unless changed by a 
memory command. M is preserved until a new value is 
loaded or until a system reset is performed, after which 
M=O. XMP, CCCCCC, 0, P, and TN are preserved 
from command to command unless specifically changed. 

TABLE IV-Description of Registers in the Maintenance Unit 

CCCCCC-Address compared during trace 
(24 bits) 

DDDDDDDDDDDDDDDD-Transmitted or received data 
(64 bits) 

M-System test mode (4 bits) 
f)-Operation code (4 bits) 
P-Page list (2 bits) 
Q-Disc quadrant code (4 bits) 

RC-Memory Controller return code 
(6 bits) 

RMP-Priority seen during trace 
(12 bits) 

RRRRRR-Returned address (24 bits) 
TN-Terminal number (5 bits) 

XMP-Priority watched for trace 
(12 bits) 

XXXXXX-Transmitted address (24 bits) 
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Note that P, TN, 0, Q, XMP, and CCCCCC are 
treated as a single ordered parameter when loaded 
from a card. P and TN may be changed without af­
fecting 0 by following TN with a dash or semicolon 
(or by leaving the remainder of the card blank). Other 
than these registers, the Maintenance Unit contains 
no memory; card commands are processed "on the 
fly" without benefit of additional storage. 

SUPERBUGcommands 

The thirteen valid operation codes are summarized 
in Table V, where typical cards and variations are 
shown. Explanatory notes are again written in lower 
case letters. Unused command codes 0, 1, 2, 6, and -
are simply ignored. 

DEBUGGING TECHNIQUES 

Although the command and control languages for 
the System Tester and the Maintenance Unit differed 
somewhat (with the Maintenance Unit having a con­
siderably smaller repertoire), debugging using the two 
systems was essentially the same. Both systems al­
lowed the full range of Main Bus transfers to be ini­
tiated. This meant, for example, that the Memory 
Controller (the central hub for most information 
transfers) could be thoroughly and exhaustively checked 
without having any other AFU functioning. Control 
exchange cycles enabled the starting and stopping of 
any AFU or groups of AFU's. The environmental 
commands and the macros, such as ZERO CORE, 
provided a good human interface with the system and 
permitted easy setup of initial conditions in prepara­
tion for a test. And last, and definitely most important, 
was the ability of both testers to monitor or "trace" 
the operation of SYMBOL as it operated under its 
own steam. 

In the System Tester, monitoring was accomplished 
by a PREP ARE TO TRACE card (which set the 
interface into a trace mode) followed by a TRACE 
command with parameters to start the proper AFU(s) 
and to establish stopping conditions. A single card 
combining both setup and startup commands was 
used with the Maintenance Unit. In either case, once 
the monitoring process was begun, all (or any subset) 
of the events occurring on the Main Bus (plus several 
"patchable" lines used to assist in observing internal 
AFU operations) could be printed on the high-speed 
line printer. At the option of the user, printing could 
be suppressed and the results of the trace could be 
stored "round robin" in a small temporary buffer (on 
disc with the System Tester or in SYMBOL core with 
the Maintenance Unit) for later playback only if some­
thing crashed. The buffer in the System Tester held 



368 Spring Joint Computer Conference, 1972 

TABLE V-Examples of SUPERBUG Commands which Control the Maintenance Unit 

THIS IS A COMMENT CARD AND DOES NOT AFFECT THE MAINTENANCE UNIT IN ANY WAY 
3; Pause. Press "START" on console to continue processing. 
4; Enable printing of results on the line printer 
5; Inhibit printing for greater test throughput 
7; Skip the line printer to the top of a new page 
8 OOXXXX-DDDDDDDDDDDDDDDD-DDDDDDDDDDDDDDDD-etc., Load core with data 
8 OOXXXX-DDDDDDDDDDDDDDDD-------------------------------------------etc., .. Load successive core locations with datum 
8 -FFFFFFFFFFFFFFFF-1-4-30--AAAAAAAAAAOO; Load beginning at address zero 
900XXXX; Dump non-zero contents of memory on line printer 
9; Dump non-zel,'o memory beginning at address zero 
A OOXXXX-DDDDDDDDDDDDDDDD-DDDDDDDDDDDDDDDD-etc., Compare core with data 
A -FFFFFFFFFFFFFFFF-1-4-30--AAAAAAAAAAOO; Compare beginning at zero 
B; Test core with all ones and all zeros, in that order 
C XXXXXX-DDDDDDDDDDDDDDDD-P TN 0; Memory cycle without check of results 
C XXXXXX-DDDDDDDDDDDDDDDD-P TN 0-RRRRRR-DDDDDDDDDDDDDDDD-RC TN; With check 
D; System reset. Equivalent to pressing "RESET" on the console 
E XXXXXX-DDDDDDDDDDDDDDDD-P TN; System Supervisor transmit without trace 
E XXXXXX-DDDDDDDDDDDDDDDD-P TN 0 Q; Disc-synchronized System Supervisor transmit 
E XXXXXX-DDDDDDDDDDDDDDDD-P TN 0 0 XMP CCCCCC; Trace after System Supervisor transmit 
F M; Set new system test mode 

the last 1600 operations whereas the Maintenance 
Unit's buffer held but the last 64; usually the most 
recent 10 to 20 were sufficient to analyze whatever 
problem caused the crash. As might be expected, this 
"instant reverse playback" feature gained heavy use 
since testing without the real-time printing of results 
speeded things up manyfold; only the last cycles which 
caused failure needed to be printed. 

SUMMARY 

The full-scale running SYMBOL system has demon­
strated that: 

1. A very high-level, general-purpose, procedural 
language and a multi-processing, multi-pro­
grammingoperating system can be implemented 
directly in hardware. 

2. Design and construction techniques using only 
large two-layer printed circuit boards for all 
system interconnections, together with a func­
tionally factored system result in an economical, 
serviceable, reliable, and "debuggable" system. 

3. Effective testing techniques that connect an 
operating processor to an unproven system which 
has a bus-organized architecture can be de­
veloped to enhance and greatly simplify the de­
bugging process 
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The Rice Research Computer-A tagged architecture* 

by E. A. FEUSTEL 

Rice University 
Houston, Texas 

INTRODUCTION 

In this paper we report on a new computer with several 
novel features. These features are applications of the 
concept of tagged architecture, and although some 
of them are not unique to the Rice Research Computer 
(R-2) , they focus our attention on this radical design 
form, its advantages and disadvantages. Since the 
work is still in progress, we limit this report to a dis­
cussion of the architecture and a few of its ramifications. 

History of tagged architecture 

The R-2 computer is an adaptation of a design of the 
Basic Language Machine (BLM)l of Iliffe. In his book 
and paper2 he presents an argument for the utilization of 
a fraction of each memory 'word as tag bits. These tag 
bits are to be interpreted by the hardware as informa­
tion about the data found in the referenced location, or 
its status with respect to the program or operating 

, system. 
The basic concept of tag bits is not new. Almost all 

computers employ a parity bit which the hardware 
uses to detect memory failure. In addition, many 
computers utilize a lock byte which limits access to an 
area of storage to the operating system or to those who 
have a key byte that opens the locked area. 

Early machines also employed bits which were of 
special significance to the hardware. The Burroughs 
B5500 employed a flag bit to inform the hardware that 
the word at the location addressed possessed a non­
numeric value which must be interpreted by the 
operating system.3 The Rice Computer (R-1),4 circa 
1959, employed two bits for every word which could be 
set by the operating system or the programmer. These 
bits were used in an extensive debugging system wherein 
tracing, monitoring, or other procedures were carried 

* This work is supported in part by the Atomic Energy Commis­
sion under grants AT-(40-1)-2572 and AT-(40-1)-4061. 
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out when a tagged data word or instruction was 
encountered. 

Today the EAI8400 employs two tag bits for similar 
purposes. The Telefunken TR4 and TR4405 employ 
two tag bits to denote the numeric type of data at an 
addressed location. The Burroughs B67006,7 ,8 and 
B7700 which were developed concurrently and in­
dependently of the R-2 employ three tag bits to 
identify types of numeric operands and special informa­
tion used by the operating system. 

What is new about Iliffe's concept is that it represents 
a rejection of the classical von Neumann machine in 
favor of something which may be better. In the von 
Neumann machine program and data are equivalent in 
the sense that the data which the program operates on 
may be the program itself. The loop which modifies its 
own addresses or changes its own instructions is an 
example of this. While this practice may be permissible 
in a minicomputer with a single user, it constitutes 
gross negligence in the case of a multi-user machine 
where sharing of code and/or data is to be encouraged. 

Instead, Iliffe presents a different conjecture. All 
information which the algorithm needs to know about 
the data ought to be contained indivisibly in the data 
itself. For example, an algorithm to perform a for-loop 
on arrays ought to be the same whether the array is of 
length ten or length 100. Rather than record this 
information in a variable and use a loop with an index, 
Iliffe proposes to record the length of the array with the 
pointer to the array itself, as in Figure 1. 

Rather than have several different algorithms for 
add integer, add floating, add double precision, and 
add complex, he proposes to make the data self-repre­
senting. An integer can only be used as an integer, a 
floating quantity as a floating quantity, etc. This idea 
is the fundamental difference between the class of 
machines represented by the BL1YI, the R-2, and the 
Burroughs B6700 on the one hand, and by those of more 
conventional architecture on the other. 

Once the fundamental decision has been made to 
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Figure 1-A typical array pointer and its array 

adopt this goal in hardware, and the commitment to the 
use of memory bits for tags has been made, a great 
many benefits result. One of the most important is that 
the hardware, once informed of what each piece of 
data is, can perform run-time checks for consistency 
of data and algorithms, e g., bounds checking and type 
conversion. 

General structure of the R-2 

We now turn to the general structure of the R-2 as 
shown in Figure 2, which represents only a minor 
modification from the original design which began in 
January 1969. The system consists of three major 
asynchronous subsystems: a memory system of 24K 
64-bit words of core memory, a Digital Equipment 
Corporation PDP-II 1-0 controller, and the CPU 
complex. While the details of the first and second sub­
system are of interest, we will not be concerned with 
them in this paper. 

The CPU complex consists of a set of 64 16-bit 
scratch-pad memory circuits organized as 64-bit 
registers (designated X0 through XI5), whose cycle 
time is approximately 40 nanoseconds, an arithmetic 
unit and a CPU. The latter two units are built from 
RCA ECL integrated circuits with typical delays 
of from 3 to 5 nanoseconds. This results in a typical 
add time for two 54-bit floating quantities on the order 
of 50-200 nanoseconds, and a multiply consisting of 
additions and shifts typically requiring 3 microseconds. 

The address calculator in the CPU is one of the most 
important features of the system. It functions as an 
automatic base-bounds calculator and is responsible 

for the high security of the system programs. For every 
fetch from memory the address calculator is given 
four quantities, a base address B of 20 bits, an initial 
index I of 14 bits, a length L of 14 bits, and the element 
selector D of 14 bits. In 150 to 200 nanoseconds the 
calculator performs the following algorithm: 

Temp:=D-I; 
if Temp <0 then Low_error_l; 
ifTemp~L then High_error_l; 
Actual_address: = B+ Temp; 

I is a number between - (213 -1) and (213 -1) in one's 
complement form. D has a maximum value of 214 - 1 
and this is the largest segment which one can practically 
use. This should be sufficient for all but the largest 
one-dimensional arrays of data. The base address B is 
of sufficient size for any program (or memory) that we 
can currently foresee, on the order of 1 million words. 

Data formats 

Before we can discuss the operation of the CPU we 
must understand the various data formats which the 
R-2 can deal with. These formats are given in Figure 3. 
Each word currently consists of 62 bits of information. 
A two bit field in every word contains a parity bit Z 
and a write lock bit L. The remaining 60 bits may be 
divided into four classes of. words: numeric words, 
control words, address words (or partition words), and 
instruction words. The first three classes contain six 
bits used for tags as Iliffe suggested. Four bits are used 
to distinguish types and two may be set by the program­
mer to generate interrupts. The type codes are listed in 
Table 1. 

I~---------------------T----------
1 1 
1 1 

SCRATCH PAD 

III 

ARITHMETIC 
UNIT 

I 1-0 DEVICE & DISK I 
1- __________________ I 

Figure 2-Subsystems of the R-2 Computer 



The format of the various numeric types is of little 
interest. They are the same as those found in the 
original Rice Computer.4 See Table I. 

We should take greater note of the formats for address 
words. In addition to containing a base field (B), an 
initial index field (I) and a length field (L), each address 
word also contains an indirect reference field which in­
dicates the type of the object in the block described by 
the address word. Two more bits are used. One indi­
cates whether the block which is described is in core 
memory or in secondary storage (P). The other indicates 
whether the block may be relocated. (Q). 

Control words are an innovation. They are the only 
method of intersegment communication. They contain 
a 21-bit halfword pointer to an instruction (R-2 instruc-

, tions are packed two per word). A mode field of 11 
bits indicates the operating state of the computer at the 
time a jump to a subroutine is made. A two-bit con­
dition code at the time the jump is made is stored in 
field C. Since the routine may be disk resident, a P field 
is provided to signal the routine's presence or absence 
in core memory. A chain field is provided in each control 
word. This field may be used to link together control 
words which are on the stack or are in a common 
linkage segment. Rather than scan storage linearly to 

8 BIT 
CONTROL 

FIELD 
54 BIT 

ARITHMETIC AND DATA FIELD ,. 
COEFFICIENT 

NUI1E RI C tlORDS 

1_ 2 11 21 

CHAIN Ici MODE LOCATION 

2 2 _ 

CONTROL ~IORDS 

ADORE SS tlORDS 
or 

PARTITION HORDS 

20 

I:I:I/(I OP 1 y I iN iN 

FIRST INSTRUCTION SECOND INSTRUCTION 

INSTRUCTION ~IORDS 

S---$oftlo/are-defi ned tags 
D---Dircct tags 

IR---Indirect tags 
M---Mark 
z---Parity 
L---Write lockout 
A---Literal value of iN 

N---Displacemcnt of ·Location 
Q---Rcstricted access to array 
P-~-Array present in core 
X---l s t operand reg. se 1 ector 
V---Variant on operation 
Y---2nd operand reg. selector 

OP- --Opera tf on code 
C---Condi tf on code 

Figure 3-Diagram of R-2 word formats 
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TABLE I-Data Tag Assignment 

TAG Number Meaning 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

MIXED OR UNTAGGED 
(unassigned) 
( unassigned) 
(unassigned) 
REAL, SINGLE PRECISION 
54 BIT BINARY STRING OR INTEGER 
DOUBLE PRECISION (real, fl. pt.) 
COMPLEX (two single precision fl. pt. words) 
UNDEFINED FOR NORMAL OPERATIONS 
PARTITION WORD 
RELATIVE CONTROL WORD 
ABSOLUTE CONTROL WORD 
RELATIVE ADDRESS, UNCHAINED 
ABSOLUTE ADDRESS, UNCHAINED 
RELATIVE ADDRESS, CHAINED 
ABSOLUTE ADDRESS, CHAINED 

find the previous control word, one merely follows the 
chain of links. Finally, a four-bit mark field may be used 
to indicate the level of the subroutine or the level of the 
subtask in the operating system. These marks are 
especially useful when employed with the control 
stack for exiting blocks and reestablishing an appro­
priate environment. 

Processor facilities 

Two major resources are available for use by the 
instruction unit. The first is the hardware stack and 
stacking mechanism. The second is the register set 
(previously described). The stack is maintained in 
memory and utilizes an address word held in register 
X0 as a stack pointer and bound. In order to utilize the 
address calculator in a consistent manner, the top of the 
stack is the location addressed by the base field of the 
address word and the bottom of the (accessible) stack 
is determined using the length field. Special words called 
partition words are stored by the operating system to 
denote the absolute beginning and end of the stack 
region or to point to a continuation of the stack in 
another segment (see Figure 4). Any word of the acces­
sible stack within 214 -1 of the top may be accessed by 
an instruction. Partition words cannot be overwritten 
by normal stacking and unstacking operations. 

Two hardware registers U and R constitute Xl, the 
double length accumulator for arithmetic and logical 
operations. If Xl is loaded with an item of double 
precision or complex data, the second word is held in 
the R register. Special instructions are available to 
address the R register independently of U. 
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BOTTOM OF STACK 

PF- PARTITION FORWARD 
PB - PARTITION BACKWARD 

-,..----1 BEGIN STACK 

N 

END OF STACK 

ALLOCATED FOR STACK 

Figure 4-The stack pointer and stack layout 

Registers X2 through X15 are implemented with the 
scratch pad memory integrated circuits mentioned 
previously, and a reserved, fixed core memory location is 
associated with each register to hold the second word of 
double word data when it appears. By recognizing 
the data tags "complex" and "double precision," the 
hardware automatically performs the appropriate 
double word transfers and storage so that no special 
programming is required. Thus, to the programmer Xl 
through X15 appear to be a set of general purpose 
double word registers. Since X0 is always used as the 
stack pointer, the hardware rejects (by interrupt) any 
attempt to store a word into X0 unless it is tagged as 
an address word. 

All of the other registers except X15 may be used for 
temporary storage of numbers, addresses, or control 
words. X15 must contain an address word which de­
scribes where the interrupt vector is located. All 
interrupts transfer relative to this address. In the event 
of a catastrophe when there might not be an address 
word in X1.5, interrupts transfer to locations relative 
to absolute address O. 

Instruction formats 

Every instruction contains a one bit software tag 
denoted by S and six bit function code field labeled OP 
in Figure 3. Each instruction also features an immediate 
bit labeled A, a numeric offset labeled N which may be 
plus or minus, and a register field Y. The remaining 

four bits labeled X/V in Figure 3 are interpreted differ­
ently in two classes of instructions. The first features a 

. four bit result register field X. The second uses this 
field as a variant code for the operation, and for this 
class (which includes arithmetic and logic) the first 
operand is implicitly Xl, which also contains the 
result. 

Instructions are customarily written in the form 
S A X OP Y ± N or S A OP Y ± N where the function 
is to perform X OP Yeff~X, The first operand X is 
either stated explicitly or is implicit in the instruction. 
Yeff depends on the contents of Y, the number Nand 
the immediate bit A. 

Rather than describe the operation of the addressing 
algorithm for Yeff exhaustively by flow diagrams, we 
will describe instruction sequences for short algorithms. 
This will show the effect of Iliffe's conjecture, as well 
as illustrating the machine design. 

EXAMPLE PROGRAlVIS 

Example i-Accessing vector elements 

All elements must be accessed through an address 
word. Address words can be constructed by the op­
erating system in a manner to be described in a following 
example. Suppose we have an address word in X2 
which points to a vector in the manner of Figure 1, and 
suppose we wish to add the element with index ten 
of the array to a numeric quantity in Xl. We could use 
the following instruction: 

ADD X2.10 / / Select the element of X2 indexed by 
10 and add to Xl. Suppose the initial index of X2, 
I(X2) is -4, the length 15, and the base address 1000. 
The sequence of computations would proceed as follows. 
The computer would check X2 and determine that it 
contained an address. It would issue B = 1000, I = - 4, 
L = 15, and D = 10 to the address calculator. The 
calculator would compute D-I (10- (-4» or 14 
which is greater than -1 and less than L. Since the 
element is within the vector, an address of 1014 would 
be generated and the element would be brought to the 
arithmetic unit. If the element is an integer it would be 
immediately added to the integer in Xl and the 
condition code would be set to reflect whether the 
result was less than, greater than, or equal to zero. If 
the element is real (fixed or floating point fraction), the 
computer would convert Xl to floating point form and 
perform the addition. If the element is anything but a 
numeric type, an exception occurs and an interrupt to a 
fixed location relative to the address in X15 takes place. 
If the instruction also invokes the auto-store option, 



denoted ADD~X2.10, the result would be stored back 
into 1014. 

Example 2-Accessing array elements 

On the R-2 we usually represent arrays in a tree 
structure. The first index is used to determine an 
element in a vector composed of address words. The 
second index is used with this address element to select 
an element from a second vector which is an address 
word and so on until the last index which is used to 
select the desired element. This kind of an array is 
illustrated in Figure 5. Because of the fact that each 
address word carries with it the length of the vector 
it addresses, such arrays may be uniform or nonuniform 
as desired. They may also be so large that only one 
vector of data will fit in core memory at any time. 

Two different methods of addressing such arrays 
can be used. These methods are considerably more 
efficient than that used on the Burroughs 6700 because 
of the scratchpad registers X2-X14 which are available. 
One method involves element selection as in the first 
example. It is generally used when we wish to select 
only Xi,j,k th element of an array rather than to deal 
with every element. The following sequence of instruc­
tions indicates how this may be accomplished. 

Suppose X2 contains the address word pointing to 
the vector and we desire to select Z3 ,1 ,5 and assume 

FORMATS 

ADDRESS INTEGER REAL 
N I INTEGER I R I REAL 

~ 
R 7_1 

~ A 2 0 R 5..3 
A 1 1 -+- N -10 

4{A 2 2 -+- R -12_'2 
A 2 3 ~ N 5 

R 4..3 

N -7 

Figure 5-A nonuniform three dimensional array 
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that the initial indices are O. Then we could use: 

X2 DOT = 3 / / Replaces the contents of X2 
with the third element of 
first level tree. 

X2 DOT 1 / / Replaces of the contents of 
X2 with the first element of 
second level. 

X2 MOD = 5 / / Generates the address of 
Z3,1,5 in X2. 

ADD ~ X2 / / Adds (Xl) to Z3,1,5 and auto­
stores back into the array. 

This set uses the immediate address form of the 
instruction. 

An alternative form might employ a vector of sub­
scripts. Suppose that X3 contains the address word of a 
vector of subscripts to be applied to Z, i.e. (3, 1, 5). The 
following sequence indicates how this may be done. 

X2 DOT X3.1 / / Obtains the third element of 
first level. 

X2 DOT X3.2 / / Obtains the first element of 
second level. 

X2 MOD X3.3 / / Generates a pointer to Za,I,5. 
ADD ~X2 / / Adds (Xl) to Z3,1,5' and auto­

stores. 

This sequence of computations is as follows. The first 
element of X3 (since I(X3) =0) is selected and brought 
to the CPU. It has the value 3. If X3 had 
contained a number originally, 1 would have been 
added to that number and the resultant would have 
been used. This value is then used to obtain the third 
element of Z's first level subtree (denoted Z3, *, *). 
This is left in X2. The next operation obtains an address 
word which is the first element of Z's second level tree 
of the third branch (Z3 ,1, *). The next operation indexes 
this address to make its location field point to the 
desired element. This element is presumably a number 
(integer, real, complex, or double precision). It is added 
to the . contents of the U register (Xl), and the result 
placed in Xl and in Z3,1,5, thus smoothly implementing 
the ALGOL 68 statement: Z[3, 1,5] + : = V; where V was 
the contents of Xl. If the value of (X3.1), (X3.2), or 
(X3.2) had not been a number then an exception 
would have occurred. 

Example 3-Array processing 

In some cases vector processing is desired. For this 
purpose a different kind of access is desired. In this 
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mode one systematically examines all the elements of an 
array or vector in turn, and performs some operation 
on them. For example, to sum a vector pointed to by an 
address word in register X2, one might use the following 
sequence of instructions. Assume (I(X2)) equals o. 

X3 LOAD 4 

Xl LOAD 0 
AGAIN ADD X2.0 

/ / To sum five elements of 
vector X2 

/ / Initialize Xl to Zero 
/ / Add first elemen t of 

vector 
X2 MOD = I / / Adjust X2 to point to 

the next element 
X3 JGE AGAIN / / Continue to CONT if 

X3 is zero or negative 
CONT / / Decrement and jump to 

AGAIN otherwise. 

This sequence loads X3 with the number 4 and Xl 
with the number o. The next instruction causes the 
number pointed to by the B field of X2 to be added to 
the number in Xl. If the length field is set to - 1, an 
exception will occur. The next instruction uses the 
literal 1 to decrement the L field of the address in X2 
and simultaneously increase the B field by 1. If L is 
less than zero an exception will occur. The next instruc­
tion examines X3. If it is a number less than or equal 
to 0, the next sequential instruction is taken. Otherwise 
the number is decremented by one and control passes 
to AGAIN. Using this sequence the first five elements 
of the vector pointed to by X2 are summed. If there 
are fewer than six elements in this vector, an exception 
occurs. If there are exactly five elements in the vector 
when the program gets to CONT, L(X2) equals zero. 
An attempt to do X2 MOD = I again will cause an 
error exception. Otherwise the new L(X2) is five less 
than before and the new B(X2) is five more than 
previously. 

A shorter sequence may be used if it is desired to 
sum all the elements of the vector. Here the programmer 
need not even know how long the vector is. 

Xl LOAD = 0 / / Set Xl to zero 
AGAIN ADD X2.0 / / Add elements to Xl 

X2 JNL AGAIN / / See the discussion below 

The last instruction checks to see if L(X2) is greater 
than o. If it is it performs X2 MOD = 1 and transfers 
control to AGAIN. If it is not, control passess to the 
next instruction. 

As a final example of the power of this approach, 
assume that we have three arrays A, BT, and C and 

that we desire to compute 

n 

Ci,k= L: Ai,jBk,/. 
j=O 

This can be calculated simply in the following routine 
assuming X2 is an address word pointing to A, X4 is an 
address word pointng to BT, and X6 is an address word 
pointing to C. 

INIT 
BEGIN 

FIRST 

X9 COpy X4 
X7 LOAD X6 

X3 LOAD X2 

X5 LOAD X4 

ZERO X7.0 
SECOND Xl LOAD X3.0 

lVIUL X5.0 
ADD~ X7.0 

X5 IVIOD =1 

/ / Copies (X4) to X9 
/ / Get ith subtree of 

C 
/ / Get ith subtree of 

A 
/ / Get kth subtree of 

BT 
/ / Put zero in Ci,k 

/ / Get Ai,j 

/ / ::.Vlultiply by Bk ,l 
/ / Add and autostore 

to Ci,k 

/ / Next consider 
B k ,j+1T 

X3 JNL SECOND / / Next consider 
A i ,Hl 

CONT 

X4 lVIOD = 1 

X7 JNL FIRST 

X6 IVIOD = 1 
X4 COpy X9 

X2 JNL BEGIN 

/ / if no more j con­
tinue here 

/ / Next consider 
B k+1,l 

/ / Consider C i ,k+l if 
any left 

/ / Consider Ci+l,k 

/ / S tart over with 
Bo,o 

/ / Consider A i+l ,j if 
any left. 

This routine destroys pointers located in X2, X4, and 
X6. The steps 

MUL X5.0 
X5 MOD=l 

may be combined into l\1UL! X5 which uses a variant 
option for the arithmetic operation code to modify the 
address word in X5 after the element has been fetched. 

Example 5-Use of the stack 

The stack may be used for intermediate storage in 
the following manner. It is first necessary to get the 
operand in a scratchpad register. Suppose we wish to 



stack X5. Then we write X5 STORE X0. The contents 
of X5 is pushed onto the stack. On the other hand, X5 
STORE X0.7 stores the contents of X5 in the seventh 
location of the stack without altering other elements. 
If there are less than seven elements on the accessible 
stack an exception occurs. The top element of the stack 
may be changed without pushing by the use of X5 
STOREX0.1. 

Elements are removed from the stack in an analogous 
manner. For example, ADD X0 adds the top element 
of the stack to the accumulator and pops the top 
element. ADD X0.1 adds the top element of the stack 
but does not pop it; ADD X0.7 adds the seventh ele­
ment of the stack without affecting the stack. 

This stack arrangement affords many conveniences 
in arithmetic operations. An example of this is the 
instruction save and fetch. Take as an example X2 
SVF X3.12. This instruction gets the twelfth element 
of the array pointed to by X3, after saving the old 
value of X2 on the stack, and places the new value in 
X2. In compiling, the instruction Xl SVF Xi.N will 
occur frequently. Intermediate results can be saved 
on the stack for later use. Alternatively, when the value 
is to be used many times they can be stored in a register 
using COPY. 

The stack is also useful in control actions. The 
instruction JUMP AND SET MARK, e.g., 4 JSM 
LABEL, causes a control word to be made up pointing 
to the next sequential instruction. This control word 
contains the current mode, the current condition code, 
and the mark specified by the JS1\rI instruction, in this 
case 4. The chain field is loaded with the current value 
of L(X0). The resulting control word is pushed on the 
stack. X0 is then updated to reflect a new stack regime. 
L(X0) is set to 0 and B is set to the location that is one 
less than that occupied by the control word. This stack 

) regime is completely disconnected from the prior one; 
there is no way save through the registers or memory 
constants to reach any of the members of the previous 
stack regime (see Figure 6). One can return to the previ­
ous environment by the use of the return instruction: 
RET 4. The previous control word is found by examin­
ing the address B(X0) + L(X0) + 1. This address con­
tains the last control word or a partition word pointing 
to another section of the stack regime or a partition 
word marking the absolute beginning of the stack. If a 
control word occupies this position, B(X0) is set to point 
to this address. The chain field of the control word is 
copied into L(X0), the mode field to the mode register, 
the condition code to the condition code register, and the 
21 bit address to the program counter. If the mark field 
is less than the literal used with the return instruction, 
the computer resumes processing. Otherwise the process 
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500 BEGINNING OF STACK 

TOPOF SiACK 

100 END OF STACK 

REGIME 1 

REGIME 2 
310 

REGIME 3 

Figure 6-The use of the stack in programming systems 

described above is repeated until a partition word 
marking the absolute beginning of stack is encountered. 
If the beginning of stack is encountered, an error 
exception will result. This form of return has the 
advantage that it is efficient and can be used to return 
several levels in a block structured language. 

Relative addressing 

In an earlier section we stated that all addressing 
was done via an address word. In fact this is not quite 
true. Addresses may be relative to the program counter 
or to the location in which the address word or control 
word is stored. One may then jump minus five halfword 
instructions. This feature was available on the R-1 in 
1959 and made possible the development of very 
efficient relocatable code. It is frequently found on 
machines today. One can also access fullword data in 
the same manner so that constants can be stored with 
the code. 

In the same way relative codewords and addresswords 
can be used to address other quantities. The address of 
the location in which the address or control word is 
stored must be determinable by the computer. An 
offset relative to this address is used to point to the 
jump location or to the data. This feature makes 
poss~ble relocation of large blocks of data in a very 
efficient manner and minimizes the number of address 
words which contain absolute addresses. This is 
important because it drastically reduces overhead in the 
reorganization of storage. Only a few locations need to 
be modified to relocate all programs and their data. 

Chained Addressing 

A second kind of addressing is also provided. Chained 
addressing provides for efficient parameter passing 
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mechanisms, particularly of the call by reference 
variety. The addressing algorithm is modified to include 
indirection. When a chained address or control word is 
encountered the machine causes an indirect reference 
through the address or control word to the next quan­
tity. A counter is employed to assure that chaining 
beyond 32 levels is not allowed. Special instructions are 
employed to defeat chaining for loading and storing. 
These instructions allow complete control of the 
addressing mechanism. 

Miscellaneous instructions 

The R-2 is designed to be used with compilers rather 
than assemblers. It has many useful miscellaneous in­
structions including reverse divide, variants of pre­
and post-complemented addition and logical operations, 
and integer and floating multiplication and division. 
Various instructions allow extraction and replacement 
of the predefined data and instruction fields. A large 
number of shift, bit count, and test instructions 
complement the arithmetic and logical set of instruc­
tions, thus facilitating the development of operating 
systems and compilers. 

Ramifications of tagged architecture in the R-2 

The use of tagged architecture has many ramifica­
tions. In a future paper we will discuss them more fully. 
Here we will comment on a few of interest to those who 
write or use compilers and operating systems or who 
must debug programs. 

Compilers can be made simple and more efficient. 
Since tags indicate what each numeric quantity is and 
since the hardware will correctly perform the appropri­
ate operation on all legal combinations of data, the 
compiler need not deal with semantic operations 
referring to basic types of identifiers. This is now 
handled conveniently at run-time. The problem of 
temporary storage is largely solved by the stack whose 
implementation is greatly facilitated by the address 
calculator and the tagged address type. The tagged 
registers allow simple manipulation and mechanization 
of vector and array operations and allow dynamic 
variables much more freedom than do previous ma­
chines. They also permit the optimum calculation of 
expressions of type address and type numeric. Finally, 
tagged addresses and numbers greatly simplify the 
problems of run-time systems for use with particular 
compilers; note that even undefined quantities have a 
distinct representation. 

Operating system design is facilitated by tagging. 
The difference between a label and an address can be 
determined at run-time. This means that one cannot 

jump through an address word or a number but only 
to approved points in a subroutine via a control word. 
Attempting to do otherwise produces an interrupt. 

Secondly, addresses can only be manipulated by 
means of a special set of instructions. The more powerful 
instructions may be denied to the user and he may be 
given the use of lVIOD, TAG, and LIJ\L TAG is an 
instruction with an immediate operand. The compiler 
monitors all TAG instructions assuring that no un­
authorized user can construct illegal address or control 
words. Any user may employ MOD or LIlVL They 
modify an address to point to a subset of the elements 
in an addressed space. Since an unprivileged user may 
never generate an address outside the initial space to 
which he has been given access, protection of user 
programs is enhanced if not insured. This protection 
mechanism appears to be exactly what is required for 
recursively defined operating systems. 

The design and use of debugging systems is greatly 
simplified. A program can be written to dump core 
memory using the type of each datum. This means that 
complex, double precision, floating, integer, and un­
defined types can be used to interpret the data con­
tained in the cells. This can be used in the analysis of 
dumps. Addresses and labels are also distinct in this 
scheme; the fact that they are not in other systems 
has been a recurring problem for those who must debug. 

Dynamic debugging is also easily implemented. By 
the use of symbolic locations, relative locations, or 
absolute locations, data or instructions may be tagged 
with software tags. Whenever such tagged data is 
encountered, an interrupt occurs. The programmer may 
supply his own programs to analyze or monitor the data 
values which are encountered. The software tag in 
each of the instructions may also be set to cause inter­
rupts related to tracing any or all control actions. 
Again the user may write a program to analyze the 
results. Finally since the tag bits may be set either at 
compile time by the compiler, or arbitrarily at run­
time by the user through the operating system, code 
which is verified as being correct need not be recompiled, 
thus simplifying and expediting the process of 
debugging. 

SUMMARY 

This paper has reported the state of the Rice Research 
Computer in its development. It has emphasized the 
features of the R-2 which arise from accepting the 
principle of tagged architecture. For a particular 
implementation, we have shown by example the power 
of tagged architecture in application to compilers, 
operating systems, and debugging systems. 
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A generative CAl tutor for computer 
science concepts* 

by ELLIOT B. KOFFMAN 

University of Connecticut 
Storrs, Connecticut 

INTRODUCTION 

Limited progress has been made in software for com­
puter-assisted instruction. Frame-oriented CAl systems 
have dominated the field. These systems function as 
mechanized programmed texts and utilize the computa­
tional power of the computer to a minimal extent. In 
addition, they are difficult to modify and tend to pro­
vide a fairly fixed instructional sequence. 

The conventional frame-oriented CAl system is or­
ganized as a series of frames. A frame may present a 
piece of information and/or ask a question. The ques­
tions are normally objective and often are of the mul­
tiple-choice type. The frames are usually linked in a 
sequential fashion and a student will cycle through 
them one at a time. Frames may be presented on a 
teletype, a graphical display, a slide projector, via an 
audio track, or any combination of the above. 

There are severe problems inherent in systems of 
this type. All questions must be specified by the course­
author as well as a set of anticipated student responses 
to each question. If branching is to occur, explicit 
instructions must be given indicating the performance 
criteria for a branch and the new continuation point 
in the program. 

Since everything must be specified in advance, ex­
tensive time must be spent in preparing course material 
for presentation. Furthermore, once programmed this 
material has very little flexibility. Modifying the set of 
questions to be asked of the student or the material 
to be presented is a major undertaking and much re­
programming must be done. 

This type of system is not very useful in teaching 
quantitative courses. Subject areas such as engineering 
or the physical sciences are concerned with teaching 
techniques of problem solving. Problem solving com-

* This research is sponsored by the Connecticut Research Com­
mission under Grant RSA-71-7. 
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petence is often acquired through a process of "learning 
by doing." Consequently, it is essential that the CAl 
system be capable of presenting a wide variety of 
problems and solutions to the student. Reprogramming 
each problem and its solution in a manner suitable for 
presentation by CAl would be extremely inefficient. 

It is precisely for these reasons that generative CAl 
systems have recently become of great interest. Gen­
erative systems are capable of generating a series of 
questions (and 'answers to these questions) as a function 
of the student interaction. These systems can be 
divided into two classes. Those which are oriented to­
ward the "soft-sciences" and textual material and 
those which are more concerned with numerical manipu­
lations and quantitative material. 

CarbonelP and Wexler2 have designed generative 
CAl systems which have been used to teach concepts 
in geography. These systems are organized around an 
information structure or network. Carbonell uses the 
semantic network developed by Quillian. 3 

Once the information network has been specified, 
these systems are capable of generating a sequence of 
questions for a student. As each question is generated, 
the answer is retrieved for comparison with the stu­
dent's response. If the student is incorrect, Wexler's 
system is capable of providing individualized remedial 
comments. This would consist of either a correct and 
relevant statement using the student's incorrect answer 
or a systematic presentation of the steps performed by 
the system in deriving the correct solution. Both these 
systems allow the student to interrupt and pursue 
topics which interest him at greater depth. 

The potential for incorporating generative CAl in 
the "hard sciences" is extensive. Algorithms for solu­
tion of classes of problems could be in~orporated into 
CAl systems. In some cases, solution techniques might 
be sufficiently complex that heuristic programs would 
be necessary. Examples of the latter case would be 
teaching symbolic integration or proving theorems. In 
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any event, CAl systems organized around a set of 
algorithms would have the capability to generate and 
solve a wide range of problems. 

An extensive project in the subject area of analytical 
geometry has been described by Utta1.4 His system is 
capable of generating twelve problem types which are 
representative of the problems found in an analytical 
geometry course. These problems usually involve an 
expression or graphical representation of a particular 
conic section. The expression is obtained from the gen­
eral quadratic equation: AX2+BY2+CX+DY +E=O. 

The required expression is obtained by setting cer­
tain coefficients to 0 and selecting the others at random. 
The complexity of the equation generated depends on 
the constraints imposed on the coefficients. For ex­
ample, to generate circles centered at the origin, A = B 
and C=D=O. 

Associated with each of the twelve problem types is 
an answer routine. The routine which determines if a 
randomly generated point (x,y) falls on the locus 
represented by a randomly generated equation simply 
plugs this point into the equation. The expression 
generator itself is used as the answer routine when the 
student is asked to supply the equation for a conic 
section with given standard characteristics. 

The following sections will describe a generative 
tutor that has been used in an introductory computer 
science course. It has been used to teach concepts of 
digital circuit design as well as to introduce students to 
machine language programming. Because of the large 
number of concepts covered, an intelligent "concept 
selector" has been designed which attempts to tailor 
the current instruction each student receives to fit his 
past performance record. 

GENERATIVE CAl IN DIGITAL SYSTEMS 

The system is designed to be extremely flexible in 
that it can completely control the progress of a student 
through the course, selecting concepts for study on an 
individual basis and generating problems. Alternatively, 
the stud~nt can assume the initiative and determine 
his own areas of study and/or supply his own problems. 

In addition, the system also operates in a "problem­
solver" mode. In this mode, the student specifies the 
concept area and his problem, and the system will 
crank out the solution without further interaction. It is 
anticipated that students in later courses and the digital 
laboratory will utilize this mode for solving complex 
minimization problems and determining the relative 
merits of different state assignments. 

Figure 1 is a block diagram of the systEm functions. 
Subsequent sections of this paper will describe how 

I -- - -------.-------, 
,------~---

.__----l.---. 

UPDATING DATA 

SYSTEM CONTROL 

STUDENT CONTROL IN PROBLEM SOLVER MODE 

Figure I-System block diagram 

- --- -, I 
I I 
, I 
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these functions are accomplished. As has been men­
tioned, the student can assume the initiative and bypass 
the Concept Selector and/or Problem Generator (indi­
cated by dashed lines from Student box). The bottom 
part of Figure 1 shows the student exercising full con­
trol in the problem-solver mode. 

When the system is in control of the interaction, it 
attempts to individualize the depth and pace of in­
struction presented to each student. A model of each 
student is kept which summarizes his past performance 
in each of the course concepts. Table I shows the con­
tents of a student record. 

In addition, the system is supplied with a concept 
tree which indicates the degree of complexity (plateau) 
of a concept and its relationship with other concepts 
in the course. A sample tree for the concepts currently 
covered is shown in Figure 2. This, of course, represents 
the author's interpretation of the relationship between 
course concepts. There are alternate interpretations 
which are just as valid. 

The system uses each student's record to determine 
how quickly he should progress through the tree of 
concepts, the particular path which should be followed, 
the degree of difficulty of the problem to be generated, 
and the depth of monitoring and explanation of the 
problem solution. 

Figure 3 is a flow-chart of the overall operation of 
the system. 

PROBLEM-SOLVER/MONITOR 

The course is organized as a set of solution algorithms. 
Normally there is a single algorithm for each major 
concept of the course. The algorithms solve the prob­
lems much as a student would, breaking each problem 
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TABLE I-Student Record 

Student Name E B Koffman Master Ave. 1.8 Current Plateau 5 

Concept #1 Concept #2 ... Concept #30 

Level 2.2 1.5 0.5 
Last level change .1 .5 -.2 
Weigh ted A v. level .5 .6 -.1 

change 
Date of last call 3/15 3/17 4/20 
Sequential order of 25 31 48 

last call 
No. of times called 2 2 3 

in 0-1 range 
No. of times called 2 1 0 

in 1-2 range 
No. of times called 0 0 0 

in 2-3 range 
No. of problems 2 3 3 

generated 

down into a series of sub-tasks. After each sub-task 
is accomplished, a decision is made whether or not to 
question the student on this part of the problem solu­
tion. This decision is based on the student's current 
level of achievement (a number between 0 and 3) in 
the concept. 

LEGEND: ~.-[§J CONCEPT A IS A PREREQUISITE OF CONCEPT B. 

~J CONCEPT A IS A PREREQUISITE OF CONCEPT B; 
CONCEPT A MAY BE USED AS A SUB-CONCEPT BY B. 

Note: The relation "is a prerequisite of" is transitive 
(A is a prerequisite of B, B is a prerequisite of C, Implies A Is a 
prerequisite of C) 

Figure 2-Concept tree 

If the student is questioned, then his answer is com­
pared with the system's solution. If the student is cor­
rect, his level is increased; if he is incorrect, he will 
receive a remedial comment explaining the correct 
solution procedure and his level for that concept will be 
decreased. The higher a student's level, the fewer 
questions he will be asked. When the student reaches 
a level of 3 in a concept, the system will solve subse­
quent problems dealing with this concept for him. 

Figure 3-System flow chart 

Table II presents examples of different degrees of 
interaction with a student in an octal addition problem. 
The first character of all student inputs is underscored. 
A single algorithm solves binary, octal, and hexa­
decimal adcij.tion problems. The decimal sum of each 
pair of digits and old carry is first calculated. The cor­
responding new carry and sum digits in the problem 
base is then determined. 

A student with level less than 1· is quizzed on all de­
tails of this algorithm; while, the initial decimal calcu­
lation is skipped for students with level between 1 and 
2. The student with level between 2 and 3 is asked 
only for his final result; whereas, the final result is 
generated for a student with level equal to 3. The 
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TABLE II-Different Degrees of Interaction 

Problem: Form the sum of 75.3,2.7 in the base 8. 

LEVEL RANGE 0-1 
Modify 2.7 for addition to 75.3 
Q2.7 
Correct. The rightmost digit is digit #1. 
What is the decimal sum of digit #1 

of 75.3 and digit #1 of 02.7? 
8 
No. Their decimal sum is 3+7 or 10. 
What is digit #1 of the sum in the base 8? 
1 
-
No. The decimal number 10 is equivalent to 12 in the base 8. 

Digit #1 is 2. ' 
What is the carry to digit #2? 
1 -
Correct. What is the decimal sum of digit #2 of 75.3 and digit #2 

of 02.7 and the carry from digit #1? 

LEVEL RANGE 1-2 
The rightmost digit is digit #1. 
What is digit #1 of the sum in the base 8? 
2 
-
Correct. What is the carry to digit #2? 
Q 
No. 3+7 = 12 in the base 8. 
The carry to digit #2 is 1. 
What is digit #2 of the sum in the base 8? 

LEVEL RANGE 2-3 
What is the complete sum of 75.3, 02.7 in the base 8? 
Z7.2 
No. The sum of 75.3, 02.7 is 100.2 in the base 8. 
LEVEL RANGE'?3 
The sum of 75.3, 02.7 is 100.2 in the base 8. 

amount of interaction a student receives will vary as 
the problem solution progresses and his level changes 
from one range to the next. 

In this manner, the amount of monitoring is dy­
namically adapted to fit a student's current level of 
achievement. Often a solution algorithm will utilize an 
algorithm dealing with another course concept as a 
subroutine. When this happens, the student's level in 
the sub-concept will control the depth of instruction. 
If he has mastered the sub-concept (level ~3), this 
portion of the solution will be provided for him. 

When a student response is incorrect, he receives an 
individualized remedial comment which explains the 
system's derived answer. For example, in a problem 
utilizing the Flip-Flop Design algorithm, the student 
would be given the current state and desired next 
state and asked to supply the required values of the 
Flip-Flop excitations. Table III presents some of the 
alternative forms of feedback which might be pre­
sented depending on a student's level and his answer. 

The correct solution in this case is derived through 
a table lookup. System response A is automatically 

generated if one of the excitations match and the cor­
rect answer for the non-matching excitation is "D" 
(a don't care). System response B is presented for all 
other types of errors. The additional information pre­
sented to students with level < 1 is obtained by calling 
the Flip-Flop analysis algorithm in the problem-solver 
mode. This algorithm determines the next state which 
would result from the current state if the student's 
values of the Flip-Flop excitations were applied. 

The magnitudes of the increment and decrement for 
correct and incorrect answers respectively are also in­
dividualized to fit the student's past performance. 
They are calculated for the particular concept which 
has been selected as follows: 

where 

Increment = K2· K1 

Decrement = K2/ K1 

KP= 1+ WN+AL and .5~KP~2, K2= 1-.5R 

AL = last change in level 

W N = weighted average level change for N uses 
of a concept 

W _ (N -1) . W N-l + 2· AL 
N- N+1 

R = (Number of uses of concept at present 

level range) / N (1) 

If the student's level in a concept has been consist­
ently increasing, W Nand AL will be positive and K12 
will tend to be large. K12 represents the ratio of Incre­
ment to Decrement. Consequently, a student who has 
been performing well in a concept will be rewarded 
more for a correct answer than he is penalized for an 
incorrect one. Thus, he is receiving the benefit of the 
doubt for an occasional incorrect answer and pro­
gresses more rapidly to the problem-solver mode for 
that concept. The opposite is true for a student who 
has been performing poorly. This will enable him to 
drop quickly to a lower level at which he will receive 
further monitoring and instruction if he continues to 
answer incorrectly. 

R represents the stability of the current level for the 
concept in question. K2 assumes values between .5 and 
1.0, the higher values representing a greater degree of 
instability. Consequently, when the current level is in 
a relatively unused or unstable level range, the Incre­
ment and Decrement will both tend to be larger than 
when the current level appears to be a stable one. This 
makes it easier for a student to move out of a new 
level range; whereas, he must answer more questions 
correctly (or incorrectly) if he is to move out of a level 
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TABLE III 

QUESTION 

The current state of JK Flip-Flop 1 is o. 
The next state should be 1. 
What are the values of J1, K1? 

STUDENT ANSWER: J1 = 1, K1 = 1 

SYSTEM RESPONSE A: Your answer is correct, however, a better answer would be J1 = 1, K1 =D. 
(D symbolizes a "don't care" condition) 

I 

The remedial feedback generated for a wrong answer to the above question follows: 

STUDENT ANSWER: J1=D, K1=1 

SYSTEM RESPONSE B: Wrong. To bring a JK Flip-Flop from the 0 to 1 state, set J=l and K=D. 

ADDITIONAL RESPONSE FOR LEVEL<l: Your Flip-Flop excitations would cause the next state to be indeterminate. 

range which has become established as typical of him 
for a particular concept. 

The values of Increment and Decrement calculated 
in this manner will have a minimum of .35 and a maxi­
mum of 1.4. These are multiplied by a fraction associ­
ated with each question. A typical value of this fraction 
is .2 which means the magnitude of the change in level 
per question is normally between .07 and .28. 

The entry level of a student during his initial use of 
a concept is set equal to .5+2-M, where M is his 
master average. The significance of a student's master 
average will be discussed in the next section. 

CONCEPT SELECTOR 

Since there are a large number of concepts available 
for study, the system attempts to select the next con­
cept in such a way as to make optimal use of the stu­
dent's time. The goal is to pace the student through 
the concepts quickly enough so that he does not become 
bored or unmotivated and yet not so fast that he be­
comes unduly confused. 

There is no set order in which the concepts are 
selected nor is there a set level of achievement which 
every student must exceed in order to advance. The 
algorithm attempts to individualize concept selection 
through examination of the student's performance 
record. 

Each student is assigned a master average when he 
first logs onto the CAl system. This could be a function 
of his 1. Q. or class standing. (In the past, each student 
has been arbitrarily assigned an initial master average 
of 2;) This value changes as the system gains experi­
ence with a student. 

A student's master average controls the speed with 
which he jumps from one plateau of the concept tree 
to the next. In order to jump to the next higher plateau, 
the average of his levels of achievement in all concepts 

at and below the current plateau must exceed his 
master average. Consequently, the lower a student's 
master average, the faster he will progress. 

Each student's master average is updated after the 
completion of a problem as follows: 

~M = -K(~L+ WN ) (1.1-R) (2) 

where ~L, W N, and R have been defined previously. 
(See Equation 1.) 

K = 1 if the concept is from the student's current 
plateau 

K = 2 if the concept resides at a higher plateau and 
~L>O. 

K = 2 if the concept resides at a lower plateau and 
AL<O. 

K = 0 for all other cases. 

Since R cannot be > 1, AM and (~L + W N) will be op­
posite in sign. 

If the system selects the concept from the student's 
current plateau, K will be 1. If the student's level in­
creases and W N is also positive, his master average will 
decrease. If the student has selected the concept from 
a higher plateau and ~L > 0, the magnitude of the de­
crease is doubled as this indicates the student is ready 
to progress more quickly. If the concept is above his 
current plateau and he does poorly (~L < 0), he is not 
penalized by an increase in his master average (K = 0). 
However, if the concept is a remedial one (below his 
current plateau) and (AL+ W N) is negative, the in­
crease in his master average is twice what it would be 
for the same performance in a concept from his current 
plateau. 

The effect of the term (1.1- R) is to cause those 
changes, which occur when in a relatively new level 
range, to have a greater influence on the master aver­
age. This is reasonable since a student who performs 
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TABLE IV-Sample Problems Generated 

1. Convert the decimal number 65.75 to the base 8. 
2. Calculate 75.3 -24.56 in the base 8 using 8's complement 

subtraction. 
3. Derive the truth table for ((PV( -, Q)) j( -, (RAQ))) 
4. Design a combinational circuit such that: 

Input word A is 2 bits long. Input word B is 2 bits long. 
The output X=A+B. The output Y=l if A<B. 

5. Minimize a function which has 0, 1,3,4, 5, 10, 11 as minterms 
and 2, 8, 14 as don't cares using the Karnaugh Map Method. 

6. Minimize a function which has 2, 4, 5, 10, 11 as min terms 
using the tabular method. 

7. Find the excitation equations for a JK Flip-Flop such that: 
Input word A has maximum value 7. 
The Flip Flop is in state 1 if A = 0, 2, 4, 6. 

well after reaching a new level range is indicating that 
he is not disturbed by the decrease in interaction and 
is ready to advance at a faster pace. While a student 
who does poorly may be in over his head and might 
prefer it if the pace were slowed down. In any event, 
the magnitude of the change in master average may 
not exceed .2. 

After the master average is updated, the student's 
plateau is determined by comparing his new master 
average with the average level of all concepts at and 
below his current plateau. If this average level exceeds 
his master average his plateau is increased by one and 
the comparison is repeated. 

Once the student's plateau has been determined, the 
system selects a set of candidate concepts from this 
plateau and those below it if necessary. In order to 
qualify as a candidate concept, the average of the 
student's levels of achievement in all prerequisites for 
this concept (as determined from the concept tree) 
must exceed his master average. If this is not the case, 
the prerequisite concept in which the student has the 
lowest level is selected as a candidate in its place. This 
provides for automatic review of selected concepts at 
lower plateaus. 

The system then chooses one concept from among 
the candidates. Each concept is evaluated based on a 
number of factors such as the time elapsed since its last 
use, the "stability" of its current level, the sign and 
magnitude of its most recent level change (negative 
changes are weighted more heavily), and its relevance 
to other concepts as determined by the number of 
branches of the tree connected to it. The highest scoring 
concept is selected for presentation to the student. 

The student always has the option of vetoing this 
selection and choosing his own concept or accepting the 
system's second best choice. The selection process is 
described more formally in the Appendix. 

PROBLEM GENERATION 

After a concept has been decided upon, the system 
must generate a problem within this concept area un­
less the student prefers to supply one. The system at­
tempts to tailor the problem difficulty to suit the stu­
dent's level in that concept. Table IV gives some sample 
problems generated by the system. 

As an example of the problem generating procedure, 
the algorithm used to form logical expressions for 
teaching about truth tables (see problem 3 in Table 
IV) will be presented in some detail. The basis of this 
algorithm is the probabilistic grammar shown in Table 
V which produces expressions utilizing binary operators 
with P, Q, R, S as variables. A probabilistic grammar 
is a formal language in which each rewrite rule is as­
signed a probability of being applied. 

The first decision to be made is the number of vari­
ables in the final logical expression. As currently imple­
mented, the probability of two variables is .5 for 0::::; 
level::::; 1 and decreases to 0 for level> 1. The probability 
of 3 variables is .5 for 0::::; level::::; 2 and increases to 1 for 
level> 2. The probability of 4 variables is .5 for 1::::; 
level::::; 2 and 0 elsewhere. 

The incomplete logical expression is scanned from 
left to right for non-terminals. When the non-terminal 
symbol A is found (Pa+Pb) represents the probability 
of increasing the length of the expression where: 

PaCt) =Pb(t) =.75 c/(n(t)+1.5c-1.5) (3) 

where n (t) is the current length and c is the number of 
variables in the expression (c~2) 

Since (Pa+Pb) is inversely proportional to the current 
length, the logical expressions do not become unwieldy. 
If the random number generated indicates that the 

Probability: Rewrite rule 

1: ~~A 
Pa: A~(A*A) 
P b: A~( -,A) 

P C1 : A~P 

P C2 : A~Q 

Pcs: A~R 
Pc,: A~S 
Pd : *~V (or) 
P d: *~A (and) 
Pe: *~ i (NAND) 
Pe: *~ t (NOR) 

TABLE V 

Pe: *~$ (exclusive or) 

Constraints O:::;Pa, Pb, P Ci, Pd, P e :::;l 
Pa+Pb+ LiPci=l 
2Pd +3Pe=1 



Generative CAl Computer for Computer Science Concepts 385 

TABLE VI-Example of Student Interaction With System Executive 

IS THIS THE FIRST TIME YOU HAVE USED CAl? 
no 
TYPE IN YOUR NAME 
ebkoffman 
AFTER REVIEWING YOUR RECORD, I HAVE SELECTED CONCEPT #9. 
BINARY MULTIPLICATION 
IS THIS OK? 
yes 
FORM THE PRODUCT OF THE BINARY NUMBERS 101.01, 1.001 
IGNORING BINARY POINTS, WHAT IS THE PARTIAL PRODUCT DUE TO BIT 1 OF THE MULTIPLIER 1001? 
10101 
CORRECT 
WHAT IS THE PARTIAL SUM SO FAR? 
TYPE F TO GO FASTER (Instead of answering the previous question, the student has hit the console attention button. 

S TO GO SLOWER The system attempts to determine his wishes.) 
Q TO QUIT 

f 
WHAT IS THE PRODUCT OF 101.01, 1.001? (The student's level has been increased by 1) 
101.11101 
CORRECT 
YOUR LEVEL IN BINARY MULTIPLICATION INCREASED BY 1.2 to 2.3 
I HAVE SELECTED CONCEPT #12 
KARNAUGH MAPS 
OK? 
no 
WOULD YOU LIKE TO PICK YOUR OWN CONCEPT? 
yes 
DO YOU KNOW THE CONCEPT NUMBER? 
no 
HERE ARE THE CONCEPTS CURRENTLY COVERED 

1. REGISTER 'ANDING' 

15. STATE TABLE TO SEQUENTIAL DESIGN 
WHICH CONCEPT NUMBER WOULD YOU LIKE? 
15 

(This printout would be omitted if the student had answered yes.) 

FINE. THIS IS ABOVE YOUR CURRENT PLATEAU, BUT LET'S TRY IT. 
DO YOU WANT ME TO GENERATE A PROBLEM? 
no 
HOW MANY STATES IN YOUR STATE TABLE? 
5 

(Student specifies problem parameters and works through solution) 

HOW MANY INPUT BITS? 

WOULD YOU LIKE TO CONTINUE PICKING CONCEPTS? 
no 
I HAVE SELECTED CONCEPT #12 
KARNAUGH MAPS 
OK? 
yes 
MINIMIZE A FUNCTION WHICH HAS 2,5,6,7 AS MINTERMS USING THE KARNAUGH MAP METHOD 
HERE IS THE KARNAUGH MAP (A student with level <1 in this concept would be tested on his ability to construct the map) 

expression should not be extended, one of the variables 
P, Q, R, S replaces A. 

If the non-terminal symbol is *, one of the five 
binary operators is selected. P e increases with level, 
while, P d decreases. Hence, the more difficult operators 
are more likely in expressions generated for the students 
at higher levels of achievement. 

Modifications of this technique are used to generate 

problems for combinational design and sequential de­
sign concepts. For the earlier number system manipula­
tions, it is necessary to select a base for the number 
system and concatenate a set of valid digits from that 
base. As might be expected, the hexadecimal base ap­
pears more frequently at higher levels and the numbers 
to be manipulated are somewhat larger than those 
generated for lower levels. 
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IMPLEMENTATION 

The system has been implemented on the IBM 
360/65 at the University of Connecticut. It is pro­
grammed in the Conversational Programming System 
(CPS) .5 CPS is a dialect of PL/I and includes some 
string processing features which have been extremely 
useful in programming this system. 

There are forty IBM 2741 terminals connected to the 
main computer. CPS operates in low-speed core and 
each user is allowed a maximum of 12 pages of core 
(48 K bytes). Currently, space is reserved for fifty 
student records on disk. There is room for thirty con­
cepts on the tree. There is an instructor mode which 
permits easy modification of the concept tree. Student ' 
records can also be printed out while in the instructor 
mode. 

Students can log onto the system any time from 
9 A.M. to 11 P.M. The average student session is about 
an hour in length. The student's record is automatically 
updated every 15 minutes so that the results of a com­
plete session will not be lost in the event of a system 
failure. 

The course coverage includes familiarizing the stu­
dents with the binary, octal, and hexadecimal number 
systems. The students also learn how to use truth 
tables to represent logical functions. They learn tech­
niques of combinational design and how to minimize 
the logic elements needed for a design problem. They 
are introduced to Flip-Flops and the design of sequen­
tial circuits. They also learn about machine-language 
programming by analyzing short program segments 
and indicating the changes incurred in various registers 
as these segments a:r;e executed. 

Reaction from the students using the system has been 
very favorable to date. It has been used as a supple­
ment to the regular lectures and homework assign­
ments covering the material up through plateau four 
of the concept tree (Figure 2). The problem generation 
capability was not fully implemented which required 
students to insert their own problem parameters as 
they were requested by the problem solution algorithms. 
The major complaint of the students was the slowness 
of the system. This has been alleviated considerably 
now that problems are generated for all system 
concepts. 

The system responds to a student input typically in 
5 seconds or less. In a couple of the more complex solu­
tion algorithms (tabular minimization for example), 
a student working in the problem-solver mode may have 
to wait up to three minutes for a problem solution. 
Students at lower levels very rarely have to wait more 
than thirty seconds as the solution algorithms areexe­
cuted in a piecemeal fashion. This, of course, could 

be improved substantially if compiled code (CPS 
is an interpretive system) and high-speed core were 
available. 

During the current semester, a student group is 
using the CAl system in lieu of regular homework as­
signments. The complete tree of concepts is available. 
Table VI is an example of the dialogue that occurs be­
tween the system executive and the student. The 
system's messages are capitalized. All student inputs 
are preceded by a "-." Table VII presents examples 
of the interaction that takes place during a problem 
solution. 

CONCLUSIONS AND FUTURE WORK 

A generative system for teaching digital computer 
concepts has been described. This system includes an 
intelligent concept selection routine which attempts to 
individualize the path taken by each student through 
the tree of course concepts. In addition, the instruction 
and monitoring provided by each solution algorithm 
is dynamically adapted to suit a student's current level 
of knowledge. The system can also operate as a problem­
solver and will provide portions of the solution process 
which have already been mastered by a student. 

Expansion of the CAl system is continuing. The 
majority of the portion which teaches logical design 
has been completed. Students have also been exposed 
to an on-line simulator of the Digital Equipment 
Corporation PDP-8 which teaches machine-language 
programming. 

Future efforts in this area will lead to a generative 
system which produces programming problems. As the 
problem is generated, a sequence of sub-tasks similar to 
a flow chart will also be produced. This will be used as 
the basis for teaching machine language programming 
and testing students' solutions. As before, portions of 
the program will be generated for the student and he 
will be required to supply the rest. The amount re,;. 
quired from him will decrease as his level increases. 

It is also anticipated that there will be further im­
provement of the concept selection algorithm. It is 
likely that performance can be improved by incorporat­
ing additional parameters into the algorithm as well as 
by adjusting the weights of the parameters currently 
used. 

The techniques discussed in this paper could readily 
be applied to other courses which teach techniques of 
solving problems. In fact, several courses could be ad­
ministered simultaneously by the ~oncept selection 
routine. A concept tree would have to be specified for 
each course together with the algorithms necessary for 
generating and solving problems. 
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The initial burden on the course designer is, perhaps, 
greater than in a frame-oriented system· as he must 
program general solution. algorithms rather than a 
representative set of questions and anticipated replies. 

It is possible that a "canned" solution program (such 
as ECAP for circuit analysis) could be convprtpd into 
a teaching program by first segmenting it into course 
concepts. Each concept would be modified by inserting 

TABLE VII 

Example I-Sequent.ial Circuit Analysis 
DERIVE THE TRANSITION TABLE FOR A SEQUENTIAL NETWORK WITH 2 FLIP FLOPS SUCH THAT: 

J1 = (Y2 \ X) KI = (YI \ Y2) D2 = (-, X) 
AND THE OUTPUT Z=X & (-, Y2) 

THE TRUTH TABLE IS SET UP AS FOLLOWS: 

\ CURRENT \ CONTROLS \ NEXT \ CURRENT \ 
\ \ INP STATE (t) \ At (t) \ STATE U+I) \ OUTPUT 
\ ROW \ X Y1 Y2 \ JI KI D2 \ YI Y2\ Z(t) 
\ 0 \ 0 0 0 \ \ \ 
TYPE IN JI 
o 
TYPE IN K1 
1 
NO. YI =0, Y2 =0 SO(Y1 \ Y2) =0 
TYPE IN D2 
1 
TYPE IN THE NEXT STATE OF FLIP FLOP 1. 
1 
NO. IF J1 =0 AND KI =0, THE FF STATE REMAINS THE SAME. 
TYPE IN THE NEXT STATE OF FLIP FLOP 2. 
1 
TYPE IN Z(t). 
o 
\ ROW \ X Y1 Y2\ JI KI D2\ YI Y2\ Z(t) \ 
\ 0 \ 0 0 0\ 0 0 1\ 0 1\ 0 \ 
\ 1 \ 0 0 1\ 1 1 1\ \ 0 \ 
(NOTE: BECAUSE LEVEL IS NOW >1, ADDITIONAL INFORMATION HAS BEEN PROVIDED FOR ROW 1) 

TYPE IN THE NEXT STATE OF FLIP FLOP 1. 
o 
NO. IF J1 = 1 AND KI = 1, THE FF CHANGES STATE. 
TYPE IN THE NEXT STATE OF FLIP FLOP 2. 
1 
(NOTE: THIS LINE OF QUESTIONING CONTINUES UNTIL THE STUDENT'S LEVEL IN JK OR D FLIP FLOP 

ANALYSIS BECOMES :2::3 OR ROW 7 IS COMPLET.ED.) 

ROW \ X YI Y2 \ JI KI D2 \ YI Y2 \ Z(t) \ 
7 \ 1 1 1\ 1 1 0 \ 0 0 \\ 0 \ 

NOW WE MUST FORM THE TRANSITION TABLE. THE HEADING FOLLOWS: 

\ CURRENT \ CURRENT \ 
\ STATE \ INPUT \ 
\ (Y1, Y2) \ X=O X=I\ 

WHAT IS THE NEXT STATE/CURRENT OUTPUT IF THE CURRENT STATE IS (0,0) AND X=O? 
(USE FORMAT (YI(t+I), Y2(t+1))/Z(t)) 

(0, 0)/1 
WRONG. Y2(t+I) =1 

Z(t) =0 

IF CURRENT STATE =(0, 0) AND X=l? 
(1, 0)/0 
WRONG. Y2(t+ 1) = 1 
\ (Y1, Y2) \ X=O X=l \ 
\ (0, 0) \ (0, 1)/0 (1, 1)/0 \ 

(NOTE: THIS LINE OF QUESTIONING WILL CONTINUE UNTIL THE PROBLEM IS COMPLETED 
OR THE STUDENT'S LEVEL BECOMES 2::3.) 
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TABLE VII-Continued 

Example I-Sequential Circuit Analysis 

Example 2-Sequential Circuit Design 

DERIVE THE STATE TABLE FOR A SEQUENTIAL CIRCUIT WITH A SINGLE INPUT LINE X. 
THE OUTPUT WILL BE 1 WHENEVER THE LAST 4 VALUES OF X HAVE BEEN 1000 

HOW MANY STATES ARE NEEDED? 
5 
WRONG. SINCE THERE ARE 4 BITS IN THE INPUT STRING, 4 STATES ARE NEEDED. 
Q 0 IS THE STARTING STATE. QI CORRESPONDS TO THE FIRST I BITS BEING CORRECT. 
Q 0 CORRESPONDS TO THE LAST INPUT 0 OR I? 
1 
WRONG. BEING IN THE STARTING STATE MEANS THE DESIRED SEQUENCE HAS NOT BEGUN, 

SO THE LAST INPUT WAS 0 
THE STATE IS Q 1 IF THE LAST INPUT WAS _? 
1 
THE STATE IS Q 2 IF THE LAST 2 INPUTS WERE _? 
11 
WRONG 
Q 2 CORRESPONDS TO THE PARTIAL SEQUENCE 10 
THE STATE IS Q 3 IF THE LAST 3 INPUTS WERE _? 
100 

IN STATE Q 0: IF X=O WHAT IS THE NEXT STATE/OUTPUT? 
Q1/0 
NO. THE LAST INPUT IS NOT PART OF A DESIRED PARTIAL SEQUENCE. 
THE SEQUENTIAL CIRCUIT RETURNS TO THE INITIAL STATE Q 0 
IF X=l? 
Q1/0 
IN STATE Q1: IF X =O? 
Q2/0 
IF X=l? 
QO/O 
NO. THE LAST INPUT IS 1 
THE NEXT STATE SHOULD BE Q1 
IN STATE Q 2: IF X=O? 
Q2/0 
NO. THE LAST 3 INPUTS ARE 100 
THE NEXT STATE SHOULD BE Q 3 
IF X=l? 
Q1/0 
IN STATE Q 3: IF X =O? 
QO/O 
NO. THE LAST 4 INPUTS ARE THE DESIRED SEQUENCE 1000 
THE OUTPUT SHOULD BE 1 
IF X=l? 
Q1/0 

THE FINAL STATE TABLE FOLLOWS: 

I CURRENT 
STATE 

QO 
Q1 
Q2 
Q3 

INPUT I 
X=O X=l I 
QO/O Q1/0 I 
Q2/0 Q1/0 I 
Q3/0 Q1/0 I 
QO/1 Ql/0 I 

NEXT STATE I 
/OUTPUT I 

requests for student answers after the completion of 
each step in the solution process as well as remedial 
statements explaining the correct procedure to be fol­
lowed for each step in the solution. In addition, a pro-

gram statement would have to be included which would 
allow this question to be skipped by students above a 
specified level of proficiency. 

It is felt that the extra effort required to program 
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an algorithm based CAl system is worthwhile as the 
end product is a very versatile and flexible teaching 
tool. 

APPENDIX-CONCEPT SELECTION 

C ij is the jth concept at Plateau i 
Lij is the level of C ij where O:=:; L ij :=:; 3 
ni is the number of concepts at Plateau i 
Li is the average level of concepts at Plateau i, where 

If 1 is the current plateau, calculate L, where 
L=I-1 Li=/ Li and L is the average of all concepts 

at and below plateau I. 
If L?M, where M is the Master average, then in­

crease 1 by 1; otherwise, 1 does not change. 
N ow select the set of candidate concepts K = 

{k1, k2, ... , knI } as follows: 
Let Sj= {Lxy I (x:=:; I) A (y:=:;nx) A (CXy is a prerequi­

site of Cli )} for l:=:;j:=:;nl 
Calculate Sj, the mean of Sj 
If Sj?M, then k j= Cli, otherwise, k j= Cab where Cab is 

the prerequisite concept whose level, Lab, is the smallest 
element in Sj. 

Given the set of candidate concepts, K, the candidacy 
value, Vj, of each concept must be calculated. The 
concept, kj, which has the highest candidacy value for 
this student is selected. / 

5 

V j= L WiFij 
i=1 

F1j = (211Llj) 2 

WI = 1 if l1L1j <O 

WI=O if l1L1j?O 

(AI) 

Factor 1 tends to favor repetition of concepts for which 
previous usage led to a large negative change in level. 
The student is experiencing difficulty with this concept 
and its reuse with more interaction and monitoring 
occurring may prove beneficial 

(A2) 

where Q is the current sequence number and Qj was 
the sequence number at the time concept k j was last 
called. (Q increases by 1 each time a new concept is 
selected.) 

W2= 1 if Qj>O 

w2=3 if Qj=O (Indicates concept k j has not been 
selected for this student.) 

Factor 2 favors the recall of concepts which have not 
been used recently. 

(A3) 

where Rj is the stability of concept kj as defined 
previously. 

W3= -1 

Factor 3 inhibits the use of a concept whose level is in 
a relatively stable range. 

(A4) 

W4= 1 

Factor 4 is the percentage charge in level during the 
last usage of ki . Factors 3 and 4 bias the selection to­
ward concepts whose levels seem most likely to change 
during an interaction 

F5j= 2·Dj+Ej 

w5=.1 

(A5) 

Factor 5 calculates the number of prerequisites for con­
cept k j • Those prerequisite concepts which may be 
called as subroutines are counted twice. This factor 
gives emphasis to concepts which are more likely to 
result in the review of other concepts. 
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INTRODUCTION 

Computer Aided Instruction (C. A. I.) promIses to 
make practical the goal of enabling each student to 
receive highly individualized instruction at some 
point in his educational career. C. A. I. has evolved over 
the last fifteen years from programmed instruction 
which itself has had a relatively short history as an 
educational procedure. 

Programmed instruction has not changed dramat­
ically since the time of Pressey,! who in 1926 used 
it as a means of reinforcement in the educational 
process. Thirty years later Skinner2 saw the need for 
incorporating stimulus materials into a framework of 
instructional aids in order to provide education without 
a live teacher. However, the ultimate goal of a universal 
teaching machine which provides instruction to in­
dividuals in arbitrary fields has not yet been achieved. 

We consider a universal teaching machine to be one 
which may be converted to teach any subject by simply 
changing the program data base and which can adapt 
the instruction to the needs of each individual student. 
It is desirable that the transformation from the natural 
language of the subject to the machine language of the 
data base be somehow simple. 

TEACHING MACHINES AS QUESTION­
ANSWERERS 

For us the problems faced by a general teaching 
machine are similar to those faced by question-answer­
ing systems. A question-answering system is one which 
accepts information and uses it to answer questions. 
Question-answering systems are attempts to construct 
and manipulate data bases which are represented as 
associations among symbols which have meaning when 
humans see them. Newer systems are based on theorem 
provers,3 and when given some input question must 

391 

choose efficiently from an infinity of possible deductions 
in order to arrive at an answer. At present the limiting 
factor in their usefulness is the difficulty in selecting an 
appropriate sequence of deductions in a reasonable 
length of time. 

A question-answering system does not store as such 
all information which is available to the user. Instead, it 
maintains a compressed data base of compactly coded 
facts. 3 ,4,5 The facts may reside in data structures3 ,4,6 

such as lists or binary trees. There are many methods 
for deducing answers which have not been explicitly 
stored in memory. These include: 

1. A set of prewritten programs, one for each class 
of question. These programs are a permanent 
part of the system and do not change from their 
initial state. 

2. A translator which creates a subprogram each 
time a question is input to the system. This 
subprogram exists only as long as it is needed to 
answer the question. 

3. A formal theorem prover using some subset 
of current known facts as axioms. 

The problem with prewritten subprograms is when 
questions arise that require interaction among existing 
classes. Either the interaction must be anticipated or 
new subprograms must be written. In No. 3 the infer­
ence mechanism must be general enough to answer 
questions of a variety of types. 

An important characteristic of all question-answering 
systems is the set of languages programmed into them. 
At the most sophisticated level are the dialogue lan­
guages3 which include: 

1. A language for introducing facts into the system; 
2. A query language to be employed by the user; 
3. An answer language to be employed by the 

system. 
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In the process of answering questions the system 
may require additional information from the user. 
Thus it is necessary that a query language be employed 
by the user and an answer language be employed by 
the system.7 

Question-answering systems also consist of one or 
more internal languages. These are machine languages 
which are used as intermediate steps in translation8 

or for calculation and manipulation of data. 
The problem of representing data may be derived 

into three parts:7 ,10 

1. Determining the semantic content of the data; 
2. Choosing a language to represent the semantic 

content; 
3. Choosing an internal representation of the 

language chosen above. 

For example, the sentence "GASP is F~RTRAN 
based." may be expressed by the binary relation "is" 
as applied to the subject "GASP" and the predicate 
"F~RTRAN based." In choosing a language to express 
semantic content we might use the notation of symbolic 
logic, and in choosing an internal representation we 
might express a series of binary operations as a binary 
tree structure. 9 ,11 

OUR APPROACH 

A teaching program can be structured so that the 
burden of finding a path through the data, i.e., from 
question to answer, is placed on the student. To put it 
another way, we can generate proofs at random. Of 
course we will not know what theorem we have proven 
(what question we have answered) until we are through, 
but this seems to be the way that human teachers 
operate anyway. 

Currently we plan to represent a topic as an ordered 
set of information units called concepts. A concept 
consists of an ordered triple (a production), a string of 
symbols called the question format, a list of concept 
labels called the error list, and an integer weight which 
serves as a measure of how well the student knows the 
concept. 

In operation the system will be able to access a subset 
of concepts, namely those it has introduced so far. 
Associated with each student is a vector, the elements 
of which serve as the weights of each concept in the topic 
when he is using the system. When the student is asked 
a question, the system selects a concept with a prob­
ability skewed by his weight vector.13 ,14,15,16 This 
involves Monte Carlo methods and techniques for 

generating pseudorandom numbers. A certain number 
of deductions are then made, again chosen according 
to the weighted distribution. As each deduction is 
performed, the question format of each successive 
concept is taken into account so as to generate a 
reasonably well-stated question. At some point in the 
random deduction process a deduction is not made 
according to the production associated with the 
current concept. Instead, an alternate concept is 
chosen from the error list, and its production is carried 
out next. This allows the use of "what is wrong 
with ... ?" type questions which we will demonstrate 
later. 

When a student's error vector fits certain criteria, 
a new concept will then be introduced and used (with 
high probability) in the question generation process. It 
is our basic assumption that if a student can answer 
arbitrary questions which result from associations 
among a basic collection of concepts, he has learned the 
topic. It is in this respect that we call our programs 
teaching programs. . 

Where do concepts come from? Unlike the designers 
of question-answering systems, we make no effort to 
find an elegant or concise representation. We believe 
that concepts should be the embodiment of a global 
model of the topic encoded in "symbology" which is as 
close to the natural language as possible. We further 
envision that such a program could be developed in the 
following way. 

Experts in a field such as mathematics, programming, 
etc., will be engaged to extract from their topic a set of 
concepts which describe it. By "describe" w,e mean 
that the concepts they provide can potentially lead to 
the derivation of all facts that they are trying to teach 
in their subject area. We can think of the topic as a 
vector space and the concepts as a set of basic vectors 
which describe it. We imagine that the process of 
extraction will be done on-line, i.e., at any point the 
designer can interrogate the concepts he has previously 
defined in order to see what, in fact, can be derived 
from them. Thus he can refine concepts which lead to 
false deductions. 

It has been implicitly assumed that we can embody 
everything necessary about a topic within a reasonable 
number of concepts. Also, the usefulness of this tech­
nique depends on its efficient implementation so that a 
large number of students can interact with the program 
simultaneously and economically. The former require­
ment dictates that the productions associated with each 
concept be potentially powerful. The latter requirement 
dictates that they be easily manipulated. A similar 
problem is faced by those who write the software for 
computer languages. ALGOL is represented as a 



"context-free" (Chomsky Type 2) set of productions, as 
opposed to Chomsky Type 1 which is "context sensi­
tive," which are easy to manipulate but which do not 
completely specify the language. Context sensitive 
aspects of the language such as the requirement that 
array sizes be explicitly declared have been shelved 
away in symbol manipulation routines, etc. 

This solution is one we cannot take. Our goal is to 
expose all aspects of the subject within the framework of 
these concepts. We apparently will be forced to use a 
context sensitive scheme in every interesting case. 

COMPLETED WORK 

In order to test our approach, we have chosen to 
design a program, UNITEAM, which teaches the 
simple programming language BASIC. We have further 
simplified our immediate goal, choosing to divide the 
teaching into three phases. We hope that those phases 
can eventually be included in one general framework 
which will be applied to a broad range of topics. Phase 
1 we term "motivational" in that we are trying to 
relate the new words "computer", "memory", "word", 
"I/O", etc., both to things with which the student is 
already familiar and to each other. 

In Phase 2 the syntax of the language and its seman­
tics with respect to the concepts of Phase 1 are intro­
duced. In Phase 3 the semantics in terms of the world 
and more global techniques of programming are 
emphasized. The following reports our work in Phase 2, 
mentioning our approach to the other two phases only 
in passing. 

Sample productions belonging to concepts which will 
be stressed in Phase 1 are things like: 

COMPUTER HAS-AS-PART MEMORY 
COMPUTER HAS-AS-PART CONTROLLER 
COMPUTER HAS-FUNCTION PERFORM 

OPERATION 
etc. 

Sample questions might be something like: 

WHAT PART OF COMPUTER HAS­
FUNCTION PERFORM OPERATION? 

etc. 

There is much work to be done on this phase which 
is the most general phase. For example, we must under­
stand what effect allowing various verbs (second 
element of the production) has on the system. In 
Phase 2 we deal almost exclusively with productions 
which have the same verb. 
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In Phase 2 we are currently using techniques similar 
to those used in compilers for languages expressed as 
context free grammars (Chomsky Type 2). Since there 
are also global (context sensitive) features, we make a 
slight addition. A typical production is 

/line/ IS UNIQUE (jstatement number/Oj 
statement/CR 

which would appear III traditional Backus-Naur 
form17 as 

/line/ :: = /statement number/statement/OR, 

and says that a /line/ consists of a/statement number/, 
a /statement/, and a carriage return. It is a global 
feature not expressed in the second form above that no 
two lines may have the same statement number. In our 
system the expression "UNIQUE( )" will reference 
a subprogram which insures that any statement number 
that is generated through this production is unique. 
There will be an additional concept with the production 

UNIQUE() HAS-FUNCTION EAOH LINE 
HAS A UNIQUE /statement number/ 

which summarizes the operation of the hidden sub­
program for the student. 

A second difference is that, unlike compilers, we 
will proceed from left to right which requires the 
rewriting of a few productions from their more com­
monly seen forms. 

With this brief introduction le~ us sketch the opera­
tion of the system as it would proceed in generating a 
question. For this example we will generate a statement 
as it would appear in BASIC18 except for one error. We 
will not write all the productions which are necessary, 
but suppose that concept 23 has been chosen. Concept 
23 looks like this: 

C23~./assignment/ IS LET / variable / 

= / arithmetic expression / 

.QUESTION FORlVIAT = .... 

.ERROR LIST = 1\ (null) 

.WEIGHT = .... 

We will have three push-down stacks :19 ,20 One 
stores the concepts in order of application, one stores 
that part of the final string we have completed, and one 
stores the parts we are still working on. We call these the 
C stack, T stack, and W stack respectively. 
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So far the stacks look like this: 

C Stack W Stack T Stack 

LET LET 

/variable/ 

= 

/arithmetic 
expression/ 

. . 

Next we choose a concept which has a production 
that tells us something about the top-most (non­
terminal) element of the W stack. Suppose we choose 

C36--+./variable/ IS / identifier/ 

.etc. 

Then the stacks would look like: 

C Stack W Stack T Stack 

C35 
/identifier/ LET 

C23 
= 

/arithmetic 
expression/ 

At some point in the processing the student will en­
counter a concept which has a relatively high weight, 
meaning that the student has had trouble with it be­
fore. Instead of copying the right side of that concept's 
production onto the W stack, the program copies the 
right side of a production belonging to one of the con­
cepts in the current concept's error list. This fact is 
noted on the C stack. 

Suppose that later in the processing the top of the 
W stack contained/arithmetic primary /, and instead 
of an appropriate match we choose from the appro­
priate error list 

C24--+ /logical expression/ IS / arithmetic primary / 
/relation/ /arithmetic primary/. 

The stacks would end up looking like this: 

C Stack 

C ERROR 
24 

C28 

C25 

C37 

C35 

C23 

W Stack 

/arithmetic 
primary/ 

/relation/ 

/arithmetic 
primary/ 

Imagine that finally we had: 

C Stack W Stack 

C35 

C31 

C41 

C35 

C31 

C24 ERROR 

C28 

C25 

C37 

C35 

CZ3 

The system prints 

T Stack 

B4 

LET 

T Stack 

7 

< 

A2 

= 

B4 

LET 

WHAT IS WRONG WITH THIS /assignment/? 
LET B40 = A20 < 7. 



Note that /assignment/ is the left side of the produc­
tion of the bottom concept in the C Stack (C23). * 

If the student's answer looks something like 

/logical expresion/ SHOULD HAVE BEEN / 
arithmetic expression/, 

i.e., if it names expressions which pinpoint where the 
error was made, the program accepts it. If the student's 
answer includes expressions found higher in the C Stack 
than the ERROR flag, for example, /relation/ 
SHOULDN'T BE THERE, the program responds: 

YES, BUT CAN YOU BE MORE SPECIFIC? 

Otherwise the program limits the productions which 
caused the error and any others in the C Stack that the 
student might want to see. 

We have not yet settled on the best way to locate an 
error nor on the best way to update the weights of those 
concepts used in generating a question. 

Phase 3 is dedicated to teaching the student how to 
write small, meaningful programs. It will begin with 
concepts which describe how the various BASIC 
statements alter the variables referenced within them. 
The next batch of concepts will introduce bits of 
programs such as "short routine", "sum an array", etc. 
Finally, the highest concepts will be oriented toward 
a canonical representation of a few simple programs. 
Thus, if all goes well, at the end of his relationship 
with the system the student will be asked questions 
about what specific, complete programs do. 

CONCLUSION 

We have outlined our initial approach to the problem of 
creating a universal teaching program. The funda­
mental ideas are similar to the theorem proving ap­
proach, i.e., the technique used by question-answering 
systems, but runs "backwards," generating questions 
which test the student's ability to manipulate the basic 
concepts of the topic he is to learn. We have given an 
example which, while extremely simplified from the 
general case, demonstrates a sophisticated capability 
when compared to present day teaching programs. 
It remains to be seen if the techniques we devise can be 
generalized sufficiently to accept concepts derived 
from diverse topics. 

The parameters used to evaluate such a system are 

* The concept numbers correspond to a list we have used but 
which is not included in this paper. 
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access time, CP (Central Processor) time, IP (Input/ 
Output) time for Control Data Corporation 6000 
machines, mass storage, and core requirements. We 
believe that all four can be cut drastically by utilizing 
the random access capability of the Control Data 
Corporation 6400 on which our program is being imple­
mented. That is to say that the system will be main­
tained on disc. Since the selection of concepts is in­
herently random, this approach seems intuitively 
correct. The elimination of chaining, i.e., searching for 
data sequentially, will minimize access time and CP . . ' 
tIme wIll be reduced by holding data manipulation to an 
absolute minimum. Since the system will reside on mass 
storage units, core capability will be greatly enhanced. 

The principal advantage of UNITEA1VI over other 
systems (PLANIT, PLATO, ETC.) is that UNITEAM 
is the most adaptive program yet devised. Certainly the 
ultimate C. A. 1. will include verbal communication 
and pictures, as does PLATO. PLANIT can recognize 
responses in a number of ways which UNITEAM 
at its present stage of development cannot. 

PLANIT can derive data from several sources in 
order to provide a basis for making instructional 
decisions. This examination of various sources of data 
and records is incorporated into UNITEAlvI to formu­
late the weights (UTILES) of the value of various 
topics to be presented to the student. 

1. Student performance on a question; 

2. Cumulative student performance; 

3. Student entry characteristics; 

4. Student preference. 

. Student performance includes accuracy of response, 
tIme of response, etc. Student entry characteristics 
include the ability and educational background. It is 
felt that UNITEAlVI should make use of the prior 
knowledge of an individual, including such things as 
grades, IQ, interests, teacher ratings, etc. 

Feedback is a major factor in determining which 
material and at what depth that material should be 
presented next, thus enabling the program to adapt 
to the needs of the individual. All previous feedback 
including the most recent information in one sense is 
reevaluated at each step since UNITEAM is based on 
stochastic methods. Although UNITEAM bears some 
lVIarkov chain similarities, it is more complex, and thus 
final evaluation will rest with performance of students 
rather than mathematical analysis. Thus, total ex­
amination of feedback determines to a large degree 
which direction one next proceeds. 
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At the present time feedback consists of: 

1. Student records; 
2. Evaluation of performance; 
3. Number of prompts, hints, cues needed; 
4. Elaboration on a student's response as a means 

of reinforcing a concept. 

Unlike other C. A. 1., UNITEAM employs Monte 
Carlo methods in addition to a weighting scheme 
associated with topics, concepts, etc. This system pro­
vides a completely non-linear capability and innumer­
able paths of deductions as UNITEAlVI develops 
necessary logic at each stage or step in the question­
answering process. UNITEAM is capable of providing 
an almost unlimited number of pathways through the 
instruction because its responses are dependent upon 
each individual student who is making his own deci­
sions, and it is very unlikely that any two students 
would choose the same path through UNITEAM. 

APPLICATION OF UNITEAM 

The system design of UNITEAM enVISIOns the 
following to be provided by the instructor: 

1. Text or subject material (data) to be punched on 
cards; 

2. List of key words which students are to know; 
3. Table of weights (utiles) for various topics and 

concepts; 
4. Table of yes-no and true-false questions. 

Instructors are not required to know anything about 
programming or how UNITEAM works. They must 
know how to present material, and if they wish, 
UNITEAlV:I will handle the weights of all topics and 
concepts equally by default. The table of key words 
provides ready access to the determination of impor­
tant concepts. 

At the current stage of UNITEAM's development, 
response time is not a problem. This, of course, is 
because at its present stage of development, the 
question-answering is one of essentially true-false or 
yes-no. Development is centering on multiple choice 
responses, and definitions at this time, and the response 
time problem is appreciated as the question-answering 
becomes of a more complex nature. Disc storage rapidly 
becomes a problem, as we envision the capability. of 
UNITEAM to essentially control access to all knowl­
edge about a particular course being taught that an 
instructor might like to include. For the controlling 

system (UNITEA1VI) disc storage is not a problem, 
but the course material (data) rapidly can become 
unwieldy. With the development of such hardware as 
Precision Instrument Company's trillion-bit laser mass 
memory, one might hope that this problem will soon be 
eliminated or at least greatly reduced. 
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Mainline CAl, necessary but not oppressive* 

by C. VICTOR BUNDERSON 

University of Texas 
Austin, Texas 

Two years ago the term "mainline instruction" 
was introduced as a referent to a carefully designed, 
total instructional system to replace complete courses 
with a far less labor-intensive mixture <?f men and ma­
chines.2 •3 This mode was contrasted with the adjunctive 
use of the computer by faculty members who are happy 
to work within the system and merely want to use the 
computer to improve their instruction. The two NSF­
sponsored conferences on Computers in the Under­
graduate Curriculumll •6 have illustrated and stimulated 
the adjunctive approach. 

The term "mainline instruction" is not fully descrip­
tive of the concept it designates. It serves as a shorthand 
term' for individualized instructional systems of major 
scope, using the computer as a tool for instructional 
management and information transmission, developed 
according to a design science approach and used as a less 
costly alternative to conventional instruction. The ends to 
which computer uses are directed in this mode are 
necessarily controversial for: (1) mainline instructional 
systems revise the role of the teacher substantially, (2) 
mainline systems imply the emergence of a new profes­
sion of "courseware design" backed by instructional 
scientists who develop the instructional theorems used 
by the courseware designers, and (3) it is feared by 
some that the transformation of education from labor­
intensive to technology-intensive systems might be 
accomplished only at the sacrifice of certain values of 
our liberal education tradition. 

Advocates of the adjunctive use of computers in 
education point out that their approach bypasses these 
controversial aspects of the more radical mainline 
approach. By leaving the teacher firmly in control they 
minimize the threat to members of that profession, and 
more easily avoid charges of "dehumanization." By 
pointing out that no generally accepted theory of 
instruction exists, nor ready translations of learning 

* Research reported in this paper has been supported by NSF 
Grant GJ 509 X. TICCIT courseware development is supported 
by NSF Grant GJ 28095 and a MITRE Corporation subcontract. 
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psychology to instruction, they keep the teacher in 
control of program development and put off the 
problem of standards for evaluating programs. Because 
of the merits of the adjunctive mode in opening instruc­
tion to more student-oriented, problem-solving ap­
proaches, they can argue that adjunctive computer 
use in instruction not only preserves important values 
of our liberal tradition, but enhances them. 

Arthur Luehrmann has been one of the more articu-
1ate and positive advocates of the adjunctive approach. 
Among the values to be sought through this mode are 
the following: 

(1) to bring about a qualitative restructuring of the 
curriculum toward algorithmic and problem­
solving approaches, and 

(2) to encourage independent, self-motivated learn­
ing, and investigation using the computer as a 
tool. 7 

A third value should be added to this list, for Luehr­
mann and his colleagues at Dartmouth have been 
leaders in this effort for years-

(3) to bring about widespread and flexible access to 
computer use in higher education nationally 
consonant with the recommendations of the 
Pierce report. 8 

lVly intention in writing this paper is not to challenge 
these values, for I share them. It is not to argue that the 
adjunctive approach is not a good way to seek the 
three goals listed above, for I believe it is and that it 
will be the more visible way to achieve them for the 
next few years, touching many more students than will 
mainline CAL My purpose in this paper rather is 
to present data and rationale supporting the proposi­
tions that: 

(1) mainline systems are necessary for the wide­
spread dissemination of computers throughout 
the educational establishment; and 
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(2) that contrary to stereotypes built up through 
comparison with earlier attempts at tutorial 
CAl, mainline systems can lead to the first two 
goals listed above and need not detract from 
other important values of liberal education. 

THAT MAINLINE SYSTEMS ARE NECESSARY 

The Pierce report recommends that steps be taken 
to provide all college and university students needing 
such services with adequate computing services. It 
does not specify how this is to be done. A direct invest­
ment of the Federal Government to support the free 
and relatively unstructured use of computers in the 
adjunct mode would represent a staggering capital 
investment. The government has not risen to this chal­
lenge. To examine some reasons for their reluctance 
to do so, the need for computers must be put in context 
with other problems being faced by education in this 
country which also demand additional capital. Some 
of these problems are accompanied by compelling 
arguments for higher priority than the Pierce report 
recommendations. 

Colleges and universities are facing serious financial 
problems and social pressures which call for rapid and 
dramatic change. Consider the following facts. During 
the past ten years, the gross national product increased 
93 percent. During the same period, the cost of higher 
education increased 266 percent. An ever-increasing 
percentage of this rise was attributable to faculty 
salaries. Instructional outlays accounted for 45 percent 
of the costs of higher education in 1945. In 1971, they 
accounted for 65 percent. Approximately 90 percent of 
instructional costs are attributable to faculty salaries. 

While salaries have been increasing, productivity, as 
expressed by teacher-pupil ratios, has been decreasing. 
In 1959-60, the ratio was one teacher to 26 students in 
higher education. In 1969-70, it was 1 to 20. 

In an analysis of population trends for the 100 largest 
standard metropolitan areas, the Academy for Educa­
tional DevelopmentlO projected that the population of 
18-24 year olds will increase from 12.5 million to 15.7 
million between 1968 and 1990 (26 percent). During 
this same period of time, however, collegiate level 
enrollment was projected to increase from 4.1 to 8.2 
million, or 100 percent. This increase reflects increasing 
numbers of disadvantaged youth entering college, 
increases in married women returning to school, more 
employees upgrading· skills, more technical and voca­
tional education, and more leisure time due to automa­
tion. The cost estimate for this greatly increased body 
of students is $24 billion in 1990, up 200 percent from 
the $8 billion cost in 1968. This estimate covers oper-

ating costs alone. It does not reflect capital construction 
nor athletics. 

Legislatures, state and federal, are refusing to support 
these trends. In an attempt to help beleaguered college 
presidents meet the resulting cost squeeze, the Academy 
for Educational Development listed 115 ways to de­
crease the costs of higher education. First on the list was 
reducing the number of non-tenured faculty, adjunct or 
part-time faculty, consultants, and research and 
teaching assistants. Another suggestion was to cut 
computer costs or postpone the acquisition of new 
hardware. However, if CAl could be shown to be a 
cost-effective alternative to more labor-intensive 
methods, college presidents would have many more 
options, including, in some cases, the option to increase 
enrollment and effectiveness simultaneously. 

Clearly, radically different approaches to education 
are needed. It will not be possible economically to 
continue the teacher/classroom model indefinitely as 
the prime method in higher education. Peter Drucker4 

has expressed this thought as follows: 

The educators still talk of minor changes, of 
adjustments and improvements. Few of them see 
much reason for radical changes. Yet education 
will in all likelihood be transformed within the 
next decades by giant forces from without. 

It will be changed, first, because it is headed 
straight into a major economic crisis. It is not 
that we cannot afford the high costs of education; 
we cannot afford its low productivity. We must 
get results from the trememdous investment we are 
making .. .. 

Teaching is where agriculture was around 1750, 
when it took some 200 men on the farm to feed one 
non farmer in the town. We have to make the 
teacher more productive, have to multiply his 
impact, have to increase greatly the harvest from 
his or her skill, knowledge, dedication, and effort. 
Otherwise we shall run out of teachers-even if 
we do not run out of money for education. 

I t is difficult to see how adjunctive CAl can meet 
the requirements implied by Drucker for educational 
reform. The philosophy of adjunctive CAl accepts 
without question the central role of the classroom 
teacher. lVlaterials are prepared with teachers in mind 
to provide the context and motivation for the usage of 
computer packages. This assures that computer use 
will represent an add-on cost to existing costs for labor, 
overhead, and physical plant. It also makes it difficult 
to disseminate the package widely, for a teacher 
training project of some kind is necessary to enable 
the new user to adapt the inductive approach to instruc-



tion usually implied, provide the necessary context and 
motivation, and operate the program skillfully. 

Because of its systematic development and "total 
system" approach, mainline CAl systems have by 
design provision for context, motivation, sequencing 
and correct utilization of each system component. 
Training programs are obviously required for the 
teachers and others who will still be involved in the 
system, but with a mainline system the student to 
teacher ratio is greatly increased, and the costs of the 
development and operation of retraining programs are 
spread over a much broader base. 

These factors lead any economist to predict much 
greater potential for mainline CAl than for adjunc­
tive to produce mass dissemination of computers in 
education, assuming the demonstrated solution to 
problems of hardware, software, and educational 
effectiveness. Wide availability of multi-terminal com­
puter systems for administering these programs, if 
properly configured, will also provide a resource for 
enormously expanded activity of the adjunctive variety. 
Minicomputer systems designed for mainline course­
ware could also provide computer power for running 
small student jobs, e.g., in BASIC. They would have 
to be tied to larger systems to permit large data base 
simulations and other powerful adjunctive applications. 
It is most important that students and teachers have 
access to adjunctive computer resources, for such 
activity does lead to qualitative improvement of 
aspects of the curriculum; creative ideas which can be 
implemented more broadly, both by packaging within 
mainline systems and by easy transfer to compatible 
systems. 

ENHANCING IMPORTANT EDUCATIONAL 
VALUES IN THE DESIGN OF MAINLINE 
INSTRUCTION 

Early attempts at tutorial CAl, or other forms of 
programmed, packaged instruction designed to carry a 
substantial burden, have been criticized for being 
plodding, inflexible, unimaginative, and stultifying to 
the intellectually able and creative student. Too often 
these criticisms have been justified. But to judge the 
potential of any system involving considerable tutorial 
CAl by these examples is equivalent to judging the 
potential of motion pictures, having never seen a 
modern movie, on the basis of a few amateur home 
movies. 

Consider the two values stressed by Luehrmann.7 

The first is that it is desirable to bring about a qualita­
tive restructuring of the curriculum through computer 
use. The use of algorithmic and information-processing 
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approaches to representing and illustrating concepts in 
new and powerful ways is an important contribution 
of the computer. Programs which make such a con­
tribution can be used either by a teacher in the 
adjunctive mode or within a mainline system. In 
addition to this, the systematic analysis of a block of 
knowledge in mainline program design can lead to 
another form of qualitative restructuring, also power­
ful and effective in its educational consequences. 
This systematic behavioral analysis forms an essential 
part of any large-scale courseware development project. 
It involves the specification of measurable performance 
objectives in relation to broader course goals and the 
construction of a "learning hierarchy" which relates the 
major objectives and enabling objectives to one another 
by means of a kind of flowchart which shows prerequi­
site relationships and other dependencies. Such an 
analysis usually cuts away numerous topics which for 
years have been taught because of tradition rather 
than instructional merit. It simplifies and streamlines the 
structure of a course and acts as a theory for the steps a 
novice must take to attain the performance capabilities 
of a competent graduate. Such an analysis may reveal 
fuzzy concepts and suggest new research. It results in a 
representation of the course of study and its criteria for 
success which is more comprehensible to both students 
and teachers than outlines or syllabi. 

An example of the effectiveness of this approach is 
found in an analysis of that portion of beginning Arabic 
dealing with the writing and sound system. l In class 
it takes 6 weeks, 6 periods per week to teach this com­
plex non-Latin script and its phonetics. Our CAl 
program takes students from 5 to 9 hours at the ter­
minal, augmented by 4 hours with an instructor. Com­
parison studies have shown that the students' perform­
ance surpasses by far that of groups learning in class­
room or language laboratory. Only a part of this gain 
can logically be attributed to the computer. The 
behavioral analysis and specification of appropriate 
practice for each objective was the key, and classroom 
work could be greatly enhanced by its adoption regard­
less of the existence of a computer. 

Another goal discussed by Luehrmann7 was to en­
courage independent, self-motivated learning and 
investigation using the computer as a tool. It is quite 
as possible to seek this goal in the design of mainline 
courseware as through adjunctive approaches. The 
National Science Foundation has funded two major 
demonstrations of computer-assisted instruction: the 
PLATO system, under development by The University 
of Illinois, and the TICCIT system, under development 
by the MITRE Corporation. Under subcontract to the 
MITRE Corporation, a group of instructional psy­
chologists at The University of Texas and at Brigham 



402 Spring Joint Computer Conference, 1972 

Young University are developing the courseware for 
the TICCIT system. This courseware may be de­
scribed as a set of mainline systems in the areas of 
freshman mathematics, freshman English composition, 
remedial English, and remedial mathematics. The 
target is the junior colleges of this nation. The four 
mainline systems are designed to replace up to 20 per­
cent of the classroom instruction in the typical junior 
colleges at less than $1.00 per student hour (instead 
of the existing $1.50 for instruction, or $3.20 for total 
costs now extant). 

In the development of courseware for the TICCIT 
junior college project, we are designing novel systems 
which will enable students to achieve on each of four 
major kinds of objectives, each measured by special 
scoring systems implemented in the courseware. These 
are: 

(1) All students will achieve mastery at either A, B, 
or C level (student contracts for the level) on the 
lesson andunit tests that make up the measure­
ment system for mastery. 

(2) All students will develop a more positive attitude 
toward the subject matter and mode of instruc­
tion as measured by increases in their tendencies 
to approach voluntarily optional work related to 
the subject matter. More precisely, we provide 
opportunities within the course for optional 
work, use a variety of techniques to encourage 
approach responses, and measure our success. 
In some ways, we feel that approach is the 
master criterion, for it determines the student's 
future relationships with the subject matter. 
We can teach him to hate it and avoid it in the 
future or to like it and approach it in the future. 
This criterion seems especially important at 
the junior college level. 

(3) All students should develop improved strategies 
for learning relative to the subject matter and the 
TIC CIT system implementation. Strategies 
are operationally defined in our courseware as 
a vector of integers referring to items on one or 
more menus presented to the student. The order 
of the integers describes a sequence through the 
items on a particular menu. Menus exist at the 
course level, unit level, and lesson level, and 
serve as hierarchically organized points of con­
trol. A strategy may be entered in any of two 
different modes: surveyor instruction. Pro­
vision for review is also available. 
We will measure our success in improving 
strategies by changes in efficiency scores (mas­
tery + time) and by reference to strategies found 
to be effective for certain outcomes by certain 

classes of students, especially the more effective 
students. A high-level advisor program will exist 
to encourage and help students in the selection 
of good strategies. 

(4) We wish students to develop a sense of responsi­
bility for their own learning. We want them to 
feel that education is their choice and that both 
the positive and negative consequences of it are 
to be chosen or rejected by them alone. What we 
wish to convey to the student is that he is not 
just the recipient of orders but a participant in 
decisions that shape his life. He will be given the 
opportunity to choose a grade level, try various 
strategies, choose to take optional extra work or 
not, and choose among various "fun options" 
(games, films, computation and plotting pro­
grams, etc.). From the instructional system and 
the humans who manage it, the student should 
get the clear message: 

"We provide effective, efficient, and palatable 
instructional resources and a way of measuring 
your progress toward your goals. Choosing 
among alternate goals is your responsibility. 
Working effectively is your responsibility. If 
you fall below your potential we provide 
sympathy and advice. If necessary, we 
provide automatic control for a time, always 
encouraging the independence that assures 
you of control over your own destiny." 

Measurement of changes in responsible behavior in 
the use of learner control options and commands is a 
complex process and will initially be done only at a 
gross level. These gross scores will locate the student 
somewhere between yielding control completely to the 
program and permitting him to push control buttons 
wildly or to jump about within the course without 
making progress on mastery and efficiency. 

Such an ambitious scheme can only be attempted 
within the context of large mainline instructional 
systems. We estimate that the average student will 
sit at the terminal for at least 50 hours for five hours 
of semester credit. The mechanisms we have and are 
designing to achieve each of these objectives cannot 
be described in this short paper, but some flavor can be 
given. Briefly, we seek to achieve these objectives 
through three maj or sets of novel approaches which 
have never been used before, to our knowledge, in any 
CAl program. These are: (1) new control structures, to 
facilitate both learner control with program control 
options, (2) the construction of a high-level "advisor 
program," (3) the use of a variety of motivational 
techniques. 



CONTROL STRUCTURES AND LEARNER 
CONTROL 

Three years ago The University of Texas CAl 
Laboratory developed a modestly sized mainline CAl 
system to teach mathematics prerequisite to freshman 
science courses.9 This program employed learner control 
of sequence, amount of practice, and testing very 
extensively. Hierarchical index structures, menus, and a 
separate control program were implemented. A series of 
research studies was conducted to analyze the effects of 
various control options (e.g., Judd, Bunderson, /and 
Bessent).5 These studies were inconclusive regarding the 
effects of learner control vs. program control on mastery 
and speed criteria. Though equivocal, the results indi­
cated that little might be lost through the use of learner 
control in CAl on mastery a:Q,d speed. It later occurred 
to us that much might be gained, and that learner con­
trol was more likely to be related to measures of 
approach, strategy, and responsibility than to mastery. 
Gambling that evaluation will prove us right, but that if 
it doesn't the program control options can take over, the 
control structures developed in the MathS course were 
revised and improved, and are being implemented in the 
TICCIT courseware. 

Methods of control differ somewhat from course to 
course and among levels within courses. A number of 
the important concepts are illustrated in Figures 1 and 
2. Figure 1 represents the components of a lesson menu 
from the precalculus mathematics course. The objec­
tives section tells the students about the structure of the 
lesson. Those students who opt for this material learn 
that there are two major supporting objectives, cor­
responding to the two instructional sequences (items 
5 and 6). Section 5 provides structured instruction to 
enable the student to achieve the objective: Given a 
second degree polynomial function in standard form, 
perfect square form, and factored form, identify and 
plot the extreme point, zeros (if any) and y intercept. 
Section 6 teaches algorithms for transforming functions 
from one form to another, and for finding zeros. Within 

Lesson Menu 

Second Degree Polynomial Functions 
1. Objectives 
2. Review tips 
3. So what? 
4. Mini-lesson 
5. Definitions 
6. Instruction: zeros, extreme point, y intercept, graphing 
7. Instruction: algorithms 
8. Mastery test 

Figure 1-Sample menu for lesson on second degree 
polynomial functions 
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advice 

Figure 2-Generalized flow within a lesson 

both of these instructional sequences various control 
options and paradigms derived from recent research 
and theory in instructional psychology are used. The 
"Review Tips" section discusses the prerequisites 
(concept of zero, domain, range, function, etc.), provides 
brief review material, and references earlier lessons. The 
"So what?" file contains information on why a junior 
college student should bother to learn these objectives. 
The mini-lesson is a quick survey of the entire lesson. 
Definitions are provided for the important concepts 
in the lesson, including second degree polynomial and 
the three forms of the function. The mastery test is 
diagnostic. If the student fails parts of it he is given 
advice which is designed to help him go back to the 
lesson menu, or to review, before taking the test another 
time. 

Figure 2 is a nondeterministic flowchart in which 
the overall pattern for most lessons is revealed. Students 
may try several strategies before taking the mastery 
test, and after failing it the first time. The advisor pro­
gram may be called by the student for a discussion of 
various strategies used by fast, slow, and average 
students, or the advisor program may interject com­
mentary under certain conditions. 
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A student is not required to attempt a mastery test 
more than twice in close succesion, but may elect to 
come back to the lesson at a later time. Under this 
condition the lesson is automatically rescheduled. The 
student may request "status" from the advisor program 
at any time to see what lessons he has completed. 

Once the mastery test has been passed, if there is 
additional instruction at the A and B level, then the 
student contract is checked, and if he has elected a B 
or A, additional instruction is given, along with the 
A-B test. If he has not elected a B or A, a calculation is 
made to predict what he would probably get on the A-B 
test. If he is an underachiever who could get a B or A, he 
is provided with friendly advice and scored for approach 
if he takes it. He then has a chance to select among the 
"fun options" which might include such items as "More 
on that Topic" (which gives him A and B items not 
seen), a computational plotting program, a game 
film or a short film (videotapes can be shown on the 
TICCIT terminal). TIDBITS are historical vignettes, 
anecdotes, etc., related to the lesson topic, and are 
scored as approach. The student pays for fun options, 
using points earned through earlier achievement. The 
advisor may "advertise" certain options when the 
student arrives at the fun options menu. If he arrives 
at the fun options menu without having passed the 
mastery test, his choices are restricted and his bank 
account of points is low. 

THE ADVISOR PROGRAM 

The advisor is simply a set of routines which are either 
called by the student by depressing an interrupt key 
and typing a code word, or which are called by the 
course program at certain points. Four of the functions 
have been discussed above: strategy advice, status 
report, A-B advice, and "advertising." Other functions 
deal with setting and changing the grade contract, with 
scheduling reviews, and with keeping track of the 
"bank account" income and expenses. 

MOTIVATIONAL TECHNIQUES 

The reader will have observed a number of motiva­
tional techniques in the previous discussion. The whole 
concept of learner control, with emphasis on responsi­
bilityand skill in the use of strategies, has the potential 
of being very motivating to many students. The "So 
what?" file, the "fun options," and the point system 
used· to earn fun options are designed to enhance 
motivation as well as to develop approach. In addition 
to these techniques, humor, cartoons, graphics, color, 
and audio are used throughout in an attempt to intro-

duce the light and clever touches which have been used 
so well in the TV programs developed by Children's 
Television Workshop. Professional writers and TV 
scriptors are a part of the courseware teams. The 
intimate mixture of short videotapes and CAl sequences 
is a powerful new mechanism of expression for creative 
authoring talent, and we hope to learn to use it to the 
fullest to provide instruction that is palatable and fun 
as well as effective and efficient. 

ON FREEDOM AND PRIVACY 

The philosophy of learner choice and the respect for 
the individual implicit in our courseware design assure 
individual freedom. An individual is free even to remain 
antagonistic toward mathematics, or to resist attempts 
to accept responsibility, for our interactions are all 
persuasive rather than coercive. 

On the issue of privacy, we plan to keep scores on 
mastery, speed and accuracy, learning strategies, 
voluntary approach, and the responsible use of control 
options. Thesescores are necessary both for the advisor 
program and for the human advisors to help each 
student achieve his objectives, and to improve the 
system for later students. The data are analogous to a 
combination of a grade transcript and a set of aptitude 
scores now found in students' files in registrars' offices 
at any college, but these data are more precise and de­
tailed. They could presumably be misused in the same 
manner as could the registrars' files if security were lost. 
IQ scores have been misused and restrictions set up 
against their distribution. Presumably, appropriate 
restrictions must also be established to protect the 
misuse of our courseware scores. Indeed, it is possible 
to permit the individual to contract for the courseware 
to attempt to influence strategies, attitude, and re­
sponsibility as well as mastery. Such an agreement 
between the student and the system would be a positive 
and constructive substitute for the "privacy warning" 
now given to Dartmouth students whenever a record 
is kept of certain of their transactions at a terminal. 

SUMMARY 

Because of increasing cost problems in higher education, 
and the need to find more cost-effective approaches 
to traditional instruction, mainline instructional sys­
tems were proposed as a desirable alternative. The 
first reason discussed was economic. Mainline instruc­
tional systems, as defined in this paper, replace impor­
tant subsystems within an educational institution with a 
less labor-intensive, potentially more cost-effective 
technology. Any proposal which uses technology as an 



adjunct to a classroom teacher, representing an add-on 
cost, is unlikely to represent a viable alternative in the 
years ahead unless somehow incorporated within a 
more radical restructuring of education. 

That systematically designed mainline courseware 
can lead to the qualitative restructuring of curricula, 
and, in particular, can enhance independent, self­
motivated learning and other important values was 
discussed. An example was taken from the TICCIT 
courseware development project in freshman mathe­
matics to illustrate this discussion. 
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Should the computer teach the student, or vice versa? 

by ARTHUR W. LUEHRMANN 

Dartmouth College 
Hanover, New Hampshire 

This sermon begins with a parable. 
Once upon a time in the ancient past there was a 

nation in which writing and reading had not yet been 
invented. Society was as advanced as possible, con­
sidering that it had no mechanism for recording the 
letter of the law or of writing agreements, contracts, 
or debts. Nor was there a way of recording the heritage 
of information and knowledge that had to be passed 
on from generation to generation. 

As a result, a great fraction of the total effort of the 
society was spent in oral transmission of information. 
Master teachers, who themselves had been taught by 
older master teachers, lectured before children and 
young people of the society. Training a master teacher 
was a long and expensive process, and so the society 
could not afford many. For reasons of economy the 
curriculum was quite rigid and lectures were on a fixed 
schedule. Teaching, obviously, was a labor-intensive 
industry based on skilled, expensive talent. Education, 
per force, was a luxury that could be afforded by the 
elite classes only. 

Then, one day, writing and reading were invented. 
Not surprisingly, the first application of this new 
technology was to business and government. Money 
was printed; laws were encoded; treaties were signed. 
In response to these needs, a reading and writing in­
dustry grew up. Within a few years it was able to offer 
a broad range of reading and writing services to its 
customers. The customers found this to be a con­
venient arrangement, since hiring readers and writers 
from service vendors eliminated the need for each 
customer to invest in an expensive R&D effort of 
its own. The customers remained illiterate. 

At first the situation was somewhat chaotic. Each 
vendor of reading and writing service tended to de­
velop its own favorite language and its own technique 
for encoding information, leading to incompatibilities 
that impeded the spread of the new technology. After 
a winnowing-out period, however, the number of 
competing systems settled down to a few and major 

407 

I 

difficulties were handled by translators-though in-
evitably something seemed to be lost in the process. 

Always looking for new markets, the vendors of 
reading and writing service began to examine the area 
of education. In view of its elitist role in the society it 
had been dismissed at first as too limited a market. A 
few, more imaginative people, however, argued that 
the application of reading and writing technology 
could turn education into a mass market. They pro­
posed the following plan of attack. Reading and 
writing specialists and master teachers would work as 
a team. The master teachers would deliver their best, 
most carefully prepared lectures to the reading and 
writing experts, who would write them carefully 
verbatim into books. The books would then be copied 
many times, and each copy would be made available to 
a new type of educational functionary-the reader. 
His only job would be to assemble groups of students 
and to read aloud to them the recorded lectures of the 
master teachers. In view of the fact that training such 
a reader would be far less expensive than the educa­
tion of a master teacher, the on-going cost of such a 
program would be far less than that of the conven­
tional lecture method. The new method came to be 
called Writing Assisted Instruction, frequently ab­
breviated to W AI. 

Needless to say, WAI had its opponents. Established 
master teachers expressed doubt whether a less skilled 
reader would be able to communicate subtleties of 
inflection, and they were certain that a mere reader 
could not process student responses with skill or intel­
ligence. W AI proponents counter-charged that the 
master teachers were merely expressing their vested 
interest in the present educational establishment, and, 
indeed, that they ought to be fearful because the 
superiority of WAI would ultimately drive out the 
conventional practitioners. Even within the education 
establishment some younger ili.embers became W AI 
supporters on the grounds that the new method was 
a boon to education research. Until then, teaching had 
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been something of a black art, shrouded in the privacy 
of the classroom. To compare one teacher with another 
was impossible. But in the future, they said, the 
written record of the lectures of master teachers would 
make the teaching experience explicit and subject to 
analysis, comparison and improvement. It was high 
time, the young Turks exclaimed, that the teaching 
profession act with accountability to the public it 
served. 

Unfortunately, such controversy remained for many 
years on a hypothetical plane. The number of actual 
WAI efforts was verysmall and their results were not 
striking. There was also a credibility problem. Many 
of the most outspoken advocates of WAI, especially 
in the legislature and in business and on local school 
boards, were themselves almost totally illiterate in the 
new reading and writing skills. How could they evaluate 
a new technology if they had not mastered it them­
selves? 

Finally, government, business and some members 
of the education establishment decided to mount two 
or three large-scale demonstrations of W AI in order 
to show publicly the advantages of the new educational 
technology. For a period of several years curriculum 
experts collected information on a few key courses of 
lectures by assorted master teachers. The reading and 
writing experts wrote down the best series and read 
them aloud to the curriculum experts, who would 
criticize them and make improvements. The reading 
and writing experts would then incorporate the im­
provements in the next draft. Then came the field 
test. Readers began to read the drafts aloud to actual 
classes of students, and this led to further revision 
by the curriculum experts and rewriting by the reading 
and writing experts. At the end of a few more years a 
summative evaluation of the projects was undertaken 
by an independent, reputable educational testing or­
ganization, whose mission was to compare the cost and 
effectiveness of W AI with conventional education. 

The parable is nearing its conclusion now. Actually 
it has two alternate endings, one happy and one sad. 
The sad ending, which follows now, is brief. 

The educational testing organization reported that 
the projects were a complete vindication of Writing 
Assisted Instruction. It found that students taught 
by W AI performed even better on standardized tests 
than students taught by the average master teacher, 
that the students liked WAI better, and that the total 
cost of WAI was about a fourth that of conventional 
instruction. These pilot projects were imitated on a 
grand scale and education was revolutionized. Special 
institutes turned out vast numbers of readers and 
within ten years they were reading courses of lectures 
aloud to masses of people who could never have been 

educated before the new instructional technology 
arrived. The nation grew and prospered and thanked 
the day that the reading and writing industry was 
founded. 

That is the sad ending. The happy ending is some­
what longer and more complicated. Here it is: 

The educational testing organization found that 
W AI was neither measurably worse than conventional 
instruction, nor better. It found that costs were some­
what higher than anticipated, mainly because the 
market demand for people wit~ reading and writing 
skills had driven their wages up near those of master 
teachers. 

But this lukewarm finding was anticlimactic when it 
came, for the impact of reading and writing on educa­
tion had taken a new turn during the intervening years. 
Here is how it happened. 

At first a few master teachers had themselves found 
it necessary in pursuing their own research to spend the 
enormous effort required to master the skills of reading 
and writing. As they became more and more competent 
readers and writers, they began to see clearly the power 
of the written word within their own disciplines. 
Naturally enough the humanists were the first to apply 
this new intellectual tool to their fields of interest. 
Literature specialists collected stories, wrote them 
down, exchanged them with each other and began to 
develop literary criticism to a new height. Language 
specialists compiled lists of grammatical rules, which 
became writing manuals. Scientists were slower in 
becoming literate, with mathematicians leading the 
way, since they grasped the possibility of writing mathe­
matical concepts in abstract notation. Nevertheless, 
for many years scientists continued to remain in verbal 
darkness. 

While reading and writing had its primary impact 
on scholarly research, at the same time many master 
teachers across the land began to wonder whether it 
might not be beneficial to introduce elementary uses 
of reading and writing to students in their courses. A 
few language teachers began to show students how to 
write phrases and sentences, and the more venture­
some teachers even asked students to write sentences 
of their own. Such experience, they claimed, greatly 
enhanced a student's understanding of syntax and 
rules of grammar. Even in subject areas far removed 
from language, to which reading and writing have a 
natural affinity, teachers began to report pedagogical 
gains due to having students carry out elementary 
reading and writing tasks as an adjunct to conventional 
instruction. 

One obstacle to student use of reading and writing 
was the awkwardness of the main systems of notation, 
which had been developed mainly for research and 
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business applications. The most popular such system 
was particularly difficult to format, since its characters 
all had to be positioned accurately in a fixed number of 
columns. Occasionally there were rumors that a group 
of teachers in a remote province near the northern 
frontier had developed a simpler writing system and 
all their students were using it daily. Such rumors were 
hard to verify; only a few people ever voyaged that 
far north, and, in any case, experts in the reading and 
writing industry seemed confident that anything that 
made the current system simpler would also take away 
its power and elegance. So most teachers adhered to it. 

Within a few years teachers began to hold national 
meetings to tell one another how their students used 
reading and writing within their courses. Advocates 
of this type of use, which came to be called adjunctive, 
insisted that it be distinguished clearly from WAr. 
Writing Assisted Instruction, they charged, was nothing 
more than an improvement in the technology of de­
livering instruction. Adjunctive use of reading and 
writing by the student, on the other hand, represented 
a change in the intellectual content of instruction. They 
argued from the following philosophical premise: 

Reading and writing constitute a new and 
fundamental intellectual resource. To use that 
resource as a mere delivery system for instruction, 
but not to give a student instruction in how he 
might use the resource himself, was the chief 
failure of the W AI effort, they said. What a loss 
of opportunity, they exclaimed, if the skill of 
reading and writing were to be harnessed for the 
purpose of turning out masses of students who 
were unable to read and write 1 

W AI advocates responded that it was well and good 
that a few elitist schools teach their students the dif­
ficult skill of reading and writing; it was. enough that 
WAI teach lesser skills to masses that might otherwise 
remain uneducated and unemployable. 

How much longer, asked the W AI opponents in 
rebuttal, will an illiterate person be considered edu­
cated? How long will he be employable and for what 
jobs if elitist schools are turning out competent readers 
and writers by the hundreds? 

The more visionary advocates of mass literacy told 
of foreseeing the day when students would spend more 
hours of the day reading and writing than listening to 
lectures. Small research libraries had indeed sprung up 
at some schools, but they were expensive operations 
limited to a few specialists who had to raise funds to 
pay for their use. Such people were particularly in­
credulous at the suggestion that every school ought to 
adopt as an educational goal the establishment of a 

significant library open freely to all students. School 
administrators were at first appalled at the idea that 
the library should not be on a pay-as-you-go basis but 
should be budgeted as part of the general institutional 
overhead costs. 

But as time went on and even school administrators 
became competent and imaginative users of the skill 
of reading and writing, all schools gradually accepted 
as a mission the bringing of literacy to all students. 
Accreditation agencies examined the quality of libraries 
before approving schools. Books began to appear all 
over and finally even in people's homes. W AI did not 
die out altogether, but continued as a cost-effective 
alternative to the lecture. But as books reduced de­
pendence on lectures, students made less use of both 
W AI and lectures and spent more time on their own 
reading and writing projects. The nation grew and 
prospered and wrote poems in praise of the day that 
reading and writing were discovered and made available 
to all people. 

End of parable. 
It is a perilous strategy, bordering on bad taste, to 

tell a joke and then for several pages explain why it 
was supposed to be funny. However, this allegorical 
tale has been told here not merely for entertainment 
but mainly for the moral lesson it carries. To compare 
reading and writing with computing might be dis­
missed as an amusing frivolity; but that would be 
wrong. Our fundamental philosophical premise here is 
that, like reading and writing, 

"[computing] constitutes a new and funda­
mental intellectual resource. To use that resource 
as a mere delivery system for instruction, but not 
to give a student instruction in how he might use 
the resource himself, has been the chief failure of 
the [C]AI effort. What a loss of opportunity if 
the skill of [computing] were to be harnessed for 
the purpose of turning out masses of students who 
were unable to [use computing] I" 

As this example shows, it is a trivial editing task 
to go through the entire reading and writing fable and 
turn it into a story about computing and its uses in 
education. In fairness, the author admits that the 
story really is about computing and that reverse editing 
was done in the original telling so that it would seem 
to be about reading and writing. Yet, as a story about 
reading and writing it has considerable plausibility, 
doesn't it? The Writing Assisted Instruction program 
outlined in the story is not a totally absurd idea for 
putting reading and writing to use in education. One 
cannot argue against claims that committing lectures 
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to writing would make education available to more 
people, would invite critical comparisons and a con­
sequent improvement in subsequent revisions of 
written materials, and would be an asset to the study 
of the learning process itself. What does appear absurd, 
however, is the failure of these mythical WAI propo­
nents to recognize that the best educational use of 
reading and writing is the teaching of reading and 
writing itself to everyone. Mass literacy is an educa­
tional mission about which few of us have doubts today. 

Yet that consensus among us seems to vanish when 
one substitutes "computing" for "reading and writing" 
and "CAl" for "WAI". Mass computing literacy is 
not an agreed-upon educational goal. Today very few 
courses at any educational level show students how to 
use computing as an intellectual tool with applications 
to the subject matter being taught. Oh, there are a few 
isolated, subject-matter-free courses in computer pro­
gramming; but their market is largely restricted to 
vocational-education students, at one end of the 
spectrum, and future computer professionals at the 
other. It is true that most schools consider it prestigious 
to have a large and powerful computer facility; but 
the fact of the matter is that such computers are 
usually the captives of research and administrative 
interests and operate on a pay-as-you-go basis. Iron­
ically, it is in the most prestigious universities that 
students are least likely to be permitted to use those 
prestigious computers. It is a rare secondary school, 
college, or university that budgets and operates its 
computer facility in the same way that it budgets and 
operates its library. (There is a persistent rumor of an 
exceptional example in some remote province near the 
northern frontier, but so few people ever travel that 
way that the report is hard to verify.) In the main, 
literacy in computing simply is not an educational 
goal at many schools. Most educators seem to find 
bizarre the suggestion that accreditation agencies 
examine schools for the quality of their educational 
computing facilities, just as they now do with libraries. 

The distressing truth today is that educators, local 
school boards and federal policy-makers are far more 
receptive to the plans of CAl proponents for using the 
technology of computing as a cost-effective delivery 
system for instruction in math or remedial English 
than they are to making computing itself a part of 
education. This statement should not be taken as a 

blast against CAl. On the contrary, CAl advocates 
are to be commended for their desire to reduce the 
cost of instruction, to tailor it to the different learning 
styles of students, to develop systems that encourage 
closer examination of what is being taught and systems 
for improving instruction, and to hold teachers and 
schools accountable to their clientele. With enough 
developmental work on CAl, it is likely that students 
will perceive the computer as a very superior teacher. 
Above all, CAl promises to make education a less 
labor-intensive industry and so to enable masses of 
people to become better educated. This is certainly a 
goal worth working for. 

But there is a higher goal. If the computer is so 
powerful a resource that it can be programmed to 
simulate the instructional process, shouldn't we be 
teaching our students mastery of this powerful intel­
lectual tool? Is it enough that a student be the subject 
of computer administered instruction-the end-user 
of a new technology? Or should his education also 
include learning to use the computer (1) to get infor­
mation in the social sciences from a large data-base 
inquiry system, or (2) to simulate an ecological system, 
or (3) to solve problems by using algorithms, or (4) to 
acquire laboratory data and analyze it, or (5) to 
represent textual information for editing and analysis, 
or (6) to represent musical information for analysis, or 
(7) to create and process graphical information? These 
uses of computers in education cause students to be­
come masters of computing, not merely its subjects. 

It will be countered that such an educational mission 
is well and good for a few elitist schools, where students 
are willing to learn the difficult skill of computing; but 
it is enough that CAl teach lesser skills to masses of 
students that might otherwise remain uneducated and 
unemployable. 

In response we ask, how much longer will a computer 
illiterate be considered educated? How long will he be 
employable and for what jobs if elitist schools are 
turning out competent computer users by the thou­
sands? 

The true story about computing and education is 
at its midpoint. Like the reading and writing parable, 
it has a sad ending and a happy ending. Which one 
actually occurs will be determined by you-teachers, 
school administrators, computer professionals, and 
government policy-makers. 
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INTRODUCTION 

Computer systems are expensive in terms of develop­
ment, acquisition and maintenance. The efficient and 
effective system appears to be the exception rather than 
the rule. Concern for system improvement is voiced by 
almost every computer-related management or tech­
nical support group. The types and amounts of data 
which can be gathered through hardware and software 
monitors appear to be ever increasing. A bewildering 
array of papers and proceedings are published every 
year and the problems of analyzing computer systems 
are described with loving detail. 

In spite of the effort implicit in the activities de­
scribed above, the author has rarely visited an installa­
tion at which the systems analysts were reasonably 
familiar with literature available in the technical 
journals on modeling computer systems. The most 
common approach to system improvement appears to 
be one of incremental enhancement coupled with a 
'cut and try' approach. The absence of a basic under­
lying approach for a problem of such significance is 
difficult to believe. 

MODELING SYSTEMS 

In order to study large-scale complex systems 
efficiently, one normally proceeds via the development 
of suitable models. Effective tools fpr modeling have 
been developed by generations of operations research 
analysts. Unfortunately, mere knowledge of modeling 
tools does not guarantee the production of a good model 
of a system. Something akip. to an O.R. viewpoint is also 
required. This viewpoint is normally opposed to that 
which seems reasonable to programmers and computing 

* This research was partially supported by the Office of Naval 
Research, Information Systems Program under Contract 
NOOO-14-67-0181-A-0036 (NR 049-311). 
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center managers by virtue of their training and natural 
inclinations. Consequently, a communication barrier is 
created between the O.R. analyst and those engaged in 
making decisions regarding the selection, evaluation 
and enhancement of computer systems. 

This communication gap has two primary sources, the 
first being the difference in viewpoint. Most managers of 
computing centers have a reasonably thorough knowl­
edge of the problems inherent in writing programs 
for currently existing large-scale computer systems. In 
particular, they are well aware that a meticulous con­
cern for detail is necessary for the successful production 
of programs within acceptable time limits. Conse­
quently, the forest of computing is viewed as a collection 
of individually interesting trees. This viewpoint pro­
duces a natural propensity toward simulation models 
of computer systems whose basic level of detail is in the 
sub-millisecond range. 

A careful analysis of well-regarded models for other 
large-scale systems! demonstrates that the major 
prerequisite for successful modeling of complex systems 
is the identification of a reasonably small number of 
key variables. A corollary of this identification process 
is the omission of as many other variables as possible. 
Once the identification of the key variables driving the 
system has been performed, the basic methodologies of 
operations research, e.g., mathematical programming, 
queueing analysis, scheduling theory, etc., can be 
invoked. Clearly, the resulting model will appear 
incomplete to the casual observer knowledgable in the 
process being modeled. However, the acid test of the 
model is neither its complexity nor its apparent com­
pleteness; rather, it is the capability of the model for 
providing information of use by a decision-maker. 

The resolution of the difference in viewpoints between 
the computing center manager and the O.R. analyst 
can only be achieved through construction by the 
latter of models which provide information of use to the 
former. This requires that the model relate the input 
variables to the performance of the system as a whole. 
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Unfortunately, most of the models existing in the 
literature are for components of a computer system. 
In particular, a large number of models exist for: 
(i) CPU scheduling algorithms,2 ,3 ,4 (ii) memory manage­
ment models5,7,6 (iii) I/O models8 ,9,1o and (iv) mis­
cellaneous models of use in studying storage contentionll 

the effects of buffering,12 etc. A few attempts at building 
models which provide information on throughput 
have been made. In particular, the papers by Gaver13 
and Hanssmann, Kistler and Schultz14 are noteworthy. 

Before attempting to develop a model, it is natural to 
seek guidelines for the properties which it should 
possess if it is intended to be of use to a computing 
center manager. The tradeoff between the effort 
involved in building the model and the information 
obtained from it must be carefully considered. Conse­
quently, an absolute formulation of guidelines cannot 
be made. However, extensive studies have been made of 
the categories of information required by a decision­
maker in order to apply the formal techniques of 
decision analysis. In particular one must have :15 

(1) a list of variables to be considered is making a 
decision, viz., the input variables and the output 
variables, 

(2) a model showing the interaction between the 
input variables and the output variables, 

(3) a list of constraints which the chosen solution 
must satisfy, 

(4) a means for evaluating various alternative 
combinations of input and output variables. 

As an example, the performance of a computer 
system is often measured in terms of :16 (a) throughput, 
(b) turnaround time and (c) availability. Throughput 
is normally measured in jobs processed per week or 
month, availability is measured in terms of idle time 
per shift, and turnaround time is measured in terms of 
elapsed time from submission of a job until its output 
is available, Thus, it might be determined that a given 
system should possess the capability for processing 
4000 jobs/month, with an average turnaround time 
of one hour and an availability of one hour/shift. In 
considering systems which meet this requirement, it is 
also desirable that some attention be given to the 
stability of various solutions. That is, given two systems 
which meet the requirements, one would normally 
choose the less expensive of the two. However, if a 
large increase in potential performance can be obtained 
at only a modest increase in cost, the more expensive 
system could be chosen. 

Clearly, a model which effectively incorporates all of 
these factors constitutes a difficult objective. However, 

as a first cut at building a model of interest to a com­
puting center manager, one might seek to relate the 
attributes of the programs which are to be run on the 
system (measured in some suitable manner) to the 
performance of the system as a whole (measured in 
terms of the three primary variables). In the following 
such an approach is described for a somewhat restricted 
class of programs. 

THE SYSTEM PROCESS MODEL 

A model for describing the performance of a computer 
system (hardware plus operating system) must possess 
the following two capabilities: (i) the activity of a 
process must be· characterized in terms of some basic 
collection of descriptors, and (ii) the interaction 
of the collection of processes in the system must be 
characterized. 

In modeling the activity of a process in a computer 
system, we observe with Denning17 that at any given 
instant in time a job or process is in one of three states: 

(i) active, i.e., currently being serviced by the CPU, 
(ii) blocked, i.e., halted pending completion of some 

event and incapable of being serviced by the 
CPU, 

(iii) ready, i.e., awaiting the CPU. 

The lifetime of a job consists of an alternating se­
quence of active, blocked and ready intervals, which 
may have length zero. The utility of this observation 
does not appear to have been previously noted. Perhaps, 
this is because of observed variations in the lengths of 
these intervals, the relative times at which they occur 
and their number. That is, the activity of a process is 
not deterministically reproducible when its evolution 
is viewed as an alternating sequence of such intervals. 
Fortunately, the activity of the process is statistically 
reproducible. 

The interactions of the collection of concurrently 
executing processes are assumed to behave in the 
following manner: 

(i) all jobs are statistically identical, 
(ii) all processes cycle through the active, blocked 

and ready states in the same order, i.e., processes 
do not pass each other, and an exit from the 
active state results in an entrance into the 
blocked state, 

(iii) the amount of time spent in any given state is 
exponentially distributed. 

Although these assumptions are a simplification of the 



manner in which a computer system operates, some 
available evidence19 seems to indicate that estimates 
for the performance of a real system which can be 
obtained through the use of this model are reasonable. 
In the following, we shall refer to this model of the 
activity of a computer system as the System Process 
Model (SPM). 

The preceding assumptions are made in order to 
obtain an analytically t.ractable model. Results similar 
to those described later in the paper can be obtained for 
non-statistically identical processes. However, state­
ment of the results becomes significantly more complex. 
The assumption that processes do not pass each other 
is clearly not satisfied by the operation of a real system. 
However, the effects of passing appear to be local in 
nature and, consequently, this assumption does not 
appear to be unduly restrictive. The exponential 
assumptions for the time spent in the active, blocked 
and ready states are only tenuously satisfied by some 
available data.19 Thus, this assumption does not appear 
to be unduly restrictive on the range of applicability of 
this approach. 

For the SPM, mathematical expressions for the 
CPU utilization, the average number of active intervals, 
the average length of a ready interval and the average 
system residence time of a process can be derived. In 
obtaining these results, the average length of an active 
interval, the average length of a blocked interval and 
the total amount of CPU time are assumed to be known. 
The results obtained can then be used as estimators 
for the corresponding quantities of a real system. In 
order to clearly distinguish between quantities which 
are obtained for the SPM and those which are assumed 
to be obtained through the use of monitors from a real 
system, we adopt the following notation: 

(a) O(K) denotes the SPM estimate for U(K), the 
CPU utilization given K concurrently executing 
jobs in the system, 

(b) N denotes the SPM predictor for N, the average 
number of active intervals, 

(c) R(K) denotes the SPlVI estimate for R, the 
average ready interval, 

(d) 8(K) denotes the SPM estimate for S, the 
average system residence time of a job, i.e., the 
elapsed time from initiation of the first active 
interval until termination of the last active 
interval. 

The following theorem has been obtained else­
where.Is ,19 

Performance Evaluation 413 

1.0 

-------
0.5 

0.0 -l"----r----r--------,.....lS:--------

Figure I-CPO utilization estimate 

Theorem: 

Let A~ denote the total amount of CPU time re­
quired by a given process. Let A and B denote the 
average length of the active and blocked intervals of the 
process. For the System Process lVlodel with K con­
currently execution processes: 

(i) N=A~/l, 
(ii) O(K) ~ 1-pK-l 

(iii) R(K) = (K -E[J(K») A O(K), 
(iv) 8(K)=N(A+B+R(K». 

where p = B / (A + B) and 1 (K) denotes the number of 
active intervals which can be initiated during a blocked 
interval. 

The behavior of O(K) is described in Figure 1. We 
note that the effect of increasing the number of con­
currently executing processes in the system is to 
increase R(K) in a nearly linear manner, provided 
the CPU utilization is near one. We further observe 
that since A~ represents the total amount of CPU time 
required by a job, variations in A~ with different 
injections of the same job will reflect the effects of 
system overhead and should be nearly negligible. 

Throughput is a subject of much interest at most 
computer installations. Unfortunately, since it is 
normally computed in terms of jobs per day, week or 
month, it is difficult to . examine the impact of a single 
job on the throughput at an installation. However, 
throughput is simply the rate at which jobs are proc­
essed. An expression for this quantity can be obtained 
through the use of our model. Indeed, by using well­
known arguments from renewal theory,20 it follows that 
the rate at which one job is completed is 1/ S. Since 
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there are K distinct jobs in the system, the rate at 
which these jobs are completed is K/ S. Thus, under the 
assumptions of our model, the throughput is K/ S. It 
should be observedthat this expression is consistent 
with the definition of throughput. Over a time interval 
of length S, precisely K/ S XS = K jobs will have been 
completed. 

It is appropriate to inquire as to the stability of 
decisions achieved through reasoning in the preceding 
manner. Fortunately, the available evidence seems to 
indicate that process behavior is statistically repro­
ducible, provided the system is large enough so that 
no single job dominates it. Indeed, measurerrrents made 
on the University of Michigan's MTS Computer System 
(a twin-processor 360/67 with three 2301 paging 
drums, three eight-drive 2314 disks, two data cells, 
100 terminals, plus assorted other peripheral devices) 
through the use of the embedded software monitor21 
have shown that the probability distributions obtained 
for the lengths of the active, blocked and ready intervals 
vary ina very predictable manner as a function of the 
CPU load. (The MTS System is a processor bound 
system; hence it is reasonable that the CPU load 
should be the controlling influence on the variation 
in the distributions of the lengths of these intervals.) 
Similar arguments would appear to hold for other 
systems in which there exists a well-defined limiting 
resource other than the CPU.19 If there is no limiting 
resource, the system is lightly loaded and the estimates 
described here may not be valid since processes can 
'chase' each other. 

EXTENSIONS AND APPLICATIONS 

The preceding results are of use in studying the effects 
of different job mixes for a computer system in which the 
hardware and operating system are assumed fixed. If 
one wishes to study the effects of varying either the 
number, type or arrangement of I/O devices, it is useful 
to have a means of estimating B. In addition, if one 
wishes to study the effect of changes in the CPU and/or 
operating system, it would also be desirable to have a 
method for estimating A. Some considerations relevant 
to obtaining such estimators will now be described. 

Estimation of A 

Both the 'power' of the CPU and the impact of the 
operating system are reflected in A. Consequently, of 
the four basic approaches to gathering information 
about a computer system, i.e., (a) benchmarks, (b) 
hardware and software monitors, (c) simulation models 

and (d) analytic models, the use of· analytic models 
would seem least likely to succeed. This stems from the 
difficulty of treating dependent relationships with 
analytic models. Attempting to predict A as a function 
of the hardware and operating system characteristics 
through the use of a simulation model could probably 
be done. However, a rather fine level of detail might 
have to be incorporated in order to achieve a reasonable 
estimator. Since one is normally interested in making a 
large number of comparisons, this might render the 
cost of a simulation approach prohibitive. It should be 
noted, however, that it would be of independent interest 
to study the minimal amount of detail which must be 
incorporated in a simulation model in order to yield 
consistent estimators for A. Such a study might provide 
some information on the level of detail which should 
be incorporated in a simulation model of a computer 
system-a subject on which little appears to be known. 

Perhaps the most suitable approach to this problem 
would be through the use of hardware or software 
monitors applied to suitably chosen benchmarks. 
Unfortunately, the difficulties encountered in identify­
ing the process responsible for a particular event being 
measured with a hardware monitor appears to make 
their use somewhat difficult. A software monitor capable 
of tracing the activities of an individual process such 
as the event driven software monitor embedded in the 
lVITS System21 would appear to be ideal. However, 
most of the commercially available software monitors 
operate on a sampling basis which necessitates a certain 
amount of guesstimating in determining A, although 
these monitors are useful for determining fractional 
CPU utilization. 

Estimation of B 

Estimating B appears to be rather simpler than 
estimating A. Data described elsewhere19 indicate 
that variations in the length of B are rather small (at 
least for a system in which the CPU is the limiting 
resource) over a fairly large CPU load range. A simula­
tion22 of a single channel eight drive IBlVI 2314 indicates 
that the distribution of arriving requests by module is 
the most significant single factor in achieving a satis­
factory channel utilization. In particular, given a 
suitable distribution of requests by module, the delay 
time ofa request appears to be rather insensitive to 
the particular disk scheduling policy being used, e.g., 
FCFS (first come first served), SCAN,lO or SSTF.23 

This result would seem to indicate that in estimating 
B as a function of the collection of I/O devices in the 
system, the level of detail which must be incorporated 



is not excessive. In particular, in addition to knowledge 
of the hardware characteristics of the devices, the most 
important variables appear to be: (a) arrival rate by 
device, (b) distribution of arrival requests by cylinder 
for disks, (c) device-channel arrangement and (d) 
degree of buffering. Given this information one may 
write: 

In this expression Pi is the fraction of blocked intervals 
which occur for a device of type i, Bi denotes the 
average length of a blocked interval for such a device 
and the sum is computed over all I/O devices in the 
system. Estimation of Bi is straightforward for dedi­
cated peripherals if the distribution of arrivals to the 
device and the amount of information to be transmitted 
in each request is known. For drums and disks, com­
ments made earlier would seem to indicate that rather 
simple simulation models can be employed. Alterna­
tively, somewhat less accurate estimates could be 
obtained through the use of analytic models described 
in the literature. 

Block times less than those indicated through the use 
of these models are indicative of either a good arrange­
ment of data sets on devices or an effective use of 
buffers. Indeed, the appropriate depth of buffering 
might be 'examined by observing the extent to which 
modifications in this depth affect the observed blocked 
interval. An observed value of the average blocked 
interval greater than that indicated by the device 
models may indicate poor data set organization for a 
given job, contention between jobs for data sets stored 
on the same device, channel contention, etc. Although 
this approach does not pinpoint the exact source of 
delay, it can be used as an indicator for the presence 
of potential problems. Further, comparison of the 
values observed with those predicted by the models 
provide insight into the size of the anticipated reward 
which might be achieved through further investigation. 

SUMMARY 

We have obtained a model which yields estimates for 
turnaround time, CPU availability and throughput 
rate for a collection of statistically identical processes 
characterized in terms of the total amount of CPU time 
required and the average lengths of the active and 
blocked intervals. Consequently, the effects of varying 
the number of users in the system upon the three 
primary measures of system performance can be 
investigated. In turn, this allows one to apply the 
techniques of formal decision analysis to the selection, 
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evaluation and comparison of computer systems. Such 
an application requires an expression of the means to be 
used in judging various alternatives and the decision to 
be made. 
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Protection-Principles and practice* 

by G. SCOTT GRAHAM and PETER J. DENNING 
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Princeton, New Jersey 

INTRODUCTION 

The protection mechanisms of computer systems control 
the access to objects, especially information objects. 
The range of responsibilities of these mechanisms in­
cludes at one extreme completely isolating executing 
programs from each other, and at the other extreme 
permitting complete cooperation and shared access 
among executing programs. Within this range one can 
identify at least seven levels at which protection mecha­
nisms can be conceived as being required, each level 
being more difficult than its predecessor to implement: 

1. No sharing at all (complete isolation). 
2. Sharing copies of programs or data files. 
3 .. Sharing originals of programs or data files. 
4. Sharing programming systems or subsystems. 
5. Permitting the cooperation of mutually sus­

picious subsystems-e.g., as with debugging or 
proprietary subsystems. 

6. Providing "memoryless" subsystems-i.e., sys­
tems which, having performed their tasks, are 
guaranteed to have kept no secret record of the 
task performed (an income-tax computing ser­
vice, for example, must be allowed to keep billing 
information on its use by customers but not to 
store information secretly on customers' 
incomes). 

7. Providing "certified" subsystems-i.e., those 
whose correctness has been completely validated 
and is guaranteed a priori. 

We shall consider here the protection mechanisms re­
quired for level 5, but not those required for levels 
6 or 7. We do this because we are interested in specify­
ing the structure of protection mechanisms that work 
irrespective of considerations of internal program 

* Work reported herein was suppo~ted in part by NASA Grant 
NGR-31-001-170 and by National Research Council of Canada 
Grant A7146. 
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structure; levels 6 and 7 in general require control over 
internal program structure. Moreover, little is known 
about the mechanisms for levels 6 and 7, whereas much 
is known about the mechanisms for levels 1 to 5. 

Much has been written about the legal and social 
implications of protection and privacy (see, for ex­
ample Reference 10). We deal exclusively with the 
technical aspects of protection-i.e., the procedures 
governing the access of executing programs (processes) 
to various resources in the system. This is because little 
has been written about the technical side of the prob­
lem. It is also because the technical approach, when 
balanced with the legal approach, is useful in clarifying 
the inadequacies of both approaches and in understand­
ing how they can complement one another. For example, 
without a technically sound protection system, a user 
might find it possible to perform malicious acts unde­
tected, rendering certain laws unenforceable. Even with 
a sound protection system, however, certain aspects of 
protection can be dealt with only by laws, e.g., the 
problem of false identification. 

The first step in the design of a protection system is 
the specification of the main parties and their inter­
actions. That is, the entities to be protected and the 
entities to be protected against are identified, and rules 
by which the latter may access the former are formu­
lated. For this, common sense and examples of existing 
protection systems can be used to guide our thinking in 
the development of the elements and principles of a 
protection system. We formalize these principles as a 
model (theory) of protection, based on one developed 
by Lampson. *16 Perhaps the most important aspect of 

* Approximately half our development here is an exposition and 
reformulation of the elements of Lampson's modeL The remainder 
extends Lampson's in several important ways. We have investi­
gated the problems of establishing the correctness of a protection 
system, of creating and deleting objects, of implementing 
cooperation among mutually suspicious subsystems, and of 
identifying the existence or absence of the elements of the model 
in contemporary systems. 
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the model is the notion that each process has a unique 
identification number which is attached by the system 
to each access attempted by the process. As will be 
seen, this will make it impossible for a process to· disguise 
its identity and will allow us to establish the correctness 
of the model with respect to implementing protection 
at level 5. 

The implications of the protection model with respect 
to operating system structure and hardware architec­
ture will be considered. Although the model is ab­
stracted from examples of existing systems, we shall see 
that few current commercial systems meet the require­
ments of a complete (secure) protection system. We 
shall identify a few existing systems which do meet 
the completeness requirement of our model. 

A THEORY OF PROTECTION 

In current systems, protection takes many forms. 
The IBM Systemj360 uses a "key-lock" approach to 
memory protection.12 A "ring" protection mechanism 
is used in Multics.9,18 The Hitac 5020 Time-Sharing 

, System uses a key-Iock-ring mechanism.17 There are 
many other examples. As Lampson has pointed out, 
the myriad of implementations forces us, as observers, 
to take an abstract approach to the subject of protec­
tion ;16 otherwise, we might never make sense out of the 
seemingly endless variety of solutions to protection 
problems. 

Elements of the model 

A protection system comprises three parts, which 
will be reflected as components of our model. The first 
component is a set of objects, an object being an entity 
to which access must be controlled. Examples of objects 
are pages of main memory, files, programs, auxiliary 
memory devices, and instructions. Associated with each 
object X is a unique identification number which is as­
singed to the object when it is created in the operating 
system. Identification numbers might, for example, be 
derived from a clock which measures time in micro­
seconds since the system was first built; the time-of-day 
clock on the IBM Systemj370, being a 52-bit counter, 
could allow a new object name every microsecond for 
approximately 143 years.13 We shall use the symbol X 
interchangeably for an object's name and number. 

The second component of the protection model is a 
set of subjects, a subject being an active entity whose 
access to objects must be controlled. A subject may be 
regarded as a pair (process, domain) , in which a process 

is a program in execution and a domain is the protection 
environment (context) in which the process is operat­
ing. Examples of domains include supervisorjproblem­
program states in IBM Systemj360,12 the 15 user en­
vironments in IBM's OSj360-MVT,1l or the file direc­
tories and rings in Multics.1 Other terms which have 
been used to denote the idea of domain are "sphere of 
protection" 4 and "ring." 9,18 Since subjects must be 
protected, they too are objects, and each has a unique 
identification number. 

The third component of a protection system is the 
rules which govern the accessing of objects by subjects. 
We shall describe a particular choice of rules shortly. 
These rules are the heart of the protection system. The 
rules must be simple, allowing users to gain an immedi­
ate understanding of their scope and use. They must 
be complete, not allowing a subject to gain unauthor­
ized access to an object. They must be flexible, provid­
ing mechanisms which easily allow the desired degree of 
authorized sharing of objects among subjects. 

An important property of our model is: each and 
every attempted access by a subject to an object is 
validated. This is necessary in order to permit coopera­
tion among mutually suspicious subj ects, for it cannot 
otherwise be guaranteed that a previously well-behaved 
subject which suddenly turned malicious or went awry 
will be denied access when authorization is lacking. 

The choice of the subjects, objects, and rules of a 
protection system is at the discretion of the system de­
signer and will be made to meet the protection and 
sharing requirements of the given system. We return 
later to the problems of choosing subjects and objects. 

It is convenient to regard all the information specify­
ing the types of access subjects have to objects as con­
stituting a "protection state" of the system. There are 
three distinct problems to be solved: representing the 
protection state, causing subjects to access objects 
only as permitted by the protection state, and allowing 
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subjects to alter the protection state in certain ways. 
With respect to the first, we may represent the protec­
tion state of the system as an access matrix A, with 
subjects identifying the rows and objects the columns 
(see Figure 1). The entry A[8,X] contains strings, 
called access attributes, specifying the access privileges 
held by subject 8 to object X. If string a appears in 
A[8, X], we say "8 has a access to X." For example, 
in Figure 1, subject 8 1 may read file F1, since 'read' 
appears in A[81, F1]; or, 8 2 may stop 8 3• Figure 2 
shows that an alternative representation of the protec­
tion state is a directed graph, which is in one-to-one 
correspondence with the access matrix. 

Associated with each type of object is a monitor, 
through which all access to objects of that type must 
pass to be validated. Examples of monitors are the file 
system for files, the hardware for instruction execution 
and memory addressing, and the protection system for 
subj ects. An access proceeds as follows: 

1. 8 initiates access to X in manner a. 
2. The computer system supplies the triple 

(8, a, X) to the monitor of X. 
3. The monitor of X interrogates the access matrix 

to determine if a is in A[8, X]; if it is, access is 
permitted, otherwise, it is denied and a protec­
tion violation occurs. 

Note that access attributes are interpreted by object 
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OBJECTS 

monitors at the times accesses are attempted. Figure 3 
shows the organization of the protection system. The 
mechanisms between the dashed lines of that diagram 
are invisible to subjects-subjects direct their refer­
ences to objects, these references being intercepted and 
validated by the monitors of the protection system. 

It is important to note that the identification number 
of a subject is system-provided in rule 2 above, and 
cannot be forged by 8. That is, even if every subject 
knows the identification number of every other subject, 
there is no way for 8 to alter the fact that its identifica­
tion number is presented to the monitor in rule 2; 
hence the monitor cannot be "tricked" into interrogat­
ing the wrong entry of A. Since no subj ect may access 
A, it is on this basis that we can develop proofs con­
cerning the correctness of the protection system. The 
correctness of the protection system can be reduced to 
the correctness of the monitors. 

The foregoing rules govern the use, by monitors, of 
the access matrix, once it has been specified. We require 
rules for changing the access matrix itself. These rules 
will be enforced by the monitor of the access matrix. 
Unlike the monitors of system objects, the access 
matrix monitor may modify the access matrix. In par­
ticular, it may transfer, grant, or delete access attri­
butes on command of subjects and only on appropriate 
authorization. For this purpose, we introduce the access 
attributes 'owner' and 'control,' and the notion of a 
copy flag (denoted by asterisk), and the rules R1-R3 of 
Table I to be implemented by the access matrix 
monitor. 
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TABLE I-Protection System Commands 

Rule Command (by So) 

Rl 
(a' } 

transfert~ to S, X 

R2 ( a'} 
grant 1 a to S, X 

R3 delete a froID S, X 

R4 w:= readS, X 

R5 create object X 

R6 destroy object X 

R7 create subject S 

R8 destroy subject S 

Rule 1 permits a subject to transfer any access attri­
bute it holds for an object to any other subject, provided 
the copy flag of the attribute is set, and it may specify 
whether the copy flag of the transferred attribute is to 
be set; in Figure 4, for example, 81 may place 'read*' in 
A[S2, FIJ or 'write' in A[S3, F1J, but it may not trans­
fer its ability to block S2 to any other subject. The 
purpose of the copy flag is preventing an untrustworthy 
subject from wantonly giving away access to objects. 
Rule R2 permits a subject to grant to any subject 
access attributes for an object it owns; in Figure 4, for 
example, SI can grant any type of access for S2 to any 
subject, or any type of access to device D2 to any sub­
ject. Rule R3 permits a subject to delete any access 
attribute (or copy flag) from the column of an object 
it owns, or the row of a subject it controls; in Figure 4, 
for example, SI can delete any entry from columns 
S2 or S3, or from row S3. In order to facilitate these 
rules, we require that 'control' be in A [8, 8J for every 
subject S and we include rule R4, which permits a 
subject to read that portion of the access .matrix which 
it owns or controls. Rules R5-R8, which govern the 
creation and deletion of subjects and objects, will be 
discussed shortly. 

It should be noted that a subject may hold 'owner' 
access to any object, but 'control' access only to sub-

Authorization Operation 

'a*' in A[So, Xl 
(a' } 

storel a in A[S, Xl 

'owner' in A[So, X] storet'}in A[S, Xl 

'control' in A[So, Sl delete a from A[S, X] 
or 

'owner' in A[So, Xl 

'control' in A[So, Sl copy A[S, Xl into w 
or 

'owner' in A[So, Xl 

none add column for X to A; store 
'owner' in A[So, X] 

'owner' in A[So, Xl delete column for X from A 

none add row for S to A; 
execute create object S; 
store 'control' in A[S, S] 

'owner' in A[So, S] delete row for S from A; 
execute destroy object S 

jects. For reasons to be discussed shortly, we shall 
assume each subject is owned or controlled by at most 
one other subject, though other multiply-owned non­
subject objects are allowable. If a subject has 'owner' 
access to another subject, the former can grant itself 
'control' access to the latter, so that 'control' is implied 
by 'owner.' It is undesirable for a subject to be 'owner' 
of itself, for then (by Rule R3) it can delete other sub­
jects' access to itself. 

The rules R1-R4 and access attributes shown in 
Figures 1 and 4 should be interpreted as examples of 
rules which can be provided for the purposes intended. 
One might, for example, introduce a "transfer-only" 
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$, 
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Figure 4-Extended access matrix 



mode by postulating a "transfer-only copy flag"; if 
this flag is denoted by the symbol ., then in R1 the 
command to transfer a (or a.) from 80 to 8 for object 
X would be authorized if a. were in A [80, X] and 
would cause a • to be deleted from A[80, X] and a 
(or a.) be placed in A[8, X} This is useful if one 
wants to limit the number of outstanding access attri­
butes to a given object-e.g., if it is required that each 
subject be owned by at most one other subject, or 
that a given object be accessible to a limited number 
of subjects. One can also define "limited-use" access 
attributes, of the form (a, k); access in manner a is 
permitted only if k>O, and each use of this attribute 
decreases k by one. 

Creation and deletion of subjects and objects 

The creation of a non-subject object, e.g., a file, is 
straightforward, consisting of adding a new column to 
the access matrix. The creator subject executes a com­
mand (rule R5 of Table I) and is given 'owner' access 
to the newly created object; it then may grant access 
attributes to other subjects for the object according to 
rule R2. The destruction of an object, permitted only 
to its owner, corresponds to deleting the column from 
the access matrix (rule R6). 

Creating a subject consists of creating a row and 
column for the new subject in the access matrix, giving 
the creator 'owner' access to the new subject, and 
giving the new subject 'control' access to itself (rule 
R7). The destruction of a subject, permitted only to 
its 'owner,' corresponds to deleting both the row and 
the column from the access matrix (rule R8). 

According to our definition of subject as a pair (pro­
cess, domain), there are two ways a subject can come 
into existence: a given process switches from one domain 
to another, or a new process is created in some domain. 
(Similarly, there are two ways a subject can go out of 
existence.) With respect to the former problem, a pro­
cess must have authorization to switch domains since 
domain-switching entails a gain or loss of access attri­
butes. Specifically, if process P wishes to switch from 
domain D1 to domain D2, subjects 81 = (P, D1) and 
82 = (P, D2) would exist in the system; the switch by 
P from D1 to D2 is permitted only if authorization (e.g., 
access attribute 'switch') is in A[81, 82} In practice, 
it would be more efficient to regard a subject as being 
dormant (rather than nonexistent) when its process is 
operating in another domain-i.e., if P switches from 
D1 to D2, subject (P, D1) becomes dormant and subject 
(P, D2) becomes active, but the switch neither creates 
a new subject nor destroys an old one. (The idea is 
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Figure 5-0wnership diagram 

very much like that of transferring control between 
coroutines.) In practice, therefore, rules R7 and R8 
would be invoked only when a process is created or 
destroyed. 

We suppose that the system enforces the requirement 
that each subject be owned by at most one other sub­
ject-i.e., an owner may not grant 'owner,' and 'owner' 
is either untransferable or is transfer-only. In this case 
the relation 'owner' defines naturally a tree hierarchy 
of subjects. Figure 5 shows the subject tree for the 
access matrix of Figure 4. If 81 is 'owner' of 82, 82 is 
subordinate to 81. By rule R1, a subject can transfer 
only a subset of its access attributes to a subordinate; 
by rule R2, it can grant any access for a subordinate to 
any other subject; by rule R3, it can delete any access 
attribute from a subordinate; and by rule R4, it can 
discover what access attributes a subordinate has. We 
have carefully avoided including any provision for a 
subject to acquire for itself (copy) an access attribute 
it does not have but which a subordinate has obtained. 
This can be incorporated, if desired, as an extension to 
the model. 

It is not overly restrictive to require that subjects be 
members of a hierarchy, the utility of hierarchies hav­
ing been demonstrated adequately in practice. This 
mechanism can be used to ensure that a subordinate, 
upon creation, has no more privileges than its creator. 
It can be used to define a protocol for reporting protec­
tion violations (and indeed any other fault condition), 
for the violation can be reported to the immediate 
superior of the subject generating it. It can be used as 
an aid in resource allocation and accounting, for a sub­
ordinate can be granted only a subset of the resources 
held by its creator~ Considerations such as these moti­
vated the design of the RC4000 system.2 Our subject 
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owner indirect 

a 

Figure 6-Sharing an untrustworthy subsystem 

hierarchy is in fact the same as the sphere-of-protection 
hierarchy proposed by Dennis and Van Horn,4 or the 
domain hierarchy used by Lampson.Is If one regards a 
process operating in the context of a file directory as a 
subject, then the directory hierarchy of Multics defines 
another example of a subject hierarchy. 1 As will be 
seen, the rings of M ultics also define a subj ect 
hierarchy. 9 ,18 

A subject in a hierarchy without an owner is called a 
universal· subject. For convenience, we assume there is 
only one universal subject, and it has every possible 
access attribute to every object. When a user wishes to 
sign on the system, he communicates with the universal 
subject. Having convinced itself of the user's identity, 
the universal subject wil1 create a subordinate subject 
for the user, and will initialize the row of the access 
matrix corresponding to that subject with attributes 
derived from some data file private to the universal 
subject. 

Sharing untrustworthy subsystems 

It is clear from the above that, if subject Sl wishes to 
share an object X with subject 82, it may do so without 
risk of S2 acquiring access to any other of its objects. 

But if X is a subject, we must ensure that 82 is allowed 
access to objects X can access and that X, if an active 
entity, cannot access objects of S2 without au­
thorization. 

Suppose subject Sl owns a subsystem 8 which it 
wishes to share with subject 82• However, 82 does not 
trust 8, and 81 may wish to revoke 82's access to 8 at 
any time. We introduce the access attribute 'indirect' 
for use among subjects: if one subject has 'indirect' 
access to another, the former may access objects in the 
same manner as the latter, and it may read but not 
acquire for itself access attributes of the latter; the 
subject which owns the latter may (rule R3) revoke 
the former's 'indirect' access at any time. The sharing 
of 8 among 8 1 and 82 according to this idea is illustrated 
in Figure 6. The rules of operation of object monitors 
must be modified slightly to allow for indirect access: 

1. S2 initiates indirect access to X through S in 
manner a; 

2. The system supplies (S2, a, 8-X) to the 
monitor of X; 

3. The monitor of X interrogates the access matrix 
to determine if 'indirect' is in A[82, 8] and a is 
in A[8, X]; if so access is permitted, otherwise 
it is denied and a protection violation occurs. 

owner owner 

indirect 

indirect 

a, 

Figure 7-Cooperation between mutually suspicious subsystems 



An example of the type of sharing in Figure 6 is the 
"debugging problem," in which 8 1 wishes 82 to debug 
8. Here 82 needs complete access to all objects accessible 
to 8, but 8 must be denied access to 8 2 or its other 
objects. Another example of the same type of sharing 
is the "grading program" problem, where 81 corre­
sponds to a student who is submitting a program 8 to 
an instructor-program 82 for grading. 

A more complicated example involves mutually sus­
picious subsystems. Suppose 8 1 and 8 2 own respectively 
subsystems T1 and T2; T1 and T2 are to cooperate, but 
neither trusts the other. For example, T1 might be a 
proprietary subroutine which 81 wants executed, but 
not read, by others; and T2 might be a data manage­
ment system which accesses certain files owned by 82• 

Figure 7 shows how the cooperation can be arranged. 
Observe that T1 may access only the objects of 8 2 (such 
as X 2) which are accessible to T2, but no others, and 
that 82 may revoke Tr's access to T2 at any time. (The 
converse is true for T2 and 8 1.) Observe that T1 can 
only use, but not acquire for itself, access attributes 
of T2• 

We have now developed the necessary basis for a 
protection theory, allowing us to view the protection 
state of a system as being defined dynamically by its 
access matrix. We have shown how this model allows 
for protection at the fifth level discussed in the intro­
duction. The utility of the abstractions, both in under­
standing current protection systems and in formulating 
future "ideal" protection systems will be discussed 
shortly, after we have considered the notion of correct­
ness of a protection system. 

CORRECTNESS, SHARING, AND TRUST 

To prove that a protection model, or an implementa­
tion of it, is correct, one must show that a subject can 
never access an object except in an authorized manner. 
Two things must be proved: any action by a subject 
which does not change the protection state cannot be 
an unauthorized access; and any action by a subject 
which does change the protection state cannot lead to 
a new protection state in which some subject has un­
authorized access to some object. 

With respect to the first, given the correctness of 
each monitor, it follows that the attachment by the 
system of the identification number of a calling subject 
to each reference makes it impossible for a subject to 
gain unauthorized access to an object. The most im­
portant requirement in the argument is thus the as­
sumption that the system attaches a nonforgeable 
identification number to each attempted access. It is 
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necessary to prove that the operating system attaches 
the identification number correctly, the monitors in­
terrogate the correct entry in the access matrix, and no 
monitor (except the access matrix monitor) alters the 
contents of the access matrix. 

With respect to the second, it is clear that each appli­
cation of rules RI-R8 produces a new protection state 
in the manner specified, assuming the correctness of 
the access matrix monitor. There are, however, variou§l 
aspects of trust implicit in rules RI-R8. Specifically, if 
the owner of a given object is not careful, it is possible 
for untrustworthy subjects, acting singly or in collusion, 
to grant some subject access to that object, access not 
intended by the object's owner. Since the model cannot 
deal satisfactorily with problems relating to trust, this 
will demonstrate the need for external regulations or 
laws to complement the technical solution implemented 
by the model. We shall explore this point in the para­
graphs following. 

Consider the transferring and granting rules (Rl and 
R2). Suppose subject 8 1 has created an object X and 
granted various types of access for X to subjects 
82, ••• , 8n • Suppose further that 81 intends that, under 
no circumstances, should 8 0 gain access to X. He can 
do this by avoiding granting any access attributes to 80, 

but he must also grant attributes with the copy flags 
off to any subject among 82, ••• , 8n who he feels might 
violate trust and grant access for X to 80 indirectly. In 
other wOrds, an understanding must exist between 8 1 

and subjects receiving access to X that 8 0 is not to 
/receive, either directly or indirectly, any access to X. 

Only when these considerations are understood and the 
requisite trust is present should 8 1 be willing to pass a 
copyable attribute. With this, rules Rl and R2 are 
correct. 

On the basis of the foregoing argument, we conclude 
that the protection system is correct and will operate 
exactly as intended among trustworthy subjects. Un­
trustworthy subjects cannot be dealt with completely 
by mechanisms of the protection system. External 
regulation, together with a system for detecting and 
reporting violations, is required. 

Consider the subject creation rule (R7). The correc~.,. 
ness of the environment of the created subject is 
founded on .the assumption that the creator's environ­
ment is correct, since a subordinate subject cannot be 
initialized with any access attribute not held by its 
creator. Thus the correctness of any subject's environ­
ment derives ultimately from the universal subject's 
having created a correct environment for a user when 
he signs on the system. Here is where the problem of 
false identification enters. An arbitrari1y complicated 
question-and-answer procedure can be developed to 
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indirect owner 

Figure 8-Preventing unwanted indirect access 

establish the identity of a user to within any reasonable 
doubt, but it cannot be done absolutely. Again, a sys­
tem for detecting and reporting violations of this type 
is required, and external regulations must deal with 
offenders. 

As further illustration of the role of trust in the 
model, we consider four instances of trust's being im­
plicit in the interpretation of access attributes them­
selves. First, consider the 'read' attribute. Reading is 
an unusual1y powerful operation, as it implies, for ex­
ample, the ability to read and copy a file. It is then 
possible for one subject to distribute access attributes 
for the copy freely to other subjects, even to subjects 
who were not authorized to read the original. In this 
sense, the 'read' attribute is equivalent to the 'read*' 
attribute. 

Second, consider the 'indirect' attribute, and refer to 
Figure 8. Subject 82 has a* access to X and wishes to 
transfer a to 8. However, the owner 8 1 of 8 may grant 
itself 'indirect' access to 8 and so gain a access to X, 
even though this may not have been intended by 82• 

There are several ways to solve this: 

(1) Define an access mode, denoted by the symbol 
'+,' which cannot be used in an indirect manner; 
thus a+ is not only nontransferable, but it is 
usable only by the subject to whom it was 
granted. t This is shown in Figure 8. 

(2) Do not allow an owner to grant itself 'indirect' 
access to a subordinate subject. 

(3) Make a a "limited-use" attribute so that the 
exposure of X to the owner of 8 is of limited 

t We have defined altogether four modes for access attributes: a*, 

a', a, and a+, where a+ is the most restricted mode of a and a* 
the least. 

duration. It is not clear that (2) or (3) are 
viable solutions. 

Third, consider the 'owner' attribute. A subject 
creating an object is given 'owner' access to that object, 
indicating that it may grant access attributes for that 
object to other subjects. It is possible in our model for 
the 'owner' attribute of a nonsubject object to be 
transferred, and thus multiple ownership may arise. 
Prior arrangements must exist among the owners, else 
contradictory actions may result-e.g., one owner 
grants access the others do not want granted. Such 
difficulties can be avoided by allowing only one owner, 
e.g., 'owner' is either untransferable or transfer-only 
but it is not clear whether this is a desirable or useful 
solution. 

Fourth, consider rule R3, which permits the owner of 
an object to revoke arbitrarily any access held by any 
nonsubordinate subject to that object. This ability is 
open to question. Vanderbilt argues that no such ability 
is warranted as, in effect, the owner of an object and 
those to whom access has been granted have entered a 
contractI9-i.e., the nonowners presumably have used 
the object in their programs and depend on its presence. 
Lampson, on the other hand, argues that, for the proper 
implementation of cooperation among mutually sus­
picious subsystems, absolute power of revocation is 
warranted. I6 The latter view is reflected in our model. 

These considerations illustrate that trust is a dis­
tinctly nontechnical concept. They reemphasize an 
earlier point, viz., the complete solution to the protec­
tion problem must strike a balance between technical 
and nontechnical issues. More research is required on 
both issues, especially on methods of detecting and re­
porting violations and on coordinating external regula­
tions with internal protection mechanisms. 

Two other ways of breaching the security of protec­
tion systems exist, but do not fall in the province of the 
model. First is the "wire-tapping" issue. We consider 
this a solved problem, since coding techniques exist 
that render it essentially impossib~e for anyone tapping 
a data line to decode what he finds there. Second is the 
"system-error" issue. What if a system error changes 
the access matrix or the identification number of a sub­
ject or other object? Can a subject gain access it did not 
have before the error? The problem can be solved by 
appropriate use of coding techniques for subject and 
object identification numbers and for access attributes; 
in particular, it is possible to use error-correcting codes, 
and to arrange that the probability of an identification 
number. (or access attribute) being changed to another 
valid identification number (or access attribute) is 
arbitrarily small. 



SYSTEM IMPLICATIONS 

The protection model presented above does not re­
semble any particular system with which the reader is 
familiar, although it likely contains concepts with which 
he is. By considering implementations of the access 
matrix, one can show that many protection systems are 
practical examples of the theory. 

Storing the access matrix 

Since the access matrix is likely to be sparse, it would 
be impractical to implement it directly as a two­
dimensional matrix. A more efficient implementation 
could store the access matrix as a table of tripJes 
(S, X, A[S, X])-i.e., the nonempty entries of A. 
Since most subjects and objects would not be active at 
any given time, it would be unnecessary to store all the 
triples in fast memory at once. Moreover, it is often 
necessary in practice to be able to determine what ob­
ject a given subject can access (or what subject can 
access a given object) ; a simple table of triples has too 
little structure to permit efficient search procedures to 
be implemented. Therefore, this method is unlikely to 
be practical, especially when the number of subjects 
and objects is large. 

There are, however, at least three practical imple­
mentations. The first uses the idea of storing the access 
matrix A by rows, i.e., with each subject S is associated 
a list of pairs (X, A[S, X]), each pair being called a 
capability and the list a capability list (C-list).4 A C-list 
represents all the objects that a subject can access, to­
gether with the authorized modes of access. Following 
this approach, one may regard a C-list as defining the 
environment (domain) of a process, a subject as a pair 
(process, C-list), and the operation of switching do­
mains as switching to a new C-list.4,16 Because the pro­
tection system allows only authorized operations on 
C-lists, possession of a capability by a process is prima 
facie proof that the process has access to an object.I5 

A second approach uses the idea of storing the access 
matrix by columns, i.e., with each object X is associ­
ated a list of pairs (S, A[S, X]). In Multics, such a list 
is called an access control list when the objects are seg­
ments;1,18 in the Cambridge multiple-access system, it is 
called an authority list. 20 

A third approach represents a compromise between 
the C-list and the access-control list implementations. 
Suppase a set of subjects desires access to a certain set 
of objects. In the C-list of each subject will appear 
entries (X, K) where X is an object name and K a key. 
Associated with the set of objects is a lock list containing 
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entries cf the form (L, a) where L is a lock and a an 
access attribute. The monitor of the set of objects, 
upon detecting that S is attempting to access X in 
manner {3, will obtain an (X, K) -pair from the C-list of 
X; it then will search the lock list and permit the access 
only if it finds an (L, a)-pair for which K =L and a={3 
(i.e., the key fits a lock that, when opened, releases the 
desired access attribute). In this system, the owner of 
an object X can distribute a access to X simply by 
granting (X, K) pairs to various subjects and placing 
(K, a) in the lock list. He can revoke this instance of a 
access to X simply by deleting (K, a) from the lock 
list (i.e., changing the lock) ; in this case the outstand­
ing (X, K) pairs will be invalidated. It is possible for 
an owner to create various keys and locks for the same 
access attribute a-e.g., he can grant (X, K 1) to some 
subjects and (X, K 2) to others, placing both (Kl' a) 
and (K2' a) in the lock list. This resembles the system 
of "storage keys" used in IBM System/36012 with one 
important difference-viz., there is no concept of a 
C-list and it is possible for certain subjects to forge 
storage keys. 

Efficiency 

The viability of the model in practice will depend 
on the efficiency of its implementation. With respect to 
this, a few observations can be made. (1) Access attri­
butes would not be represented as strings. An entry 
A[S, X] of the access matrix might be represented as 
a binary word whose ith bit is 1 if and only if the ith 
access attribute is present. A correspondjng binary 
word could be used to store the copy flags. (2) Accord­
ing to the rules, there is nothing to prevent one subject 
from granting another unwanted or unusable access 
attributes. Although this does not alter the correctness 
of the model, a practical implementation may require 
some mechanismto limit this effect. (3) The identifica­
tion number of a subject can be stored in a protected 
processor register where it is quickly accessible to ob­
ject monitors. (4) The implementation of the rules for 
creating and deleting columns and rows of the access 
matrix must be tailored to the manner in which the 
matrix is stored. In the C-list implementation (storage 
by rows), for example, deleting a row corresponds to 
deleting a C-list, but deleting a column would imply a 
search of all C-lists. In this case, it would be simpler to 
invalidate the name of the object whose column is de­
leted and use a garbage collection scheme to remove 
invalid capabilities from C-lists. (5) The C-list imple­
mentation is inherently more efficient than the access 
control list implementation because a C-list must be 
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stored in fast-access memory whenever a subject is 
active whereas an object may not be active often 
enough to warrant keeping its access control list in fast­
access memory at all times. 

It is worth a special note that the mapping tables of a 
virtual memory system are a highly efficient form of 
the C-list implementation for memory protection. A 
separate table is associated with each process, and each 
entry of such a table is of the form (X, Y, a) where 
X is the name of a segment or page, Y is its location 
in main memory, and a specifies the types of access per­
mitted to X (typically, a is some combination of 'read,' 
'write' and 'execute'). In fact, the C-list proposal by 
Dennis and Van Horn4 was motivated by generalizing 
the idea of mapping tables to include entries for objects 
other than segments. The point is: the same techniques 
used to make virtual memory efficient can be general­
ized to make the C-list implementation efficient. The 
requisite hardware has been described by Fabry6 and 
Wilkes. 20 It is interesting to note that Multics, even 
though it centers on the access control list implementa­
tion, uses a form of the C-list implementation (the 
"descriptor segment") as well, the appropriate entries 
of the access control list being copied into the descriptor 
segment as needed. I 

Choosing subjects and objicts 

The model assumes that an access attribute applies 
uniformly to an object and all its components, but 
allows components of objects to be objects themselves. 
It is possible, for example, to regard a file as an object 
and some of its records as objects too. Thus the designer 
has great flexibility in the choice of objects. 

By taking a subject to be a (process, domain) pair, 
the model forces all components of a process to have 
identical access privileges to objects. Thus, whenever 
it is necessary to grant components of a process differ­
ing access privileges, it is necessary to define different 
subjects for each component. To illustrate this paint, 
suppose a process P operating in domain D consists of 
subprocesses PI, ... , P n which must be accorded 
differing access powers. Since the domain defines the 
access powers of a process, the subjects (PI, D), ... , 
(Pn , D) would have identical access privileges. Instead, 
the system would have to allow the definition of subjects 
(P, D1), ••• , (P, Dn) where domain Di is effective 
while subprocess Pi is executing; only then can the sub­
process Pi of P be accorded differing access privileges. 

As further illustration of the latter problem, con­
sider a system implementing segmentation, in which a 
process P is uniquely and permanently associated with 

a name space described by a segment table T; i.e., each 
subject is a pair (P, T). Suppose T = [( S1, al), ... , 
(Sn, an) ] where Si is the ith segment and ai defines the 
access P has to Si. If now we want to debug a new scg­
ment Sn+l, there is no way to change P's access power 
when it enters segment Sn+l. In terms of Figure 6, it is 
not possible in this system to put the segment being 
debugged at a subordinate level. One solution would be 
to place Sn+1 in its own name space with segmcnt table 
T' and process P', so that the subject (P', T') being 
debugged is subordinated to the debugger (P, T). This 
cannot be done very efficiently, as software-imple­
mented message-transmitting facilities would have to 
be used for communicating between the processes P and 
P'. The problem could have been avoided in the first 
place if it were possible to define a series of domains 
Ti = [(Si, ai) ] and subjects Si == (P, T i ) so that Sn+1 

can be made subordinate to SI, ... , Sn. This is the 
approach suggested by Evans and Leclerc.5 

Existing systems 

We examine now several important systems in the 
light of the model. For each system we will identify 
the elements of the model, points of inefficiency, and 
points of insecurity (if they exist). 

One of the most common systems, in use is IBM's 
OS/360.u In this system, objects typically are files, 
tasks, and instructions. The domains correspond to 
pairs (mode, block) where "mode" refers to the super­
visor/problem-program machine states and "block" 
refers to a block of the multiprogramming partition of 
main memory. A subject is then a triple (task, mode, 
block). One of the principal elements of the model is 
not present, viz., the idea of attaching a subject identi­
fier to each attempted access; the storage-key mecha­
nism in effect does this for access to objects in memory, 
but there is no such notion associated with attempts to 
switch domains or to reference files. It is possible for a 
task to guess a supervisor call number and issue a super­
visor call (SVC) with that number, thereby gaining 
unauthorized access to the supervisor domain. It is also 
possible for a user to guess a file name and access it 
through the job control language. 

OS/360 is representative of many current commercial 
systems in the lack of an adequate protection system 
and underlying protection theory. The limitations above 
indicate the OS/360 does not even provide protection 
at the lowest level mentioned in the Introduction, i.e., 
it cannot guarantee absolutely that each user is pro­
tected from the ravages of other users. The two systems 
described below (RC4000 and Multics) do embrace 



the concepts of the model, concepts which must be em­
braced widely in the commercial systems before they 
will be capable of providing protection at the level 
required for sharing mutually suspicious subsystems. 
There are, of course, other systems which embrace the 
concepts of the model, but which cannot be discussed 
here for lack of space; these include the CAL system at 
Berkeley,14 the capability hardware proposed by Fabry 
at Chicag06 and Wilkes,20 Project SUE at the Uni­
versity of Toronto,S and the IDA system.7 

The RC4000 system is one example of a commercial 
system having a protection system incorporating all the 
elements of the modeJ.2 The objects of this system in­
clude the usual repertoire of files, devices, instructions, 
and processes. In this system, each process defines a do­
main (i.e., subjects are identical to processes), and a 
"father-son" relation defines a hierarchy of processes. 
Each object is associated with exactly one domain; 
therefore each process has exclusive control over certain 
objects, and it must request other processes to access 
other objects on its behalf. (In this sense, each process 
is the monitor of its objects.) For this purpose, the 
system implements a message-transmission facility and 
associates with each process a message buffer in which 
are collected all messages from other processes. A pro­
cess P wishing to send message a to process P' uses a 
system call 

send Illessage (a, P'), 

the effect of which is to place the pair (P, a) in the 
message buffer of P'. Note that this is precisely the 
notion of attaching the identification number of a sub­
ject to an attempted access, if we take the view that 
each process is an object monitor and a message is an 
attempted access to some object controlled by the 
monitor. This system provides a great deal of flexi­
bility: each process plays the role of a monitor; the 
number of monitors is variable; the definition of an 
object can be dynamic since the programming of a pro­
cess can be used to implement "virtual objects" which 
are accessible to other processes via the mess age­
transmission facility; and each process can determine 
the authenticity of each message it finds in its message 
buffer. The limitations of this system include: the 
message facility, being implemented in software, is of 
limited efficiency; there is no way to stop a runaway 
process, as the system cannot force a process to look in 
its message buffer; and a possibly elaborate system of 
conventions may need to be adopted in order that re­
ceivers can learn the identification numbers of senders. 
Further discussions of these points are found in Refer­
ences 3 and 15. 

The M ultics system at MIT is an example of a non-
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commercial system which implements the elements of 
the protection model. Typical objects are segments and 
processes. The virtual memory is the monitor of the 
segments and the traffic-controller the monitor of the 
processes. The domains of this system are defined by 
pairs (ring, base) where "ring" refers to integers 
0, 1, 2, ... and "base" is a pointer to the descriptor 
segment (segment table) of the name space. Each pro­
cess is associated with exactly one name space so the 
base can be used as its identification number. Each 
segment s has associated with it a ring number ns; if 
process P is executing instructions from segment s in 
name space with base b, the subject is the triple (P, 
ns, b). Observe that a control transfer from segment s 
to segment tfor which ns~nt defines a change of sub­
ject. The access privileges of a subject are considered 
to diminish as its ring number increases; in other words, 
for given P and b, the ring numbers 0, 1, 2, . / •. define a 
linear hierarchy of subjects (P, 0, b), (P, 1, b), (P, 
2, b), .... Associated with segment s are three pairs of 
integers 

(rl' r2)-the read bracket, rl::;r2 

(WI, w2)-the write bracket, WI::; W2 

(el' e2)-the execute bracket, el::;e2 

(These numbers can be stored in the segment table 
along with flags indicating whether each type of access 
is permitted at all. In Multics, only three of the seven 
integers associated with a segment are distinct, so only 
three integers need be stored to represent the three 
access brackets and ring number.) In terms of a subject 
hierarchy, the notion of an access bracket for access 
attribute a of an object means simply, for a certain 
range of levels above and below the owner of the given 
object, a superior or subordinate subject within the 
range is automatically granted a access to the object. 
It is an extension of the concept of access attribute. 
The access matrix is stored statically in the form of 
access control lists associated with objects (segments). 
This information is copied dynamically into the de­
scriptor segment as segments are referenced for the 
first time, so that the descriptor segment is a form of a 
capability list. A subject (P, n s , b) may access in any 
manner any segment t listed in the descriptor segment 
when nt > ns; furthermore, if nt::; ns it may read, write, 
or execute (transfer control to) t if ns falls in the proper 
attribute access bracket of segment t. If it wishes to 
transfer control to a segment t whose execute bracket 
is (el' e2) but ez < ns, it may do so by transferring to a 
"gate" (protected entry point) of segment t; the at­
tempt to do so generates an interrupt which invokes a 
"gatekeeper" that permits transfers only to gates. A 
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full description of the mechanism as outlined above can 
be found in References 9 andJ8. 

CONCLUSIONS 

We have carefully tried to limit the complexity of the 
model, omitting from its basic structure any feature 
which is either controversial or not completely under­
stood. It is possible to extend the model in any or all 
of the following ways. (1) A subject which creates an 
object can specify that the object is permanent, so 
that the universal subject can make that object avail­
able for future reincarnations of that subject. Alterna­
tively, a subject can specify that, if it dies, ownership 
of objects it owns can revert to a superior subject. (2) 
In a subject hierarchy, superior subjects can be re­
garded as dormant when their processes are not execut­
ing, so that subordinates can send messages which, for 
example, request additional access attributes. (3) Since 
a subordinate subject may acquire access attributes not 
held by its superiors, rules may be required specifying 
when superiors can acquire such attributes for them­
selves; Lampson allows for this.15 (4) Given the possi­
bility of multiply-owned objects, rules may be required 
to permit owners to guard their access attributes from 
deletion by other owners. (5) If one adopts the view 
that a subject and all its subordinates constitute a 
"family," 2 one can make a case for allowing a subject 
to transfer an access attribute to a subordinate even if 
the copy flag is not set. 

The considerations of the section on System Implica­
tions indicate that most current commercial systems do 
not implement a complete protection mechanism, even 
at the lowest level described in the Introduction. The 
most serious defect is the lack of completeness when a 
process changes protection environments. Although the 
incompleteness of these systems could be rectified by 
(probably extensive) software modifications, a complete 
protection system cannot hope to be efficient unless the 
basic elements of the model are implemented in hard­
ware. The requisite hardware has been described in 
many forms-by Fabry,6 by Schroeder and Saltzer,18 
and by Wilkes2°-and is in fact quite straightforward. 

It can be noted that the "average" user, who employs 
only system compilers and library routines, is unlikely 
to break the security of the system if only. because 
compilers and library routines will not cause the loop­
holes to be exercised. This does not mean attention 
should not be paid to structuring the hardware so that 
even the most enterprising and malicious user cannot 
break security. It takes only one such user to compro­
mise another's privacy which, once lost, may be irre-

coverable. On this basis, the cost of hardware and 
software development required to achieve efficient im­
plementations of protection is of the utmost value. 

We began the paper with the statement that the 
technical approach to protection had not been treated 
adequately to date in the literature. Hopefully, the 
discussion here has shown that it is possible to state 
the problem on an abstract level where the elements of 
protection can be isolated, where methods of proving 
the correctness of a protection system can be formu­
lated, where drastically different physical implementa­
tions of the one model can be compared and evaluated, 
and where the nontechnical issues required to comple­
ment the technical ones can be identified. The discus­
sion here has been intended as an example of what is 
possible in a model; we are under no delusions that 
this is the only model or that this is the best model. 
Our preliminary work has indicated that the abstrac­
tions formed in the modeling process are useful in 
themselves and that the model provides a framework 
in which to formulate precisely previously vague ques­
tions. We hope that this discussion will motivate others 
to undertake additional research in this area. Much 
needs to be done. 
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PRIME-A modular architecture 
for terminal-oriented systems* 

'by HERBERT B. BASKIN, BARRY R. BORGERSON and ROGER ROBERTS 

University of California 
Berkeley, California 

INTRODUCTION 

The architecture of most interactive systems is based 
on the general strategy that suitable terminal service 
can be provided by a central processor that is time­
multiplexed among all the active terminals. In order 
to achieve adequate response time in an interactive 
environment, the CPU is usually time sliced. Other 
major system facilities such as I/O channels and 
secondary storage units are also shared among the 
users, and multiprogramming techniques are employed 
to keep all the major system resources as fully utilized 
as possible. An operating system is usually developed 
which performs these functions as well as supervising 
the terminal communications, implementing a system­
wide filing subsystem, handling user commands, etc. 
The result of combining these and other functions into 
a time-sharing operating system is a highly complex 
software system which transforms what is basically 
a batch processing computer structure into a multi­
terminal system with significant limitations that are 
an outgrowth of this strategy. While a failure can occur 
in any section of the hardware or software, we know 
that hardware failures axe more likely to occur in the 
electromechanical and core memory sectors than in 
solid state logic, and that software failures tend to be 
concentrated in the more complex areas of code. 
Failures of hardware components may require modi­
fication of the operating system in order to regain 
operational status since the allocation strategies may 
need more than parametric modification when system 
resources are affected. 

* This research was supported by the Advanced Research Projects 
Agency of the Department of Defense under Contract No. 
DAHC15 70 C 0274. The views and conclusions contained in 
this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either 
expressed or implied, of the Advanced Research Projects Agency 
or the U.S. Government. 
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The main attribute of a computing facility that will 
serve many users simultaneously is that it provide 
continuous service. By this we mean the ability to 
service as many users as possible even when a failure 
has occurred within the system. Failures must be 
considered normal occurrences which can co-exist with 
a full range of other normal operations such as resource 
allocation, interpreting user commands, etc. However, 
conventional time-sharing systems cannot cope with 
these failures, and hence cannot offer continuous 
availability, since large and complex portions of both 
hardware and software are concentrated in unique 
units of the system. vVhile it may appear on the surface 
that further development and refinement of the basic 
strategy will bring one closer to the goal of continuous 
availability, we feel this is a false evolutionary path. 
Instead the approach we have taken is to begin with a 
totally different architecture which achieves these 
goals at the very outset. 

All of the above considerations are no less true when 
several processing units are employed as scheduling 
processors, communications processors, file control 
processors, etc. The basic problem is that such or­
ganizations are all predicated upon the notion that the 
normal mode of operation of the overall system is 
when no failures exist. In any practical utility, such as 
a telephone system or power system, it is always as­
sumed that failures exist as a normal occurrence and 
must be treated while continuing as near normal 
operation as possible. This assumption is one of the 
basic cornerstones of the architecture described in this 
paper. 

Another motivation behind our approach is to provide 
the ability for any user to continue undisturbed with 
his use of the system even though it is undergoing 
considerable change. In a conventional architecture, 
all user programs run under system-wide software 
which, if changed, may require the user to update his 
programs. Even when a considerable effort is made to 
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Figure 1-Canonical system 

avoid such situations, they do occur, and represent a 
fundamental flaw in the design. In the PRIl\llE system, 
the only requirement is that user software be com­
patible with the processor instruction set. 

A user who wishes to have a local operating system 
supplied to him may avail himself of a currently availa­
ble version, use a colleague's system, or supply his 
own. As a result of this new degree of freedom the user 
may elect to continue using a version of an operating 
system which has been superseded, thus insuring that 
his programs, which have been running in a satis­
factory manner, will continue to do so. This is of con­
siderable importance in a commercial environment. 

SYSTEM ARCHITECTURE 

The PRIME system structure is highly modular in 
that it is composed of a small set of different functional 
units, each of which is replicated many times. The 
major functional units include primary memory 
modules, secondary storage modules, and processing 
modules, which are so interconnected that larger func­
tional units are obtained, each a replication of another. 
An understanding of this architecture can best be 
gained by examining the structure and properties of a 
conceptual system which we call the canonical system. 
As can be seen from Figure 1, the canonical system is 
composed of a number of subsystems, each independent 
of the others, which can communicate with each other 
through a communications channel. Since a subsystem 
is composed of a processor, primary memory, and 
secondary storage, it is completely self-contained and 
able to function independently. The communications 
channel is used to facilitate data transfers between 
subsystems. I t can be used only in a very specific 
manner, in that both the sender and the receiver of 
the data must agree to set up the communications 
path, and is present mainly for data base sharing 
operations among users. 

This canonical system consists of n identical sub-

systems which can process n independent jobs with an 
extremely high degree of protection from each other. 
Software faults within a subsystem, whether in the 
user software or in the local operating system (within 
each subsystem) cannot affect the other subsystems. 
In addition, hardware failures for the most part only 
affect the faulty subsystem. There are, however, some 
possibilities that certain hardware failures (in the 
communications channel) can cause erroneous inter­
connections between the subsystems. In these cases, 
which are strictly non-electromechanical, fault detec­
tion schemes can be provided which would guarantee 
the integrity of the communications channel. System 
availability with this approach is therefore very high 
since a failure (hardware or software) usually affects 
very few of the subsystems. 

The canonical system, as was shown above, could 
provide us with a highly secure and available system. 
However, in order to achieve more efficient and useful 
system operation, it is necessary to have methods for 
allocating the system resources among a large number 
of users. This must be accomplished without degrading 
the security or availability characteristics of the 
canonical system. Accordingly, three additions are 
made to the canonical system structure just described. 
The first addition is to place a memory switching unit 
in each path from a processing module to its primary 
memory modules, and to allow each memory switching 
unit to connect to a large number of primary memory 
modules. This allows processing modules, and there­
fore basic subsystems, to share primary memory mod­
ules and therefore allows for variable primary memory 
resource sharing. The second addition is to place a 
switching unit in each path from a processing module 
to its secondary storage modules. This modification, 
together with the previous one, allows for extensive 
resource sharing within the system. The third addition 
which is necessary to manage allocation of system 
components is a controlling process, called the control 
monitor. 

The resultant system now has facilities for extensive 
resource allocation, but still retains the security and 
availability properties of the basic canonical system. 
This is because, at any instant in time, PRIME is 
configured to be n subsystems, each consisting of a 
processor, primary memory, and secondary storage. 
Each of these subsystems can be considered to be 
logically and electrically distinct, and as such, compose 
a system which is essentially similar in structure to the 
canonical system. The effect of the additions was 
merely to allow the specific partitioning of the con­
figurations to vary over time. In order to achieve the 
capability to allocate and repartition the system we 
use one subsystem to implement the control monitor. 



Its processor is designated the control processor while 
the remaining processors are called problem processors. 
Since the assignment of roles of the processors is com­
pletely arbitrary, it can vary on a dynamic basis. The 
functions of the control monitor include job scheduling, 
terminal buffer management, secondary storage al­
location, primary memory allocation, low-level ac­
counting, system diagnosis and problem processor 
monitoring. The problem processors, on the other hand, 
have as their main responsibility that of executing 
user jobs. In order to accomplish user service functions, 
each problem processor contains a local monitor, whose 
functions include user program file transfers, user 
program trap routines, and general program I/O. 

Each of the subsystems is completely self-contained 
in that each processing module is composed of a number 
of functional units which allow it to fully complete a 
processing cycle. By this we mean that once a sub­
system composition is formed and a user process has 
been activated, no further interaction between that 
process and the control monitor is necessary until the 
completion of the job step. Additionally, each pro­
cessing module contains functional units, inaccessible 
to user processes, which are used for system-wide 
functions and control. The particular functional units 
implemented in each processing module are: 

(1) target machine 
(2) disk control 
(3) memory access 
(4) terminal control 
(5) communications channel 
(6) control monitor extension 

where the first three are for user process execution and 
the last three are system functions. 

The target machine functional unit executes machine 
language instructions and is the interface between user 
software and the system. A complete description of it 
would be beyond the scope of this paper.2 

The memory access and disk control functional units 
allow the processing module to access, in a secure man­
ner, primary memory modules and secondary storage 
modules. Each is composed of machinery restricting 
these accesses to allocated modules. This latter ma­
chinery is in the form of maps, which translate user 
virtual addresses into system absolute addresses. The 
contents of the maps are set by the control monitor, 
in a manner described below, at the inception of a job 
step, when the control monitor allocates primary 
memory and secondary storage modules to the process 
just starting up. 

The terminal control functional unit in each pro­
cessing module is connected to a subset of all the 
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terminals connected to the system, and transfers char­
acters between them and the control monitor. With 
this organization, we have obviated the need for a 
unique multiplexor, with its attendant reliability 
problems, and have distributed the terminal control 
throughout the system. It should be noted that there 
is no direct relationship between the terminals con­
nected to a processing module and the user processes 
executing on it. 

The information flow between the control monitor 
and processing modules, as discussed above, is ac­
complished through the agency of the communications 
channel functional unit in each processing module. 
This unit allows for data to be exchanged between the 
control processor and any of the problem processors. 

At the heart of each processing module, managing 
the activities of the previously discussed functional 
units, is the control monitor extension functional unit. 
Each ECM (extended control monitor) is actually a 
part of the control monitor, performing local actions 
on its behalf within each subsystem. These actions 
include setting and reading the map entries of the 
memory access and disk control functional units, saving 
and restoring the state of user processes, managing the 
swapping of user processes, interfacing between the 
control monitor and user processes, and implementing 
local error checking and diagnostic algorithms. It 
should again be noted that the ECM is not imple­
mented in software, executing on the target machine 
functional unit, but is a distinct functional unit com­
pletely inaccessible to and independent of user pro­
grams. 

The combination of the control monitor executing 
on the control processor, and each of the ECMs con­
tained within problem processors provides for a rational 
distribution of responsibility and a concomitant de­
crease in complexity. Global allocation of primary 
memory modules and secondary storage modules to 
processes, and processes to processors is performed by 
the control monitor, while local allocation of virtual 
addresses to absolute addresses and local process con­
trol is performed by each EClVl. Similarly, global error 
checking and diagnosis are performed by the control 
monitor, while local error and consistency checks are 
performed by each EClV1. 

The main result of this organization is that system 
functions are completely shielded from user programs 
in that the control monitor and user processes are 
never executed on the same processor. There is a physi­
cal barrier, brought about by the structure of the 
system, between those system operations which must 
remain secure from interference by potentially harmful 
user software. The allocation of the system between 
system functions and user functions is not time-multi-
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plexed, as in most conventional organizations, but 
rather distributed in space. This has many implica­
tions relating to system security. The two most im­
portant are that since the control monitor is always 
executing, it is able to continuously monitor the state 
of the system and that a failure, either in hardware or 
software, does not cause a breach in the barrier between 
the system and a user. The decrease in complexity of 
the control monitor which accrues from the fact that 
it runs on an independent processor and is involved 
with each active process only at its initiation also 
contributes to system security and availability. With 
a less complex monitor, it is considerably easier to 
prove that the system software, as it relates to security 
functions, is operating correctly. Additionally, since 
the control monitor is responsible for only a subset of 
the system functions, and hence maintains only a few 
of the system state tables, it is decidedly easier to re­
cover from a control processor failure. 

The processing modules, as described, consist of six 
independent functional units. In the first implemen­
tation of PRIME, however, these processing modules 
will be constructed from microprocessors and a 
modest amount of special hardware, with the separate 
functional units being micro-code subroutines. We feel 
that this organization is desirable since we are de­
veloping a system with which we can conduct experi­
ments with different operating procedures and system 
organizations. We consider the first implementation 
of the PRIME system to be a laboratory within which 
we can experimentally implement a variety of dif­
ferent systems that have in common a number of the 
architectural features described above. 

The decision to employ microprocessors was made 
to allow for maximum flexibility of the system for such 
experimentation. An alternate implementation choice 
would be to construct each processor module from a 
number of very small inexpensive processors. In ad­
dition to the flexibility advantage, the microprocessor 
choice currently has a cost advantage. However, this 
situation is expected to radically reverse itself in the 
next few years. The PRIME architecture will allow 
us to keep up with the trend toward low cost LSI 
processors without any architectural changes to the 
system since later expansion would be with additional 
modules that are functionally similar to the micro­
processor modules, but are internally implemented 
using several LSI processing units. 

SYSTEM COMPONENTS AND OPERATION 

The components of the PRIME system are inter­
connected in the manner illustrated in Figure 2. The 

processing modules are general-purpose micro-pro­
grammable processors which operate on 16-bit operands 
with a cycle time of approximately lOOns. The control 
storage for these processors is arranged in 32-bit words, 
which is also the instruction width. When fetching 
operands from control store, only half of the word is 
used. The processor has 2048 words (32-bit wide) of 
control store and 32 directly addressable 16-bit regis­
ters. The data processing logic consists of an arithme­
tic/logical unit which processes data received from two 
source buses (A and B buses) and stores the result into 
the destination register via a third bus (D-bus) after 
passing the data through a shifter unit. The processor 
we use which has these characteristics is the META 4 
microprocessor units supplied by Digital Scientific 
Corp. 

The processing element uses 21 double bus ac­
cumulators and eight general-purpose I/O registers. 
Five of the I/O registers are used to drive the primary 
memory system. Of these, two are for transferring 
data, one for the operand address, one for the instruc­
tion address, and one for the memory status. In each 
processor, the remaining three I/O registers drive the 
I/O bus which is used for all communications between 
that processor and external devices. This includes de­
vices attached to the I/O terminals, the real-time clock, 
the time-of-day clock, the memory map, fault detec­
tion messages, and the external access network which 
will be described below. 

The primary memory system for each processing 
module consists of the five I/O registers, a memory 
interface which controls memory traffic and contains 

\ a memory map, and a memory bus. As shown in Figure 

EACH MEMORY BUXK (MB) CONSISTS OF TWO 4K MODULES 

Figure 2-A block diagram of the PRIME system 



3 each memory block consists of a four-by-two switch­
ing matrix and two 4k X 33 bit memory modules, 
each of which is partitioned into four 1k word pages.3 

There are five memory buses in the system, each of 
which connects a processor to eight memory blocks. 
Thus each processor connects to 16 of the 26 4k memory 
modules in the system. 

Since 64k words of memory is substantially greater 
than the size of the working sets we anticipate en­
countering, the allocation of memory modules will be 
simple and \. straightforward. In addition, the possi­
bility of being unable to schedule a process due to in­
sufficient free memory /modules will be remote. The 
use of the four-port memory switching units not only 
provides a distributed memory switch which con­
tributes to the high availability of the system, but also 
allows for experimentation with different memory / 
processor connection algorithms. 

With the exception of fault reporting and map loading 
and reading, the memory interface is independent of 
the I/O bus. The conflicts between the processor and 
the disks for the use of a memory bus are resolved in 
the memory control and switching unit shown in 
Figure 4. This unit also buffers a single word requested 
by the instruction address register, thus allowing in­
struction prefetches. In addition to translating logical 
pages into real pages, the memory map contains bits 
that specify whether a page is writable, readable, or 
executable. The use of separate operand and instruc­
tion address registers allows the hardware to determine 
the difference between an operand fetch and an 
instruction fetch and thus to easily detect when any 
reference violation has occurred. Other bits in the map 
include a dirty-page bit, a use bit, and a parity bit. 

The memory is constructed from lk bit lV108 de-

PORT A PORT B PORT C PORT D 

r r I r 
4 x 2 SWrrCHING MATRIX 

4K X 33 MOS MEMORY 4K X 33 MOS MEMORY 

POWER SUPPLY 

Figure 3-Memory block 
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Figure 4-PRIME memory system 
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vices instead of the traditional core storage technology. 
Each 4k X 33 bit memory module is made up from 132 
such chips. The memory modules have 400ns access 
and 550ns cycle times. Refresh is performed auto­
matically within the module, using one cycle every 
100 microseconds. 

In the PRIME system, swapping space, secondary 
storage, and third level storage all reside on a single 
type of storage unit. This gives us another level of 
modularity and interchangeability which in turn con­
tributes to the continuous availability of the system. 
The unique feature of the PRIME architecture which 
provides that each active process has its own processor 
and secondary storage unit makes possible this use of 
a single device for all of these functions. For this pur­
pose we have chosen a commercially available high­
performance moving-head disk drive, and have modi­
fied it to transfer data at twice its normal rate. This 
drive is a modified 1\10del 213 unit supplied by Century 
Data. The basic lVrodel 213 has 11 platters, 20 heads, 
400 tracks, a capacity of approximately 60 million 
bytes, an average access time of 32 milliseconds, a 
latency of 12.5 milliseconds, and a transfer rate of 2.5 
MHz. We have modified the units to read two heads 
in parallel so that at the interface it appears to have 
10 heads and a transfer rate of 5MHz. Using two heads 
in parallel with moving head disks drives results in a 
deskewing problem which is especially acute when one 
tries to read data from a disk pack written on another 
drive. Rather than attempt to provide enough buf­
fering to handle the worst possible case of head skewing, 
we chose to deskew the data by reading words from 
each head into every other memory location. That 
is, words assembled from one head are written into 
odd memory locations, and those from the other head 
into even memory locations. Thus if one head gets 
ahead of the other, the controller will simply wait for 
the last head to finish reading before proceeding. With 
this scheme we can roll in an 18k working set in under 
200 milliseconds. 
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Each processor in the system can simultaneously 
connect to any two of the disk drives through the Ex­
ternal Access Network as shown in Figure 2. One of 
these disk paths will normally be used for user file 
operations, and the other will be used for overlap 
swapping. Hence, if all ten disk drive paths are trans­
ferring simultaneously, the total transfer rate between 
secondary and primary memory will be 50 MHz or 
better than 6 million bytes per second. This is indeed 
a very high rate obtained from such inexpensive de­
vices (approximately $.00003 per bit including modifi­
cations and controller). This type of high performance 
file capability is particularly important to interactive 
users as well as those who are data-base oriented. Such 
users tend to require turnaround times of Y2 to 2 
seconds within which they need only several tens of 
milliseconds of processing time. In the PRIME system, 
a process can be continuously active for up to several 
hundred milliseconds during which user paging activity 
could take place directly between a problem processor 
and its dedicated secondary storage unit. In such an 
environment, the amount of primary memory needed 
to efficiently execute a process is substantially less than 
that required in previous system structures. 

With the exception of the terminals, all I/O between 
the PRIME system and external devices takes place 
via the External Access Network (EAN). This unit 
allows any processor to connect itself to any external 
device or to any other processor. Each processing 
module has three paths to the EAN. Each path con­
tains a parallel interface which is 40 bits wide and 
transfers data asynchronously at a rate of about lOOk 
words per second. On the processor end the data are 
routed directly to and from the processor by the I/O 
controller. In addition to the 40-bit path that com­
municates directly with the processor, each path 
through the EAN contains two lines that assemble 
data from the disk and transfer them directly to 
memory. These two bits are used only by the disk data 
paths. All other I/O, including that of the remote end 
of the disk controllers, takes place through the standard 
40-bit path. Actually, the internal switching unit 
tha t is part of the EAN is only four bits wide in each 
direction. The 40 bits are always disassembled, trans­
mitted through the switch, and then reassembled at 
the other end. However, these are internal details 
within the EAN and are not apparent at any of its 
ports. The cost of the switch within the EAN is a 
function of the product of the number of processors 
and external· devices and also is proportional to the 
width of its internal data path. These considerations 
together with our bandwidth requirements have led 
us to the selection of a four-bit internal switching path. 

A more complete discussion of the design considerations 
of the EAN is presented in another paper in these pro­
ceedings.4 

Each processing module is connected to an equal 
number of terminals, thereby achieving a distributed 
input/ output capability. Each terminal is connected 
to two processors so it can continue to run in the 
presence of a failure of a processing module. This 
provides back-up at minimum cost since the connec­
tions to the processors consist simply of level shifting 
circuits. All assembly and disassembly of characters 
is done by the microprocessor on a bit by bit basis. 
As soon as a character is assembled by a processor, it 
is sent to the control· processor where line editing and 
buffering takes place. 

Interprocessor communication takes place via the 
External Access Network. Direct communication be­
tween problem processors is not allowed. Rather, all 
interprocessor communication is ini tiated by the control 
processor connecting itself to a problem processor 
through the EAN. 

The External Access Network treats all of the 
processor ports in a symmetrical manner. However, 
at any point in time one processor port is designated 
as the controlling port and as such has the capability 
to establish a link between any other processor port 
(addressing port) and an addressable port to which 
external devices may be connected. Thus we not only 
achieve the above mentioned ability for a control 
processor to communicate with other processors and 
for any processor to connect to any external device, 
but by redesignating the controlling port, we can make 
any of the processors in the system the control pro­
cessor. We have developed techniques for the redesigna­
tion of the control processor that would allow for con­
tinuous operation of the PRIME system in the presence 
of a hardware failure anywhere in the system. These 
techniques will be described in a later paper. 

SUMMARY 

We have described a system which is currently being 
constructed by the Computer Systems Research 
Project at the University of California at Berkeley 
with the support of the Advanced Research Projects 
Agency. Our principal goals are to open up new archi­
tectural avenues that will lead to simpler, more re­
liable, and secure terminal oriented systems. The 
architecture we have described here provides the user 
with a target machine having an exceptionally high 
bandwidth to secondary storage and a powerful medium 
scale computer on a dedicated basis during the period 



that he needs processing. The technique of having a 
bank of components to draw from to construct such a 
user subsystem allows for nearly continuous operation 
without having to use redundant components. 
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Computer graphics terminals-A backward look 

by CARL MACHOVER 

Information Displays, Inc. 
Mt. Kisc~, New York 

INTRODUCTION 

Five years ago, the price of admission into Interactive 
Computer Graphics was spending about $50,000 or 
more for the Graphics Terminal and associated hard­
ware, plus writing almost all of the applications soft­
ware, as well as much of the basic software. And, only 
about a dozen suppliers offered commercial equipment. 

Today, the price of admission has dropped dramati­
cally. Graphics Terminals can be purchased for less than 
$10,000. Some turnkey applications software packages 
are available. And the buyer can choose from among 
more than 35 hardware and system suppliers, offering 
over 60 different models. 

Some aspects of graphics terminal performance have 
not changed materially over the past five years. For ex­
ample, maximum screen data content (number of flicker­
free points, characters and lines) has remained almost 
constant for refresh displays. However, there have been 
significant advances in other areas, such as intelligent 
(minicomputer-based) terminals, low cost terminals, 
color displays, specialized hardware function devices, 
graphic tablets, and the use of storage tubes and digital 
TV to increase screen content. 

SUPPLIERS 

In my FJCC Paper about five years ago,! I listed six­
teen manufacturers of commercially available CRT 
graphic terminals. A comparison between that list and 
an updated version compiled from Computer Display 
Review,2 and Modern Data Systems,S is given in Table 
1. 

The number of suppliers has more than doubled in the 
past five years. During the past five years, several 
companies, such as Adage, IBM, and IDI, have of­
fered upgraded versions of earlier systems. Probably the 
most widely used graphic terminals over the past five 
years were the IBM 2250 Series units. Originally intro-
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duced in Spring 1964 with the IBM 360 Series comupter, 
three additional versions were subsequently offered. 

Two companies (Stromberg Carlson and Philco-Ford) 
have essentially withdrawn from the commercial field. 
Several companies do not appear in either list, because 
either they introduced and then withdrew products in 
the intervening years, or they introduced products and 
were then merged into another company. For example, 
Corning Data Systems and Graphics Display Ltd 
(England) both introduced low cost graphic terminals 
several years ago and then either formally, or informally, 
withdrew them from the market a year or so later. Com­
puter Displays, Inc. introduced the first low cost graphic 
terminal (using a storage tube) about four years ago, 
and then merged into Adage about a year ago, losing its 
corporate identity. 

I will not be surprised if there are other changes by 
the time this is published in May 1972 ... new products 
and suppliers, mergers, or product withdrawals. For ex­
ample, plasma panels and liquid crystal panels with as­
sociated displays are just now becoming commercially 
available from Owens-Illinois and Optel, respectively. 

I estimate that the companies listed have each spent 
in the range of $250,000 to $3,000,000 to bring these 
commercial products into the market place. Perhaps, 
then, some $50,000,000 has been invested in these 
terminals, whose current installed value is about equal 
to that investment. Certainly, graphic terminal business 
is not a "get-rich-quick" scheme! 

TERMINAL CONFIGURATIONS 

Intelligent terminal 

Five years ago, most terminals consisted of a display 
generator (with digital logic and some analog function 
generators) and a refreshed CRT. Only one system 
used a storage tube (the BBN Teleputer System), and 
only two systems included their own computers (DEC 



440 Spring Joint Computer Conference, 1972 

TABLE I -Graphics Terminal Manufacturers 
Available Configurations Now & Then 

In telligen t Storage 
Company Supplier Terminal Tube 

Adage -/2 -/2 -/2 
AEG-Telefunken (Germany) -/2 
Bunker-Ramo -/2 -/2 
Computek -/2 -/2 
Conograph -/2 -/2 -/2 
Control Data Corporation (CDC) 7/2 -/2 
Data Disc -/2 
Digital Equipment Corporation 7/2 7/2 -/2 

(DEC) 
Evans & Sutherland -/2 
Ferranti Ltd 7/2 -/2 
Fujitt:lu -/2 
Hazeltine -/2 
Honeywell -/2 
Imlac -/2 -/2 
Information Displays, Inc. (IDI) 7/2 -/2 
Information International (III) 7/2 
International Business Machines 7/2 -/2 

(IBM) 
International Computer (ICL) -/2 
International Tel & Tel (ITT) 7/2 
Lundy -/2 
Marconi (England) -/2 
Monitor Systems -/2 
Philco-Ford 7/-
Princeton Electronics -/2 
Sanders Associates 7/2 -/2 
SINTRA (France) -/2 
Standard Radio (Sweden) -/2 
Stromberg Carlson 7/-
Systems Engineering (SEL) 7/2 -/2 
Systems Concepts -/2 -/2 
Tasker 7/2 
Tektronix -/2 
Toshiba -/2 
Vector General -/2 
UNIVAC 7/2 
Xerox Data Systems (XDS) 7/2 

KEY 
- No product. 
7/2+-Supplier in 1971/72. 
L-Supplier in 1966/67. 

and Bunker-Ramo). The other units used either non­
programmable mass memories (such as core or drum) to 
refresh the display, or were refreshed from the core of 
the host computer. 

In the past five years, the spectrum of configurations 
has significantly increased. Because of the sharp break 
in commercially available minicomputer prices, many 
more intelligent terminals4 are now offered. A comment 
from the 1966 Computer Display Review5 emphasizes 
the minicomputer price decline. 

-/2 

Unlimited Unlimited 
Low Cost Digital Scan-Conv. Graphics Graphics 
Graphic TV TV Buffered Unbuffered 

-/2 
-/2 

-/2 -/2 
-/2 

7/2 
-/2 -/2 
-/2 7/2 

-/2 
7/2 

-/2 
-/2 

-/2 
-/2 
-/2 7/- 7/2 

7/2 
7/2 

-/2 
7/2 

-/2 
-/2 

-/2 -/2 -/2 
7/-

-/2 -/2 
7/2 

-/2 
-/2 

7/-
7/2 

-/2 
7/2 7/2 

-/2 
-/2 

-/2 -/2 
7/2 7/2 
7/2 7/2 

"In fact, the DEC 338 has a general-purpose PDP-
8 satellite computer which operates independently 
of the display controller. While the DEC display 
may seem expensive, the PDP-8 alone is worth 
$18,000." 

Versions of the PDP-8 are now available for less than 
one-third of the 1966 price. Software supported intelli­
gent terminals (which include their own commercial 
mini or midi OP computers) are now offered by Adage, 



Bunker-Ramo, CDC, DEC, IDI, IBM, Sanders and 
SEL. Conograph, Imlac and System Concepts furnish 
software supported intelligent terminals which use 
their own designed minicomputers. 

Almost all other commercial graphic terminal sup­
pliers are prepared to, or have interfaced their units to a 
variety of mini or other large scale host computers. 

The 1966 Computer Display Review5 could comment 
quite legitimately that: 

"There are presently no generally accepted stand­
ards or methods for evaluating line-drawing equip­
ment." 

In an effort to remedy the situation, the Computer 
Display Review developed a series of quantitative mea­
sures for refreshed displays, based on the manufacturers 
data. Figure 1 shows the range of price and performance 
for the displays included in the 1966 Review, compared 
to the 1971 Review. Note that although the data content 
characteristics have not changed significantly (the range 
of flicker-free points, lines, characters and frames), the 
minimum cost per function has in general been greatly 
reduced. 

Low cost graphics terminals 

Storage tubes have introduced one of the major 
changes in terminal configurations. Until about four 
years ago, essentially all graphic terminals used re­
freshed CRT's, with tube sizes ranging from 16" round 
to 23" round ... resulting in usable display areas of 
about 10" X 10" up to about 14" X 14". After Tek­
tronix introduced the Model 611 X-Y Storage Tube 
Unit with a 6" X 8" usable area, several companies 
including Computer Displays (now Adage), Computek, 
Tektronix, DEC, and Conograph, began to market 
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interactive terminals based on the Model 611. These 
storage tube terminals marked the beginning of low cost 
CRT graphics ... originally introduced in the $12,000 
to $15,000 range, the units are now selling for about 
$8000. In late October 1971, Tektronix introduced a 
limited graphic storage terminal selling for less than 
$4000. 

Within the past two years, several other low cost 
terminals (under $10,000), using either refreshed dis­
plays or some form of TV (either scan conversion or 
digital TV), have been introduced. Included are refresh 
displays from Imlac and IDI, scan converter displays 
from Princeton Electronics, and digital TV displays 
from Data Disc. 

Generally, these low cost units are available with 
varying levels of software support. 

Typically, the low cost graphics terminals involve 
some compromise in terminal performance ... such as 
small picture area, low contrast, restricted dynamic 
motion, poorer picture quality (lower resolution and 
some line drawing limitations), and no gray levels. 
However, for many applications, these are acceptable 
compromises. 

Long persistence phosphors 

In order to increase the flicker-free data content of 
refreshed displays, many terminals now use long­
persistence phosphor CRT's. Until about three years 
ago, the only satisfactory long persistence phosphor was 
the P7 ... a combination P19 phosphor for persistence 
and P4 for fast response (in order to use a light pen). 
This phosphor couples reasonable burn resistance with 
satisfactory performance in the 30 frame per second re­
fresh range. 



442 Spring Joint Computer Conference, 1972 

ITEM 

1. Number of lines which can be rotated 
flicker-free. 

2. Time to calculate constant data. Assumes 
approximately 600 machine cycles per 
calculation. 

3. Time to calculate rotated point (line). 
(For Software, assumes approximately 
170 machine cycles per calculation.) 

4. Resident program size. 

5. Display list buffer size (including 3D and 
2D display files), where W is number of 
words required to store 3D display file. 

6. Number of lines that can be smoothly 
dynamically rotated (without apparent 
jump from frame to frame). 

a. Maximum rate (180° /sec) beyond 
which eye gives "strobe" effect at 30 
cps refresh, P31 phosphor. 

b. At 1 ° /second 
c. At 2° /second 
d. At 4° /second 

7. Perspective 

8. Hidden Line 

9. Delta cost (approximate) 

TABLE II-3-D Picture Manipulation 
Software vs. Hardware Comparison 

(Adapted from Reference 30) 

SOFTWARE HARDWARE 

ANALOG DIGITAL 

Independent of rotation method. Depends only May bef unction of picture com-
upon display techniques. position if average line drawing 

time less than matrix multiply 
time. Line content then deter-
mined by matrix mUltiply time. 

Independent of rotation method. Approximately 0.5 millisecond per new angular position. 

130 USEC 1-6 USEC, due to trans- 5-10 USEC 
formation array set-
tling time. 

Approx. 650 decimal Approximately 300 decimal words. 
words 

2.3W W W 

250 lines Limited by vector drawing time: number of vectors drawn 
@ 30 f/s. 

2000 lines 
1000 lines 
500 lines 

Yes, incl. in routines No, can be simulated by Yes 
Z dependent intensity 
modulation for depth 
cueing 

Yes, special cases pro- No, requires software. No, requires software. 
cessed in real-time. 

----

$5000 $15,000 $70,000 
Assumes additional 4K $40,000 

memory increment 
required. (3D program 
650 words; 2D display 
File #1 1675 words; 
2D display File #2 
1675 words.) How-
ever this increment 
can be used in other 
programs as well. 

/ 
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TABLE III-Cost per Console Hour 
(From Reference 7) 

TYPE CAPABILITY 

I Non-graphic teletype alphanumerics 
only 

II Non-graphic refresher CRT alphanumerics 
only 

III Graphic Storage Tube alphanumerics 
and vector 
generation 

IV Graphic Storage Tube alphanumerics 
& vector I/O 

V Graphic Refresher CRT alphanumerics 
& v:ector I/O 

Recently, doped P39 phosphors, and the Ferranti L4 
phosphor, have offered the same burn resistance with 
acceptable performance in the 16-25 frame per second 
refresh range. 

Hardware function generators 

Hardware vs. software trade-offs were continuously 
modified over the past five years. Most early systems 
included hardware line and character generation, some 
included circle generators, but picture manipulation and 
curve generation were done in software. 

While this is still the predominant situation, some 
terminals including those manufactured by Adage, 
Conograph, Evans & Sutherland, Lundy, Sanders, and 
Vector General, offer 2-D and 3-D rotation hardware. 
Others, including those offered by Conograph, Lundy, 
and Sanders, offer some form of arbitrary curve genera­
tion hardware. Like most trade-offs, choosing hardware 
vs. software for these functions involve a clear under­
standing of the application in order to decide if the ad­
ditional cost is warranted. Factors involved in such a 
trade-off study are illustrated in Table II. 

Operator input devices 

Over the past five years, the light pen and keyboard 
have persisted as the predominant operator input de­
vices for graphic terminals. Joysticks and trackballs are 
used occasionally, and there has been continuing, al­
though not large, interest in the SRI MOUSE.6 

Rapidly assuming a major role as an operator input 
device is the Graphic Tablet. Until the advent of the 
storage tube display, the Graphic Tablet was viewed 
simply as direct competition to the light pen. Early ver-

COST PER 
INPUT OUTPUT EXAMPLE HOUR 

keyboard keyboard ASR33 $10 

keyboard display IBM 2260 $15 

keyboard display ARDS and $20 
Computek 
without tablet 

keyboard display ARDS and $30 
& tablet Computek 

with tablet 
keyboard, light display IBM 2250 $80 to $150 

pen, & function CDC 274 
buttons 

sions, such as the Rand Tablet (supplied by BBN), 
were relatively expensive, (about $10,000 to $15,000), 
but there evolved a number of devoted users. Sylvania 
entered the market with an analog version, the price 
level came down somewhat (about $7000), but the lower 
priced light pen (about $1500) continued to dominate. 

However, the light pen could not be used with storage 
tube systems, and much attention became directed to 
the development of a lower cost graphic tablet. Cur~ 
rently, at least two, under $3000, units are available; 
one from Science Accessories (the Graf Pen, using an 
acoustic principle) and the other from Computek (using 
a resistance technique). Undoubtedly others will be 
marketed. 

Color displays 

Five years ago, color displays could be most readily 
obtained with TV techniques, using the commercial, 
color mask tube. Although there were some isolated us­
age of the color mask tube in random (non-TV) systems, 
the systems were costly, and relatively difficult to keep 
satisfactorily aligned. TV was not widely used for 
Computer Graphics. 

Several years ago, a new color tube, the Penetron, was 
introduced by several tube manufacturers, including 
Thomas, Sylvania and GE. The Penetron uses a dual 
phosphor, and color changes (over the range from red, 
through orange, to green) are obtained by switching 
the anode potential, usually over a range from 6000 to 
12,000 volts. Switching times are currently in the order 
of 150 USEC/color, and the tube seems best used in a 
non-synchronous field sequential mode. Penetron sys­
tems offer essentially the same resolution as convention 
monochromatic random positioned systems (as com-
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pared to the lower resolution of commercial TV). At 
least one manufacturer (IDI) now offers the Penetron 
as an optional output display for both its low cost ter­
minal (IDIgraf) and its higher cost intelligent terminal 
(IDIIOM), at a cost premium of about $8000 per 
display. 

Deflection systems 

Five years ago, most displays were magnetically de­
flected. In the terminals featuring fast hardware char­
acter generation (in the order of 10 USEC/character, or 
faster), the display usually included a second high speed 
deflection channel, either magnetic or electrostatic. 

Currently, however, because of better deflection yoke 
design and improved transistor drivers, newer terminals, 
such as those supplied by IDI and Sanders, feature a 
single, wide bandwidth, magnetic deflection channel, 
capable of full screen deflection in 10 USEC, and capable 
of responding to characters written in about 3 USEC. 

Improved tube and transistor design have also re­
vived interest in electrostatically deflected displays. 
Storage tube systems use electrostatic deflection, but 
because of storage requirements, the writing speeds are 
relatively low. However, a new series of electrostatic, 
solid state, X-Y displays offered by Hewlett-Packard, 
feature fast deflection (1 USEC full screen), wide video 
bandwidth (5 MHz), good spot size (20 MIL), relatively 
large screen (up to 19-" rectangular), and low price 
(about $3000). 

A terminal manufacturer can now also buy "off-the­
shelf" magnetically deflected X-Y displays from sup­
pliers such as Kratos and Optomation. Five years ago, 
Fairchild and ITT offered similar units, but they no 
longer market a commercial product. 

APPLICATIONS 

Five years ago, commercial usage of graphic terminals 
was limited almost exclusively to Computer Aided De­
sign and Simulation. lVlany other applications were be­
ing investigated, but each investigator was essentially 
a pioneer. Except for the software supplied by a com­
puter manufacturer to support his terminal (such as 
CDC and IBM), each user had to "start from scratch." 

Today, the situation is considerably improved (al­
though there is much more that can be done). Most 
intelligent terminal suppliers furnish some graphic soft­
ware, including graphic subroutines, operating systems 
and higher level languages. Some offer complete applica­
tion packages for free-standing versions of their systems 
(such as the IDI Automatic Drafting System, IDADS). 
Others (such as CDC and IDI) offer emulator packages 

that permit their terminals to appear like the IB:\f 
Series 22.50 displays, and hence are capable of utilizing 
IBl\1:, or IB::\1 user, developed software. A number of 
systems organizations, such as Applicon and Computer 
Vision, also offer turnkey graphic terminal-based sys­
tems. These systems permit the user to use computer 
graphics for making PC boards and IC masks, without 
any further software investment. In fact, it appears now 
that most IC manufacturers are using terminal-based 
computer graphics. 

Computer-Aided Design (CAD) remains a major ap­
plication area, although reported usage is still concen­
trated in the Aerospace and Automotive industries. 
However, there appears to be increasing use in Archi­
tecture, Shipbuilding, and Civil Engineering. 

Over the past five years, the use of graphic terminals 
in Utility Control has been accelerating. I estimate that 
about 10 percent of all investor owned utilities are now 
using or are planning to install graphic terminals for 
this purpose. 

Enough commercial experience has been gained over 
the past few years to allow meaningful cost justifications 
to be prepared. The results of one survey giving console 
costs per hour billed to users for various types of con­
soles7 are given in Table III. Five years ago, much 
justification for computer graphics was based on faith! 

PUBLICATIONS, COURSES AND SElVlINARS 

Certainly, one measure of growth (or at least interest) 
in a field is the amount published, or the number of re­
lated discussions. In the past five years, several engi­
neering level display and computer graphics texts, relat­
ing to computer displays, have been published8, 9,10,11 and 
numerous national and international meetings have 
been held. References 12-16 list several representative 
meetings. Several universities, including the University 
of California, the University of Michigan, Stanford, the 
University of Wisconsin, and Brooklyn Polytechnic, 
have sponsored short courses oriented to displays and 
computer graphics. ACM organized a special interest 
group for graphics (SIGGRAPH), and the Society for 
Information Display continues to flourish. Annual or 
periodic graphic terminal equipment surveys have be­
come common like those published by Keydata * Corpo­
ration,2,5 Modern Data Systems,3 Auerbach Corpora­
tion,17 Data Product News,18 Computer Design,19 and 
Computer Decisions.20 Even the American lVIanagement 
Association,21 the Harvard Business Review,22 Scientific 
American,23 Newsweek,24 and the Jewish Museum25 have 

* In late 1971, Keydata Corporation sold its publishing business 
to GML Corporation. 



taken note of computer graphics. Computer graphics 
terminals were featured on several national TV shows, 
like the David Frost Show and San Francisco Airport. 

A few of the Seminars were concerned with "breast 
beating". It became increasingly popular in 1969 and 
1970 to ask the question, "Why hasn't computer graph­
ics lived up to its initial promise ... a terminal in every 
home and office?"26,27 Early predictions of a $200,000,000 
market by 197028 were not being fulfilled. As a partici­
pant in many of these sessions, I felt that the question 
was being "begged". Some of the applications pre­
dicted for graphic terminals were being effectively 
handled by A/N CRT terminals (of which there are 
now estimated to be some 75,000 units installed). 

The growth in other applications depended on a con­
solidation and analysis of results from the previous 
year's efforts. Still others couldn't be exploited until 
appropriate software, or less expensive hardware be­
came available. And, 1970 was a miserable business 
year, anyway! 

During these sessions, my position was, and continues 
to be, that although some early predictions were overly 
optimistic, conditions now exist for attractive growth. 
A number of market surveys, and projections have 
been published in the last five years ... but the future is 
the province of another speaker in this session. Some re­
view of the past five years might provide a useful bridge, 
however. For commercial applications, the consensus is 
that there are currently about 1200 high cost graphic 
terminals and about 700 low cost graphic terminals 
installed.29 Five years ago, there were probably (my 
guesstimate) about 300 high cost graphic terminals 
installed. There were no low cost graphic terminals. 

WHAT DIDN'T QUITE MAKE IT 

As shown in Table I, almost all suppliers from five 
years ago are still offering commercial equipment. Sev­
eral products and concepts which seemed promising 
during the period didn't quite make it though. For ex­
ample, abo\lt four years ago, a British company, 
Graphic Displays Ltd, had an interesting idea for a low 
cost graphic terminal. The ETOM 2000 coupled an in­
expensive drum memory to a long persistent phosphor 
display. Operator input was achieved with an X-Y 
mechanical table arrangement. Apparently technical 
problems and limited customer acceptance scuttled the 
project. 

Corning Data Systems exploited a photochromic 
storage technique in their Corning 904 terminal. For 
about $20,000, the customer was offered a storage dis­
play with hard copy output, and extensive software 
support. But Corning couldn't find a large enough 
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market and withdrew the product. All was not lost, 
however, because they were able to sell the software 
package to Tektronix. 

Ported CRT's seemed to be a promising techn'que 
five years ago. However, the added cost and complexity 
limited the use to selected military applications, and 
there is little current commercial interest in the con­
figuration. 

1VIany practitioners expected (or at least hoped) that 
there would be a universal higher level graphics lan­
guage by now ... but that didn't quite make it, either! 

SUMMARY 

It was an exciting five years! 

New suppliers, new products, and new applications 
surfaced during this period. Because of lower cost 
terminals and turnkey software/hardware systems, the 
use of graphic terminals began to spread beyond the 
Fortune 500 ... beyond the Aerospace and Automotive 
Industries. 

Generally, terminal performance was maintained, 
while prices were lowered. This was a reasonable trend 
since most applications were not hardware limited. 

Of necessity, a survey paper like this tends to be 
superficial. For every example cited, several more may 
exist. But the purpose has been to give the sense of 
movement over the past five years, perhaps at the ex­
pense of some detail. 

Usually, this kind of paper ends with a forecast ... a 
prediction of things to come. Fortunately (since pre­
dictions have a habit of coming back to haunt), the 
seer's mantle has been placed firmly on another speak­
er's shoulders! 
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The future of computer graphics 

by THOMAS G. HAGAN and ROBERT H. STOTZ 

Adage Inc. 
Boston, Massachusetts 

Predicting the future is a hazardous enterprise­
especially in high technology where seers tend to be too 
optimistic in the short run (3-5 years) and over­
cautious in the long run (10-20 years). In computer 
graphics, the forecasts started about 10 years ago, 
and so far almost all seem to have been too optimistic. 
But the pace now quickens, and the next 10 years' 
developments may at last outstrip the visions of 10 
years ago. At least, so it seems now to us, and so we join 
the optimists, even though to date they've all been 
wrong. 

The optimists (i.e., almost everyone in the field) 
have been disappointed because they failed to recognize 
at the outset the level of completeness necessary in a 
graphics system to do a useful job. They consequently 
either tried to work with incomplete systems, producing 
negligible results, or, in achieving completeness, 
encountered higher than expected costs for both 
development and subsequent production use. The 
realists, on the other hand, knew that achievement of 
successful on-line graphics applications would at first 
be a slow and costly process, and planned accordingly. 
They concentrated on applications areas where the high 
initial costs could be justified, and where the available 
hardware and software technology was sufficient for the 
job. They have achieved some significant successes. 
Based upon those achievements, we believe that 
computer graphics is entering a new phase which will 
be characterized by rapid growth. 

We can summarize our conclusions for the future by 
saying that the technical feasibility of graphics applica­
tions has now been demonstrated in many areas, 
that economic feasibility has been established in a few 
areas, that costs will come down by a factor of 10 in 
10 years, and that graphics systems will therefore 
proliferate, first in areas where the economics are 
already favorable, then into new ones as they become so. 

Areas where growth can be expected on the basis of 
already proven economics includ.e situation display, 
data analysis, and simulation. The economic turning 
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point has just been reached for computer-aided engi­
neering design (except for exotic cases which have been 
economic for several years) and for some forms of 
drafting. In the future lie still broader drafting applica­
tions, publishing industry applications for editing and 
page layout, architectural design, routine use for film 
and video tape animation and editing, management 
information systems, hospital information systems, and 
computer-aided instruction. We shall discuss each of 
these applications areas in turn, but first let us examine 
the technological prospects for computer graphics: the 
display hardware itself and the computer systems 
technology behind it. 

DISPLAY HARDWARE TECHNOLOGY 

Only five years ago, the random-access refreshed 
CRT was the only serious graphic display technology. 
Today, we have a plethora of new techniques. Inter­
estingly, all of this new technology has been directed 
toward the image storage approach to graphic display. 
That is, the picture is stored in its two-dimensional form 
or in some one-to-one map of that form (e.g., video 
disk). Therefore, one cannot meaningfully discuss 
display technique without including the memory for 
retaining images. 

In the next 10 years, it is reasonable to expect the 
bistable direct view storage tube (DVST), the video 
scan converter tube and the video disk each to mature 
and to find particular application in areas where its 
advantages will be realized. A long life for each approach 
can be expected, although, particularly for the DVST, 
new hardware will probably succeed present equipment. 

One new direct view storage technique is the plasma 
panel, which appears to be nearing commercial applica­
tion. The plasma panel performs functionally like the 
bistable DVST; that is, it retains images for direct view 
once it has been written. But it has some interesting 
advantages. It is fundamentally flat and reasonably 
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transparent, which makes rear projection of static data 
easy. It should be more rugged than a CRT and it is 
digitally addressed, thereby eliminating all analog 
circuitry. But its most interesting feature may be its 
price. The cost of this panel has been projected by 
authoritative sources to be as low as a few hundred 
dollars for a panel with drivers. At any price below 
$1000, the plasma panel will certainly be a popular 
device. 

Several other DVST techniques have been intro­
duced, but we do not foresee major impact from any 
of them. Photo chromic storage systems are slow and too 
expensive and, in fact, the one commercial entry utilizing 
a photochromic system has been withdrawn from the 
market. The cathodochromic direct view storage tube 
is viewed by reflected light, which is an advantage in a 
high ambient light environment. However, its slow 
erase property will limit its utility. 

The random-access CRT does not have much com­
petition today where dynamic performance is required. 
There will be a shift toward raster displays, however, 
possibly for even the most dynamic pictures. The 
flexibility of TV video format for remote transmission, 
large screen display, and image mixing, particularly 
with non-computer generated pictures, argues for this, 
as does system cost. In the past, the scan conversion 
cost was prohibitive, but as digital logic cost drops 
further and its speed improves, the cost will become 
more competitive. 

The move toward video format will encourage the 
work being done on display of solid figures. However, 
applications for solid figure display (limited more by 
computer systems technology than display hardware) 
will probably continue to be limited, even in 10 years. 

Quite likely, too, by the early 1980's, several new 
display techniques will be with us that we are not even 
aware of today. It is hard to project the impact of 
currently unknown techniques, but, as has been the 
case in the past five years, they will probably be directed 
more at cost reduction than at performance improve­
ment. In fact, in the next decade, it may be that all the 
significant technological developments in display devices 
will result in cost reduction rather than in performance 
improvement. 

COMPUTER SYSTEMS TECHNOLOGY 

The factor that has limited the utility, and therefore 
the market growth, of interactive computer graphics 
systems has not been the display hardware technology 
(CRT's have worked fine for years) but the computer 
systems technology behind the display. By this we 
refer to the whole system for providing enough on-line 

processing power, sufficiently responsive, with enough 
memory to be effective, with adequate programming 
support, and with communications adequate to get the 
data to the user at the necessary speed, all at a low 
enough cost. 

Interactive graphics systems are by definition con­
versational. In order to be truly interactive, they must 
provide responses within a few seconds for many or 
most of the actions taken by the user at the console. 
Cost for graphics systems has always seemed high to 
users, and attention has often been focused on the cost 
of the display terminal itself as an obvious target for 
reduction. But compared to keyboard-only conversa­
tional systems, conversational graphics entails manip­
ulation of relatively large data files, with consequently 
much longer messages between terminal and mass 
memory. Concentration on cost of the display device 
often has led to overlooking the cost of the processor 
hardware and the mass memory necessary to support 
the terminal device with the levels of performance 
needed for a conversational graphics environment. In 
the past, some systems disappointed users because of 
the large amount of core memory needed in the system 
to support each terminal, or the high cost of the com­
munications facilities necessary to provide the link to 
the CRT, or the lack of enough fast mass memory to 
support a reasonably complete application. Prolifera­
tion of graphics systems, therefore, depends not only 
upon reducing cost of the display itself, but also upon 
reducing the cost of the processor hardware and the 
mass memory needed to support the display. Numerous 
users have concluded that each graphics console requires 
in the range of 10 million to one hundred million bits of 
mass memory with access time well below 1 second. 
Communications costs are significant whenever this 
mass memory and the processing hard ware are remote 
from the console. Even though present digital com­
munications costs are expected to be reduced dramati­
cally, we believe that many or most graphics systems 
will incorporate local processing power, and some form 
of local mass memory. The communications burden 
then reduces to one of occasionally shifting data from 
individual consoles or clusters of consoles through 
communications lines to a central repository accessible 
to many users. 

The need for sufficient processing power, core 
memory, and mass memory behind the tube is the 
reason that useful interactive graphics systems today 
cost $100,000, and up, per console. We believe that 10 
years will see a 10: 1 reduction in these costs, permitting 
complete, useful systems with the equivalent of today's 
functional performance for $10,000. Cost per console 
hour will therefore drop from today's $25.00 to $50.00 
range to about $2.50, permitting significant growth of 



current applications, and penetration of computer 
graphics techniques into many areas currently un­
touchable. Here are our thoughts on prospects for a 
number of different present and future applications. 

APPLICATIONS 

Many people assume that Interactive Graphics = 
Computer Aided Design (CAD). It is true that CAD is 
an important applications area for computer graphics 
and the one that most easily captures the imagination, 
but there are many other application areas, including 
some that have achieved a higher degree of maturity 
(i.e., proven economic effectiveness) than CAD. We 
shall discuss a series of application areas in turn, roughly 
in the order of their currently demonstrated effective­
ness. (We are specificallY not discussing them in the 
order of present or potential market sizes, which cover a 
wide range, although clearly areas where economic 
effectiveness is established soonest generally achieve 
earliest penetration of the available potential market.) 

Situation display 

About $100 million has already been committed by 
the FAA for computer graphics systems for air traffic 
control situation displays. The next 10 years should see 
computer graphics firmly established for real-time 
situation displays in many areas. Other forms of 
traffic will be brought under control of systems which 
will include computer graphics for overall situation 
display: rail, transit, harbors, shipping lanes. Com­
puters will be inserted between the antennae and 
CRT's of almost all radar systems, converting them 
into computer graphics systems capable of much more 
comprehensive situation display than current "simple" 
radars. Thus, specialized computer graphics systems 
will eventually be found aboard all airliners and all 
ships as part of the navigation and piloting systems-if 
not by 1982, then by 2001, just as we were informed by 
Stanley Kubrick's film. 

The few computer graphics systems now installed for 
monitoring and control of chemical processes and 
utility distribution systems presage what we believe 
will be widespread use of computer graphics for situa­
tion display in these areas, possibly replacing com­
pletely the walls full of panel meters and recorders that 
have come to typify the industrial process control room. 

As discrete manufacturing operations become more 
automatic, situation displays will begin to be used for 
monitoring material flow and inventory levels. In other 
words, for supervisory control, somewhat analogous to 
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that practiced in continuous flow chemical manu­
facturing processes. 

Computer graphics systems are already being used as 
situation displays for monitoring tests and experiments 
conducted with the use of expensive test facilities, and 
frequently for assisting with control of the facility. 
Aircraft flight test, wind tunnel test, and Van de 
Graaf generator experiments are all today being con­
ducted with computer graphics systems used for real­
time display and control. Achievement of even a small 
increment of increased utilization (or enhanced safety) 
of a very expensive test facility can justify a computer 
graphics situation display system at today's costs. As 
costs come down, such display systems will proliferate, 
finding use in conjunction with larger numbers of 
gradually less expensive test facilities. 

Data analysis 

Any operation involving the collection of large 
quantities of data for subsequent human interpretation 
constitutes a potential application area for computer 
graphics. Today's successful applications (in the 
military, electronic intelligence data analysis; in 
industry, oil exploration data analysis) can be expected 
to continue growing and should lead to applications in 
similar areas: semi-automatic map-making (pho­
togrammetry) , weather data reporting and forecasting, 
and other forms of mineralogical survey data analysis 
besides oil exploration. Increased use of automatic 
sensors to collect data should lead to increased use of 
computer graphics as an aid to analysis of that data. In 
addition, some data sets built up by keyboard source 
data entry (census data, for example) have become 
large enough to be candidates for analysis via computer 
graphics. 

Simulation 

This is an area that has used computers in an on-line, 
interactive mode right from the start, and usually with 
some form of graphic output-strip charts or X-Y 
plots. Analog computers were used almost exclusively 
at first, then hybrids took over, and now much simula­
tion is done on purely digital machines. Simulation 
models have grown more and more complex so that 
systems behavior can be studied in toto rather than 
piecemeal. Flexible dynamic display has become more 
and more necessary, either to achieve "picture-out­
the-window" verisimilitude in the case of vehicular 
simulations, or to achieve an over-all "situation display" 
for the simulation model-with the same general 

I 
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requirements (plus flexibility) required for the "real 
world" situation displays discussed above. 

To date, engineering simulation has been highly 
mathematical and quantitative, even where the object 
was to get the "feel" of sensitivity to parameter 
variations. The display flexibility of computer graphics 
will permit a more qualitative kind of simulation, still 
based upon an underlying mathematical model, but 
where there is less a "numerical" and more a "graphical" 
sense of the model. In short, simulation will be used for 
what we think of as styling as well as for what we think 
of as engineering design. The distinction between the 
two, already blurred, may gradually disappear. In the 
future, dynamic aspects will be "styled," as static 
aspects now are. 

Computer aided design 

Meanwhile, there is CAD. After a long slow start, 
great strides are being made and numerous on-line 
applications are felt by their users to be cost-effective 
today. However, the dream of an integrated design 
system which takes a large design task from concept to 
final production drawing (or microfilm or magnetic 
tape) will be realized in only a few areas even in 10 
years. Clearly one such area is the layout and design of 
electronic circuits. In 10 years, virtually all circuits will 
be designed with the aid of the computer. Circuit and 
logic designs will be synthesized and tested by com­
puter, and test specifications for completed circuits will 
be an automatic by-product. Almost all of this kind of 
design work will be done with on-line interaction via 
graphic terminals. 

One consequence, in this and other areas, will be a 
change in the economics of short-run production. By 
cutting design costs, CAD will make the production of 
"custom" circuits more practical. * 

Interactive graphics are being used successfully today 
in several dozen places for performing various kinds of 
engineering analyses that form a part of the design 
process. Success has come quickest where a pre-existing 
and already proven applications package developed for 
batch operation has been adapted to be made available 

* Similarly, wherever the high cost of processing information 
"by hand," for either the design or the manufacturing portion of 
the production process, has resulted in a large cost differential 
between "custom" and "mass" production, CAD, with computer 
graphics playing a significant role, may redress the balance, and 
much of our industrial output may return to the "one-of-a-kind" 
production typical of pre-industrial times. If so, computers will 
have (in this respect at least) an effect upon the quality of our 
lives quite opposite from that expected by those who see them 
only as a threatening source of increased standardization and 
regimentation. 

on a conversational basis via interactive graphics. The 
usual main result is a dramatic shortening of the cycle 
time for the part of the design job converted to 
graphics-a job involving many iterations that used to 
take six weeks under batch being finished in one two­
hour console session, etc. There is also often the feeling 
(hard to prove) that a better design job was done. The 
high cost of graphics systems and applications pro­
gramming today restricts these applications to a few 
critical points in the design process. As costs come down 
and confidence increases, use is spreading to less critical 
design jobs: from today's computation-intensive jobs 
(stress analysis, heat flow, vibration analysis) to 
geometry-intensive jobs (complex layouts, clearance 
analysis, pipe routing, numerically-controlled machine 
tool tape generation and verification) and finally to 
drafting/ clerical intensive jobs (detailed drafting) . 

Some forms of detailed drafting are already cost­
effective using computer graphics, in particular the 
preparation, editing, revision and file maintenance for 
drawings made up from a set of standard symbols. 
(Circuit diagram, logic diagrams, flow charts, block 
diagrams, etc. ) Especially where revision is frequent 
and fast turn-around is important, as in the preparation 
and revision of system maintenance drawings, computer 
graphics is now ready to compete with traditional 
drafting and technical illustration methods. 

The design function is a social activity. Design tasks 
are usually undertaken by groups of people, with the 
overall design job in one way or another divided 
among members of the group. It is easy to think of 
CAD as a means for helping an individual designer with 
his task, and to overlook the implications of CAD with 
regard to communications within the design group. In 
thinking about the long run, it is important to visualize 
teams of designers using on-line interactive devices to 
communicate with a data base containing both the 
design constraints they are working with (specifications, 
costs, catalogs of available parts) and the results to 
date of their joint effort. Much of their communication 
with one another will be via the design itself as it exists 
in storage. What will happen when (and if) 10, 100, 1000 
d~signers are interconnected on line? The airlines 
reservations systems constitute the closest current 
model to such a situation-and the detailed total 
reservation schedules the thousands of clerks at CRT 
terminals are constantly building up is a kind of 
"design"-but the constraints they work with are few 
and fairly simple. 

Architecture 

We think the introduction of computer graphics here 
will be relatively slow because of the diffuse nature of 



the business structure, with many small independent 
firms, most without the resources for investment in 
hardware and development of software. City and 
regional planning may be an exception if government 
money is used to fund the necessary development. 
Emphasis upon the creation of presentation drawings is 
misplaced. The cost of renderings and models for client 
presentations represents a small part of the total 
architectural cost, the bulk consisting, as in other 
design activities, of the creation of working drawings. 
Therefore architecture may benefit mostly from prog­
ress made elsewhere with generalized drafting: the 
creation of dimensional drawings with materials lists. 

Publishing 

Computer graphics has promise as a publishing tool, 
and we expect substantial progress in this area in the 
next 10 years. Preparation and editing of text and 
graphics source material, and page layout, are the 
functions that graphics systems can help with. Auto­
matic typesetting has gone as far as it can go without 
the front end of the publishing process being automated. 
Cost reduction and shortening of the cycle time are 
again the primary benefits. By 1982, it will no longer be 
necessary to submit SJCC papers "in final form suitable 
for printing" seven months prior to publication of the 
Proceedings, as it now is. But, in order for graphics to 
see widespread use for this function, it is clear that 
console time must first get most of the way down to 
that $2.50 per hour. 

Film and video tape production 

There is an obvious role for computer graphics for 
producing and editing visuals (as they are called in the 
trade) for television and motion pictures. Entertain­
ment programs, commercials and educational programs 
have all been produced on a limited but already com­
mercial scale. The first full length feature movie shot 
and edited solely on video tape, then transferred to 
standard 35 mm color film, has been produced and 
distributed. We expect to see increased use of computer 
graphics as combined animation stand and editing 
console, both for creating "computer generated pic­
tures"-i.e., computer animation-and also for editing 
live-action film or VTR footage. 

Computer aided instruction 

The current high-priced applications such as trainers 
for airplane pilots and astronauts are of course already 
economic, but nprmal classroom use of computer 
graphics as a standard teaching tool, which is what 
most peopl~ mean when they talk about CAl, clearly 
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requires system costs in the range of $2.50 per hour and 
down, and therefore we do not believe that the next 10 
years will see massive proliferation. On the other hand, 
small computer graphics systems will become standard 
lecture/demonstration tools in many areas of education, 
both for "live" use and for creating simple low- or no­
budget teaching films or tapes-i.e., canning lectures. 

Management information systems 

Of course every organization has some kind of 
management information system-partly verbal, partly 
a manual paper system, and in most large organizations 
these days, at least partly computerized. But the 
computer part is batch, not on-line, so it isn't what 
people mean who talk about MIS. So far it's been mostly 
talk, with not much in the way of results. Maybe 
because on-line MIS isn't needed-top management 
really doesn't care what goes on minute by minute, and 
counts itself lucky to get reliable reports weekly or 
monthly. But down in the infra-structure, there is a 
need to know minute by minute about material location, 
tool availability, stockroom levels, etc. If on-line com­
puter systems begin to get applied for these functions, 
then MIS as commonly envisioned will be a by-product, 
and computer graphics will be a popular tool for 
analyzing the data contained in such systems. 

Hospital information systems 

Many people seem to believe that Hospital Informa­
tion Systems, as distinct from other types of com­
puterized management information systems, are needed, 
feasible, and about to happen. If so, there will be a role 
for graphics, since so much patient care data are graph­
ical in nature. The need will be for low cost inquiry 
stations capable of displaying static charts, graphs, and 
possibly even line drawings abstracted from X-rays. 
These would be terminals connected into an overall 
integrated information system primarily concerned with 
record keeping. 

On the other hand, there will be another use for 
computer graphics in the form of higher cost, more 
dynamic systems used for patient monitoring in oper­
ating rooms and intensive care wards. Use of these 
systems will not depend upon creation of an integrated 
HIS. 

CONCLUSIONS 

In interactive computer graphics, we are at the end of 
the beginning. About $50 million has been invested to 
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develop the products now on the market. Users and 
government sponsors have invested an additional $20 
to $40 million in software development to tell us what 
we now know can and can't be done working in front of 
a CRT. In keeping with the New Accounting, almost all 
of these development costs have been written off as 
losses by the various organizations that have made 
investments to get started in graphics. Now computer 
graphics has entered a new phase. Most of the systems 
currently installed (about $100 million worth of hard­
ware, by our estimate) were ordered as interesting but 
risky and somewhat daring experiments-many of 
which failed; but in the last year, graphics systems 

began to be ordered to do specific jobs, \vith reasonable 
certainty that they would be effective in those jobs. 
Thus we believe that an important corner has been 
turned. 

Two ingredients are necessary for the field of com­
puter graphics to experience grmvth-the availability of 
systems complete enough in hardware and software to 
do a variety of useful jobs, and a pattern of decreasing 
costs to end users. Both of these ingredients are now 
present, and we therefore believe that the period of 
significant growth for computer graphics, long antici­
pated, has now begun, and will be sustained throughout 
the coming decade. 



A versatile computer drivell display system for the 
classroom 

by J. W. WILLHIDE 

Boston University 
Boston, Massachusetts 

INTRODUCTION 

The last two decades have seen education in the 
sciences, mathematics and engineering move from a 
practical base to the teaching of highly sophisticated 
abstract principles. The changes have been rapid and 
radical. Generally, they have affected subject matter 
only and for the most part this new material is being 
taught by traditional methods. The changes in subject 
matter are proper, but they must be accompanied by 
changes in pedagogy. The use of display-based, highly 
interactive computer simulations represents one ap­
proach toward building the required new pedagogy. 

The educational system in this country is almost 
totally classroom based-one teacher interacting with a 
class of students on a regularly scheduled basis. This 
unanimity of approach implies that most administra­
tors feel this is the most cost-effective approach to 
teaching available today that lies within their financial 
resources. In a similar fashion, one of the most cost­
effective ways to implement a model-oriented pedagogy 
today is through the use of a computer-driven display 
system in the classroom. Other approaches to a model­
oriented pedagogy such as individual student terminals 
supported by a CAl (Computer-Aided Instruction) 
system may at some point in the future challenge the 
classroom system on a cost-effective basis. However, it 
will be some time until such an approach will become 
the rule rather than the exception. One must bear in 
mind that even if CAl systems offered a cost-effective 
advantage over the classroom system today, many 
schools could not afford such a system because of the 
large initial investment and relatively long pay-back 
period. 

At Boston University, the College of Engineering has 
implemented a versatile computer-driven classroom 
display system known as the AID System. The AID 
System is unique in its emphasis on real-time dynamic 
graphics, i.e., computer generated animation. AID 
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allows the user to animate, in real-time, iconic repre­
sentations of physical systems in a highly interactive 
environment. The user can change parameters and im­
mediately observe the effect of the change on a CRT 
display. In addition to its real-time dynamic graphics 
capabilities, the system also makes use of the more 
conventional static information transmittal modes such 
as alphanumeric text, graphs and symbolic diagrams. 

The AID System is structured around a PDP-9/ 
AD-40 hybrid computer. The AD-40 analog computer 
is used to simulate the system under study or serve as 
a signal processor for experimentally derived data. 
Animation is produced by dynamically manipulating a 
set of geometric figures generated on the PDP-9 digital 
computer as functions of the time-varying signals 
sampled from the analog computer. These animation 
sequences can be accompanied by graphs which unfold 
in time synchronism with the animation. For cases 
where animation does not make sense, graphs of se­
lected simulation variables can be displayed. 

A high-level language, the AID Language, is under 
development to support the system. This language can 
be easily learned by a highly motivated sophomore 
engineering student. It is not intended, however, for 
the professional animator or casual user of the system, 
since some background in analog and digital computa­
tion is assumed. A film illustrating some of the attri­
butes of the AID System and produced on the system 
itself using the AID Language will be shown. 

ROLE OF THE SYSTEM 

The system serves a dual role in the classroom. First, 
it can be used to assist the student in grasping difficult 
concepts through the use of iconic and graphical pre­
sentations. Second, since the system is computer­
based, it can be used to illustrate the role of simulation 
and computation in engineering design. The above 
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Figure I-AID system 

dichotomy is not always clear in many classroom situa­
tions. However, it does serve to focus attention on the 
two fundamentally different roles of the computer in 
the system-as an invisible "helper" and as a visible 
computer performing calculations and other tasks that 
a student thinks a computer should do. 

The classroom-oriented display system can also 
serve several useful functions outside the classroom. 
First, since a duplicate display system is also located 
in the computer room, highly inquisitive or troubled 
students can interact with a preprogrammed simulation 
sequence on an individual basis and often answer their 
own questions. Meaningful interaction can be achieved 
with minimal programmed support because the student 
has been introduced to the simulation sequence in the 
classroom. A second function of the system outside the 
classroom is with student use of the system hardware 
and supporting software to add a new dimension to 
their project work. As an example, a group of sopho­
more-level students programmed, as an extracurricular 
activity, an animation of a pendulum swinging in an 
accelerating railroad car to accompany a· project in 
their Dynamics course. The third function the system 
can perform outside the classroom is in conjunction 
with the laboratory exercises associated with our intro­
ductory analog computer course. In these exercises the 
students animate, in real-time, a pictorial representation 
of the physical system they are studying by signals 
generated in their analog computer simulation. The re­
sulting iconic communication mode helps students 
bridge the gap between the typical "squiggly-line" out­
put of the analog computer and the physical system 
which they are Elimulating. In addition, it has been 
found that the introduction of computer animation 
into an undergraduate course brings with it a fresh new 
breath of life-a level of excitement and motivation 
rarely seen today. 

The system, with its dynamic systems simulation 
and graphics capabilities is ideal for generating demon­
strations in a wide variety of undergraduate engineering 
disciplines. We hope to add interest to lectures while 
clarifying points which are difficult to perceive in terms 
of verbal descriptions or blackboard sketches. The 
demonstration examples will in some cases precede the 
lecture material to motivate and prepare the student 
for the abstract material. In other cases, the demonstra­
tions will follow the presentation of a concept to validate 
and reinforce that concept. In both cases it is expected 
that the real-time interaction offered by the system 
will considerably heighten the sense of discovery and 
intellectual curiosity of the students in the classroom. 

SYSTEM CONFIGURATION 

The classroom display system at Boston University 
is depicted in Figure 1. From the figure it can be noted 
that the bulk of the system is a typical hybrid computer 
configuration consisting of a Digital Equipment Corp. 
PDP-9 digital computer, two Applied Dynamics AD-40 
analog computers and a custom designed interface. 
Thus, the step from a hybrid computer to an inter­
active classroom display system is a relatively small 
one-consisting of adding a Control Interface with re­
mote control units, a Display Interface and large screen 
CRT displays. 

A hybrid computer was chosen to drive the system 
to gain the complementary attributes of its constituent 
analog and digital computers. The analog computer 
offers a convenient means to simulate the dynamic sys­
tems used in most classroom presentations. The digital 
computer is used to give the user a simple and yet 
effective interaction with the simulation through the 
use of a special control box located in the classroom. 
Through its graphics abilities, it also gives the system 
alphanumerics for giving instructions to the user and 
displaying parameter values, and line graphics for 
static and dynamic pictorial presentations. 

Two independent large screen CRT displays placed 
side-by-side are used in the classroom. This provides 
the system with what the author believes is the visual 
channel capacity required for a flexible and effective 
computer-driven interactive classroom display system. 
For example, in demonstrating the response of an elec­
triC' circuit to some excitation, one display would pre­
sent the schematic diagram of the circuit complete with 
parameter values while the other display would present 
the excitation and circuit response. Once given a dual 
display system, it seems that almost all demonstrations 
require such a system for effective presentations. This 
may either be a coronary to Parkinson's Law, or, as 



the author interprets it, an indication that two inde­
pendent displays are essential. 

DISPLA Y SUBSYSTEM 

Of the two displays in the AID System, one is pri­
marily used for the presentation of static or slowly 
changing images such as alphanumeric text, pictorial 
diagrams and graphs. This display, the left-hand one of 
the pair, is a large screen TV monitor. It is driven by a 
Tektronix 4501 Scan Converter, a device which accepts 
x - y inputs and produces a video output signal. The 
scan converter is based on the use of a bistable storage 
CRT. Hence, this display functions as a stored type 
display. It need only be written once and it will retain 
the stored image until erased. When driven by a digital 
computer, the stored type display places considerably 
less burden on the computer than a refreshed type dis-

TO 
ANALOG 

COMPUTER 

I/O 
BUS 

STORED REFRESHED 
DISPLAY DISPLAY 
~ 

VIDEO INTS X Y 

AS2 ) AN!~G 
COMPUTER 

Figure 2-Functional diagram of display interface 

play. The stored type display is also convenient to have 
for many analog computer generated displays. For ex­
ample, a simulation may be running in the repetitive 
operation mode with one value of a particular variable 
being generated during each run. A storage type display 
is required to present a plot of this variable versus time 
in the classroom. 

The other display of the system is used primarily 
for the presentation of dynamic graphics such as ani­
mated iconic models (e.g., a pictorial spring-masssys­
tem which looks and behaves like a real spring-mass 
system) and curves generated by the analog computer 
in the repetitive operation mode. This display is a large 
screen x - y CRT which functions as a refreshed display. 
It is driven directly by analog signals from either the 
analog computer or the digital computer display 
interface. 
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Display Assignment 

Configuration ASl AS2 AS3 AS4 Stored Refreshed 

closed open closed open DIGITAL DIGITAL 

closed open open closed DIGITAL ANALOG 

open closed closed open ANALOG DIGITAL 

open closed open closed ANALOG ANALOG 

Figure 3-Source/display combinations 

A functional diagram of the AID Display Interface 
is given in Figure 2. Analog switches which are under 
program control are used to set the system configura­
tion to suit the particular problem being solved. Figure 
3 presents the various combinations between driving 
sources and displays. When both displays are driven 
from the digital computer, the programmer selects the 
display he wishes to write through the use of an appro­
priate display command. Both displays receive the 
same x-y inputs. However, only the one being written 
receives an intensify pulse. This allows the programmer 
to switch back and forth between the displays. When 
the displays are driven by the analog computer, dis­
play selection is achieved through trunkline patching. 

CLASSROOM CONTROL UNIT 

A remote control unit is used in the classroom to 
give real-time interactive control to the system user. A 
pictorial representation of this unit is given in Figure 4. 
It was designed to fill the dual objective of presenting 
to the user an extremely simple and yet versatile inter­
face with the system while at the same time minimizing 
the hardware and software needed to support the unit. 
The AID Interactive Control Unit allows the user to: 

(1) Set and change parameters. 
(2) Set initial conditions. 

GO © 

Ie © 
I 2 3 4 5 6 7 8 9 10 II 12 13 14 HELP 

PARAM © 
+ 

VARIABLE 

AID CONTROL 

Figure 4-AID interactive control unit 
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(3) Choose a preprogrammed presentation mode, 
i.e., what variables will be displayed, what 
parameter will be variable, etc. 

(4) Request HELP messages, e.g., switch assign­
ments, presentation modes available and how to 
use them, etc. 

A more detailed look at the classroom use of the AID 
Interactive Control Unit will be given in the following 
section. 

All interactive parameter and initial condition values 
are entered into the system via a single potentiometer 
on the· control unit. The analog signal from this po­
tentiometer is read into the PDP-9 computer through 
a channel of the AjD converter in the hybrid computer 
interface. The digital computer then either· sets the 
appropriate digital pot on the analog computer or 
changes a program variable. It also presents the class­
room user with a "dif,itaJ voltmeter" type display on 
one of the display units so that he can set the variable 
to the desired value. This visual feedback technique 
not only compensates for resistive voltage drop in the 
long lines to the computer room but also couples the 
class in with "the action" and visually indicates to the 
students the current value of the parameter being 
changed. 

When a user initiated response is requested by de­
pressing one of the three pushbuttons, a serial data 
stream containing information on the pushbutton de­
pressed and states of the switches is transmitted over a 
single line to the Control Unit Interface in the computer 
room. When the complete message has been received, 
a program interrupt request to the PDP-9 computer is 
initiated. The computer responds to this interrupt and 
branches to an appropriate point in the AID program 
to carry out the requested response. 

AN ILLUSTRATIVE EXAMPLE 

Several segments from a presentation developed on 
coupled oscillators will be used to illustrate the type of 
typical interactive classroom use which can be made of 
the system. When first initiated, the system presents a 
title, a "what to do" message and then awaits further 
commands from the classroom control unit. For the 
example we are considering, the left-hand display 
would present "MASS-SPRING SYSTEM . . . FOR 
NORMAL SEQUENCING HIT 'GO' AT THE END 
OF EACH STEP . . . OTHERWISE USE 'HELP' 
SWITCH IN CONJUNCTION WITH 'GO' FOR 
DIRECTIONS." In normal sequencing, the first de­
pression of the GO button takes the system to the 
parameter mode. In this mode the user can change any 
of the parameter values from those nominally entered. 

He does this by setting the appropriate switch, hitting 
the PARAM pushbutton and then adjusting the po­
tentiometer on the control unit for the desired value 
while watching the "digital voltmeter" on the display. 
This is illustrated by the top display pair of Figure 5. 
The user is in the process of changing K3 from the 
nominally entered value of 1.0 to a ne,,, value of 0.100. 
The numbers in the < )'s are the switch assignments for 
the parameters. Other parameter changes are made by 
repeating the above sequence. The next depression of 
the GO button takes the system to the initial condition 
mode. For this particular example, the user does not 
set any values for initial conditions but simply chooses 
the perturbations to be made on the mass-spring sys­
tem. When the IC pushbutton is depressed, the masses 
are gently nudged to their initial condition position by 
AID's "helpful little computer hands." The middle dis­
play pair of Figure 5 illustrates the initial condition 
mode-it can be thought of as a snapshot of the dis­
plays as the hands are in the process of moving the 
masses to their initial condition positions (down for 
M1 and zero for M2). Subsequent depressions of the 
GO button take the system through various run modes 
such as the one illustrated in the bottom display pair 
of Figure 5. For the case shown, an animation of the 
bobbing mass-spring system is on one display while the 
corresponding displacement of each mass from equi­
librium position is plotted on the other display. Other 
run sequences plot various combinations of accelera­
tions, velocities and energies. 

The above example illustrated the user following 
normal sequencing by repeated depressions of the GO 
button. By using the switches in conjunction with the 
GO button, the user can break the normal sequence 
and branch to any particular desired segment of the 
presentation. Through use of the PARAM and IC push­
buttons, parameters and initial conditions can be 
changed at any time during a presentation. 

COMPUTER ROOM CONSOLE 

A special console is used by the programmer in de­
veloping AID programs. It features dual displays 
whose characteristics are identical to those in the class­
room, an AID Interactive Control Unit, and a Com­
putek GT50j10 graphic tablet. Thus, all phases of 
program development ranging from initial image gener­
ation to final debugging and checkout can be done at 
the console. 

The console, in conjunction with the AID Language, 
will not only make the programming of AID presenta­
tions convenient and easy but will also provide a 
stimulating environment in which· to work. Weare de-
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( I ) KI 

PARAMETERS 

(2) MI 
KI = 1.0 

MI=I.O (3) K3 

K3= .153 

M2= 1.0 (4) M2 

K2=1.0 
(5) K2 

INITIAL CONDITIONS 

X I (O): 

I FOR UP 
2 FOR ZERO 
3 FOR DOWN 

X2(0}: -
4 FOR UP 
5 FOR ZERO 
6 FOR DOWN 

XI=O ~---'---"'""-

X2=O ~ 

Figure 5-Illustrative classroom display sequence 
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pending on the latter attribute coupled with the drive 
for relevance and accomplishment on the part of today's 
students to supply a manpower pool to assist the in­
structional staff in developing AID presentations. 

SOFTWARE SUPPORT 

The AID Language under development to support 
the system is in an experimental phase and might best 
be described as a pseudo high-level language at this 
point in time. I t has many of the appearances and 
attributes of a high-level language but has no compiler 
or interpreter. In its present form it is simply a collec­
tion of subroutines and symbol definitions that are 
used in conjunction with the PDP-9 assembly language 
programming system. This approach allows for changes 
to be quickly and easily implemented-an important 
consideration during the early experimental stages of 
developing a language. Its chief disadvantages are a 
slight awkwardness in the association of control vari­
ables with their commands-they must follow in a 
vertical string underneath the command-and the use 
of an octal rather than a decimal number system base. 
However, even in this experimental form the language 
is easy enough to use such that sophomore students 
can write program sequences. 

The language provides commands for: 

(1) Servicing the interactive control unit. 
(2) Controlling the analog computer. 
(3) Generating static and dynamic graphical 

displays. 

It features an on-line mode which allows the program 
developer to perform the following functions inter­
actively while sitting at the computer room console: 

(1) Write his program in a conversational mode. 
(2) Enter graphical images via a graphic tablet. 
(3) Scale, move and synthesize graphical images. 
(4) Generate, scale and move alphanumeric text 

displays. 
(5) Tune up timing used in sequencing. 

To illustrate the basic structure of the AID Language, 
an example AID program is given in Figure 6. This 
example shows how the top support, spring, and mass 
of the MASS-SPRIN G SYSTEM discussed earlier 
are generated. The analog computer is solving the differ­
ential equations governing the system in real-time. 
From these system variables, the analog computer 
generates the dynamic animation variables used to 
animate the static images stored in the PDP-9 com­
puter. The dynamic animation variables are read into 

the digital computer on each pass through the program 
by the SAMPLE commands. 

In order to avoid becoming prematurely display­
bound in a system designed for real-time dynamic 
graphics it is essential that a continuous stream of 
data flow to the display. Compound images must not 
be constructed in memory and then displayed. They 
must be displayed as they are constructed. This phil­
osophy is inherent in the instruction pair TRANSFER/ 
CONTINUE. One point at a time is transferred from 
a source table to a specified destination-usually a dis­
play. During this transfer of the image from the source 
table, any of the AID manipulative commands placed 
between the TRANSFER and CONTINUE command 
operate on the image being transferred. All images 
which are to be dynamically displayed are stored 
centered around the origin of the coordinate system 
used for the displays. This system has its origin located 
in the center of the display area. Such an approach 
simplifies the definition and generation of the dynamic 
animation variables. 

In the example of Figure 6 the image SPRIN G, 
which consists only of the zig-zag lines, was dynamically 
scaled in the x and y directions to convey the illusion 
of a spring being alternately stretched and then com­
pressed. The invariant vertical segments of the spring 
were associated with the images TOP and MASS. 
Another, and even better approach, is to use the com­
mand ANIMATE in conjunction with two key frames 
stored in memory. In this case, the invariant vertical 
segments of the spring could be associated with the 
stored images of the spring rather than the mass and 
top support. The number of control variables would be 
reduced from three to two-one for translation and 
one to govern the amount of linear interpolation be­
tween the key frames specified by the ANIMATE 
command. 

The header statement VIEW runs the program in 
real-time for direct viewing in the classroom or com­
puter room. When making a film, this mode allows for 
previewing a sequence before it is actually recorded on 
film. Once a satisfactory sequence has been obtained, 
the statement CAl\1ERA is substituted for VIEW and 
the system is ready for filming. The header statement 
CAMERA automatically slows the system timing down 
for filming at four frames per second and synchronizes 
the computer to the movie camera. 

FUTURE PLANS 

We view the AID System configuration of Figure 1 
only as a starting point in our endeavor to couple the 
computer effectively into the classroom. For example, 
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NEW 

VIEW 
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Initializes the system for a new run from t = 0 

Sets up timing, synchronization, etc. for real­
time viewing 

CONFIGURATION DD Sets up Configuration 1 - both displays driven 
by digital computer 

SAMPLE 0 
SlL 

SAMPLE 
SlW 

SAMPLE 2 
SlV 

SAMPLE 3 
M1V 

TRANSFER 
TOP 
DISPLAY 2V 

CONTINUE 

TRANSFER 
MASS 
DISPLAY 2V 

MOVE 
ZERO 
M1V 

CONTINUE 

TRANSFER 
SPRING 
DISPLAY 2V 

SCALE 
SlW 
SlL 

MOVE 
ZERO 
SlV 

CONTINUE 

GOTO LINE 1 

Sample A/D channel 0 and assign the value to the 
variableSl-L (Spring 1 Length Scale Factor) 

Sample A/D channell and assign the value to the 
variable SlW (Spring 1 Width Scale Factor) 

Sample A/D channel 2 and assign the value to the 
variable SlV (Spr1ng 1 Vertical Displacement) 

Sample A/D channel 3 and assign the value to the 
variable M1V (Mass 1 Vertical Displacement) 

Transfer one point of the image from the source 
table named TOP to the refreshed display and 
display in the vector mode 

Continue the above initiated transfer until 
completed 

Transfer one point of the image from the source 
table named MASS to the refreshed display 
and display in the vector mode 

During the above initiated transfer, move the 
image in the X direction per the variable ZERO 
(which has a value of 0) and in the Y direction 
per M1V 

Continue the above initiated transfer until 
completed 

Transfer one point of the image from the source 
table named SPRING to the refreshed display 
and display in the vector mode 

During the above initiated transfer, scale the 
image in the X direction per the variable SlW 
and in the Y direction per SlL 

During the above initiated transfer, move the 
image in the X direction per the variable ZERO 
and in the Y direction per SlV 

Continue the above initiated transfer until 
completed 

Figure 6-Illustrative example of AID programming 
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interest has been expressed by a group of students in 
tying the College's two wind tunnels into the PDP-9 
for on-line control and data reduction. Once this has 
been accomplished it is but a small step to bring the 
thrill of direct on-line real-time experimentation into 
the classroom through use of the AID System. Another 
area of expansion under active consideration is a link 
to the IBM 360/50 at our computer center. This would 
open up new areas of application in which the problems 
are best cast in general or problem-oriented high-level 
languages such as FORTRAN, GPSS, NASAP, etc. In 
this mode of operation the classroom control unit would 
most likely be a typewriter-like keyboard. Still yet 
another area of expansion is in application programs 
resident in the PDP-9 itself. Work is under way in this 
area with program packages for deterministic and 
stochastic signal analysis (e.g., FFT algorithms, random 
number generators, etc.). In this as well as in the above 
cases, the structure of the AID Language will allow for 
efficient integration of the expansions into the AID 
System. 
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GOLD-A Graphical On-Line Design System 

by L. J. FRENCH and A. H. TEGER 

RCA Laboratories 
Princeton, New Jersey 

INTRODUCTION 

Computer programs do not "design." They blindly 
follow procedures that the computer programmer 
thought should solve a given class of problems. How­
ever, the methods of solution for many design problems 
are not a priori known. Actively inserting the human 
in the design process can add the elements of experi­
ence, insight, and creativity to the computer's ability 
to perform rote design procedures and repeated check­
ing operations. 

Graphic displays are ideally suited to this combina­
tion of computer power and human intellect if, and we 
must emphasize only if, the application deals with 
large quantities of data that must be absorbed or modi­
fied graphically. Teletypes or text displays are inade­
quate to deal with these pictorial problems. Full graphic 
displays are the only practical mechanism to provide 
rapid creation of a complex picture that can be quickly 
understood by the designer. 

We have developed a general system for Graphical 
On-Line Design that operates stand-alone on a small 
computer, and yet supports a large, powerful data 
structure partitioned for local disc storage. The data 
structure, described in more detail later, is capable of 
storing relationships needed for computer-aided design, 
including non-graphic as well as graphic information. 

The GOLD system has been applied to the design of 
integrated circuit masks. IC masks, especially for large 
arrays, contain huge amounts of graphical data that 
cannot be checked by the human designer without 
some display or plot. Furthermore, attempting to cor­
rect the artwork for these masks from a file of text 
plotting statements is an error-prone and time-consum­
ing process. The interactive graphical editing possible 
with GOLD is alleviating these problems. 

We designed GOLD to be a user-oriented interface 
between the computer and the designer. As such, the 
graphical language used to modify the artwork has to 
be easy to understand and to use by an integrated 
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circuit designer; it must correspond to the natural 
thinking process that the designer would use to make 
corrections by hand. Yet the graphical language must 
also be general enough to apply to other application 
areas, and to deal with a hierarchical data structure 
smoothly enough so that the user can take advantage 
of its power without needing to understand how the 
structure is organized. 

Perhaps the two most significant contributions of the 
work described herein are the creation of an efficient, 
hierarchical data structure, and of general graphical 
editing techniques that incorporate application de­
pendent parts within the confines of a small stand-alone 
computer. General purpose graphical systems and 
graphical editing systems for IC masks exist, some of 
which are listed in the references, but the GOLD sys­
tem represents an attempt to achieve the generality of 
large graphical systems and the practicality of smaller 
IC mask design systems on a small stand-alone 
computer. 

The data structure described herein is ring type and 
hence similar to that of McCarthy,8 Sutherland, l and 
Wiseman2 yet is different in design in that it is specifi­
cally partitioned for secondary storage and is efficient 
in core utilization both in storage of the data structure 
and of the data structure functions themselves. The 
SELECT and LOCK editing functions are new and 
represent attempts at overcoming refresh display hard­
ware limitations (flicker) and providing convenient 
techniques for rapidly protecting and interacting with 
various hierarchical levels in the data structure. 

SYSTEM DESCRIPTION 

GOLD hardware system 

The large capital investment and operating costs for 
large computers and the advent of inexpensive, rela­
tively powerful mini-computers convinced us to utilize 
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Figure 1-GOLD hardware system 

a small computer in our interactive graphical design 
system. If such a system can perform a useful task, it 
might then be, and present evidence suggests that it is, 
economically justifiable. 

The advantages of convenient and rapid interaction 
influenced our decision to utilize a refresh type display. 
A block diagram of the GOLD system is shown in 
Figure 1. The display is a refresh type, custom made by 
Information Displays, Inc. and is refreshed via a Spec­
tra 70/25 computer having 32K bytes of memory with a 
1.5 fJ,sec cycle time. The input/output devices are a 
light pen, typewriter, card read_er/punch, and a remote 
time sharing system. The disc is a single, 774: million 
byte capacity RCA 70/564 drive. 

The philosophy of the GOLD system is that the fast 
secondary storage medium (disc unit in this case) can 
be utilized to provide access rates fast enough for 
rapid on-line interaction with a very large data base. 
The small computer can operate on a stand-alone basis, 
not simply as a display controller. 

Computer-aided design system for integrated circuit masks 

The GOLD system is compatible with other tech­
niques for creating and editing integrated circuit art­
work that have been developed at the RCA Solid State 
Division in Somerville, New Jersey. Two of these tech­
niques are a digitizer system and a user-oriented mask 
description language, called PLOTS. The digitizer sys­
tem captures a mask description by physically tracing 
a drawing point by point. The mask description ob­
tained is stored in central files of a time sharing system. 

These files can be accessed by GOLD, where they can 
rapidly be displayed, edited, and stored either locally, 
or returned to the time sharing system. 

PLOTS, also developed at RCA Solid State Division, 
is an artwork language used to describe drawings inter­
actively on the time sharing system via a teletype. The 
files of PLOTS statements can similarly be accessed by 
GOLD for interactive graphical manipulation with the 
option of returning the modified files to the time shared 
system. An output program can convert either PLOTS 
or digitizer files to drive high accuracy plotters to ob­
tain finished artwork. The compatibility that GOLD 
has with these two artwork systems gives a mask de­
signer the flexibility of being able to select the best 
editing system for any part of a mask design. 

GOLD software system 

A block diagram of the GOLD software system is 
shown in Figure 2. Mask descriptions can be entered 
via the on-line typewriter, light pen, cards, or from a 
time sharing file. The mask description is processed by 
the input language compiler which checks syntax and 
produces object code for the Data Structure Compiler 
(DSC). The DSC builds a partitioned hierarchical 
data structure using a ring type language and a set of 
subroutines which provide techniques of creating and 
traversing partitioned ring type data structures. The 
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Figure 2-GOLD software system 



partitioned data structure contains the accurate and 
hierarchical description of the application being under­
taken and provides a general interface for all data 
manipulations. 

The Picture Compiler (PC) is a recursive program 
that traverses the partitioned data structure and creates 
a binary display file within the confines of the user 
supplied specifications (see the display function in the 
third section). The binary display file is contained in 
part of main memory and is used to refresh the display 
to produce a picture. The picture compiler inserts into 
the binary display file markers that provide the hier­
archical connection between the binary picture repre­
sentation and its corresponding description in the data 
structure. 

The light pen aids in graphical interaction by detect­
ing light and interrupting the processor. The light pen 
interrupt is processed via the Identification Program 
which blinks the identified entity and provides the link 
to the actual representation of the entity in the data 
structure. The Graphical Editing Functions use the in­
formation supplied by the Identification Program to 
gain access to the data structure and all editing is per­
formed- on the data structure using the PRSP language 
and corresponding functions. Finally, the output pro­
grams traverse the data'structure, again using PRSP, 
and provide an output mask description on either cards 
or in a time sharing file. 

The data structure and data structure language 

The data structure that has been designed and im­
plemented within the GOLD system is a partitioned 
ring type data structure. It has the capability of con­
taining 500K bytes of data which is partitioned into 
128 segments in secondary storage. The data structure 
provides the capability of storing graphical information 
and hierarchical relationships. All mask coordinates are 
stored in a floating point notation created specifically 
for the Spectra 70/25 and all floating point operations 
are performed via software due to the absence of hard­
ware. Any graphical entity can be edited and entities 
can be combined into higher ordered entities within the 
data structure. 

Any entity can be locked or selected, which in the 
data structure simply corresponds to a few bits being 
set in the proper entity. If an entity has been locked, 
editing will not be permitted on that entity. If an entity 
that is locked is pointed to by the light pen, the identi­
fication program automatically identifies the next 
higher unlocked entity. Thus, the lock function provides 
the graphics user the capability of controlling what can 
be edited and on what hierarchical level identification 
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should initially occur. Each entity in the data structure 
has a bit which can be set to indicate that the entity 
has been selected. Presently this general data structure 
function has been employed only in displaying entities 
as discussed in the third section. Select is a general 
function which allows a user to select a class of data 
structure entities for any desired operation. 

The data structure language (PRSP) provides a 
general language for creating and traversing partitioned 
ring type data structures. It is a new language based 
primarily on the work of Wiseman and Hiles of the 
University of Cambridge in England. PRSP is a macro 
language that expands into subroutine calls on 32 differ­
ent data structure functions to provide full data manip­
ulation capability with a common but well specified 
interface. Perhaps most noteworthy of all is that the 
data structure subroutines and the file management 
program occupy only 100016 bytes of core. Core is at a 
premium in a small computer and the size of any pro­
gram must be weighed very carefully against the power 
the program adds to the overall system. Each function 
in PRSP has been designed to provide the greatest 
capability in the least amount of core storage. In 
PRSP the programmer has the capability of partition­
ing his data structure on secondary storage to suit his 
particular circumstances. For the GOLD system a par­
titioning algorithm was selected to minimize disc I/O 
for operations on a specific mask level. 

The file management routines in conjunction with 
PRSP provide rapid access to secondary storage for 
program overlays as well as for data structure opera­
tions. If a small computer is to handle 500K bytes of 
data structure and all the programs to provide a stand­
alone system, the secondary storage retrieval time is 
crucial to the success or failure of such a system. In the 
GOLD system the average access time per segment 
(4120 bytes of information) is about 55 msec. This is 
fast considering that the disc rotation time for the raw 
information is 31 msec. PRSP can handle any number 
of data structure segments in core. However, present 
core size has limited this to two data structure segments. 
The file management routines calculate a "success fac­
tor" for each data structure segment in core. Whenever 
a data structure function requests a segment that is 
presently in core, the success factor is incremented by 
one. Whenever a segment is requested that is not in 
core, the least successful segment is overwritten by the 
new segment. In the fourth section the results of two 
file management algorithms are discussed. 

Picture compilation 

In the GOLD system the picture compiler compiles 
a picture as constrained by the user. Since the amount 
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Figure 3-Display hardware layout 

of data involved in a mask description may be roughly 
Y2 million bytes, it is impossible to maintain the entire 
mask description in a display file in core. Thus, the 
user specifies what part of the mask he wishes to see 
and the picture compiler provides that specific display 
file by traversing the data structure. One of the func~ 
tions the picture compiler performs is zoom (window­
ing). While our display does not have hardware zoom, 
software zoom would be required to provide a reason­
ably sized display file. The speed of the picture compiler 
is the most critical of all programs since it affects the 
interaction time of the system. An evaluation of the 

Figure 4-Display screen showning an Ie design with 3 mask 
levels superimposed. There is no display flicker 

picture compiler program IS contained in the fourth 
section. 

GRAPHICAL CAPABILITIES 

A user of the GOLD system wants to modify the art­
work for a given set of masks by making additions or 
corrections to it. He therefore needs to access the files 
containing the artwork description, choose the portion 
to be displayed, and then be able to do the actual 
editing operations. GOLD provides a set of graphical 
tools to perform these functions. The light pen is used 
to pick operations, identify parts of the drawing, and 
perform many of the manipulations. The user inputs 
lengthy text messages such as personal file names or 
identification with the on-line typewriter. Figures 3, 4 
and 5 show examples of display usage. 

Figure 5-Display of part of a complex mask (zoom used). 
Flicker is evident 

The display screen is divided into three functional 
areas. On the right side of the display, the menu of 
command choices is shown. These choices change as the 
user performs a given function so as to guarantee that 
only legal commands can be picked at any step in the 
process, and to provide detailed commands for each 
general function requested. At the top of the screen, 
system messages are displayed to guide the user in 
choosing the correct sequence of operations, and to 
issue error messages when needed. Error messages are 
blinked to attract the user's immediate attention; nor­
mal requests to indicate the next step are not blinked. 



Beneath the message line is a line that can contain 
temporary information for the user, such as X,y data, 
and in which the user composes various light pen re­
sponses for the system. The third and largest functional 
area, occupying the central portion of the screen, dis­
plays the picture requested by the user. The actual 
editing changes are seen here. 

File access 

By pointing the light pen at the command FILE, the 
user has a choice of retrieving artwork files in various 
formats. For example, PLOTS files, consisting of 
"English-like" plotting statements, can be accessed via 
the local card reader or from remote files on the time 
sharing system. The system allows the user to define 
and repeatedly call graphical subroutines of any degree 
of complexity. These calls may be nested up to 10 
levels deep in PLOTS, however, the nesting is un­
limited in the data structure used by GOLD. 

Another input format is the data structure itself. 
The user may store files on the local disc or on cards 
with all the structural information added during the 
graphical design session, and then retrieve the files for 
later enhancement. 

Display creation 

Having read in a file, a user has several tools for 
creating the desired display. He can specify which mask 
level should be shown, or request a combination of any 
number of mask levels. The line structure for eaph 
mask level can be individually chosen as either solid, 
dotted, dashed, or dot-dashed. Thus, he can check 
alignment of entities between mask levels, and still dis­
tinguish, by the line structures, which level each shape 
is on. 

The WINDOW function permits a user to zoom in 
or out on any section of the· artwork. To zoom in, he 
uses the light pen to position a tracking mark at the 
origin of the desired window. The absolute X,y value in 
mils of this coordinate is displayed as a numeric check. 
He draws a square with the light pen indicating the 
area he is interested in. When satisfied, he points to an 
OFF button attached to the tracking mark, and the 
area within the square is enlarged to full screen. Which­
ever mask levels and line· structures were displayed be­
fore are retained after the windowing operation. The 
zoom feature permits a user to work on large drawings 
to whatever precision he desires by magnifying that 
section of the artwork and consequently overcoming 
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• 
the inherent inaccuracies of any graphical display. The 
zoom operation is performed on the data structure so 
that full precision is maintained in the display file. At 
any time, the user may point to a light button request­
ing full arhvork size. This gives in effect a quick zoom 
out to display the full artwork. 

The major problem in thc GOLD systcm is display 
flicker, that is, the amount of information that can be 
displayed. Presently the system has memory space to 
display 2000 vectors while flicker occurs at about 800 
vectors. The fact that new display hardware currently 
available is a factor of 2 or 3 faster than our display 
would aid in this problem but certainly vwuld not solve 
it. The functions WIN,DOW and SELECT (described 
under Editing techniques) in some cases solve the prob­
lem by allmving the user to remove unnecessary parts 
of the drawing from the screen in order to eliminate 
confusing detail and reduce flicker. However, in other 
cases the user cannot eliminate parts (or enough parts) 
of the picture and needs to display 4000 to 5000 vectors 
without flicker. Some of the users who originally 
thought they could do little, if any, editing \vithQut 
seeing large quantities of the picture at a time, have 
since learned to think about mask design in a different 
fashion and have found they can do a great deal of 
work in a piecewise manner. 

Editing techniques 

All the graphical functions can operate on any entity 
displayed on the screen. The lowest level (atomic) en­
tities are lines, simple polygons and orthogonal poly­
gons. The system will treat a light pen hit on any 
vector on the screen as though the entire entity had 
been identified and will blink that entity. For example, 
a hit on a side of a complicated polygon will cause the 
entire polygon to blink, and the user, having visually 
verified that he does mean that polygon, can now 
modify the polygon via one of the graphic functions. 

The general editing functions encompassed by the 
system are building block, move, copy, delete, rotate, 
measure, input and select. 

1. BUILDING BLOCK 

The power of graphical interaction lies in being able 
to create and operate on more complicated entities. The 
user, by pointing at the words BLDG BLOCK (a light 
button in the menu), can designate any number of 
atomic entities and previously defined building blocks 
as a new building block. The entities may be connected 



466 Spring Joint Computer Conference, 1972 

or unconnected, and may be from several different 
mask levels. The new building block is placed in the 
data structure to indicate its relationship to the rest of 
the artwork. Building ,blocks may be nested to any 
desired degree. 

In order to use these building blocks, the light buttons 
MORE, LESS and NONE are part of the menu. On a 
light pen hit, the lowest level non-locked entity will 
blink on the screen. Pointing at MORE tells the system 
to move up to the next level of complexity in the data 
structure, i.e., the next higher building block. This can 
be repeated till the most complex building block, of 
which the original vector is a part, is blinking. What­
ever is blinking at a given time can be operated on by 
anyone of the graphical functions. LESS steps down­
ward in complexity through the building blocks, and 
NONE stops everything from blinking. 

2. MOVE 

Any blinking entity (entity and building block will 
be used synonymously from this point on) can be 
moved using the light pen. A tracking mark appears on 
the reference point of the entity. By pointing at the 
tracking mark, the user moves the entire entity across 
the screen. The x,y location of the tracking mark in mils 
is shown at the top of the screen as a numeric check. 
The user can constrain the motion to x only, or y only, 
at any time. When the light pen is released, the entity 
"jumps" to the nearest user-defined grid location. This 
grid, which can be. changed whenever desired, permits 
smooth tracking of entities, and yet precise positioning 
to any degree of coarseness. The user can also step the 
entity in increments of this grid horizontally or 
vertically. 

The user may specify the absolute x,y position where 
the entity should be moved or he may give a numerical 
increment (up, down, right or left). In these cases the 
entity jumps to the new position and the absolute x,y 
location is again displayed on the screen. 

When satisfied, the user points to 'OK' to finalize the 
change. 

3. COpy 

Any degree of complexity of building blocks may be 
copied. The user identifies the desired entity, checks 
that it is blinking, and requests a copy. The copy is 
drawn, slightly displaced from the original, and IVIOVE 
automatically called to operate on the copy. 

4. ROTATE 

The user may rotate certain entities in increments of 
90°, and may mirror them about the x or y axis. All 
eight possibilities of mirroring and rotation are 
available. 

5. DELETE 

Any identified (blinking) entity may be deleted. 

6. MEASURE 

The tracking mark provides a numeric check on any 
x,y location on the screen. The optional imposed grid 
and x only, or y only, tracking constraints are the same 
as those described in MOVE. 

7. INPUT 

This function allows the user to create new atomic 
entities, namely lines, simple polygons or orthogonal 
polygons. The user specifies which mask level the new 
entity is to appear on, and a desired width if the entity 
is a line. Lines are drawn as a center line representation 
to reduce clutter on the screen, and can have an op­
tional orthogonality constraint applied. Simple poly­
gons may have sides at any angle, although the tracking 
mark can be used to make any given segment hori­
zontal or vertical. The system will guarantee closure of 
both simple and orthogonal polygons, or give an error 
message if not possible. The special case of rectangles is 
handled by allowing the user to fix one corner of the 
new rectangle with the tracking mark, and then move 
the diagonally opposite corner (via the tracking mark) 
to draw in one motion all four sides. All x,y values are 
continually displayed at the top of the screen while 
these entities are being drawn. 

8. SELECT 

In order to reduce clutter and to minimize flicker on 
the display, the user can select any number of entities 
with the light pen. He then can choose to display only 
the selected entities, to blank only the selected entities, 
or to display all entities. The system reminds· him of 
how many entities are selected at any given time. This 
feature permits work on complicated artwork at full 
size without destroying the sanity of the user. 



File storage 

During a design session, the entire data structure 
may be stored temporarily in any of four work areas 
on the disc. This allows the user to try different modifi­
cations of the job, and still be able to back up to any 
of these previous check points if desired. 

After editing is complete, the file may be stored 
locally in data structure form, or converted back to 
PLOTS and stored on the time sharing system or cards. 
From the time sharing system, the files may be plotted 
on either of two high accuracy flat bed plotters to pro­
duce the final artwork for the masks. 

SYSTEM EVALUATION 

All editing functions in the GOLD system are per­
formed on the data structure using PRSP and require 
no more than at most a few seconds. As explained in 
the second section, the interaction rate of the system is 
critically dependent upon the picture compiler. The 
picture compiler program extracts entities on the user 
specified mask levels, handles the SELECT and LOCK 
functions, performs scaling, rotation, all windowing, 
and the creation of a binary display file with embedded 
data structure markers. The picture compilation time 
varies in a rather complicated fashion from a few sec­
onds to a maximum of about 1Y2 minutes with the 
average being about Y2 minute. As an example, to 
create a display file of 800 vectors, the picture compiler 
requires 15 seconds. 

A memory array designed at RCA Laboratories by 
J. Meyer and N. Kudrajashev using the GOLD system 
has been used as a benchmark to evaluate the operation 
of the system. The circuit is a 256-bit random access 
CMOS/SOS memory chip which measures 144X173 
mils. The description consists of 7 mask levels. and ap­
proximately 17,000 points. To evaluate where the pic­
ture compile time is spent, measurements were made 
on the picture compilation of all mask levels with 
everything inside the window. In the actual operation 
of the GOLD system this picture compilation would 
terminate abruptly when the display file core space was 
exhausted. To overcome this, the picture compiler was 
temporarily patched such that the actual binary display 
file words were discarded. Thus, this compilation repre­
sents a situation that cannot exist in practice but does 
give a worse case evaluation that is an order of magnitude 
worse than actual conditions. 

Using a file management algorithm which handles 
only one piece of data structure in core at a time, the 
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picture compilation required a total of twenty minutes. 
We must stress that this is not a real case. The amount 
of information here (all parts of all mask levels) is far 
more than the user could visually understand or work 
with on a refresh display, and more than could fit in 
any display file. 

The picture compile time distributes as follows: 

DISC I/O 

TOTAL DISC TIME=2.71 l\lINUTES 
= 13.6 PERCENT OF TOTAL TIl\lE 

TOTAL # OF DISC I/0=2937 

FLOATING POINT OPERATIONS 
(software subroutines) 

# ADD'S = 157,984 

# MULT'S= 60,225 

TOTAL #=218,209 

(1.46 msec/ ADD) 

(1.36 msec/::.YIUL T) 

TOTAL FLOATING POINT TIME 
= 5.22 MINUTES 
= 26.1 PERCENT OF TOTAL TIME 

DATA STRUCTURE OPERATIONS 

TOTAL # OPERATIONS (FUNCTION CALLS) 
=393,339 

TOTAL D.S. OPERATION TIME 
= 7.0 MINUTES 
= 35 PERCENT OF TOTAL TIl\lE 

OTHER COMPUTE TIME 
(EXCLUDING ABOVE) 

= 5.07 MINUTES 
=25.3 PERCENT OF TOTAL TIME 

The entry labeled "OTHER TE\lE" accounts for 
the decision making time of the picture compiler. The 
average instruction execution time of the 70/25 is ap­
proximately 20 J.lsec. Thus, in twenty minutes this is 
about 2.4 X 109 executed instructions. These numbers 
show two significant things. First, the amount of in­
formation contained in integrated circuit artwork is 
enormous. Second, it is important to notice that the 
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disc I/O time, even with the very simplest of file man­
agement algorithms as used in this measurement, is 
relatively small. This is impressive considering that the 
entire GOLD system operates on both the data struc­
ture and all programs in a partitioned (virtual memory) 
environment. 

The same picture compilation was rerun using a file 
management algorithm that manipulates two data 
structure segments in core at a time. This algorithm re­
duced the number of disc I/O's to 759 and a total disc 
time of .7 minutes. This reduced the overall compile 
time to 18 minutes, such that the disc I/O time was 
only 3.9 percent of the total compilation time. While this 
algorithm reduces the disc I/O time significantly, the 
overall effect on the system time is small. The conclu­
sion to be drawn from this is that the GOLD system 
is not disc limited as one might anticipate from a virtual 
memory system. Part of this is due to the design of the 
data structure, part to the design of the file manage­
ment routines, part to the disc file organization, and 
part due to the fact that the 70/25 is a moderate, if not 
slow, computer. To explain the latter point in more de­
tail, it is possible that many of the modern mini­
computers could decrease the average instruction exe­
cution time by roughly an order of magnitude. Some 
have hardware push down stacks which would signifi­
cantly decrease the time, perhaps even more than the 
ten to one reduction in the faster instruction set. In 
any case a faster instruction speed would decrease the 
PRSP and OTHER TIlVIE by a factor of ten but would 
harve no effect on the disc I/O time. The times for the 
various items would then be as follows: 

DISC I/O 

# READS=759 
UNCHANGED 

TOTAL DISC TIME 

=.71 MINUTES = 12.8 PERCENT 

FLOATING POINT OPERATIONS 

# ADD'S = 157,984 
# MULT'S= 60,225 

TOTAL #=218,209 

TOTAL F.P. TIME 

(1 msec/ADD) 
(1 msec/1VIULT) 

= 3.62 MINUTES = 65.3 PERCENT 

PRSP FUNCTIONS 

TOTAL # OPERATIONS=393,339 

TOTAL TIME 
=.7 MINUTES = 12.8 PERCENT 

OTHER TIME 
=.51 MINUTES=9.1 PERCENT 

TOTAL COMPILATION TIME 
= 5.54 MINUTES 

These last figures show that if the computer was a 
modern mini-computer, the disc I/O time would be­
come a somewhat more significant part of the system 
time but would still be relatively unimportant. Another 
way of viewing this is that if the system described 
above had infinite core, such that the disc I/O time was 
zero, it would only be 12.8 percent (disc I/O part) 
faster. 

These figures also show the usefulness of floating 
point hardware. If the system described above had 10 
,usec floating point hardware instructions, the total 
floating point time would be 2.18 seconds instead of the 
3.62 minutes required by the software floating point 
operations. This would increase the overall speed of the 
system by approximately 65 percent and reduce the 
total compilation time to less than 2 minutes. Thus, a 
modern mini-computer with floating point hardware 
would have more impact than a mini-computer with a 
large memory capacity. 

One of the problems generally encountered in the 
utilization of list type data structures is the large 
amount of overhead storage required due to pointers, 
etc. In the GOLD system significant effort has gone 
into creating an efficient data structure while maintain­
ing the advantages of list type structures. In many list 
type data structures it is not uncommon for the data 
structure to require 10 times more storage than the 
raw data alone (canonical form). The GOLD data 
structure, for the benchmark integrated circuit previ­
ously described, requires 71,677 bytes of storage. The 
canonical raw data form (non-structured) requires 
25,158 bytes of storage. This is a ratio of 2.8 to 1, 
which shows that the data structure is rather efficient 
in storage utilization. Recent work in this area has re­
sulted in relatively simple techniques (simple in imple­
mentation) which will reduce the storage from 71,677 
bytes to approximately 56,000 bytes, and would make 
the ratio 2.2 to 1. The size of data structures at this 
point presents little problem to the GOLD system. The 
mask description for the benchmark integrated circuit 
is one of the more complicated circuits being designed 



yet only uses about 15 percent of the available data 
structure storage. 

SUMMARY 

The GOLD system has been utilized on an experi­
mental basis for about one year. Most users have found 
the system easy to learn, and to use. However, all users 
have required some training, to varying degrees, to 
utilize the system's more sophisticated capabilities. 

We have overcome the basic inaccuracies of the dis­
play hardware by providing continual numeric checks, 
a quantized user grid, and z~oming ability. The power 
of GOLD is illustrated by building block, which gives 
the ability to work with functional units as a whole, and 
to define new functional units dynamically. Thus, the 
user can, for example, apply all the graphical manipula­
tions to a line or to the transistor it belongs to, or to 
the circuit the transistor belongs to, etc. 

The system offers very rapid and convenient inter­
action and is compatible with all other parts of the 
overall CAD system for integrated circuit artwork. We 
believe the GOLD system proves that it is possible and 
economically desirable to utilize a small computer on a 
stand-alone basis to provide a large, sophisticated, 
hierarchical data structure and graphical system. 
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Establishing lower bounds on algorithms-A survey 

by E. M. REINGOLD 

University of Illinois 
Urbana, Illinois 

INTRODUCTION 

Algorithms for various computations have been known 
and studied for centuries, but it is only recently that 
much theoretical attention has been devoted to the 
analysis of algorithms. Turing machines and recursive 
functions were the first approaches, but these models 
which provide much interesting mathematics, do no~ 
look at the problem from a practical standpoint. In 
"real" computing, no one uses Turing machines to 
evaluate polynomials or to multiply matrices, and 
little of practical significance is obtained from that 
approach. On the other hand, recent work has led to 
more. realistic models and, correspondingly, to more 
practICal results. Most of the results cannot be con­
sidered to be truly practical, but, all of them were 
motivated by practical considerations. 

This survey is concerned with efforts to establish 
lower bounds on the number of operations required to 
solve. various practically inspired problems; in particular 
we dISCUSS the problems of sorting, searching, merging, 
root finding, polynomial evaluation, matrix multi­
plication, and many others. No theorems will be 
rigorously proved; for some the idea of the proof will 
be presented, and most will only be stated. The reader 
is ~rged ~o p.ursue in the literature the details of any 
tOPICS whICh Interest him. 

In the establishment of lower bounds on algorithms 
we must consider the following questions: 

• What function or class of functions is to be 
computed? 

• What class of algorithms is allowed? 
• With what are we measuring lower bounds? 

The answers to the last two of these questions are 
inherently interwoven with the answer to the first 
question. In analyzing sorting we will consider different 
t?ings impo~tant than in analyzing matrix multiplica­
tIOn, and so In each case we will allow different kinds of 
algorithms and we will measure their efficiency in 
different ways. 
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Even for a specific answer to the first question, how 
the efficiency of an algorithm should be measured is not 
obvious. Ideally, we would like to assign a realistic cost 
to every operation performed; such a model usually 
makes the establishment of lower bounds too difficult. 
To simplify the problem, we isolate the "key" opera­
tions and ignore all others. There are two ways to count 
the operations used by an algorithm: the number used 
on the worst case input Ot the expected number used 
on a random input, assuming some distribution of the 
inputs. An algorithm is minimax optimal or worst case 
optimal if no algorithm is more efficient in the worst 
case; an algorithm is minimean optimal or average case 
optimal if no algorithm is more efficient in the average 
case. 

It should be noted that some of the results discussed 
here have never been formally published, but have 
become a part of the "folklore" of the area; in such 
cases the citation will be to the place they first found 
th~ir way i~to print-usually a textbook. ::V[oreover, 
thIS survey IS not complete: to include every known 
result would give the paper undue length; in addition, 
many results undoubtedly remain unnoticed buried in 
. ' Journals, technical reports, and unpublished manu-
scripts. 

NOTATION 

The floor and ceiling operations are defined as usual: 
Lx J is the greatest integer less than or equal to x and 
r x l is the least integer greater than or equal to ;. We 
use the standard notation for the order of magnitude 
of a function: fen) =O(g(n)) if there is a constant 
k> 0 such that 

If the limit 

. fen) 
hmsup-- =k 

n ..... oo g (n) . 

lim fen) =k 
n ..... oo g (n) 



472 Spring Joint Computer Conference, 1972 

Figure I-An extended binary tree representing the computation 
of the median of three numbers x, y, and z 

exists and k = 1, we say that f (n) is asymptotic to g (n) , 
written f(n)r-..;g(n); if k=O then we say that 
f(n) =O(g(n)). 

The symbol "lg" is used to represent logarithms base 
2, while "In" is used for natural logarithms. We use 
"log" as the generic term when the base is unimportant. 

CO~VIBINATORIAL PROBLEMS 

In studying the complexity of algorithms for com­
binatorial problems such as sorting, finding the median, 
merging, and others, we will allow algorithms to have 
only pairwise, errorless comparisons and no other 
operations. It is convenient to represent the algorithms 
as extended binary trees (like flowcharts), an example of 
which is shown in Figure 1. Each internal node, drawn 
as a circle, represents a comparison between two 
numbers (inputs or constants) and each external node, 
drawn as a rectangle, represents a possible outcome of 
the algorithm. Thus Figure 1 is the tree corresponding 
to an algorithm to find the median of three numbers 
x, y, and z. 

The height of the tree corresponds to the number of 
comparisons used in the worst'case. The external path 
length of a tree is defined as the sum of the distances 
from the root to each external node; thus if there are n 
external nodes, the external path length is n times the 
average number of compares, assuming all outcomes are 
equally probable. Both the worst case and the average 
case provide reasonable measures of efficiency. The 
following are useful: 

Lemma 1: 

The minimum external path length of an extended 
binary tree with n external nodes is nrIgn l+n-2flgnl. 

Lemma 2: 

The minimum height of an extended binary tree with 
n external nodes is rIgn l. 

A complete discussion of most of the results discussed 
below can be found in Knuth. Kn72 

/ 

Sorting 

Suppose we are given a set {Xl, ... , Xn} ; what is the 
minimum number of comparisons required to determine 
the permutation 7f' so that X'lT"(I) <Xr.(2) < ... <X'lT"(n)? Let 
S ( n) denote the minimum number of comparisons 
needed to rank n distinct inputs according to some 
ordering, then we have 

Theorem 1: 

rIgn!l~S(n) ~1+nLlgnJ and thus using Stirling's 
approximation we have that S(n)r-..;nLlgnJ. 

The upper bound follows from some of the better 
algorithms for sorting, for example, the binary insertion 
sort first observed by SteinhausStei50 before the advent 
of computer sorting. The lower bound is derived from 
Lemma 2 and the observation that each permutation 
of the n inputs must cause termination at a different 
external node of the tree. This is a "standard" informa­
tion theoretic argument which says that given k outputs 
at least rIgk l binary decisions are required to dis­
tinguish between them. This argument appears to 
have been discovered independently by several authors 
but first appeared in Steinhaus. Stei58 

There has been considerable work in refining the 
upper bound. Most notably, Ford and JohnsonFo59 have 
developed a method of sorting which HadianHa69a 
showed required 

comparisons to sort n inputs in the worst case. 
KnuthKn72 has called this the merge-insertion sort. 
Comparing Hadian's result with Theorem 1 we find 
that the merge-insertion sort is optimal for n:S; 11 and 
n= 20,21 but that it requires more than f!gn!l com­
parisons for other values of n. Wells, We65 using a com­
puter, has shown that it is also optimal when n= 12. 
Summarizing, we have 

Theorem 2: 

S (n) = :t rIg ~ kl for n:S; 12 and n= 20, 21. 
k=l 4 

Define S(n) to be the minimum average number of 
comparisons required to sort n items. As before, we 



must have n! external nodes and so by Lemma. 1 

- 1 
Sen) 2:: - (nfIgn 1+n-2[lgn1). 

n 

Letting fIgn 1 = Ign+O, o:=:; 0 < 1 this becomes 

Since in [0, IJ the function 1+0-2° has a range of 
[0, .08+ J we have 

Theorem 3: 

Sen) 2:: Ign!+O(I) =n Ign-n/ln2+0(logn). 

Theorem 3 was first observed by GieasonGl56 and first 
published by Kislicyn. Kis62 ,Kis63 

Searching 

If we are given a sorted set Xl < X2 < ... < Xn, how 
difficult is it to determine in which of the n+ 1 ranges y 
lies? Let sen) be the minimum number of comparisons 
to do the searching. The binary search algorithm, first 
noted by SteinhausStei50 requires L 19n J + 1 comparisons. 
Applying Lemma 2, we see that fIg (n+ 1) 1 comparisons 
is a lower bound; since fIg(n+l) 1= L!gnJ+l, we know 
that binary search is optimal in the worst case. 

Sandeliussa61 noted that binary search is also optimal 
in the average case: applying Lemma 1 as before we 
see that the minimum possible average is 19 (n + 1) + 0 ( 1) 
and binary search achieves that bound. 

A somewhat related problem is the discovery of the 
single counterfeit coin, either heavier or lighter, in a 
group of n coins; this problem is well known in the 
literature of recreational mathematics. One is usually 
allowed to use a balance scale and hence the compari­
sons are of linear functions, over {-I, 0, I}, of the 
inputs rather than just pairwise comparisons. One 
optimality result for this problem is due to SmithSm47 

and he has shown that when n=(3k -l)/2, k such 
comparisons are necessary and sufficient. 

Merging 

Given two sorted sets Al <A2 <·· ·<Am and 
BI <B2<··· <Bn (all distinct) what is the best way 
to merge these into a single sorted set Xl < X2 < ... < Xm+n ? 
Since the n+m elements are all distinct, there are 
(m~n) ways the A's may appear among the B's. Thus 
by Lemma 2, if M (n, m) is the minimum number of 
comparisons required to do the merging, 

A simple upper bound on M(n, m) is m+n-l since 
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the "usual" merging algorithm outputs at least one 
element for each comparison; the last element requires 
no comparisons. Hwang and LinKn72 have developed a 
much better merging algorithm which requires 

m+ l~J -1+tm where m:=:;n and t= llg:J 

since this is less than ng(m~n) 1+ min(m, n) we have 

Theorem 4: 

When m = 1, merging becomes a simple search and so 

M(I, n) =Ilg(n+l)l. 

When m = 2, the analysis of merging is quite difficult; 
GrahamGr71 and Hwang and LinHw71 have independently 
shown that 

M(2, n) = rig 1: (n+1) 1 + rig ~~ (n+1) 1· 
By the construction of what Knuth Kn72 calls an 

oracle, Karp and Graham independently showed that 

M(n, n) =2n-1. 

An oracle is a hypothetical device which constructs a 
worst case for any possible algorithm; in other \vords, 
it acts as an adversary to the algorithm, forcing the 
algorithm to do the maximum possible work. The 
oracle in this case is A,i <B j if and only if i <j. 

Selection 

Suppose that there are n inputs and we want to know 
which is the kth best in a ranking; Hadian and SobelHa69b 
have termed this the "selection problem." On the other 
hand, if we wish to know the k best and their ranking, 
they call this the "ordering problem."Ha7o When k= 1 
and k = 2, the ordering and selection problems coincide 
and a minimal solution for one is also a minimal solution 
for the other. 

The case k = 1 is trivial and a simple induction 
argument shows that n-l comparisons are required. 
RabinRa71 has shown that in the case k = 1, that is, 
computing the maximum, n-l comparisons are 
necessary even if comparisons may be made between 
any analytic functions of the inputs. For k = 2, the 
problem of determining the minimal number of com­
parisons was first posed by Steinhaus in 1929. 
Schreierschr32 first stat~d the solution to this problem, 
but with an incorrect proof. Slupeckisl51 gave another 
incorrect proof. The first correct proof was given by 
KislicynKiS64 by means of an oracle; he proved that 
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n-2+Dgn 1 comparisons were necessary and sufficient 
to find the second largest element in a set. 

Recently, Blum, Floyd, Pratt, Rivest and Tarjan 
(personal communication) have developed a remark­
able algorithm which finds the ~th largest element in a 
set of n elements in 0 (n) comparisons in the worst 
case, regardless of k. Prior to the development of this 
algorithm it was commonly conjectured that the median 
of a set of n elements could not be computed in fewer 
than 0 (n logn) comparisons in the worst case. It was 
known Van70 that it could be done by an algorithm in 
which the expected number of comparisons was 0 (n) ; 
but in the worst case this algorithm requires more than 
o (n) comparisons. 

Summarizing these results, let Vk(n) be the smallest 
number of comparisons required to find the kth of n 
elements, then we have 

Theorem 5: 

(a) V 1(n)=n-1 
(b) V2 (n) =n-2+Dgnl 
(c) Vk(n) =O(n) for all k. 

PohlPo69 approached the selection problem in 
an entirely different way, showing that at least 
minCk, n-k+1) storage locations are required to 
determine the kth of n elements. 

ALGEBRAIC PROBLEMS 

In this section we will discuss the minimum number 
of arithmetic operations required to compute various 
functions. The arithmetic operations we will allow are 
addition, subtraction, multiplication, and division; no 
other operations (comparisons, exponentiation, etc.) 
will be allowed. To make an analysis, we need a precise 
definition of what algorithms are allowed. 

Let 0 denote any of the arithmetic operations addi­
tion, subtraction, multiplication or division. A scheme 
is defined as a sequence of operations 

i=1,2, ... ,m 

where each Qi and Ri is either a constant, an input 
value, or a Pi where j < i. 

Polynomial evaluation 

Suppose we are given a number x and asked to com­
pute xn for a fixed n, by a scheme as described above; 
what is the minimum number of steps required? 
Starting with a sufficiently large x, we can prove by 
induction that after k steps of a scheme the largest 
number obtainable is X2k which is computed by squaring 

x, squaring the result, and so on. Thus we must have 

x2k~xn 

and hence 
k~ngnl. 

Thus at least rIgn 1 multiplications are required to 
compute xn from x. Proving that this minimum is 
asymptotically achievable is more difficult. The follow­
ing theorem is due to Brauer;Br39.Kn69 Val'skiiVa159 
arrived independently at the same result. 

Theorem 6: 

Let m (n) be the least number of multiplications 
required to compute xn for given values of x, then 
men) '""Dgn l. 

This problem readily generalizes to: What is the 
smallest number of arithmetic operations needed to 
evaluate the nth degree polynomial 

for given values of x? Ostrowski 0854 was the first to 
suggest that this problem be analyzed, and he gave 
results for quadratic and cubic polynomials. 

When it is known a priori that the values of x given 
will be equally spaced, a method using finite differences 
might be most convenient; however, we will assume 
that the values of x will be arbitrary. The method 
usually used is Horner's method: 

fo=an 

r=O, 1, ... , n-1, 

which requires n additions and n multiplications. Can 
this be improved? One can easily find specific poly­
nomials for which there is a better method; for example 

f(x) = 1+x+2x2+x3+x4 

which can be evaluated in two multiplications and two 
additions by proceeding as follows: 

x2, x2+1, (x2+1) ((x2+1)+x). 

However, we want a more general method, one which 
will work for all polynomials and for all values of x. 
Clearly Horner's method is a valid scheme for poly­
nomial evaluation, and in fact, Horner's method is 
optimal, in the sense that it requires the fewest opera­
tions necessary in the type of scheme allowed, for 
we have: 

Theorem 7: 

Any scheme which can evaluate an arbitrary nth 
degree polynomial has at least n additions/subtractions 
and n mUltiplications/divisions. 



In this theorem, the necessity of the n additions/sub­
tractions was shown by BeiagaBe58 ,Be61,Kn69 while the 
necessity of the n multiplications/divisions is due to 
Pan.Pan66 Not only is Horner's method optimal, but it is 
uniquely optimal: BorodinBo71 has shown that any 
scheme using only those 2n operations is essentially 
Horner's method. 

A different approach can be taken if a large number 
of values P (x) are required. Consider the following 
example, due to Todd. Tod55 We want to evaluate the 
polynomial 

P = x6+ Ax5+ BX4+ Cx3 + DX2+ Ex+ F. 

Define the following polynomials 

P1=x2+ax=x(a+x) 

P2= (P1+x+b) (P1+c) 

P3 = (P2+d) (P1+e) 

and determine a, b, c, d, e, and! such that P=P3+f. 
This can be done by the solution of linear equations and 
a single quadratic equation. Once these equations have 
been solved, P can be evaluated using only three 
multiplications and seven additions using the sequence 

PI, P2, P3, P=P3+!, 

a savings of three multiplications at the expense of one 
addition and some "preconditioning" of the coefficients. 
Since multiplication is usually much slower than 
addition and since we sometimes want the same poly­
nomial evaluated at many arbitrarily spaced points, 
the above method can represent a significant improve­
ment over Horner's method. 

A scheme with preconditioning is formally defined as 
a scheme in which the Qi and Ri are, in addition, allowed 
to be any real functions of the coefficients of the poly­
nomial to be evaluated. The scheme due to Todd 
above, is an example of such preconditioning. The idea 
of preconditioning is due to lVlotzkin Mot55a and he 
showed that if a scheme with preconditioning computes 
all nth degree polynomials then it contains at least 
L(n+ 1) /2J multiplications.Kn69 Combining this result 
with the full strength of the result of Belaga used in 
Theorem 7, we have 

Theorem 8: 

Any scheme with preconditioning which can evalu­
ate an arbitrary nth degree polynomial has at least 
L(n+ 1) /2J multiplications and at least n additions/ 
subtractions. 

Much effort has been spent to find a scheme with 
preconditioning which attains the lower bounds of 
Theorem 8. Early papers by Motzkin Mot55a and 
KnuthKn62 gave methods which evaluate polynomials of 
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degrees four, five, and six in L (n+ 1) /2J+ 1 multi­
plications and n+1 additions; PanPan6I,Pan65 has given 
similar methods for n::::; 12. In each of these cases, the 
methods are applicable only for a particular value of n. 
PanPan6I gives a method valid for n ~ 2 which requires 
L(n+1)/2J+1 multiplications and n+2 additions/ 
subtractions and in Reference Pan59 he gives a method 
for n~5 for which Ln/2J+2 multiplications and n+l' 
additions/subtractions are needed. For n~3, KnuthKn62 

gives a method using n+ 1 additions/subtractions and 
the number of multiplications varies between 
L (n+ 1) /2J+ 1 and approximately ~n. BelagaBe61 

proved that L(n+1)/2J+1 multiplications and n+1 
additions suffice to evaluate any nth degree polynomial, 
but these operations may involve complex numbers. 
Finally, EveEv64 modified Knuth's method to give a 
method requiring Ln/2J+2 multiplications and n 
additions/subtractions, all of which involve only real 
numbers. The preconditioning in Eve's algorithm is, 
unfortunately, irrational; Rabin and Winograd (per­
sonal communication) have developed a method in 
which the preconditioning involves only rational 
operations, but his method then requires about 
r n/2+ 19n l multiplications to evaluate a polynomial. 

The best general algorithm for polynomial evaluation, 
Eve's, requires only the minimum number of additions/ 
subtractions, however, it unfortunately requires one 
more than the minimum number of multiplications. 
It is knownKn69 that when n is odd both of these 
lower bounds cannot be simultaneously achieved, and 
a similar result holds when n = 4 and n = 6. There 
is no known general algorithm using Ln/2J+ 1 multi­
plications when n-8, although such methods are 
known for n = 4, 6, and 8, where the algorithms require 
one or two extra addition/ subtraction opera­
tions. Kn69,Pan62 

The above optimality theorems show that no one 
method will work for all polynomials of degree n unless 
it has a certain minimum number of operations, but 
there are some "special" polynomials which can be 
evaluated far more rapidly, for example, a X I6 requires 
only five multiplications and no additions', instead of 
the minimums given by Theorems 7 and 8. There are 
"few" such polynomials for BeiagaBe6I has shown 

Theorem 9: 

The set of nth degree polynomials which can be 
evaluated by schemes with preconditioning in fewer 
operations than specified in Theorem 7 has Lebesgue 

/ measure zero in the space of all nth degree polynomials. 
PanPan62 has proved a similar result for schemes 

without preconditioning. 
IVlost of these results have been generalized to 

polynomials of many variables and to rational func-
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tions. In particular, such results are given in References 
Be58, Mot55b, Os54, and Pan62. Some of the results 
have also been obtained for the problem of simul­
taneously evaluating several polynomials in the same 
variablePan66 and for the specific case of the simul­
taneous evaluation of a polynomial and its first 
derivative. Kn69, Mu71a 

Other activity in this area has concerned the analysis 
of polynomial evaluation when an arbitrary number of 
arithmetic operations can be performed in parallel; 
see, for example, References Ma71 and Mu71b. Also 
of interest is polynomial evaluation when the coeffi­
cients are rational; Paterson and StockmeyerPat71 have 
shown that 0 ( yin) operations are necessary an~ 
sufficient for the evaluation of an nth d!gree polynomial. 

Linear algebra 

By generalizing the notions in the above results to 
arbitrary fields, WinogradWi70 proved some very elegant 
theorems. Let F be a field and let Xl, X2, ••• , Xn be a,set 
of variables. The question then becomes, what is the 
minimum number of field operations needed to compute 
the m field elements 

i=I, ... , m. 

Winograd gave a very general definition of a scheme 
without . preconditioning, and considered only the 
number of multiplications/divisions. He showed: 

Theorem 10: 

Let <I> be an m by n matrix whose elements are in the 
field F, let (j> be an m vector of elements in F, and let X 

denote the n column vector (Xl, ... , Xn) so that 

<l>x+(j>E F (Xl, ... , Xn) m. 

If there are u column vectors in <I> such that no non­
trivial linear combination of them (over F) is in Fm, 
then any scheme, without preconditioning, computing 
<l>x+(j> requires at least u multiplications/divisions. 

Pan's result on the number of multiplications needed 
for polynomial evaluation without preconditioning 
(part of Theorem 7) follows from this theorem as a 
corollary, for here <I> is the 1 by n+ 1 matrix 

and the columns of<p are all linearly independent so 
that u=n. 

We also have another corollary: 

Theorem 11: 

Let X be a p by q matrix and let y be a q column 
vector. Then to compute Xy requires at least pq 

multiplications/ divisions and so the ordinary method 
of computing X y minimizes the number of multiplica­
tions/ divisions. 

This follows from Theorem 10 by defining 

{

Yk if j=iq+k 
<l>ij = 

o otherwise 

and letting X = (xu, ... , Xl q, X21, ... , X2q, ••• , Xpq) • 

FiducciaFid71 proved a theorem similar to Winograd's, 
but involvi~g submatrices rather than columns: 

Theorem 12: 

Let <1>, (j>, X and F be as in Theorem 10. If <I> has a 
u by v sub matrix S such that there are no nontrivial 
vectors a, artd {3 such that as{3 is in zero, then at least 
u+v-l multiplications/divisions are required to com­
pute <l>x+(j>. 

Immediate corollaries to this theorem are that at 
least three real multiplications are required to compute 
the product of two complex numbers (also proved by 
Munro Mu71a ) and that at least seven real multiplications 
are required to compute the product of two quaternions. 

WinogradWi70 similarly generalized Motzkin's result 
(part of Theorem 8) on the number of multiplications 
when preconditioning is allowed: 

Theorem 13: 

Let <1>, (j>, X and F be as in Theorem 10. If there are 
u column vectors in <I> such that no nontrivial linear 
combination of them (over F) is in Fm, then any scheme 
with preconditioning computing <l>x+(j> requires at 
least L (u+ 1) /2 J multiplications/divisions. 

Motzkin's result follows from this exactly as Pan's 
followed from Theorem 10, and we have a corollary 
similar to Theorem 11: 

Theorem 14: 

Let X and y be as in Theorem 11, then every algorithm 
for computing Xy requires at least pq/2 multiplications/ 
divisions which do not depend only on the entries of X 
or only on the entries of y. 

WinogradWi70 showed the possibility of approaching 
the lower bound given in Theorem 14, by giving an 
algorithm, which uses preconditioning, to compute Xy 
in prq/21+Lq/2J multiplications; this algorithm then 
leads to an algorithm to multiply two n by n matrices 
in n2rn/21+2nLn/2J or approximately n3/2 multi­
plications; Winograd's result is somewhat surprising 



since the usual method of matrix multiplication, that 
is by the definition, requires n3 multiplications, and it 
had not been thought that this could be diminished. 

This work was soon followed by an astonishing 
result of Strassen,Str69 who showed that two n by n 
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matrices could be multiplied using only 4.7nIg7 (about 
4.7n2 .81 ) arithmetic operations. Strassen's method is 
based on a clever trick by which 2 by 2 matrices are 
multiplied using only seven scalar multiplications (in­
stead of eight) and eighteen scalar additions: 

c bXW X)=( (a+d) (w+z) + (b-d) (y+z) +d(y-w) - (a+b)z(a+b)z+a(x-z) ) 

d y z (c+d)w+d(y-w) (a+d) (w+z) +a(x-z) - (c+d)w+ (c-a) (w+x) 

Since this trick does not make use of commutivity of 
multiplication, it follows that the method generalizes to 
higher order matrices by decomposing them into blocks. 
Strassen goes on to apply his methods to matrix inver­
sion, computing the determinant, and solving linear 
systems of equations and he shows that each of these 
can be done in O(nIg7) arithmetic operations, provided 
certain sub matrices are nonsingular. 

It is not, in general, known whether or not Strassen's 
method is optimal. Hopcroft and KerrHop71a have worked 
on this problem and they give a generalization of 
Strassen's method for multiplying m by 2 times 2 by n 
matrices which requires r(3m+l)n/2l multiplications. 
They then show that this number of multiplications is 
minimal for the cases n = m = 3 and m = 2, n arbitrary; 
the optimality of Strassen's method for 2 by 2 matrices 
follows immediately from their results. 

Several years prior to the work of Strassen and 
Winograd, Kljuev and Kokovkin-ShcherbakK165 had 
approached the problem of the solution of an n by n 
linear system in a different manner. Using a detailed 
examination of the number and placement of zeroes in 
the matrix, they proved 

Theorem 15: 

If only operations on entire rows are permitted then 
7~n(n-l) (2n-l) +n2 additions/subtractions and 
%n(n2+3n-l) multiplications/divisions are required 
to solve an n by n system of linear equations. 

Since these are exactly the numbers of operations 
required by Gaussian elimination, we have as a corollary 
that Gaussian elimination is optimal, when one is 
restricted to operating on entire rows. Strassen's 
method is faster, but it uses operations on sub matrices 
rather than on rows. In References K166, K167, Ko68, 
and K070 Kljuev and Kokovkin-Shcherbak extended 
their previous work and by similar methods established 
lower bounds for the number of arithmetic operations 
required for the transformation of matrices. 

MISCELLANEOUS PROBLE:\;J:S 

This section is devoted to a potpourri of results, 
which stand more or less alone, without a general 
frame of reference. 

Nonlinear equations 

Given a nonlinear equation, the problem is to 
approximate the solution to within a prescribed ac­
curacy using arithmetic operations. Vashakmadze Vas69 
has established some lower bounds on the minimum 
number of operations necessary to approximate solu­
tions to certain differential equations, and Emel'yanov 
and Il'inEm67 studied the same question for certain 
integral equations. 

Various results have been discovered concerning the 
optimality of iterative root finding methods such as the 
secant method or N e"wton's method. For example, 
RissanenRi71 has shown that the secant method is, in a 
sense, optimal among all algorithms which use the 
"same amount of information" and which also satisfy a 
certain "smoothness" condition. Much work has also 
been done to find the best starting values for Newton's 
method applied to square roots; for example, References 
Mou67, Kin69, and Ster69. Recently, Paterson (per­
sonal communication), using the "standard" definition 
of the efficiency of an iterative scheme, has shown 
Newton's method to be optimal, for the calculation of 
square roots (in the sense that no rational scheme can 
have greater efficiency) . 

Scalar arithmetic 

So far, we have been concerned only with how many 
operations need to be performed, not considering the 
time required for individual operations. The usual 
method for adding/subtracting two n digit numbers 
requires time proportional to n and the usual method 
of multiplication requires time proportional to n2• Can 
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either of these methods be improved upon? For 
addition/subtraction no substantial improvement is 
possible since the usual time is about n "cycles," and 
there are 2n inputs (digits) while on each cycle one can 
use at most two of the inputs. Multiplication, however, 
can be done more quickly than the usual method. 
Karatsuba and OfmanKara62 developed a method which 
requires time proportional to n 1g3 :::::n1.57. ToomToo63 
generalized this algorithm and proved that for all 
E> 0 there is a multiplication algorithm such that the 
time required to multiply two n digit numbers is 
O(nHE). Schonhage and StrassenScho71 devised a 
different algorithm which requires at most time 
o (n logn log logn) ; this is the most efficient algorithm 
known, but it has not been proved optimal. 

The only non-trivial optimality result is due to 
Cook and Aanderaa Co69 where they proved that on a 
bounded activity machine, an on-line "super" Turing 
machine, multiplication cannot be performed in less 
than time O(n logn/ (log logn)2). 

Ofmanof62 introduced the idea of studying the delay 
time of a circuit and the number of elements in a circuit 
which computes some given function, say addition. 
Toom Too63 extended this work to multiplication and 
WinogradWi65 ,wi67 and Spirasp69 derived lower bounds on 
the number of delays and elements required for various 
operations. Elementary discussions of some of this 
material appears in References Arb69 and Wi68. This 
work is not really germane to the present discussion 
since it deals with circuitry rather than computational 
schemes of a programmable nature. 

Graphs 

Other than information theory arguments, there is 
only one known technique for establishing lower bounds 
on graph algorithms: if the graph of n nodes is presented 
as an n by n binary connection matrix then 0 (n2) 
operations are needed to examine all of the arcs of a 
graph. Based on this observation, Holt and ReingoldH0172 
have shown that determining shortest paths, the 
existence of cycles, and connectedness requires 0(n2) 
operations for graphs with n nodes. These results show 
that the "usual" 0 (n2) algorithms for these problems 
are optimal to within a multiplicative constant factor, 
when the graph is represented as a connection matrix. 

Hopcroft and TarjanHop71b have devised an O(n logn) 
algorithm which determines whether or not an n node 
graph is planar; TarjanTa71 has improved this to O(n). 
These algorithms do not violate the lower bound of 
o (n2) since a planar graph of n nodes can contain at 
most 3n - 2 arcs; additionally, their algorithm requires 
that the graph be presented in a certain linked list 
format, rather than as a connection matrix. 

Computing the transitive closure of a graph is another 
well-known problem in this area. Warshallwa62 gave an 
o (n3) algorithm for computing the transitive closure of 
a graph from its connection matrix. FurmanFu70 applied 
Strassen's method of matrix multiplication to that 
same computation obtaining an 0[n1g7 (logn) 2+ EJ; 
Arlazarov, Dinic, Kronrod, and FaradzhevAr170 de­
veloped another 0(n3 ) algorithm. Recently, it has 
been shown Mu71c,Fis71 that the problems of doing Boolean 
matrix multiplication and of computing the transitive 
closure are equivalent to one another; that is, given an 
o (f) algorithm to multiply Boolean matrices, we can 
derive an O( f) algorithm for transitive closure, and 
vice versa. In connection with this result, an 
o (n 197 (logn) HE) algorithm is developed. 

Harper and Savage (unpublished) have shown that 
the problem of matching bipartite graphs with n nodes 
is at least 0 (n3 ) in complexity when the computation is 
done by combinatorial switching network. In contrast 
with this, Hopcroft and KarpHop71c have developed an 
o (n\/n) algorithm, using a different model of com­
putation. 

Maximization of unimodal functions 

A unimodal function of one variable is function f 
which has a unique maximum x; it is characterized by 

x<y<x=} f(x) <f(y) 

x>y>x=} f(x) <f(y). 

Suppose we want to locate, to within a unit interval, 
this unique maximum; what is the smallest number of 
function evaluations required? This question was first 
studied by Kiefer.Kie53,Kie57 He showed that if we are to 
locate the maximum over an interval [0, LJ and 
Fn~L<Fn+1' where Fj is the jth Fibonacci number, 
then n+ 1 function evaluations are necessary and 
sufficient. Karp and MirankerKarp68 characterized 
optimal strategies when parallel function evaluations 
are allowed. 
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Analysis of combinatory algorithms­
A sample of current methodology 

by W. D. FRAZER 

IBM T. J. Watson Research Center 
Yorktown Heights, New York 

INTRODUCTION 

The study of the computational efficiency and inherent 
limitations of algorithms for computer solution of 
problems drawn from classical continuous mathematics 
has been with us as long as general purpose computers 
themselves. Similar studies of algorithms of other kinds, 
however, have been sporadic and isolated until fairly 
recently. With the growing realization of the critical 
role played by combinatory algorithms in any instance 
in which the computer is employed as a logical decision 
maker, however, has come intensive and widespread 
interest in understanding such algorithms. Further, 
these studies have progressed to the point where 
patterns in analysis have begun to emerge and a sum­
mary seems in order. We shall focus our attention here 
on analytic approaches and methodology, rather than 
on the specifics of the results obtained. For a summary 
of the latter, the reader is referred to a companion paper 
elsewhere in this volume.I6 

To begin with, one might consider what constitutes a 
combinatory algorithm and what does not, but rather 
than restrict the nature of the analyses we shall con­
sider, let us say merely that we shall not discuss 
problems in numerical analysis, in the theory of 
automata, or in arithmetic and leave it at that. We 
shall take it as our primary concern to try to summarize 
the kinds of information people have attempted to 
learn about various algorithms, and then indicate some 
of the tools and techniques they have employed. An 
effort will be made to point out common threads where 
possible, and to indicate potential directions for future 
development where this seems appropriate. As illustra­
tive vehicles for the discussion we shall focus on some 
simple, but basic, examples. To the best of our knowl­
edge, the analyses and proofs (as distinct from the 
results) are new except where noted. 

483 

Broadly speaking, analyses of combinatory algorithms 
can be classified in two "dimensions," viz., 

Analysis of a 
Analysis of a Class of 
Single Algorithm Algorithms 

Analysis of a Single 
Case (usually 
worst or best) 
Analysis of a Prob- 1--------+------1 
ability Distribu-
tion of Cases 

The kinds of information sought through analysis are 
typically: (a) Does the algorithm(s) do what is 
desired? (b) How does it (or they) perform if all goes 
favorably or unfavorably? (c) How good is perfor­
mance "on the average"?, and (much less frequently) 
(d) How average is average-i.e., what is the variance? 

Of course, the study of algorithm performance pre­
supposes a choice of a figure of merit for that perfor­
mance. This choice is frequently quite difficult to make 
in a manner which reflects adequately the amount of 
real computation involved. In the case of algorithms for 
sorting, for. example, a common figure of merit is the 
number of comparisons made. This measure is a valid 
indicator of actual program performance, - however, 
only if comparisons constitute the bulk of the computa­
tion. An algorithm which performs address calculations 
based on record key values may perform few or even 
no compares; another, which does base its course of 
action on the outcomes of compares, may nevertheless 
access memory often to move items around without 
comparing them, and thus be greatly inferior in reality 
to one which makes a few more comparisons. It is 
primarily because of a lack of reasonably close corre­
spondence with reality in the underlying models and 
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measures of performance that almost all of the work on 
"computational complexity" in the literature of auto­
mata theory finds little or no use for our purposes. 

In the course of our examination of the techniques of 
analysis of algorithms, we will observe repeatedly that 
there are two qualitative "depths" to which such an 
analysis is normally pursued. The first is a general level 
where all that is specified is the operations performed by 
the algorithm and the general form of the data struc­
tures it accesses. The second is the level of at least a 
source language implementation in which considerable 
attention must be paid to the implementation of these 
operations and data structures. An operation such as 
"find a circuit" of a linear graph, for example, is far 
more complex than "compare this item with that 
item," even in cases where the latter requires reference 
to a lexicography. Again, the data structures or ac­
cessing patterns required by the general specification of 
an algorithm may not be directly implementable or 
may incur excessive overhead in implementation. 

With these caveats in mind, let us begin an examina­
tion of some of the main themes of the extant literature 
in the analysis of algorithms. 

CERTIFICATION: DOES THE ALGORITHM 
DO WHAT IS DESIRED? 

Many combinatory algorithms, generally stated, do 
not require detailed formal certification of correctness 
and/ or termination because it is obvious that these 
properties are satisfied. Most sorting algorithms, for 
example, fall into this category, as do most search 
algorithms. As noted earlier, there are two levels at 
which one can question these properties-that of the 
abstract or "pure" statement of the algorithm, and 
that of a particular . implementation. Obviously, even 
verification at the level of implementation in a source 
language program will not guarantee that the compiled 
program will perform as desired, but it is a much 
better guarantee than verification at the abstract level. 
In practice, however, both levels are frequently de­
sirable, since the techniques required for one are often 
qualitatively different from those for the other, and it 
is most desirable to know that the algorithm is free of 
flaws before carrying it to the level of a detailed 
implementation. As an example of some of these ideas 
let us consider the following problem: 

Consider a linear graph consisting of a finite collection 
of vertices, some of which are joined pairwise by a 
collection of edges. With each such edge 'is associated a 
positive length, and each pair of vertices may be joined 
by at most one edge. The only other restriction is that 
there must be some sequence of edges, or path, joining 
any pair of vertices (i.e., no group of vertices is "iso-

lated"). A (spanning) tree, T, is a collection of edges 
having the property that within T there is exactly one 
path joining any pair of vertices. Our problem is to 
find a tree of minimum total length, T min. 

A very effective algorithm (in fact, the best published 
to date) for this problem is due independently to PrimI5 

and Dijkstra :3 We begin by selecting an arbitrary 
vertex, Vo, and assigning to T min the shortest of its 
incident edges, say one linking Vo to VI, denoted {vo, Vl). 

Next, from all of the edges linking either Vo or Vl to other 
vertices we select the shortest, which links Vo or Vl to, 
say, V2. We now repeat the process, looking this time for 
the shortest edge joining Vo, Vl, or V2 to some other vertex, 
and continue in this manner until all vertices have been 
included. Notice that at any time we need only keep 
track of a shortest edge from some vertex already in 
T min to each of those vertices not yet included. As each 
new vertex is joined to T min, the lengths of its edges to 
vertices not yet in T min are compared with the current 
minima, and the latter replaced where appropriate. 

That this procedure will terminate is clear, even from 
the informal statement just given, because a new vertex 
is added to the tree at each step. It is only slightly less 
clear that the resulting collection of edges will be a tree, 
but a moment's reflection will convince the reader that 
a path between any pair of vertices must be found and 
will be unique. There is no way to add to T min an edge 
joining vertices already joined by a path, since the only 
edges under consideration are those joining such 
vertices to vertices not yet reachable by edges in T min. 

The remaining major question, that of the minimality 
of T min, is less obvious. Suppose T min were not minimal, 
and suppose there were some minimal tree T' which 
differed from T min in a minimal number of edges. Let 
E be the set of edges of T min not in T' and let e be a 
shortest edge of E. Now, in T min, e uniquely joins the 
set of vertices already in T min at the time e was added, 
Ve, to the set of the remaining vertices of the graph, 
We. Since T' is a tree, it also has at least one edge 

Figure 1 

Links of T' which are not 
contained in T min. 



joining Ve to We; furthermore, adding e to T' will create 
two paths (in T'U {e}) between some vertices of Ve 
and some of We, one path via e and one via some edge, 
e', of T' (cf. Figure 1). Now length (e') ~ length (e), 
since e was chosen by our algorithm. On the other hand, 
if we substitute e for e' in T' the result will still be a tree, 
Te'. (The vertices in Ve and We formerly connected in 
T' via e' will now be connected via e.) But Te' can have 
no less total length than T', since T' was minimal; 
hence, length (e) ~ length (e') . Combining these 
observations, length (e) = length (e') and length 
(T e') = length (T'). But T e' differs from T min in one 
fewer edges than T' and this contradicts our choice of 
T'; thus, T' does not exist and T min is minimal, as 
required. 

We note in passing that the device employed here is 
a powerful tool in the analysis of graph algorithms. One 
verifies the optimality of the solution produced by an 
algorithm by postulating the existence of an optimal 
solution differing from the generated solution in a 
minimal way, and then constructively refutes the 
minimality of this difference. 

Having satisfied ourselves as to the basic soundness 
of the algorithm, the next step is to embody it in a 
program and verify the correctness of the program. 
We will not pursue this step in detail here for lack of 
time and space but will rely upon the reader's experience 
to assist in understanding the qualitative difference 
between such an undertaking and what we have just 
discussed. To begin with, even in a higher level language 
one is now faced with a host of syntax related problems 
having to do with whether variables are of the appro­
priate type and with the legitimacy of program state­
ments, for example. There are also semantic questions 
such as whether loop indices are tested against range 
boundaries before or after incrementing and whether 
their values are preserved intact where required, as 
well as implementation-dependent considerations such 
as whether input and output is performed correctly, 
and so on. Next come considerations of program logic 
and control flow including again the question of 
termination, this time for the program. Finally, and 
perhaps most difficult, one has the question of whether 
the program actually embodies the algorithm at all. 
This process is clearly vastly more detailed than our 
proof above, even if. the latter were to be thoroughly 
formalized. The most commonly accepted current 
approach to such a certification entails first supple­
menting the program code with assertions about state­
ments in that code and verifying by hand that these 
assertions reflect accurately the desired properties of 
the statement [cf. e.g., References 5, 10, 18]. Next the 
assertions, couched in a form more suitable for treat­
ment via classical mathematical proof techniques, are 
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themselves verified. There is substantial effort under way 
in a number of areas to address these problems. It is 
abundantly clear that the first process-that of estab­
lishing the correspondence between statements and 
assertions-could benefit from mechanical assistance. 
On the other hand, a hopeful sign is that the prospects 
for providing such assistance appear reasonably good 
as a consequence of increased understanding of pro­
grams resulting from, for example, compiler optimiza­
tion studies. l Automatic verification of the assertions is 
considerably more difficult, though a good deal of work 
is being done [cf. References 5, 10, 18]. There are a 
number of recent instances, however, in which humans 
have been quite successful in accomplishing this without 
undue tedium, and thus automatic assistance may be 
all that is required for a viable system. 

EXTREME PERFORMANCE: WHAT HAPPENS 
AT BEST (OR AT WORST)? 

Granted that one has assured himself of the validity 
of an algorithm, it is next natural to ask how well the 
algorithm performs its assigned task. Here again, we 
find the opportunity (or need) for two levels of analysis: 
one at the general algorithm level and the other at the 
detailed program level. 

In the case of our example, the best and worst cases 
would arise when the graph being processed consisted 
of a single path and a "complete graph" (i.e., when 
each vertex has an edge link to every other vertex), 
respectively. It is clear that a reasonable figure of merit 
for the performance of this algorithm must include some 
measure of the work performed in finding the shortest 
edge at each stage; it mayor may not be appropriate in 
addition to examine the amount of storage space 
required by the procedure. 

Suppose that we have n vertices. Then in the former 
case, only (n -1) edges need be examined since only a 
single choice is available at each stage, while in the 
latter one must choose the first edge from among 
(n-I), the second from among 2X(n-2), etc., and 
the last from among (n -1) again. It should be fairly 
obvious that one can find the smallest of k objects in 
(k-l) comparison steps, and that one can do no 
better than this. (This is an instance in which one can 
make a very strong statement· about existence and 
optimal performance of a whole family of algorithms.) 
Thus, a first analysis might lead to the conclusion 
that Li=ln- l i(n-i) = [n(n-l) (n+I)/6] comparison 
steps are required. Recall, however, that as each new 
vertex joins the growing T min, its edges to vertices not 
yet included need be compared only with the shortest 
of the corresponding edges from vertices already in-
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eluded, and not with all such edges. This is the essence 
of the efficiency of the procedure. Thus (n -1) com­
parison steps are required for selecting VI, followed by 
(n-2) steps to establish a set of (n-2) minimal 
length edges to o'ther vertices and then (n-2) steps to 
find a shortest such edge in order to pick V2. The total 
number of comparison steps is thus (n-1) +2(n-2) + 
2(n-3)+···+2(2)+1=n(n-2). At a cost of some 
additional storage to keep track of the current minima, 
we have avoided a cumbersome search at each stage and 
improved performance from 0 (n3 ) to 0 (n2). This serves 
to emphasize that even at this general level of analysis, 
one must exercise great care to be sure that he has 
captured the essence of the algorithm, for 0 (n2

) per­
formance is significantly different from 0 (n3

) • 

Of course, the analysis is not yet complete. We must 
still account for the work required to keep track of 
which vertices and edges are already in T min and which 
are not, and to do the bookkeeping for the main­
tenance of the list of minimal distances, for example. 
An accurate account of this kind, however, really 
requires that one move to the next level of analysis­
that of the program itself. 

Not surprisingly, the level of detail in such an 
analysis is again considerable. Still, the number of 
parameters is not overwhelming, for the flow of control 
in a program-at least in a good one-is normally 
highly systematic. In addition, the certification process 
has by this time assured one that his program is both 
consistent and free of infinite loops. Thus, each loop 
will be entered and exited an equal number of times, 
and this number can be used as a parameter char­
acterizing the number of executions of a whole set of 
statements within and without the loop; also, several of 
these parameters are often available from the analysis 
of the algorithm at the "general" level. Again, we shall 
omit this phase of the analysis in order to move on. 
It is worthwhile noting, however, that the kind of 
analysis would be essentially similar to that which we 
have just seen-i.e., finite discrete mathematics in­
volving integer quantities-although quite likely more 
complex than our simple example [cf. Reference 13]. 

There is a drawback in this kind of extreme analysis, 
however, which may not yet be apparent. Observe that 
there is a major qualitative difference between the best 
and worst case performance. It is probably fairly 
unlikely that one would encounter either in practice, 
and thus, while the time performance for most graphs 
lies somewhere between these extremes, the range is so 
large as to furnish little information. This is the 
motivation for undertaking the kind of analyses we 
shall consider next, those which attempt to quantify 
"average" performance. Before moving on to consider 
analysis of average performance, however, let us 

digress briefly to consider a problem in which extreme 
performance is of paramount importance. 

Consider a two-input, two-output device which 
compares the values of, and then propagates, its inputs 
in such a way that the larger input reappears on the 
first output line and the smaller on the second. The 
objective in the construction of "sorting networks"2 is 
to devise arrays of such devices which accept a string 
of input items as input and then shuttle these input 
items about internally over fixed connections to per­
mute the items into sorted order. For such networks one 
figure of merit is obviously the number of comparisons 
(i.e., devices) required. The major difference between 
this approach and most standard approaches to sorting, 
however, is that here the set of comparisons is im­
mutable regardless of the input sequence (since the 
connections are fixed). In return for this inflexibility, 
one gains a potential for parallel operation and a saving 
in time. Thus, an equally important figure of merit for 
most applications is the total time required to sort, and 
this is determined by the maximum number of com­
parisons made against any item in moving from input 
to output. In this instance, as with many involving 
algorithms whose course of action is essentially in­
dependent of the values or positions of data items, 
extreme performance is of primary interest. 

EXPECTED PERFORMANCE: HOW GOOD IS 
THE ALGORITHM "ON THE AVERAGE"? 

A more difficult kind of analysis of algorithm per­
formance, in general, is that required to determine 
expected or "average" performance. Still, it is precisely 
this kind of analysis which usually yields the most 
insight into actual observed algorithm performance. 
Outside the realm of information theory where random 
coding arguments have found some utility, it is highly 
unusual to find an analysis of expected performance of 
families of algorithms; far more often is a single al­
gorithm analyzed in this way, and this is the kind of 
analysis we shall pursue next. For reasons to which we 
shall return later, we shall forsake our minimal spanning 
tree algorithm and concentrate on another algorithm to 
illustrate how such an analysis is carried out. 

The algorithm we shall examine is one which sorts 
(i.e., permutes) an input sequence of records, each of 
which consists of both a "key" chosen from some 
linearly ordered set and other associated information, 
into, say, ascending lexicographic key order. For 
convenience in analysis and description, we shall assume 
that all of the key values are distinct. That this makes 
no essential difference will be easily verifiable in 
retrospect. For brevity, we shall refer to "record values" 



when speaking of the values of keys associated with 
these records. The algorithm is known as "Quicksort"8 
and it works as follows. 

Quicksort constructs a binary tree whose vertices 
correspond to the, say n, records in the input sequence. 
The construction of the tree is controlled by the 
following rule, applied recursively to each subtree: if a 
record with (key) value Xo is assigned to vertex i during 
construction, then any subsequent record, with value 
x, assigned to the (sub ) tree rooted at i, will be assigned 
to the left subtree of i if x < Xo and to the right subtree 
if X>Xo. Thus, the first input record becomes the root 
of the Quicksort tree, the second input record the root 
of one of the two principal subtrees, and so on. 

Evaluation of expected values presupposes the 
existence of a probability distribution over input 
permutations; we shall adopt the hypothesis that all 
such permutations are equally likely. Although there 
are definitely situations in which such is not the case, 
there are many others to which it is a reasonable 
approximation. In addition, the results of such an 
analysis usually are observed to be good indicators of 
the measured performance of running programs. 
Parenthetically, although this may seem a strong 
assumption, it is actually weaker than assuming, for 
example, that the key values are independent, identi­
cally distributed, random variables. 

To proceed with the analysis, we need once again to 
choose a figure of merit, but before we can choose one 
we need more information about how the algorithm is 
to be implemented. Suppose the input sequence is in 
locations numbered 1 through n: Transfer the first 
record to another location t, and begin a search of 
2,3, ... , looking for the first record, say Xj in location 
j, larger than XI(Xj>XI). Following examination, each 
such record is returned to a location numbered one less 
than its original one. Now begin a search of locations 
n, n-l, ... , looking for the first record, say Xk in 
location k, smaller than Xl, and returning each record 
to its original location. Interchange the contents of 
locations (j -1) and k-i.e., Xj and Xk. Now all records 
in locations· 1 through j -1 are smaller than Xl and all 
those in locations k through n are larger; location j 
is redundant. We now repeat the above process on 
locations (j + 1) through k -1 and continue this until 
the pointers j and k converge to adjacent locations, say, 
rand r+ 1. Then Xl is inserted into r, its correct position 
in the output sequence, and the two sequences in 
locations 1 through (r-l) and (r+ 1) through n are 
each treated by the above process. 

At the level of detail we are considering, the only 
obvious figure of merit is the number of comparisons 
made in the searches. There are no other obvious 
memory accesses or operations, except those required to 
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maintain pointers to the boundaries of partitioned 
subsequences, such as (r-l) and (r+ 1) above. In 
fact, it is possible to hold this requirement to quite 
reasonable limits6,7,8 and we shall therefore concentrate 
on the expected number of comparisons, which corre­
sponds to the expected path length of the Quicksort 
tree. 

Let E (n) be the expected compares required to sort a 
sequence of n records. Then, if per) =probability that 
the root of the Quicksort tree ranks rth in the input 
sequence, 

n 

E(n) = L: per) [E(r-ll r) +E(n-r+ll r) + (n-l) ] 
T=l 

where E(y I r) denotes the expected compares to sort a 
sequence of y records conditioned on the fact that r is 
the root. But under our assumptions, any record is 
equally likely to be the root; thus p (r) = 1/ n for all r; 
furthermore E(y r) is similarly independent of r. 
Thus: 

2 n 

E(n) = (n-l) + - L: E(r-l) 
n T=l 

Similarly, following Windley:19 

2 n-l 

E(n-l) = (n-2) + (n-l) ~E(r-l) 

nE(n) - (n-l)E(n-l) =2(n-l) +2E(n-l) (1) 

or 

E(n) E(n-l) 
---
n+l n 

2 (n-l) 

n(n+l) 

4 2 

n+l n 

4 n-l 2 
=-+L:-.--l 

n+l i=2 ~+1 

n 1 
E(n) =2(n+l) L: -. - -2n 

i=l ~+1 

~1.39(n+l) log2n-O(n) 

This kind of analysis is roughly the same as that which 
we encountered previously, and the technique of 
arranging for some linear combination of the variables 
on the left which will be equal to a tractable sum is one 
frequently employed. Often, however, recurrence equa­
tions will not succumb to such analysis. Consequently, 
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another technique frequently called upon is the use of 
generating functions. A generating function for a 
sequence is an infinite formal power series expansion in 
which the coefficient of xn is the nth term in the se­
quence. Thus, if G(x) is the generating function for 
E(n) : 

G(x) =E(1)x+E(2)x2+ .•. +E(n)xn + ... 

Furthermore the generating function for nE (n ) is 
x(d/dx)G(x) =E(1)x+2E(2)x2+ .... Now using this 
fact the recurrence equation (1) can be rewritten in 
terms of generating functions as 

d d 
x dx G(x) = G(2(n-1)) + dx (x2G(x)) 

where 

2X2 
G(2(n-1)) = (1-x)2 

Notice that this equation is in fact an equation involving 
infinite power series and thus constitutes an infinite set 
of coefficient equations, one for each power of x since 
the powers of x are linearly independent. Setting 
y=G(x), we have 

xy' = [2X2/ (1-x)2J+2xy+x2y' 

y' - [2/ (I-x) Jy=2x/(1-x)3 

This differential equation has an integrating factor 

exp [- f C':x) dx] = (I-x)'. 
Thus 

(1-x)2y' -2(1-x)y=2x/ (I-x) 

Integrating both sides: 

y(1-x)2=2( -x- In(l-x)) +c 

or 

G(x) =y= 2 In (_1_) + c _ _ ,_2x_ 
(1-x)2 I-x .. (1-x)2 (1-x)2 

Now 

(I~X) In(I~X) =x+ (1+Y2)x'+(1+Y2+Y2)x'+ ... 

Thus 

~ [(I~X) lnC~x)] 
= 1+2(1+V2)x+3(1+V2+}i)x2+ •.. 

= 1 In (_1_) + 1 
(1-x)2 I-x (1-x)2 

:,y=2~[_1_ln(_1 )] _ 2x + c-2 
dx ( 1-x) 1-x (1- x) 2 ( 1-x) 2 

Looking at E (1), the coefficient of x in G (x) : 

and 

E(l) =0=4(1+V2) -2+2(c-2) 

:.c=o 

n+l1 
E(n) =2(n+1) L --: -2(n+1) -2n 

i=l ~ 

n 1 
=2(n+1) L: -. - -2n 
. i=l ~+1 

as before. 
Although in this instance the generating function 

solution is somewhat more elaborate than the direct 
solution, we took the trouble to illustrate both because 
the existence of a direct solution is rather a fortuitous 
circumstance. (The example was chosen, in fact, 
because both kinds of solution were possible.) The 
availability of all of the functional power of infinite 
series vastly increases one's flexibility when dealing 
with problems of analysis, as may be apparent from 
the operations above. Of course, there are a large 
number of other approaches to the solution of recur­
rence and difference equations [cf. References 9, 12, 
14, 17]. 

A final remark is in order regarding the question of 
expected performance of graph algorithms. The un­
fortunate fact is that there seems at present to be no 
way effectively to characterize a "random" graph. 
The kinds of graphs submitted to graph algorithms 
normally have the imprint of human intelligence in 
design or at least selection. This imprint is not captured 
effectively by choosing a random incidence matrix, for 
example, nor by any of the other obvious choices of a 
definition of randomness to which one is tempted. The 
discovery of a natural and analytically tractable char­
acterization of a random graph remains a major open 
question in the analysis of algorithms. 

VARIANCE: HOW OFTEN DOES "AVERAGE" 
PERFORMANCE OCCUR? 

Expected performance is most probable performance, 
but for some algorithms actual performance can be a 



highly variable function of input data as we have 
noted. Among all of the kinds of analysis to which 
algorithms are subjected, analysis of the variance of 
performance is unquestionably the most difficult-and 
the most often omitted. 

There are, however, sometimes legitimate ways in 
which to justify omission of computation of the vari­
ance. For example, in the case of Quicksort, the ex­
tremes of performance occur when the tree is a single 
path (i.e., completely unbalanced) and when it is 
completely balanced. In the former case, this number 
of comparisons is [n(n-I) /2J, while in the latter it is 
(n+I) log2(n+I) -2n. Thus, expected performance is 
qualitatively the same as best performance, i.e., 
D[ (n) log (n)]. Therefore, even though performance in 
the worst case can deteriorate somewhat severely, this 
must be a consequence of a long "tail" in the dis­
tribution and hence quite unlikely under the hypothesis 
of equally likely input permutations. 

As a final example, consider the problem of inserting 
a new record into a sorted sequence of records. Rather 
than adopt the standard "binary search" approach, 
however, let us proceed as follows: Given an nth record 
to be inserted into a sorted sequence of (n-I) records, 
we shall pick a point, i, at random, make a comparison 
with the ith record, and thereby determine whether the 
new record belongs among the first (i -1) or the last 
(n-i+I). (We shall again assume that all key values 
are distinct.) We will then repeat the "random probe" 
process on the appropriate subsequence and continue 
recursively in this way until the proper position for the 
new record has been found. Again, let us assume that 
the new record is equally likely to belong anywhere in 
the sequence-including at the ends. Let p(k, n) == 
prob. that k compares are required to insert an item 
into a set of n. Then 

p(k, n) = :t [(!) (_i ) p(k-I, i-I) 
i=l n n+I 

where 

(
n-i+ 1) (1) ] + n+I ~ p(k-I, n-i) 

I/n=prob.that the ith record is chosen 
at random 

i/(n+I) =prob. that the new record belongs 
among the first (i-I), given that 
i was chosen 

(n-i+I)/(n+I) =prob. that the new record belongs 
among the last (n-i), given that 
i was chosen 
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By symmetry 

2 n 

p(k,n)= ( ) Lip(k-I,i-I) 
n n+I i=l 

Setting 

00 

Gn(x) = ~ p(k, n)xk 
k=l 

we have 

00 [ 2 n ] Gn(x) = L ( 1) Lip(k-I,i-I) Xk 
k=l n n+ i=l 

It now appears that we are in trouble, for not only do 
we have two indices in the recurrence, but, in addition, 
the index upon which we based the definition of the 
generating function will not help with the factors i or 
[1/ n (n+ 1)]. In order to get such assistance, we define 

00 

F= L Gn(x)yn 
n=O 

iJ 00 

A = - (yF) = ~ nGn_Iyn-l 
iJy n=l 

A 
I-y n=l i=l 

l
Ady 00 nyn 
----=- = L L iG i-I -
1 y n=l i=l n 

li Ad2y 00 n yn+l 
- = ~ ~ iG i - I --=--­

. I-y n=l i=l n(n+ 1) 

Notice how we have approached, step by step, the form 
we wish on the right hand side. Each step utilizes a 
standard technique for generating functions, and the 
result is very close to what we need; all that is required 
is a factor of two and an adjustment of the x and y 

indices: 

2x II A:2y = t [t [:t 2ip(k-I, i-I)] Xk 1 yn 
y 1 y n=l k=l i=l n ( n + 1) J 

=F 
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Differentiating: 

A= l-y ~A 
2x ay 

1 aA 2x 

A ay (l-y) 

A= C 
(l-y)2x 

(-2X) =c t (_y)n 
n=O n 

where (-~X) is a "generalized" binomial coefficientll 

defined by 

(-:X) ~ (-1)' 2x(2x+1) (2X+~ ... (2x+n-l) . 

Therefore, using the fact that G1(x) =X to find c= 1, 

and 

a (2x) (2x+ l)y 
A= -yF=I+xy+ y2+ ••• 

ay 2 

co (-2X) (_y)n+l 
yF= L 

n=O n . n+l 

F= L- yn 
co 1 (2x+n-l) 

n=O n+l n. 

1 (2x+n-l) 
G (x) = -n n+l . 

n 

Why go to all this trouble? Observe that 

d co 

Gn'(x) = dx Gn(x) = E kp(k, n)xk
-

1
• 

This means that Gn'(I) = mean (k). Similarly 

co 

Gn" (x) = L k(k-l)p(k, n)xk- 2 
n=O 

and 

Gn"(I) = variance (k) - mean (k) + mean 2(k) 

or 

variance (k) = Gn"(I) + G'(I) - [G'(I)]2. 

This provides the motivation; when the generating 
function is a generating function for a probability dis­
tribution, the moment information can be obtained 
easily from it as shown. A particularly fortuitous occur-

rence is the occasional emergence of a tractable recur­
rence involving the derivative of the generating function 
itself which enables one to arrive at an expected value 
and a variance without ever obtaining a closed form for 
the generating function (cf. Reference 12, Vol. I, p. 99), 
but this did not happen here. 

or 

Pursuing our analysis, we find that 

2 ~ 2x(2x+ 1) ... (2x+n-l) 
Gn'(x) = --- £....J 

(n+l) !i=O 2x+i 

n 1 
Gn'(I) =2 L -(.- ~2[ln(n+l) -IJ 

i=1 ~+ 1) 

Thus, strangely enough, as n grows larger this 
"random probing" insertion requires only about 
(2ln 2) or less than 1.4 times as many compares on the 
average as does binary search. We shall leave it as a 
simple mathematical exercise to complete the computa­
tion and verify that 

n 1 n ( 1 )? 
variance (k) = 2 L -:--1 - 4 L -:--1 . 

i=1 ~+ i=l ~+ 

So, in this instance, average performance is fairly 
typical, since the variance is nearly equal to the mean. 

By comparison, the "worst case" performance for 
this algorithm requires comparison of the new item with 
each of the (n-l) others. Thus, here again, there is a 
long tail to the distribution. This is not surprising in 
light of the close relationship between this procedure 
and Quicksort, the precise nature of which we shall 
leave to the reader to discover for himself. 

As a final. remark, we observe that the factor of 
(21n 2) which appears in both the analysis just com­
pleted and that of Quicksort is characteristic of binary 
tree-based random algorithms. As we have seen, the 
technique of basing the course of action of an algorithm 
upon operations made on a randomly selected argument 
is rather more powerful than might at first be apparent 
[cf. Reference 6J. 

SUMMARY 

In this brief space, it has of course been impossible to 
do justice to even the nascent field of combinatory 
algorithm analysis. We have, however, attempted to 
indicate at least in a qualitative way both the types of 
information usually sought (and why) and the general 
character of the accompanying analysis. By far the 
most authoritative single current source in the areas of 
performance is the Knuth series,12 but having the 



techniques and ideas in hand, there is a broad range of 
more classical literature to which one may turn for 
assistance [e.g., References 4,9, 11, 14, 17]. 

This is an area of very rapid growth. As it matures, 
one would expect to see a considerable broadening of 
analytic technique, but more important will be (a) 
results which increase our understanding of the prin­
ciples of algorithm design analogous to, but deeper 
than, our earlier remark about randomized binary tree 
algorithms, and (b) results which broaden the scope 
of possible analysis-such as a good definition(s) of a 
"random" graph. 
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On the complexity of proving functions* 

by ANDY N. C. KANG 
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INTRODUCTION 

Let f be a recursive function. We shall be interested in 
the following question: given x and y, how difficult is it 
to decide whether f(x) =y or f(x) ~y? Since the prob­
lem of decidingf(x) =y or f(x) ~y is the same problem 
as that of computing the characteristic function Ct of 
the graph of f, we can study the above question by 
looking into the complexity of computing Ct. 

We say that algorithm j serves to prove (or disprove) 
f(x) =y if cP/2) E R2 and cPP) computes the characteristic 
function, C" of the graph of f and cPP) (x, y) = 1 
(cPP) (x, y) =0). 

We shall show that the complexity of computing 
functions and the complexity of proving them are ap­
proximately equal modulo some recursive function h. 
Let g and f be recursive functions. We say that "f is 
difficult to prove almost everywhere (infinitely often) 
modulo g" if every algorithm which computes Ct takes 
more than g(x, y) steps to output a 1 for almost all x 
(infinitely many x) and all y. We say that "fjs difficult 
to disp~ove almost everywhere (infinitely often) modulo 
g" if every algorithm which computes Ct takes more 
than g(x, y) steps to output a 0 for almost all x (in­
finitely many x) and at least one y. 

Based on these definitions, we prove the following 
results: (1) A function is difficult to prove infinitely 
often if and only if it is difficult to disprove infinitely 
often. (2) There exjsts a function which is difficult to 
prove almost everywhere, but, surprisingly, -it is not 
difficult to disprove almost everywhere. (3) There 
exists a function which is difficult to disprove almost 
everywhere, but it is not difficult to prove almost 
everywhere. 

Before proceeding with our study, we give some pre­
liminaries. Let Rn be the set of recursive functions of 
n variables. Let cPO(2), cPl (2), ••• be an acceptable Godel 

* Research sponsored by the National Science Foundation, 
Grant GJ-70S. 

numbering of all the partial recursive functions of two 
variables [Ref. 4]. A partial recursive function cJ?/2) , 
the "step counting function," is associated with each 
cP/2). The set of partial recursive functions {cJ?/2)} i2!O is 
arbitrary save for two axioms: 
(1) cP/2) (x, y) converges P cJ?/2) (x, y) converges, and 
(2) the function . {I if cJ?/2) (x, y) =Z 

M(~, x, y, z) = 

o otherwise 
is recursive. 

Intuitively cJ?/2) (x, y) represents the amount of time 
(or space) used by program i when it finally halts 
after receiving inputs x and y. 

THE COMPLEXITY OF COMPUTING 
VERSUS PROVING FUNCTIONS 

Definition 1 : 

Let fE R I • cPk(2) is a characteristic function for the graph 
offif 

{

I if f(x) =y 
cPk(2) (x, y) = 

o if not 

We write cPk(2) = C" where Ct is the characteristic 
function for the graph of f. 

Definition 2: 

cJ?k(2) (x, y) is the complexity of algorithm k of dis­
proving f(x) = y if cPk(2) = Ct and cPk(2) (x, y) = O. 

Definition 3: 

cJ?k(2) (x, y) is the complexity of algorithm k of proving 
f(x) = y if cPk(2) = Ct and cPk(2) (x, y) = 1. 

The following lemma asserts that the complexity of 
computing f(x) and the complexity of proving f(x) =Y 
are approximately equal modulo some recursive 
function h. 



494 Spring Joint Computer Conference, 1972 

Lemma 1: 

Let <.I> be any complexity measure. Th.ere exist three 
functions hE R3, 'Y E RI, (J E RI such that for any given 
fERI: 

(a) If CPi=j, then CP'Y(i)(2)=C, and 
00 

VxVy[f(x) =y~<.I>'Y(i)(2)(X, y) ~h(x, y, <.I>i(X)) J 
(b) If CPk(2) = C" then CPu(k) = f and 

00 

VxVy[f(x) =y~<.I>u(k) (x) ~h(x, y, <.I>k(2) (x, y)) J 
Proof: 

(a) Any algorithm to compute f can obviously be 
used to obtain an algorithm for proving f. The com­
plexity of the algorithm for proving f is then bounded 
by the complexity of the algorithm for computing j. 
Formally: let 'Y be a recursive function such that: 

{

I if CPi(X) converges and CPi(X) =y 
CP'Y(i) (2) (x, y) = 0 if CPi(X) converges and cp .• (x) ~y 

diverge otherwise 

If cpi=f, then CP'Y(i) (2) is recursive since CPi always 
converges. Then CP'Y(i) (2) (x, y) =l~cpi(X) =y, i.e., 
CP'Y(i) (2) = C,. 

Let 
. _{<.I>'Y(i)(2) (x, y) if <.I>i(X) =Z and CPi(X) =y 

PI(2, X, y, z) -
o otherwise 

PI is recursive, since AXZ[<I>i(X) =zJ is a recursive 
predicate, and CPi(X) convergent implies <I>'Y(i) (2) (x, y) 
converges. 

00 

Define hl(x, y, z) = max{PI(i, x, y, z) I i~x}. 
Then we have that for all i: 

VXVy[cp'Y(i) (2) (x, y) =l~cpi(X) converges and 

CPi(X) =y~hl(X, y, <.I>i(X)) ;;:::<.I>'Y(i)(2) (x, y)]. 

If CPi = f. Then 
00 

VxVy[f(x) =y~<.I>'Y(i)(2) (x, y) ~hl(X, y, <.I>i(X))]. 

(b) Given an oracle CPk(2) for the graph of j, a pro­
gram can compute f by asking questions about CPk(2). 
Because the graph of f is single-valued, an affirmative 
answer from CPk(2) gives the value of f. Formally: let 
(J be a recursive function such that: 
CPu(k) (x) = "With input x, compute CPk(2) (x, 0), 
CPk(2) (x, 1), ... by dovetailing, until a y appears such 
that CPk (2) (x, y) = 1; let the output be y." 

If CPk(2) computes C,. Then CPu(k) is recursive and 

VX[CPu(k) (x) =y~k(2) (x, y) = l~f(x) =yJ 

whence CPu(k) = f. 

Let 

P2(k, x, y, z) 

= {O<.l>U(k) (x) if <.I>k(2) (x, y) =Z and CPk(2) (x, y) = 1 

otherwise 

P2 is recursive, since AXYZ[<.I>k(2) (x, y) =zJ is a recursive 
predicate, and CPk(2) (x, y) = 1 implies <.I>u(k) (x) converges. 
Define h2(x, y, z) = max{P2(k, x, y, z) I k~x} 

Then we have that for all k: 

00 

VXVy[cpk(2) (x, y) = l~<.I>u(k) (x) ~h2(X, y, <.I>k(2) (x, y))]. 

If CPk(2) = C,. Then 
00 

VxVy[f(x) =y~<.I>u(k) (x) ~~(x, y, <.I>k(2) (x, y))]. 

h in the lemma is defined by 

hex, y, z) = max{hl(x, y, z), h2(x, y, z)} 

for all x, y, and z. 
Notice that h is independent of the choice of f. 
Let (cp, <.1» be the class of multitape Turing machines 

with step counting measure. Then the function h of 
lemma 1 is roughly given by hex, y, z) ~Z3. This can be 
done by a straightforward construction of a Turing 
machine. 

We will now show that a recursive j exists for which 
there is no lower bound on the complexity for proving 
f(x) =y. This result basically follows from the speed-up 
theorem [Ref. 2J and lemma 1. 

Theorem 1: 

Let <.I> be any complexity measure. For all r E RI there 
is a 0 - 1 valued recursive function f E Rl such that: 

Prooj: 

00 

Vk(cpk(2) = C, )3j(cpP) = C,) VxVy[f(x) 

=y~<.I>k(2) (x, y) >r( <.1>/2) (x, y)) J 

Without loss generality, we assume r to be monotone 
increasing. Let hE R3 be any sufficiently large recursive 
function monotone increasing in the third variable 
(h need only be large enough to satisfy lemma 1). 
Define 

r'(x,z) = max{h(x,y,r(h(x,y,z))) ly=O,l} (1) 

By the speed-up theorem, there exists a 0-1 valued 
function f E RI such that: 

00 

Vi(cpi=f)3l(CPl=f) VX[<I>i(X) >r' (x, <.I>l(X)) J (2) 

Given CPk(2) = C" it follows from lemma 1 that there 



exists an i such that: 

and 
00 

VxVy[f(x) =y~<)\(x) 5:h(x, y, <Pk(2) (x, y)) J (3) 

Then by Eq. (2) there is an l such that 4>l = f and 

00 

VX[<I>i(X) >r'(x, <l>l(X))J (4) 

Applying lemma 1 again, we get j = 'Y (l) such that: 
4>P)=Cj 

and 
00 

VxVy[f(x) =y~<I>P) (x, y) 5:h(x, y, <l>l(X)) J (5) 

Therefore we have: 
00 

VxVy[f(x) =y~h(x, y, <Pk(2) (x, y)) 

~<I>i(X) (byEq. (3)) 

>r'(x, <l>l(X)) (by Eq. (4)) 

~h(x, y, r(h(x, y, <Pl(X)))) (by Eq. (1) 

and the fact that y=f(x) E to, I}) 

~h(x, y, r( <l>P) (x, y))) J (by Eq. (5) and 

the fact that r is monotone increasing) 

This implies that 

00 

VxVy[f(x) =y~<I>k(2)(X, y) >r(<I>p) (x, y))J, 

since h is monotone increasing in the third variable. 
Although the faster program exists, we cannot effec­

tively get such a program. This fact fol1ows from the 
theorem in Ref. (3). 

THE COMPLEXITY OF PROVING VERSUS 
DISPROVING FUNCTIONS 

N ext we are going to investigate the complexity for 
proving and disproving functions. First we make a 
definition. 

Definition 4-: 

Let gER2,fERI • We say fis "difficult to prove almost 
everywhere (infinitely often) modulo g" if every 4>/2) 
computing Ct has the property that for almost all 
x (infinitely many x) and all y f(x) =y implies 
<l>i(2) (x, y) >g(x, y). 

Let f E RI . For each x there is only one y with the 
property that y = f(x). Hence it is ambiguous to say 
f is difficult or easy to disprove at x, since the com­
plexity of disproving f at x also depends on argument y. 
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For example, Rabin's 0-1 valued recursive function f 
[Ref. IJ is difficult to compute, hence by lemma 1, f is 
difficult to prove. As to the complexity of disproving f: 
if y$. to, 1}, then we know immediately that f(x) ~y. 
However, if yE to, I}, then f(x) ~y is not easy to 
verify; it is easy to show that this must be the case, 
i.e., if yE to, 1 J, then to prove f(x) =y or to disprove 
f(x) = y is of the same difficulty. 

Since functions, like Rabin's 0-1 valued function, 
are generally treated as difficult, we have the following 
definition for the compJexity of disproving functions. 

Definition 5: 

Let g E R2, we say that f is "easy to disprove almost 
everywhere (infinitely often) modulo g" if some 
4>/2) = Ct has the property that for almost all x (in­
finitely many x) and all y,* f(x)~y~<I>/2)(X,y)5: 
g(x, y). 

The complement of this definition is: 

Definition 6: 

Let g E R2, we say that f is "difficult to disprove almost 
everywhere (infinitely often) modulo g" if every 
4>/2) = Ct has the property that for almost all x (in­
finitely many x) and some y, f(x) ~y and <1>/2) (x, y) > 
g(x, y). 

The following theorem asserts that if function f is 
difficult to prove infinitely often, then it is also difficult 
to disprove infinitely often. 

Theorem 2: 

Let <I> be any complexity measure. There is an hERa 
such that for every step counting function g E R2 and 
for all fE R I , if f is difficult to prove infinitely often 
modulo Axy[h (x, y, g (x, y) ) J, then f is difficult to dis­
prove infinitely often modulo g. 

Proof: 

Assume to the contrary that there is a program for 
C" which disproves f easily almost everywhere modulo 
g, i.e., 

00 

3jO(4)io (2) = Ct ) VxVy[f(x) ~y~<I>jO(2) (x, y) 5:g(x, y)]. 

(1) 

Then we may use this program to construct a pro­
gram which easily proves f almost everywhere. This 
relies on g being a step counting function. With inputs 
x and y, our program simply computes g(x, y), then 
starts computing the given program 4>i/2) (x, y). When 

* If this were "almost all y," then every f would be easy to 
disprove almost everywhere. 
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x is sufficiently large, if the computation of cl>jo (2) (X, y) 
takes more than g(x, y) steps, then we know f(x) =y 
immediately. Otherwise cPjo (2) (x, y) takes less than 
g(x, y) steps to converge. In that case we can prove or 
disprove f(x) =y according to the value of cl>jO(2) (x, y). 
N ow we are going to give a formal proof of the above 
outline. 

Let a be a recursive function such that: 

cl>j(x,'u) (2) if x < lor 
(x~landcl>/2)(x,y) converges 
and <P/2) (x, y) ::s; <p/2) (x, y)) 

cl>a(i,j,l) (2) (x, y) = 1 if x~l and cl>i(2) (x, y) 

converges and 

Lemma: 

<P/2) (x, y) > cJ>/2) (x, y) 
diverge otherwise 

If g = <Pio (2) and if j = jo is given by Eq. (1), then for 
some lo, cl>a(io,jo,lo) (2) = Ct. 

Proof: 

Since cl>io (2) and cl>jo (2) are total, cl>a(io,jo,l) (2) is total. By 
Eq. (1) there is a number lo such that for all x and all y, 
if x~lo and f(x) ~y, then <pjO(2) (x, y) ::S;g(x, y). There­
fore cl>a(io,jo,lo) (2) computes Ct. End of lemma. 

N ow we shall construct the h of the theorem. Define: 
p(i, j, l, x, y, z) 

{
o if x<l 

= <Pa(i,j,l) (2) (x, y) if x~l and cJ>/2) (x, y) =z 
o otherwise 

p is recursive, for if x~l and <p/2) (x, y) converges, 
then <Pa(i,j,l)(2) (x, y) converges. 

Let 

hex, y, z) = max{p(i,j, l, x, y, z) I max{i,j, l} ::S;x}. 

Thus we have that for all i, j, l: 

VxVY[h(x, y, <pP)(x, y)) ~<Pa(i,j,l)(2)(x, y)]. 

Hence, particularly for i=io, j=jo, l=lo: 

VxVY[h(x, y, g(x, y)) ~cJ>a(io,jo,lo)(2)(x, y)], 

since <PiO(2) (x, y) =g(x, y). 
This contradicts the hypothesis that f is difficult to 

prove infinitely often modulo ~xy[h (x, y, g (x, y) )], 
since by the lemma: cl>a(io,jo,lo) (2) is a program that 
computes Ct. 

Conversely, we can show that if f is difficult to dis­
prove infinitely often, then it is also difficult to prove 
infinitely often. 

Theorem 3: 

Let <P be any complexity measure. There is an hE R3 
such that for every step counting function g E R2 and 
for all fE R 1, if f is difficult to disprove infinitely often 
modulo ~xy[h(x, y, g(x, y))], thenf is difficult to prove 
infinitely often modulo g. 

Proof: 

The proof is similar to the proof of theorem 2. Notice 
that if there is a program cl>P) for C, which proves f 
easily almost everywhere modulo g, then by definition 
this means that for almost all x there is a y such that 
f(x) =y and <pP)(x, y) ::S;g(x, y). Since the graph of fis 
single-valued, if x is large and <pP) (x, y) >g(x, y), then 
f(x) cannot possibly be equal to y. 

Theorems 2 and 3 show that a function is difficult to 
prove infinitely often if and only if it is difficult to dis­
prove infinitely often. 

Naturally, we may ask the question: if f(x) =y is 
difficult to prove for almost all x, then does it follow 
that for each such x there is a y such that f (x) = y is 
also difficult to disprove? This is false by the following 
theorem. 

Theorem 4: 

Let <P be any complexity measure. There is a function 
bE R2 such that for all function g E R2, there exists a 
function f E Rl with two properties: 

(a) f is difficult to prove almost everywhere 
modulo g. 

(b) f is easy to disprove infinitely often modulo b. 

Proof: 

The theorem follows from the fact that even if a 
function f has the property that there is a bound 
b(x, y) on the number of steps to disprove f(x) =y for 
infinitely many x and all y, it may still be difficult to 
locate these x for whichf(x) =y is easy to disprove. 

Let g E R2 be given. Let hE R3 be any sufficiently 
large function monotone increasing in the third variable 
(h need only be large enough to satisfy lemma 1). Let 
~x[a(x)] be a 0-1 valued recursive function such that: 

00 

¥i(cI>i=a) ¥X[<Pi(X) >h(x, 0, g(x, 0))] (1) 

The existence of ~x[a(x)] follows from Rabin's theorem 
[Ref. 1]. 

Let cl>io be a fixed program for ~x[ a (x) ]. We define 
f as follows:f(x): "With input x, first computef(y) for 
all y <x. (In the process of doing this, some finite set of 
cl>i will be cancelled.) Second compute cl>io (x) . 

Case 1: cl>io(X) =0, let the output be O. 



Case 2: c/>io(X) =1, look for jO=fJ.j[j~x and j is not 
cancelled and cf>j(x) ~ 1 + max {h (x, y, g (x, y)) lyE {cf>io 
(x) +1, cf>io(X) +2} }. 

If no such jo is found, let the output be cf>io (x) + l. 
Otherwise, let the output be cf>io(X) +2 if c/>jo(x) = 
cf>io(X)+l. Let the output be cf>io(x)+l if c/>jo(x)¢ 
cf>io (x) + l. 

Then cancel c/>jo from the standard list." 

Let us see why f works: 

(b) We know that for any sufficiently difficult 0-1 
function a, a(x) =0 for infinitely many x. From the 
construction of f, a(x) =0 imp1ies f(x) =0. We shall 
exhibit a program which has the property that it dis­
proves f(x) =y quickly whenever a(x) =0 and y¢O. In 
fact, we will define a recursive function b, which does 
not depend on f such that b is an upper bound for the 
number of steps to disprovef(x) =y whenever a(x) =0 
andy¢O. 

First we construct c/>u(i,k) (2). We will show that 
c/>u(i,k) (2) is the program that disproves f quickly when 
k is an index for f and i is io, where c/>io is the program 
used in the construction of f. 

Let (j be a recursive function such that: 

c/>u(i,k)(2) (x, y) = 

Lemma 4.1: 

if y = 0 and c/>k (x) converges 
if y¢O and 

(cf>i(X) >y or c/>i(X) =0 
or v ( c/>k (x) converges and 

c/>k(X) ¢y)) 

1 if y¢O and cf>i(X) ~y and 
c/>i(X) ¢O and c/>k(X) con­
verges and c/>k(X) =y 

diverge otherwise 

If k is an index for f and if c/>io is the program used in 
the construction of f, then c/>u(io,k) (2) = C/. 

Proof: 

Observe that c/>k is total implies that c/>u(io,k)(2) is total. 

Case 1: y=O. 

{

I if c/>k(X) =0 
c/>u(io,k) (x, y) = 

o if c/>k(X) ¢O 

c/>u(io,k) (x, 0) = C/(x, 0) for all x. 

Case 2: y¢O. 
Subcase 1: cf>io(X) >y. In this subcase, 

c/>u(iO,k) (2) (x, y) =0. 

Now look at the construction of f. f(x) E to, <Pio(X) + 
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1, <Pio(X) +2}. Thereforef(x) will either be 0 or will be 
greater than y. Therefore f(x) ¢y. 

Subcase 2: <Pio(X) ~y and c/>io(X) =0. Again, 

c/>uCio ,k) (2) (X, y) = O. 

Look at the program for f. c/>io(X) =0 implies f(x) =0, 
therefore: f(x) ~y. 

Subcase 3: c:I>io(X) ~y and c/>io(X) ¢o and c/>k(X) =y 
implies c/>u(io,k) (x, y) = 1:. c/>u(io,k) (2) gives the correct 
answer. End of lemma 4.l. 

Define b as follows: 

b(x, y) = 

1 
max {cf>u(i,k)(2) (x, y) I iEA and k~x} 

if y¢O and A ¢0, where 

A = {i I i~x and [cf>i(X) >y or c/>i 
o (x) =O]} otherwise 

b is recursive since one can effectively decide whether 
or not A = 0, and in case y¢O and A ¢0, then by defini­
tion of (j, c/>u(i,k)(2) (x, y) =0, so cf>u(i,k) (2) (x, y) converges 
for all x. 

Lemma 4.2: 

ViVkVxVy[cf>i(X) =0 

and 
y¢0~cf>u(i,k)(2)(X, y) ~b(x, y)] (2) 

Proof: 

Let x2:: max{i, k}. If c/>i(X) =0, then i will be in A. 
If i is in A and y ¢O, then b (x, y) 2:: cf>u(i,k) (2) (x, y). End 
of lemma 4.2. 

Let i=io, and let k be an index for f. By lemma 4.1, 
c/>u(io,k) (2) = C/. By lemma 4.2, 

co 

and 
y¢0~<Pu(iO,k)(2)(X, y) ~b(x, y)]. 

By the definition off, we know that c/>io(X) =Opf(x) =0. 
Because c/>io is a sufficiently complex 0 - 1 valued func­
tion, we know c/>io(X) =0 for infinitely many x. Hence, 
we have: 

co 

3xVy[f(x) ¢y~cf>u(i,k)(2) (x, y) ~b(x, y)]. 

This finishes the proof of part (b). 
The proof of part (a) is easier: Let c/>k be any program 

which computes f. 
Lemma 4.3: 

co 

VX[<Pk(X) >h(x,f(x), g(x,f(x)))] (3) 

Proof: 

Case 1: f(x) =0 
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Assume to the contrary that 

00 

3X[cJ>k(X) -5:h(x, 0, g(x, 0))] 

By the definition of f, we know f(x) =OP<Pio(X) =0. 
By assumption, program <Pk computes f in less than 
hex, 0, g(x, 0)) steps infinitely often when f(x) =0. 
Hence, it computes <Pio(X) in less than hex, 0, g(x, 0)) 
steps infinitely often when <Pio(X) =0. This is a contra­
diction, since 

00 

Vi(<Pi=<Pio) VX[<Pi(X) >h(x, 0, g(x, 0))], 

by Eq. (1). 

Case 2: f(x) rfO. 

Assume to the contrary that 

00 

3x[ cJ>k(X) -5: h (x, I(x), g (x, f(x) ))]. 

Notice that f(x) rfO implies f(x) E {cJ>io(x) +1, 
cJ>io(X) +2}. Look at the definition of f: there are infi­
nitely many chances for k to be cancelled. Since at 
most k programs with index less than k may be can­
celled, <Pk will eventually be cancelled and the value of 
f will be made different from <Pk. This contradicts <Pk = f. 
End of lemma 4.3. 

Let <p/2) = Ct. By lemma 1, there is a k such that 
<Pk=fand 

00 

VxVy[f(x) =y~cJ>k(X) -5:h(x, y, cJ>/2) (x, y))] (4) 

CombiningEq. (3) andEq. (4), we have: 

00 

VxVy[f(x) =y~h(x, y, cJ>/2) (x, y)) 

~ cJ>k(X) >h(x, y, g(x, y))]. 
If follows that: 

00 

VxVy[f(x) =y~Cf?P) (x, y) >g(x, y)], 

since h is monotone increasing in the third variable. 
This finishes the proof of part (a). 
Let (<p, cJ» be the class of multitape Turing machines 

with step counting measure. Then the function b of 
theorem 4 is given by b(x, y) = C .y, where C is a con­
stant. To see this, we simply present a program to 
prove f(x) rfy in C·y steps when <pio(X) =0 (note that 
<Pio (x) = 0 occurs for infinitely many x), informally: 
given inputs x and y, if y>O, run y steps of <pio(X). If 
<pio(X) does not converge in y steps, we know immedi­
ately f(x) rfy (since f(x) E to, cJ>io(x) +1, cJ>io(x) +2) D. 
Otherwise <pio(X) converges in y steps, and in case 
<pio(X) =0, then we conclude that f(x) rfy (since 
<pio(X) =O~f(x) =0). 

Parallel to the question asked before theorem 4, we 

may ask the question: if f is difficult to disprove almost 
everywhere, is it also difficult to prove almost every­
where? The answer is again negative by a similar con­
struction of f as in theorem 4. 

Theorem 5: 

Let cJ> be any complexity measure. There is a function 
bE R2 such that for all function g ERa, there exists a 
function f E RI with two properties: 

(a) f if difficult to disprove almost everywhere 
modulo g. 

(b) f is easy to prove infinitely often modulo b. 

Proof/: 

The proof is similar to that of theorem 4. First we 
define a function hI E R4, the reason we define hI will be 
clear later. 

Let 0 be a recursive function such that 

<P8(i,i) (2) (x, y) : 

"With input x and y. Compute <pi(X). If and when 
<Pi (x) converges. Check following 3 cases. 

Case 1: <Pi (x) =0; give output I...!... I y-cJ>i(X) I 
Case 2: <pi(X) =1; compute <pP)(x, 0) and <pP)(x, 1) 
simultaneously until one of them converges. 

Subcase 1: <pP) (x, 0) = 0 or <pP) (x, 1) = 1; give output 
I...!... I y-11 

Subcase 2: <p/2) (x, 0) = 1 or<pp) (x, 1) =0; give output 
l...!...y 

Subcase 3: <pP) (x, 0) converges and <pP) (x, 0) ~ 
to, I} or<pp) (x, 1) converges and<pp) (x, 1) ~ to, I} ; give 
output 0 

Case 3: <Pi (x) converges and <Pi (x) ~ {O, I}; giv~ output 
0." 

Define: 
max{Cf?8(i,i)(2) (x, y) I (i,j)EA} 

if A rf <p, where 
hl(x, y, w, z) = A = { (i, j) I i -5: x andj-5:x 

and cJ>i(X) =W and 
(cJ>/2) (x, 0) -5:z or cJ>P)(x, 1) -5:z)} 

o otherwise 

hI is recursive, since we can effectively decide whether 
(i,j)EA or not. And in case (i,j)EA, cJ>8(i,i) (2) (x, y) 
converges. 

Lemma 5.1: 

00 

ViVjVXVY[<Pi(X) converges and 

( <pP) (x, 0) converges or <pP) (x, 1) converges) 

~cJ>8(i,i) (2) (x, y) -5: hI (x, y, cJ>i(X) , 

min { cJ>P) (x, 0), cJ>P) (x, 1) D] 



Proof: 

Let x~ max{i, j}. Since either 

<1>/2) (x, O)::=:; min{cI>/2) (x, 0), <1>/2) (x, I)} 

or 

<1>/2) (x, I)::=:; min{<I>/2) (x, 0), <1>/2) (x, I)}, 

by the definition of A we know that (i,j)EA. There­
fore, for all x ~ max {i, j} and all y 

[<I>il(i.i) (2) (x, y) ::=:;hl(x, y, <l>i(X) , 

min {<I>/2) (x, 0), <1>/2) (x, 1) }) ]. 

End of lemma 5.1. 
N ow we are going to define f. Let hI be any sufficiently 

large function monotone increasing in the fourth vari­
able (hI need only be large enough to satisfy lemma 5.1 
above). Let g E R2 be given. Let hE R3 be any sufficiently 
large function monotone increasing in the third variable 
(h need only be large enough to satisfy lemma 1). Let 
AX[ a (x) ] be a 0 -1 valued recursive function such that: 

00 

Vi(cf>i=a)Vx[cI>i(X) >2+ max{g(x, 0), g(x, I)}]. (1) 

The existence of Ax[a(x) ] follows from Rabin's theorem 
[Ref. 1]. 

Let cf>io be a fixed program for Ax[a(x)]. We define 
f as follows: f(x): "With input x, first compute fey) 
for all y <x. (In the process of doing this, some finite 
set of cf>i will be cancelled.) Second compute cf>io (x). 

Case 1: cf>io(X) =0, let the output be cI>io(x). 

Case 2: cf>io(X) = 1, look for jo=p,j[j::=:;x and j is not 
cancelled and 

<I>.i(x)::=:; max {hex, y, max {hI (x, w, <l>io(X), 
uE{O.I} wE{O.I} 

max{g(x, 0), g(x, 1) }) }) }] 

If no such jo is found, let the output be o. Otherwise, 
let the output be 1...!...<pio(x). Then cancel <Pio from the 
standard list." 

Let us see why f works: 

(a) We will show that for all sufficiently large x, 
there exists some y such that f (x) ;;z!= y and <1>/2) (x, y) > 
g(x,-y) for every cf>/2) computing Cf. 

Lemma 5.2: 

For all sufficiently large x such that <pio(X) =0, 
f(x) =y is difficult to disprove modulo g for some y. i.e., 

00 

Vj(<p/2) = Cf ) VX[cf>io(x) =0~3y[f(x);;z!=y 
and 

<1>/2) (x, y) >g(x, y)]]. 
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Proof: 

Assume to the contrary that: <Pio (2) = C f and 

00 

3X[cf>io (x) = 0 
and 

Vy[f(x) ;;z!=y~cI>io(2) (x, y) ::=:;g(x, y)] (2) 

From the construction off, we know that <pio(X) =O~ 
f(x) > 1. Therefore, if we can decide f(x) > 1 in less 
than max{g(x, 0), g(x, I)} steps for infinitely many x, 
then we can compute <pio(X) in less than max{g(x, 0), 
g(x, 1) } steps for infinitely many x. This will be a con­
tradiction to Eq. (1). Since <pio(2) computes C" a way to 
decide whether f(x) > 1 or not is to compute <Pio(2) (x, 0) 
and <Pio (2) (x, 1) simultaneously. For those x satisfying 
Eq. (2), the computation of <Pio(2)(X, 0) and <pio(2)(X, 1) 
will converge in less than g(x, 0) and g(x, 1) steps 
respectively, since by the definition of f for those x with 
the property that <PiO(X) =0. We know that f(x);;z!=O 
and f(x) ;;z!= 1. Therefore, we can decide f(x) > 1 in less 
than max {g(x, 0), g(x, I)} steps for infinitely many x. 
End of lemma 5.2. 

Lemma 5.3: 

For all sufficiently large x such that <Pio(X) = 1, 
f(x) =y is difficult to disprove modulo g(x, y) for some 
y. i.e., 

00 

Vi (<p/2) = Cf ) ¥X[<pio(X) = 1~311[f(x) ;;z!=y 
and 

<l>i(X, y) >g(x, y)]] 
Proof: 

Claim: 

For all sufficiently large x such that cf>io(X) = 1, 
f(x) =y is difficult to prove modulo 

AX[ max {hl(x, w, <l>iO(X) , max{g(x, 0), g(x, 1) }) }] 
wE {O.l} 

for all y. i.e., 

Proof: 

00 

Vi(<PP)=Cf)VX[<PiO(X) =1 

~Vy[f(x) =y~<I>P)(x, y) 

> max {hI (x, w, <l>io (x), 
wE {o.l} 

max{g(x, 0), g(x, 1) }) }]] 

First we show that: for every <Pk computing f 
00 

VX[<Pio(X) = 1~[<I>k(x) 

> max {hex, y, max {hl(x, w, <l>iO(X) , 
yE{O.I} wE{O.I} 

max{g(x, 0), g(x, I)})})}]] (3) 
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Since otherwise there is a cPk such that cPk = f and 

00 

3X[cPiO(X) = 1 

and 

cI>k(X)~ max {h(x,y, max {hl(x,w, <PiO(X) , 
tiE {O,l} wE {O,l} 

max{g(x, 0), g(x, 1) }) }) }]. 

Look at the definition of f, then there are infinitely 
many chances for k to be cancelled and cPk will eventu­
ally be cancelled and the value of f will be made differ­
ent from cPk. This contradicts that cPk computes f. 

Second, let cPP) = C/. By lemma 1 there is a k such 
that cPk = f and 

00 

VxVy[f(x) =y~<Pk(X) 5::h(x, y, <pP)(x, y))] (4) 

Therefore, we have: 

00 

VX[cPiO(X) =l~Vy[f(x) =y 

(by Eq. (4)) 

'?h(x, y, max {hI (x, w, <PiO(X) , 
wE {O,l} 

max{g(x,O),g(x,l)})})]] 

(by Eq. (3) and cPio(X) = l~y=f(x) E to, 1}) 

It follows that: 

00 

VX[cPio(X) = l~Vy[f(x) =y~<PP) (x, y) 

'? max {hl(x, w, <PiO(X) , 
wE {O,l} 

max{g(x, 0), g(x, 1)}) }]]; 

since h is monotone in the third variable. End of claim. 
N ext we assume to the contrary to lemma 5.3 that 

there is a cPjo (2) computes C/ has the property that: 

00 

3X[cPiO(X) = 1 
and 

Vy[f(x) ~y~cI>io(X, y) 5::g(x, y)]] (5) 

We will use cPjo to construct a program which proves 
f(x) = y in less than 

max {hl(x, w, <PiO(X) , max{g(x, 0), g(x, 1)})} 
wE {O,l} 

steps for infinitely many x such that cPio (x) = 1. Then 
this is a contradiction to the claim above. 

We claim cPo(io,jo) (2) will do: from the definition of 0, 

it is easy to see that cPo(io,io)(2) computes Cj, since cPio 
computes C/ and cPio is used in defining f. 

Since cPjo (2) is total and cPio (x) = 1 implies that 
f(x) E to, 1}. From lemma 5.1 and Eq. (5) above we 
have the result that for infinitely many x such that 
cPio(X) =1 and for yE to, 1}, 

min {cI>io (x, 0), <Pio (x, 1) }) ~ max hI (x, w, <Pio (x), 
wEI O,l} 

min { cI>jo (x, 0), <Pio (x, 1) }) 5:: max hI (x, w, cI>io (x), 
wE {O,l} 

max{g(x,O),g(x,l)}) 

(since hI is monotone increasing in the fourth variable 
and either <piO(2) (x, 0) ~g(x, 0) or <piO(2) (x, 1) ~g(x, 1) 
byEq. (5)). 

This is a contradiction to the claim above. End of 
lemma 5.3. 

Combining lemma 5.2 and lemma 5.3, we have the 
proof of part (a). 

(b) We will construct cPlT(i,k) (2). When we choose 
i=io and k to be an index for f, then cPlT(io,k)(2) computes 
C/. In addition, we will show that there is a recursive b, 
which does not depend on f and g such that b is an 
upper bound for the number of steps to compute 
cPlT(io,k) (2) (x, y) whenever cPio (x) = 0 and y = <Pio (x). Look 
at the definition of f, f(x) = <Pio(X) when cPio(x) =0. 
Therefore b is an upper bound for the number of steps 
to provef(x) =y by algorithm u(io, k) when cPio(X) =0. 
Since cPio is a sufficiently complex 0 -1 valued function, 
we know cPio(X) =0 for infinitely many x. 

Let u be a recursive function such that: 

1...!... I y-cPk(X) I ify5::1 andcPk(x) converges 
1 if y>l and <Pi(X) =y 

o 

diverge 

Lemma 5.4: 

and cPi(X) =0 

ify>l 
and (cI>i(X) >y or (<Pi(X) =y 
and cPi(X) ~O) or <Pi(X) <y) 

otherwise 

If k is an index for f and if cPio is the program used 
in the construction of f, then cPu Cio ,k) (2) = C /. 

Proof: 

Observe that cPk total implies that cPlT(io,k) (2) is total. 
It is obvious to see cPlT(io,k)(2)(X,y)=C/(x,y) when 
y~1. By definition of f, f(x)E{O,l,<pio(x)} and 
f(x) = <Pio(X) only when cPio(X) =0. End of lemma 5.4. 



Define b as follows: 

l
max{ <Pu(i,k) (x, y) I k~x 

and iEA} if A ~0, where 
b(x,y)= A={ili~xandy>1 

and <Pi(X) =y and cPi(X) =o} 
o otherwise 

b is recursive since one can effectively decide whether 
or not A = 0, and in case A ~0, then by definition of u, 
cPu(i,k) (2) (x, y) = 1. So <Pu(i,k) (2) (x, y) converges. 

Lemma 5.5: 

co 

ViVkVxVy[y> 1 and cPi(X) =0 

~b(x,y)]. 
Proof: 

Let x~ max{i, k}. If y>1 and cPi(X) =0 and 
<Pi(X) =y, then i will be in A then b(x, y) ~ 
<Pu(i,k) (2) (x, y). End of lemma 5.5. 

Let i = io, and let k be an index for f. By lemma 5.4, 
cPu(io,k)(2) = CI• Because cPio is a sufficiently complex 0-1 
valued function, we know cPio(X) =0 for infinitely 
many x. By definition of f, cPio(X) =0 implies 
f(x) = <Pio(X) and <Pio(X) > 1 by Eq. (1). Hence by 
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lemma 5.5, we have: 

co 

3x3y[f(x) =y and <Pu(iO,k) (2) (x, y) ~b(x, y)] 

i.e., we show that f is easy to prove infinitely often 
modulo b. This ends the proof of part (b). 
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On the structure of Blum measure* 

by TSUN S. CHOW 
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PRELIMIN ARIES 

We assume that the reader is familiar with the basic 
paper of Blum,1 and Borodin's paper on the existence 
of complexity gaps.2 

m is the set of nonnegative integers. ffin is the set of 
(total) recursive functions of n variables. CPn is the set 
of partial recursive functions of n variables. 

The abbreviation "a.e." is used for "almost every­
where." If P(x) is a statement containing the variable 
x then AX[P(x)] is a predicate of one variable on m. 
The A-notation is also used for functions. The statement 
"Ax[P(x)] (a.e.)" means that P(x) is true for all but 
finitely many xEm. Similarly, "Axy[P(x,y)] (a.e.)" 
means that P(x, y) is true for all but finitely many 
pairs of x and y E m. The phrase "for sufficiently large 
function f E ffin ... " means "there is abE ffin such that 
for allf,f~b (a.e.)=} .... " 

The function cf>i is then ith partial recursive function 
in a standard enumeration of CP i. A Blum measure 
<P = {<Po, 4>1, ... } is a sequence of functions in CP1 satis­
fying two axioms: 

1. domain (cf>i) = domain (4)i) for all i Em, 
and 

2. Ai, x, y[4>i(X) =y] is a recursive predicate. 

As an aid in exposition, we say f is less (greater) 
than g, modulo r to mean that rf <g a.e. (f>rg a.e.). 

Choose a recursive 1-1 map of the integers onto the 
set of all 2-tuples of integers. Let (x, y) denote the 
integer which maps onto (x, y). 

"DENSENESS" OF BLUM MEASURE 

Borodin2 has shown that given any recursive function 
r, there exists a recursive t such that no· step-counting 
function takes values between t (x) and rt (x) except on 
a finite number of integers. The gap, here, appears 
between two recursive functions, t and rt. 

* Research sponsored by the National Science Foundation, 
Grant GJ-708 
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At this point, a natural question to ask is the 
following: for every recursive function r, does there 
exist a pair of recursive step-counting functions 4>i and 
<Pj such that <Pj(x) >r(x, 4>i(X» for almost all x and 
there are no step-counting functions between them? 
Corollary will show that, in fact, for all sufficiently 
large recursive function r, there can be no such gaps 
between any two recursive step-counting functions, or 
even any two partial recursive step-counting functions 
with same but infinite domain. 

The following proposition shows that for any partial 
rec~rsive function cf>i there exists another program u, 
whlCh computes cf>i but takes slightly more steps than 
that required to compute cf>i. 

Proposition 

There exist functions u E ffil and hE ffi2 such that for 
every i, we have 

(a) cf>q(i) = cf>i and 
(b) 4>i(X) <cI>q(i) (x) ~h(x, 4>i(X» 

a.e. in the domain of cf>i. 

Proof: 

Let u be defined as follows: 

1 
diverge if cf>i(X) diverges 

cf>q(i) (x) = or 4>q(i)(X)~4>i(X) 

cf>i (x) otherwise 

Clearly u is recursive and cf>q(i) = cf>i. Also, for all x in 
the domain of cf>i' we have 4>i(X) < <Pq(i) (x). 

Let p and h be defined as follows: 

. {4>q(i) (x) 
p(~, x, z) = 

o if otherwise 

hex, z) = max {p(i, x, z)} 
i5,.x 
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Clearly p is recursive and so is h. Further we have for 
almost all x in the domain of cf>i 

Corollary: 

Let r E <lh be sufficiently large. For every i, j, if 

(a) domain (cf>i) = domain (cf>j) = W 
(b) <Pj(x) >r(x, <Pi (x) ) a.e. in W 

then there is a u such that 

(c) cf>u=cf>i and 
(d) <Pi(X) < <Pu(x) < <Pj(x) a.e. in W. 

Proof: 

and 

Let (T and h be as in Proposition (2.1). Assume r be 
such that r> h a.e. 

For every i, j satisfying (a) and (b) above, we have 
that for almost all x in the domain of cf>i 

by Proposition (2.1) 
by choice of r 
by choice of j 

Further cf>u(i) = cf>i 

<Pi(X) < <Pu(i) ~h(x, <Pi(X» 
<rex, <Pi(X» 
< <Pj(x) 

Hence (T (i) is the u desired by the corollary. 

"TOP" AND "BOTTOM" OF GAPS 

There is another slightly weaker way to talk about 
gaps. With hE CR2 fixed, pick a recursive function r much 
greater than h. Then we say that" <Pi is the top (bottom) 
of a gap of size r," if whenever <Pk is less (greater) than 
<Pi modulo h a.e. then <Pk is much less (greater) than 
<Pi, in the sense that <Pk is less (greater) than <Pi modulo r. 

Now we can ask the following question: does there 
exist an hE CR2 such that for every recursive r there is 
some <Pi which is the top (bottom) of a gap of size r? 
Theorem (3.1) says that there exists a <Pi which serves 
for the top of a gap, while for sufficiently large r, 
Theorem (3.2) says that no <Pi can serve as the bottom 
of a gap of size r. 

Theorem (Top of the gap theorem) 

There exists an hE CR2 such that for every r, g E CRl, 
there is a u uniform in rand g with the following 
properties: 

(a) <Pu is recursive and 
(b) Vx[ <Pu (x) >g (x)] and 

co 

(c) VkVx[h(x, <Pk(X» < <Pu(x) 
~r( (x, <Pk(X») < <I>u (x) ] 

Proof: 

Instead of working directly 'with r, r=cf>i and g, g=cf>h 
we choose to work with <Pa(i) (in place of cf>i) and <pa(j) 
(in place of cf>j). Besides majorizing the recursive 
functions, these {<Pa(n)} n~O have other useful properties. 

Lemma 1: 

Let <P be a Blum measure. There is a recursive func­
tion a such that for every i, x, y 

(a) <Pa(i) (x) ?'cf>i(X) 
(b) <Pa(i) ( (x, y» > y 
(c) if <Pa(i)«X,y» and <Pa(i)(X,y+1» converge, 

then <Pa(i) ( (x, y» < <Pa(i) «x, y+ 1» 
(d) <Pa(i) recursive iff cf>i recursive. 
(e) if <Pa(i) ( (x, y» diverges for some y, then for all 

z? y <Pa(i) ( (x, z» diverges 

Lemma 2: 

With a as in Lemma 1, there is oE (fh such that 

(a) for every i, j, x cf>1)(i,j) (x) ? <PaUl (x) 
(b) Aijxz[<Pa(i) (X, cf>1)(i,j) (X») =z] is recursive 
(c) if cf>i, cf>j are recursive, then cf>ijCi,j) is recursive and 

has the following property: 

VkVx?k[I[cf>oCi,j) (x) ~<Pk(X) ~<Pa(i)«X, cf>ij(i,j) (x) »]] 

Lemma 2 (b) is needed to make the construction of h 
in Lemma 4 become recursive. 

Lemma 3: 

With a as in Lemma 1 and 0 as in Lemma 2, there 
exists (T E CR2 such that for every i, j, x 

(a) <Pa(i) (x, cf>ij(i,j) (x) » converges if and only if 
<Pu(i.i) (x) converges and 

(b) <Pa(i) «x, cf>1)(i,j) (x) » ~<Pu(i,j)(X) 

Lemma 4: 

With a, 0, and (T as in Lemma 1, 2, 3 respectively, 
there exists an hE CR2, monotonically increasing on the 
second variable such that 

Vi, jV x? max {i, j} [h (x, <Pa(i) ( (x, cf>oCi,j) (x) » 

? <Pu(i,j) (x)] 

N ow we are ready to prove the theorem. The function 
h is given by Lemma 4. Let recursive function r = cf>i 
and g = cf>j be given. We choose u = (T (i, j). Since cf>i, cf>j 
recursive imply, by Lemma l(d) and Lemma 2(c), 
that <Pa(i) and cf>o(i,j) are recursive, we conclude, by 
Lemma 3 (a), that <Pu(i,j) recursive. This proves (a) 
of the theorem. 

From Lemma 3 (b) , we have 

<Pu(i,j) (x) ? <Pa(i) ( (x, cf>o(i,j) (x) » for every x. 



Recalling Lemma 1 (b), Lemma 2 (a), and Lemma 
1 (a), this implies 

<Po-(i,j) (x) >cf>i(X) =g(x) for every x. 

This proves (b) of the theorem. 
It remains to show that (j (i, j) also satisfies (c) of 

the theorem. 
Let <Pk be such that for some x> max{i, j, k} 

hex, <Pk(X» < <Po-(i,j) (x) 

By Lemma 2(c), cf>o(i,i) is recursive. Since by Lemma 4, 
for x~ max{i,j}: 

<Po-(i,j) (x) ~h(x, <Pa(i) (x, <Po(i,j) (x»» 
we have 

hex, <Pk(X» <hex, <Pa(i) (X, cf>o(i,i) (X»» 

Since h is monotonically increasing on the second vari­
able, this implies 

<Pk (x) < <Pa(i) «x, cf>o(i,i) (x) » 

by Lemma 2(c) 

by Lemma l(c) 

<Pa(i) ( (x, <Pk (x) » < <Pa(i) ( (x, cf>o(i,i) (x) » (*) 

Since by Lemma 1 (a) , 

cf>i ( (x, <Pk (x) » < <Pa(i) ( (x, <Pk (x) »). 
and by Lemma 3 (b) , 

<Pa(i) (x, cf>o(i,j) (x) ») < <Po-(i,i) (x) 

the inequality (*) implies 

cf>i«X, <Pk(X)) < <Po-(i,i) (x) 

That is, we have shown that for every k and almost 
all x, 

hex, <Pk(X») < <Po-(i,i) (X)~cf>i( (x, <Pk(X)) < <Po-(i,j) (x) 

Proof of Lemma 1: 

It is easy to construct a recursive function a satis­
fying Lemma 1 and so the proof is omitted here. 

Proof of Lemma 2: 

Given <Pa(i) and <paU), then for each x we wish to set 
cf>o(i,i)(X) =y for the least y such that y is greater than 
<pa(j) (x) and there is no <Pk(X) between y and 
<Pa(i) ( (x, y») for all k ~ x. If we know in advance that 
both <Pa(i) and <paU) are recursive, then this is exactly 
like the proof of Borodin's Gap Theorem. But in 
general, <Pa(i) and <paU) may not converge at some 
inputs and therefore we may not be able to define 
cf>o(i,i) at some x. Hence, in order to make the predicate 
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XijXZ[<Pa(i) (x, c!>o(i,i) (x)) =z] recursive, we have to 
take extra trouble in defining cf>oCi,i) (x). 

We first introduce a recursive predicate Q and then 
define cf>o(i,j) (x) in terms of Q, such that if Q(i, j, x, z) 
is true for some z, then cf>o(i,i) (x) converges. 

Q(i, j, x, z) =3y[ (1) <paU) (x) <y 
and 

(2) <Pa(i) ( (x, y») = z 
and 

Since <P is a Blum measure and by Lemma 1 (c) and 
1 (e) for every i, <Pa(i) is strictly increasing on its domain 
on second variable, we can check effectively whether 
there exists a y satisfying conditions (1) and (2) above. 
If there is such a y, then we can check condition (3). 
Thus we see that Q is recursive. 

Now define 

{

diverge if Vz[-'Q(i, j, x, z)] 
cf>o(i,i) (x) = y 

otherwise, 
where y is the unique integer 

such that 
<Pa(i) ( (x, y») = ~z[Q (i, j, x, z)] 

o is recursive, because the predicate Q is recursive. By 
condition (1) in the definition of Q, we have that for 
every i, j, and x, cf>oCi.i) (x) ~ <pa(j) (x). This proves (a) 
of the lemma. Now, for every i, j, x, z: 

<Pa(i) (x, cf>o(i.i) (x)) =zf-'}Q(i, j, x, z) 

and 
vw<xnQ(i,j, x, w)] 

Since the right-hand-side in the above expression is recur­
sive, we see that Xi, j, x, z[ <Pa(i) ( (x, cf>o(i,j) (x) ») = z] is 
also recursive. This proves (b) of the lemma. 

To prove (c), we assume cf>i and cf>i to be total. By 
Lemma 1 (d), we have <Pa(i) and <paU) total. By examin­
ing the definition Q, we see that for every x, there is 
always some z such that Q (i, j, x, z) holds. Therefore, 
cf>o(i,i) (x) converges for every x, and so cf>o(i,i) is recursive. 

Also, from construction of 0, for every x, cf>o(i,j) (x) 
defined implies that 

VkVx~k[-'[cf>O(i,i) (x) ~ <Pk (x) ~ <Pa(i)( (x, cf>oCi,j) (x) »)]] 

Proof of Lemma 3: 

Let a and 0 be as in Lemma 1 and Lemma 2 respec­
tively. Let (j be the function defined as follows: 
cf>o-(i,j) (x) 

1
0 if <Pa(i) (x, cf>o(i,i) (x)) converges 

= and <Po-(i,i) (x) > <Pa(i) ( (x, cf>o(i,i) (x) ») 

diverge otherwise 
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This definition makes implicit use of the recursion 
theorem. 

Since 4>a(i) and c!>o(i,i) are partial recursive, (j is recur­
sive. From the definition of (j it is clear that 4>u(i,i) has 
the same domain as AX[<I>a(i)( (x, c!>o(i,i> (x) )J and for 
every x, 4>u(i,i) (x) exceeds 4>a(i) ( (x, c!>o(i,i) (x) » whenever 
the latter converges. 

Proof of Lemma 4: 

Let a, 0, and (j be as in Lemma 1, 2, 3, respectively. 
Let 

.. _{4>U(i'i) (x) if 4>a(i) «x, c!>o(i,i) (x) » =Z 
PC''', J, x, z) - ° otherwise. 

By Lemma 3, if 4>a(i) ( (x, c!>o(i,i) (x) » converges then 
4>u(i,i> (x) also converges, and by Lemma 2, 

Ai, j, x, z[ 4>a(i) ( (x, c!>o(i,i> (x) » = z J 
is recursive. Therefore, p is recursive. 

Let 

h(x,O)=l+ max {p(i,j,x,O)} 
i:5,x,i:5,x 

and for z>O 

h(x,z+l)=l+ max {p(i,j,x,z),h(x,z)} 
i$.x,i$.x 

Clearly h has the desired properties. 

Theorem (Bottom of the gap theorem) 

Let t E (R2 be given. If r E (R2 is sufficiently large, then 
for every c!>i there exists u such that: 

(a) c!>u=c!>i and 
(b) t(x, 4>i(X» <4>u(x) <rex, 4>i(X» a.e. in the 

domain of c!>i .. 

Proof: 

By a trivial modification in the proof of Proposition, . 

we can show the following lemma: 

Lemma: 

For every t E (R2 there exist (j E (Rl and hE (R2 such that 
for every i, we have: 

(a) c!>u(i) = c!>i and 
(b) t(x, 4>i(X»<4>u(i) (x) <h(x, 4>i(X)) a.e. In the 

domain of 4>i. 

The theorem follows from the Lemma, if we let 
U = (j (i) and assume r is greater than h a.e. 

CONCLUSION 

Besides Borodin's Gap Theorem, we have presented 
two other ways to look at the gap phenomenon in the 
structure of Blum measure. It is no accident that the 
proof of Theorem (Top of the Gap Theorem) is closely 
related to that of Borodin's Gap Theorem while the 
proof of Theorem (Bottom of the Gap Theorem) is 
very similar to that of Corollary. In a way, they explain 
why the gap that exists in Borodin's formulation fails 
to appear in Corollary. Our main results point out the 
existence of an interesting asymmetry in the properties 
of step-counting functions. 
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Management information systems, public policy 
and social change 

by ABE GOTTLIEB 

Office of State Planning and Development 
Harrisburg, Pennsylvania 

I would like to address a few of my remarks to the 
character and implications of computer usage in govern­
ment but before I do so, I might indicate that I'm 
with the Pennsylvania Office of State Planning and 
Development and my frame of reference has three 
outward tracks-as an urban planner, as a participant 
in data systems and as an official and sometimes un;.. 
official stimulator of social change. These three biases 
ought to surface in the remarks I am going to make. 

State governments as well as national and local ones 
are basically concerned with two kinds of computer 
uses. The first, and much less important, puts the com­
puter to work at massaging multi-purpose information 
that can cover an almost infinite spectrum of urban 
oriented subject areas. These have come to be known 
as urban information systems. In theory, they can 
furnish the planner and decision maker with data and 
analyses in land use changes, population and housing 
shifts, economic trends, fiscal information and social 
statistics for a community or any group of communities. 

But computer technology in government plays a 
much more critical role than what is inherent in the 
operations and outputs of such urban information sys­
tems. It is almost a truism today that no public agency, 
bureau, commission, board or any other unit of govern­
ment can operate without some computerized control 
of its programs, processes and service delivery capabili­
ties. For example, in Pennsylvania each of the 18 
executive departments and most of the commissions 
and boards have their own data systems. Many of 
these, especially the larger ones, are computerized to 
a fairly high level of sophistication. The State De­
partments of Transportation, Labor and Industry, 
Revenue, Education and Public Welfare all have a 
tremendous amount of stored information and a com­
mensurate technology to utilize that data. 

This kind of operation and use of computers is asso­
ciated with a relatively new breed called Management 
Information Systems. Its focus is the day to day, month 
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to month control of inventory, bookkeeping, record 
keeping, disbursements and receipts in the myriads of 
government programs that inter-act with each other 
and with many recipients of public services. My con­
cern therefore, is with the Management Information 
Systems that are utilized by States and municipalities 
throughout the country. These systems exist by virtue 
of controlling an inventory or a process and by some­
times delivering a service to public or private recipients. 

INFORMATION SYSTEMS AS 
MANAGEMENT TOOLS 

Now as I get into the substance of my discussion, I 
want to explore a number of ideas that relate more 
directly to the relationship of these computerized sys­
tems to the bureaucracies in which they flourish, to the 
formation or paralysis of public policy and to their 
impact on the possibilities of social change. Since 
these are the central themes around which our discus­
sion will resolve, I will direct my remarks to the follow­
ing points: 

1. Urban data systems and management informa­
tion systems are not merely respositories of facts 
and instructions for manipulating them. They 
are also collections of technologies as well and if 
there ever was any truth to the cliche that the 
"medium is the message," I am almost tempted 
to make the point that it is really the computer 
and its applications that will fashion, modify 
and transform our social structure and not the 
data that is poured into and out of it. 

2. Management information systems at the State, 
local and national levels are used to serve man­
agement. In Pennsylvania State government as 
elsewhere the data systems are designed to assist 
in the operation of a Department's or agency's 
program more efficiently and perhaps more 

/ 



508 Spring Joint Computer Conference, 1972 

cheaply than would have been possible under 
other arrangements. 

3. Management rationality and efficiency are the 
overriding considerations of the "worth" of such 
systems. Whether to design, install, enlarge, 
merge with other systems or evaluate, the 
principal factors are judged to be speed, 
thoroughness, cost and labor savings. These are 
managerial-administrative considerations and 
almost never socially oriented ones. They look 
inward to the process, not outward to the con­
sequences. 

4. The programs or process controls which are the 
heart of such data systems sometimes result in 
services to various segments of the State's popu­
lation. Sometimes they do not and we will 
speak about both situations shortly. 

5. Management information systems that typically 
extend such services as auto registrations, tax 
notifications and collections, unemployment and 
welfare assistance, etc., mayor may not be 
necessary or desirable. They can, however, 
make little claim to generating, sustaining or 
otherwise influencing the direction, depth or 
quality of social change in the State. 

6. Any data management system with the capa­
bility of mounting substantially greater research 
and analytic capabilities. than was previously 
possible, can sometimes produce an innovative 
breakthrough, a new way of seeing and under­
standing the dynamics of a community. Con­
ceivably, this might lead to important changes 
and realignments in our social, political and 
economic structures but. I remain skeptical and 
would like to be convinced. 

7. Finally, I feel that if we turned the proposition 
the other way around and considered the impact 
of currently changing social values on the in­
formation systems and their related technologies, 
we would get a new dimension to the problem. 
If the events, moods and changes that surfaced 
in the latter part of the 1960s mean anything 
for the coming decades, we can expect major 
incursions into the organization, content and 
uses or perhaps even selective abandonment of 
urban oriented information systems. 

THE REACH OF MANAGEMENT 
INFORMATION SYSTEMS 

N ow before anyone hands in his union card, I would 
like to make it clear that while data and management 

information systems are rarely the catalysts for social 
change, they can and do penetrate to the lives of a 
great many people in all segments of our society. This 
stems directly from the operations of the record keeping 
and process controls that are at the very heart of the 
systems. At the State level of government in Pennsyl­
vania such operations probably account for over 90 
percent of all computer usage so that it would not be 
amiss to say that both the administrators of the 
information systems and the machinery itself is 
thoroughly committed to keeping the records and con­
trolling the processes. For example, the State Depart­
ment of Public Education receives a veritable deluge of 
data from the local school districts relating to almost 
all aspects of running an educational bureaucracy. The 
Department of Revenue must maintain a computerized 
information system for the calculation, billing, mailing, 
recording and analyzing of tax receipts. Similarly, the 
information systems of the State Department of Labor 
and Industry and the Department of Transportation 
(just to name a few of the larger operations) are deeply 
committed to the routinized processes of maintaining 
a complex unemployment insurance system in the first 
case and keeping auto ownership inventories, issuing 
licenses and recording accidents in the second. 

Basically, therefore, the data systems of the State 
work towards the delivery of services to a wide range 
of individual residents as well as to local communities 
and to other State agencies. There are of course adjacent 
and parallel operations such as internal payroll, book­
keeping and property inventory and control that gen­
erally do not reach out to any segment of the popula­
tion. One can easily see the counter-part of these opera­
tions at the city, county and township levels as well. 
This is, admittedly, a capsule version of the Pennsyl­
vania Management Information System but I think it is 
important to appreciate the data areas, the kinds of 
controlled operations and a few examples of the services 
delivered before we speak about the roles, if any, that 
these systems play in social change. 

THE LIMITING LIDS ON SOCIAL 
INNOVATIONS 

You may have noticed that I have deliberately 
divorced the objectives and operation of management 
information systems from the larger State programs of 
which they are part. I admit that this is not quite fair 
and that such a division would be a highly artificial 
one so I would like to bridge the gap at this point. The 
State of Pennsylvania has defined eight broad, long 
range objectives toward which it wants to move and 



had identified several hundred currently operating 
programs (many in the social arena) that mayor may 
not be reinforcing these objectives. All the data systems 
I have been talking about live and operate in some 
uneasy relationship to these programs and objectives 
and it is these connections that I would like to discuss. 

To begin with, the State information systems that 
keep records, control processes and deliver some services 
in Pennsylvania (and there are almost no other kinds) 
are themselves very substantial organizational entities. 
The investment in time, professional staff, money 
hardware and software and support personnel is quite 
considerable and this whole range of activity has gained 
structural and administrative solidity in the last few 
years. In Pennsylvania and in many other States we 
can speak of an information system bureaucracy that 
is not without substantial power and influence. Like all 
bureaucracies, it does not always look kindly. upon 
change inside or outside its own domain; social, man­
agerial or otherwise. 

I have also made the point earlier that management 
information systems are tools to serve management 
which means more precisely to serve administrators 
and decision makers in operating programs and process 
as efficiently, rapidly and cheaply as possible. Now 
while these are the criteria that make the computer so 
valuable they are also the criteria that draw the ad­
ministrator to the narrow focus of the procedural 
rationality of his program rather than towards an ex­
amination and concern with the impacts and conse­
quences of his acts. In other words, the machine to­
gether with its operations, controls and data base induce 
the administrator to look inwards to the managerial 
objectives of his world when he should be involved with 
the political,. social and economic meaning of what he 
does. Weare very accustomed to visualize information 
systems as devices to facilitate policies and programs 
but it seems to me that the feedback (if you will pardon 
the expression) might be even more significant than the 
initial impulse that is, the systems themselves (singly 
and in concert) set the pattern, depth and range of 
current and future concerns of the State and many 
municipalities. From this point of view, the tail is very 
definitely wagging the dog and something is wrong. 

I am not intimating that programs made effective 
by the use of information systems and process controls 
are unimportant or negative accomplishments in the 
State. But I am saying that the systems, controls and 
processes should not be the measuring rod for the social 
and economic interactions between the State and its 
residents. Nor should they be (as they almost inevit­
ably become) the determinants that freeze public 
policy. 
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CONSTRAINTS ON PUBLIC POLICY 

At this point in our discussion, I feel that we are 
beginning to zero in on a critical area. Almost at the 
outset, I made the observation that social changes 
among various groups and segments of our population 
can usually be traced to a shift in values, attitudes and 
aspirations that arise in these groups and the conviction 
that such aspirations can be realized in one's lifetime. 
However, to these basic stimulants I would like to add 
a second kind of possibility and that is the nature and 
scope of public policy. 

Under certain circumstances, public policy can trans­
late the values and aspirations of various groups into 
attainable benefits. Such policies and programs can 
even set off a chain reaction extending into social, 
political and economic areas far beyond the point of 
initial program impact. It is my contention that what 
happens to existing programs and especially the breadth 
and vision brought to bear by public administrators in 
creating new social objectives will go a long way to­
wards making a management information system re­
sponsive to social realities. The field is wide open in 
health, criminal justice, education, consumer protec­
tion, public welfare, environmental improvement and 
others. And it is in these areas and among these kinds 
of public efforts that I have some qualified reasons to 
be1ieve that the State may become attuned to the ex­
plosive social transformations that are sometimes above 
and usually just below the surface in the major urban 
areas of the State. 

However, the obstacles to this kind of sequence are 
formidable. To begin with, public policies, objectives 
and programs are heavily dependent on what the agency 
or the administrator is doing now and doing it with all 
the management tools, personnel and investments at 
his disposal. Realistically speaking, there is no particu­
lar reason to assume that State, city or national man­
agement people look forward to gearing themselves, 
their program control processes, their machines and 
their data to ventures that cannot be justified beyond 
running smooth, self-:regulating and almost self-perpetu­
ating operations. 

For example, it is with considerable fear and trepida­
tion that many administrators look upon program 
evaluations where the focus is on social, educational 
and economic consequences, ameliorations ·and status 
changes rather than what is expected and dictated by 
the flow processes of paper, forms and data. This feeling 
is especially acute when the validity of existing pro­
grams and sequenced actions are questioned and new 
ones might be suggested. The real threat of P.P.B. is 
not that cost-effectiveness studies are hard to define 
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and difficult to mount (all too true) but that P.P.B. 
insists that management and its information systems 
clarify and justify their efforts in terms of its impacts 
and consequences on all classes and categories of re­
cipients. In the social arenas of criminal justice, pov­
erty, education, housing arid even science aild tech­
nology, this begins to get close to tampering with the 
cement that holds the structure together and whether 
we call it P.P.B. or anything else it is clearly a kind of 
opening wedge in that direction. 

Therefore, the way I see it two related things must 
happen. The first is a willingness for the public policy 
makers to realign State and local objectives and pro­
grams so that definable improvements are explicitly 
built into them and the second a willingness for the 
information systems directors to accept new standards, 
criteria, data and processes to make this work. It could 
be that the policy makers and the information directors 
are not always the same people with the same interests 
and outlooks on all issues of program and process con­
trol. Sometimes they wear the same hat and sometimes 
they, don't but it seems reasonable to suppose that 
they have been mutually reinforcing each other as 
long as information systems have continued to remain 
program and management tools. If I were to venture 
a guess, I would say that the policy and program 
makers are as much locked into the uniquely narrow 
perspectives of data, inventory and process control as 
are the information systems directors themselves. 

SOME PROOF OF THE PUDDING-SOCIAL 
INDICATORS 

My theory about management being quite allergic 
to social change might be reinforced by a telling fact 
about management and here I mean the public agencies, 
State, Federal and local that operate in what we have 
been calling the social arena. For the brutal fact of the 
matter is that· they have shut ourselves off from the 
data and intelligence that might tell them just a tiny 
bit about the social world around us. In "Towards a 
Social Report" of the Department of Health, Educa­
tion and Welf are we are made painfully a ware of the 
fact that "the nation has no comprehensive set of 
statistics reflecting social progress or retrogression. 
There is no government procedure for stock taking of 
the social health of the nation." 

Somebody has said this much better than I can and 

I would like to quote from Elizabeth Drew writing in 
a publication called "The Public Interest": 

\ 

"Those who picture Washington as one mass of 
files and computers containing more information 
than they would like will be comforted by the ex­
periences of program-planners in attempting to 
evaluate on-going programs. Whatever the files 
and computers do contain, there is precious little 
in them about how many and whom the programs 
are reaching, and whether they are doing what 
they are supposed to do. If the purpose of an adult . 
basic education program is to teach people how to 
read and write, the Office of Education might 
reasonably be expected to know how many 
people thereby actually learned how to read and 
write but it does not.... The Public Health 
Service might be expected to know whether its 
various health services are in fact making people 
healthier but it does not. The study of disease 
control was to have encompassed more diseases, 
but so little was known about the effective treat­
ment of alcoholism and heart disease that these 
components had to be dropped. Those working 
on the income maintenance study found that the 
Welfare Administration could not tell them very 
much about the public assistance case load-who 
was on welfare, where did they come from, why 
were they on it; what they needed in order to get 
off·" 

If this is true of the national level and with Federal 
programs, it is more than doubly so with the States 
and the localities. Our knowledge vacuum is truly an 
anomolous situation. It stares us in the face despite 
the fact (or more correctly because of the fact) that the 
Federal, State and local governments have amassed 
and computerized a vast body of statistical information 
necessary to run their programs and churn their pro­
cesses. Paradoxically, while we are inundated in a sea 
of paper, ink and printouts, we cannot measure the 
human toll of illness, the pollution of the environment, 
the quality of our education and the nature of the 
alienation expressed in burning and looting in the 
ghetto, strife on the campus and crime in the city 
streets. From everything I have said up till now, man­
agement and its information systems want to have no 
part of these "social" changes except perhaps to wish 
that they go away. 



Geographic information systems in the U.S.-An overview 

by ROBERT AMSTERDAM, EDWARD ANDRESEN and HARRY LIPTON 

Office of the Mayor-Office of Administration 
New York, New York 

A Geographic Information System (GIS) can be 
defined as one which is oriented to supplying informa­
tion pertaining to the geography or spatial relationships 
of the information in the system. 

When one asks for the total of all school aged children 
from a welfare file who are in school district 52 or when 
one wants to affix the health area code to a file of birth 
or death records, one is involved in relating geographic 
descriptors (e.g., the school district and health area 
codes which represent finite, fixed areas of space), to 
other geographic descriptions (e.g., the address of the 
welfare child, the home address of the mother ... etc.). 

Information such as the above has only recently 
become processable via computer. Heretofore, for a 
file of any significant size, large amounts of manual 
effort were required in order to enable one to relate one 
set of geographic descriptors to another. Now, through 
the use of the principal components of a typical Geo­
graphic Information System, these files can be related 
at computer processing speeds. 

The principal components of a typical GIS are: 

• Geographic information files (GIF) containing all 
the geographic descriptors of interest for the 
geographic area covered 

• A program or set of programs that enable the GIF 
to be accessed (matched) against data files and 
appropriate geographic descriptor information 
appended from the "matched" GIF record to the 
"matched" data file record. 

• Graphical display programs and equipment which 
enable the matched output to be displayed, via 
computer, in the form of maps or charts in addition 
to the usual listings. 

GEOGRAPHIC INFORMATION FILES 

Geographic files can encompass the entire range of 
local government activities. Two types of files, however, 
have played a major role in the development of Geo-
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graphic Information Systems; these are the Address 
Coding Guide/Geographic Base File and the Parcelj 
Building File. 

Address coding guide/geographic base files 

These files were first developed in the early 1960's for 
regional transportation studies such as the Penn-Jersey 
Study in the Philadelphia area and the Tri-State 
Transportation Study in the Metropolitan N ew York 
area. The files were used in compiling information on 
origin and destination of trips by all means of travel 
within the study area. The results were used in planning 
new transportation routes, determining patterns of 
economic and residential growth, and planning for 
development of new resources. Comparable files were 
developed by private firms for use in market analysis 
by commercial organizations. Such files have also been 
developed by the Post Office to assist in zipcoding. By 
the mid-1960's, the U. S. Bureau of the Census recog­
nized the value of these files in coordinating a mail-out 
census and began encouraging their development in all 
urban areas of the country. Since then their broad range 
of uses has . been increasingly recognized by local 
government and groups engaged in analysis of small 
area data. The files have been modified, expanded and 
updated to meet the demands of local users. 

In its basic form, an Address Coding Guide (ACG) 
relates ranges of addresses to defined geographic areas. 
Most simply, it could contain the range of building 
addresses in a traffic zone or postal area. A series of 
records is prepared for each street name. Each record 
contains the highest and lowest building numbers on 
that street which lie within the specific zone. Generally, 
separate records are prepared for odd and even house 
number ranges. 

As Address Coding Guides have developed, it has 
been recognized that as more different area designations 
are incorporated in the file, the more useful it becomes. 
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Since many operational jurisdictions (e.g., post office 
routes, police precincts, census enumeration districts) 
bound whole city blocks, it is usually convenient to 
create a separate record for each block side. This record 
contains the street name, highest and lowest building 
numbers that can be used on that street section, and 
whatever area codes can be usefully related to that 
block or block side. Additionally, the record can contain 
alternate names for that street, the names of inter­
secting streets, the width of the street, whether it is 
paved, the type of paving, whether it is privately or 
publicly owned, direction of traffic, speed limit and 
other information of general interest 

This information can be related to other data files in 
order to develop a profile of a community, to coordinate 
operational data or to retrieve specific information 
contained in the ACG. One significant example of its 
use is in relating the number of incidents in an area, 
such as number of births, or crime reports, to the 
total population in the area in order to calculate the 
overall birth rate or crime rate for the community. 
Such data is required for many types 0 f community 
planning and deployment of facilities. 

An important extension of the ACG is the Geographic 
Base File (GBF). In a GBF, each record can be the 
same as an ACG record but it also includes x and y 
coordinates of one or more fixed points on the block 
related to a grid system which is uniformly referenced 
for the entire locality. The individual record may 
contain the coordinates of a corner of the block, the 
center of the block, the center of the blockside, the 
intersections of the streets bounding the blockside or 
some other recognizable point. With this added data, 
the location of any block or address is determined with 
reference to any other location in the area. This allows 
the user to calculate distance, determine the entities 
in a given perimeter or radius and make other spatial 
determinations. This capability is important in trans­
portation planning, in setting up routes or district lines 
and in determining the potential users for a new facility. 
Grid coordinates are also valuable in the preparation of 
computer-generated maps. Maps are essential in many 
local government operations and the ability to produce 
detailed maps showing the locations of specific proper­
ties or addresses is increasingly playing an important 
part in administrative decisions. 

As one example of use of the GBF, complaints of 
cracks or holes in street paving can be correlated with 
street segment identification numbers in the GBF. 
When street repair work is scheduled, crews can be 
readily informed of all complaints in a compact area so 
that minimal time is lost in traveling. 

ACG's and GBF's are being used in many local areas 
throughout the United States and Canada. They are 

also being developed for several major cities in Europe, 
Israel and South America. Their development requires a 
considerable investment by the locality to check out and 
inventory all streets, blocks and significant land features 
in their jurisdiction and to update the information as 
changes occur. Hovvever these files are critical for the 
development of many types of municipal information 
systems and operational activities and the effort is 
increasingly proving to be justified. 

The U. S. Census Bureau is developing a standard 
format for these files called DI:\1E (for Dual Inde­
pendent l\lap Encoding). In a DIlVIE file, each record 
is related to a street segment. It identifies the street 
name, address range on each side of the segment, 
census block on each side of the segment and inter­
section node coordinates at each end of the segment.1 

Parcel/building files 

The second major file important for local area data 
collection systems is the Building File. This contains 
one record for each building in the region with its 
address, dimensions, floor space, usage, owner's name 
and whatever additional data the local government 
finds useful to maintain. 

Traditionally, the source for this data is the property 
assessment department. Assessors are required to 
maintain a complete inventory of the property in their 
district in order to insure that all land is taxed and that 
valuations are reviewed and updated periodically to 
reflect improvements to the property, improvements to 
the neighborhood and changes in market values. In 
most parts of the United States assessment is a county 
responsibility. Cities lying within a county and metro­
politan areas which lie in several counties frequently 
have administrative problems in gaining access to 
assessors' files. 

There have also been technical obstacles to using 
this data: Many assessors' files are in detailed, hand­
written records which have been accumulated over long 
periods of time. Data is not standardized and difficult 
decisions must be made on which data can most use­
fully be converted to computerized form. Another 
obstacle has been that assessors usually keep records of 
land parcels or lots, since this allows the most complete 
inventory of the land in a county. However this makes 
it difficult to obtain clear information on individual 
buildings when there is more than one building on a lot. 

One final problem will be mentioned: it is frequently 
impossible to record the owner of a parcel on a compact, 
fixed-length field. The property may be owned by a 
corporation, a partnership or a group of heirs. For 
some operational purposes, it is more important to 



know the name of the mortgage holder, taxpayer or 
managing agent. These identities are frequently con­
fused, ambiguous or deliberately concealed by the 
owner. 

As a result of these and other obstacles, development 
of comprehensive building files which can be use d for 
inter-agency activities has proceeded slowly. Washing­
ton, D.C., and Philadelphia are among east-coast cities 
which have developed such files. New York City plans 
to have one in use by the spring of 1972. New York's 
has been used on a pilot basis to prepare a list of selected 
office buildings for use by the Fire Department in 
evaluating a new fireproofing code for fully air-condi­
tioned buildings and development work has begun to 
use it for estimating population. 

In general, the most significant work in this area has 
been done in localities which grew up in the days of 
electronic data processing. Southern California com­
munities have been particularly outstanding in de­
veloping and using Building Files. 

Los Angeles County, for example, has had a tape­
oriented property records system since 1958 for use by 
the Assessor, Tax Collector and County Auditor. The 
system contains 1,850,000 records describing every 
parcel in the county. Los Angeles County contains 77 
cities plus countless water, school and fire districts and 
other taxing entities with overlapping jurisdictions such 
as are found in most counties. All property tax bills are 
calculated by the county. Receipts are distributed to 
the local taxing groups based on their particular tax 
rates and the amount of taxable property in their 
jurisdiction. 

The Los Angeles master parcel file contains the 
following data: tax block and lot number, which 
uniquely identify the property; the address of the 
property; the name of up to two owners; the address of 
each owner if it differs from the property address; the 
land and building dimensions; the tax area codes which 
identify the agencies with jurisdiction for that parcel; 
zoning classification, use codes, current and prior year 
valuations for both land and buildings; history of up to 
three last sales prices for the property; homeowner, 
veteran and religious exemption codes. In the last two 
years the county has been adding more detailed data 
describing specifics of construction on the property; 
year built, quality, class and shape of building, number 
of bedrooms, number of bathrooms, total square feet, 
cost of construction, quality of view, presence of mineral 
deposits and other data which would help the assessor 
in more accurately computing the value of the property. 

This data is of great value for functions such as city 
planning, renewal and site selection activities. Local 
governments are working with the county authorities 
to obtain greater access to this wealth of data. 
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Looking into the future a few years, we predict that 
building files will be accessed by on-line systems, with 
every agency that currently keeps building related 
files, having instant access to fields related to their 
special areas of interest. Thus, the Fire Department can 
develop a history of fires by building and even apart­
ment; the Housing Agency can manipulate data 
concerned with elevator inspections, building code 
violations and their status by building or apartment, 
rent control status by apartment, building and oc­
cupancy permits status; the Environment Pollution 
Agency can access fields concerned with incinerators, 
boilers and so on. 

Thus, instead of each agency developing and main­
taining its own building file, it can be centrally main­
tained, and where required, the interagency information 
can be readily analyzed for operational and planning 
purposes by other than the agency controlling the data 
in the field of interest. 

In addition to ACG/GBF's and Parcel/Building 
Files, several other files may be developed, depending on 
local conditions. These could include Alias Street Names 
which include alternate names or alternate spellings of 
street names in the locality; Familiar Places which 
includes places not known by normal address, such as 
parks, landmarks, department stores and shopping 
centers; Highways which identify limited-access high­
ways in terms of segments; and Boundary (Polygon) 
Files. Boundary Files are used to describe the perimeter 
of a jurisdiction. They may be organized in terms of the 
street intersections which form the boundary of an area, 
or, especially if used for automatic mapping, they will 
give the (x, y) coordinates of the points which form the 
polygon describing the area. 

All of these files require considerable effort to develop 
and maintain in urban areas which are· complex and 
constantly changing. However, as they are used more 
widely, more local agencies will participate in their 
development and exchange of information. 

ACCESSING (l\iATCHING) APPROACHES 

ADMATCH 

Admatch is a set of address matching programs that 
enables a blbckside type of GBF (e.g., ACG, DIME, 
etc., file) to be matched against any data file on street 
address. This package was originally developed by the 
U. S. Bureau of the Census for the New Haven Census 
Use project in 1967. It has since been significantly 
upgraded and improved. 

It consists of a preprocessor and a matcher program 
separated by a standard sort program. The preprocessor 
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program analyzes the address field of each record to be 
matched, identifies the specific components of the 
address and places these components into -specific fields 
of a record segment called the "match key" which is 
appended to the original data record as part of the 
preprocessor output record. 

For example, the address: 

2520 South Flatbush Avenue Extension 
Brooklyn, N ew York 

would have the address components stored In the 
"match key" as follows: 

2520 = House number 
*South = Primary directional 
Flatbush = Street Name 
* Avenue = Primary Street Type 
*Extension = Secondary Street Type 
*Brooklyn = County 
*New York = State 

All the * items are first standardized through the use of 
tables before being placed in the output record. 

The next step in the overall matching procedure is 
to sort the preprocessor output file on house number 
within odd/even-side of the street parity code within 
street name (within county, within state if a multi­
county and multi-state file is involved). 

The sorted data file is now matched on the "match 
key" field against a blockside GBF reference file "match 
key" field that has previously been created via pre­
processing and sorting as above. The matcher program 
compares the data record match key to all the GBF 
records with the same street name and selects the 
"best match." The "best match" is determined by a 
weighting scheme determined by the user. That is, 
each component of the address is given a weighted 
value and thus each component that matches, or in the 
case of house number, falls within the high-low block­
side range of house numbers gets the weighted value 
added to its total weighted score. Thus, a record can be 
accepted as "matching" even though each address 
component does not match identically with the 
"matched" GBF record. 

Admatch is available in IBM 360 DOS and OS and 
RCA Spector 70 versions, at a nominal fee ($60) from 
the Bureau of the Census. Over 100 municipalities and 
regional entities are using this package. The package 
requires a minimum of 32K bytes of magnetic core to 
run under DOS. 

In Charlotte, North Carolina, a file of 35,000 sewer 
connection records were put into machine readable form 
and via Admatch, matched against a master water 
billing file and a master sewer billing file. Seventy-five 
percent of these records matched at a 98 percent 

acceptance level. The balance of the man-matched 
records were then manually processed. Of these, 10 
percent were true non-matches, that is, they had sewer 
connections but were never billed for water and/or 
sewer services. This resulted in considerable additional 
yearly revenue for Charlotte. 

In the Los Angeles area, both the City of Los AngeJes 
and the Census Bureau's Southern California Regional 
Information Study (SCRIS) have been making exten­
sive use of Admatch. 

Building Permit information has had Census Tract 
and Block numbers added to it. This has been done for 
every year since 1960. It enables one to ascertain the 
yearly growth of the housing stock and via the housing 
stock, an estimation of the population growth. 

Motor Vehicle applications have been coded with 
Census tracts and blocks via Admatch. This enables 
transportation planners to get an accurate fix as to 
where the vehicle owners are located. 

Orange County, California has used Admatch to 
code housing inspection reports with census tract and 
block codes. This is used to analyze the quality of 
housing stock in the various geographic areas of the 
county. 

UNIMATCH 

The Bureau of the Census is currently developing this 
package which, in essence, is a generalized file linkage 
system. It is structurally similar to ADMATCH, 
however, not only will it match on street addresses, but 
also on street intersections, major traffic generators or 
any other logical connection. This generality is achieved 
by allowing the user to specify what fields to compare, 
what comparisons to make, what significance to attach 
to a success or failure to compare and finally what 
action to take depending on the level of success of 
that comparison. 

STREET ADDRESS MATCHING SYSTEM 
(SAMS) 

SAMS is a proprietary package of Urban Data 
Processing, Inc. of Cambridge, Massachusetts that 
matches addresses in a fashion similar to Admatch. 
This may not be too surprising since the authors of 
SAMS were involved in the development of the original 
Admatch package. SAMS processing, like Admatch, 
consists of a preprocessor run, a sort on the house 
number and street name, and a match against a 
similarly processed GBF. 

SAMS operates under IBJVI 360 DOS and OS oper-



ating systems with a minimum of 96K bytes of core 
storage. 

The City of New York (our home town) has used 
SAMS for numerous address matching applications. In 
one very dramatic application, we were able to match 
the Department of Social Services Welfare Recipient 
file to the G BF and affix the census tract and block 
number to 95 percent of the records. The Board of 
Education then used the file to determine the school 
district of each welfare recipient between the ages of 5 
and 18. This was ultimately used to satisfy both the 
Federal Government and community school boards in 
the allocation of federal free lunch money to the school 
districts based upon the percentage of school children 
qualified for this program and not on a simple percent­
age of school children in each school district. With 
over 1,000,000 school children and over 300,000 of 
these qualified for the free lunch program via their 
welfare status, one can readily see the difficulty in 
performing this analysis any other way. 

Work is under way to use SAMS to automatically 
code each birth and death record with the health area 
and district of the person's home address. This will 
eliminate a time consuming and somewhat inaccurate 
current clerical effort. Plans are also under way to use 
SAMS to add all the various types of geographic 
descriptors to the citywide building file we are creating. 
The building file, which contains the key dimensions 
and building classifications of each building in the city 
can be used for population estimation. Couple this with 
the geographic description, and one can then readily 
estimate population by specific census tracts, health 
areas, school districts, ... etc., for a multitude of 
planning activities. 

OTHER BATCH PROCESSING ADDRESS 
MATCHING. PROGRAMS 

Kettering, Ohio, has developed an Admatch type 
package that operates on an IBM 1130; They have 
. utilized it to code and analyze health data by various 
geographic descriptors. 

Raymond Soller of Florida State 1Jniversity has 
developed an Admatch type package for the CDC 3600 
which may be available to other CDC users. 

REAL TIME ADDRESS MATCHING 

A number of real time address matching systems 
exist. They tend to differ based upon the amount of 
conversation one wishes to accept between the terminal 
operator and the system and the average amount of 
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time, during peak load conditions, that one is willing to 
wait in order to find the address in question. Generally 
speaking, the less conversation between the system and 
the operator and the faster the access required, the more 
expensive the system in terms of programming and file 
storage. 

In Chicago, building code violation complaints are 
being entered on-line via terminals. The street name is 
first converted to a standard street number code. The 
house number is then used with the street code to 
access the file. In N ew York City, the Police Depart­
ment· has installed a system, SPRINT, which enables 
telephone operators to enter the request for emergency 
help, including the house number or the street inter­
section into the system via CRT type terminals. The 
system analyzes the address portion of the message and 
finds the blockside record which either: 

(a) contains the house number within its high-low 
address range or 

(b) is adjacent to the intersection. 

Finding the matching blockside record enables the 
system to then determine: 

(1) the police precinct and sector for that blockside 
(2) the police car(s) nearest the precinct and sector 

that are free 

and to flash the original message and the police car 
availability message to a radio dispatcher who in turn 
broadcasts a dispatching message to the police car(s) 
he selects to assign to the call. It should be noted that 
the SPRINT address file was built from the same base 
file that was used to create New York City's GBF. 
This illustrates that a GBF can support both batch 
processing and real time operating systems. 

ACCESSING OTHER GEOGRAPHIC 
DESCRIPTORS POINT-IN-THE-POLYGON 
ACCESSING 

This approach requires that a file be develcped which 
represents, in essence, polygons for the specific geo­
graphic descriptor of interest. That is, the extreme 
(X, Y) coordinate sets for each vertex of an area, say a 
health area, are recorded as a specific polygon. This is 
done for every health area in the system. Then, given 
the (X, Y) values fora specific item of interest, say a 
birth, one can determine, through the use of a point-in­
the-polygon algorithm which polygon, and thus which 
health area, the item falls in. Tulsa, Oklahoma, has 
used this approach in a real-time system to determine 
which police district a specific address lies in, so that it 
can dispatch the proper police car to the scene. 
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MULTI-INDEX GEOGRAPHIC FILES 

Kettering, Ohio, has developed a multi-indexed 
geographic information system which enables one to 
access their 22,200 record parcel file by (a) plat, section, 
and lot code; (b) tract, block and parcel\ number code; 
or (c) book, page and index code in addition to the 
parcel's address. A series of index files for each of these 
access items has been developed to support this capa­
bility. This system has been used by their Planning 
Division to obtain building and land valuations on 
proposed zoning changes and to analyze the parcel file 
to determine the existence of non-conforming land uses. 

COMPUTER GRAPHICS 

In this section we confine the broad subject of com­
puter graphics to the aggregation, analysis, reformat­
ting ~d graphic display via computers for the 
support of urban planning in all its facets. 

In almost all instances, government use of computer 
graphics has taken the form of producing maps or map 
representations at various scales and, most important, 
the insertion into these maps of the aggregation and 
factor analysis of data in varied formats. 

To focus more sharply on our topic let us glance at 
some classes of data displays as they have appeared on 
maps used by government urban planners. 

1. Specific quantitative data by volume, capacity or 
total incidence represented on the map by 
shading and/or specific numbers. 

2. Exception type data resulting from the com­
parison of two quantities, such as surplusses or 
deficits of various resources. 

3. Time oriented data which focus on trend 
analysis or the comparison of specific resources 
at two or more points of time. 

It might be well at this point to remind ourselves 
that there is a considerable difference between an 
information system supporting an administrative 
process such as invoicing, payroll or tax collection, and 
one designed to. support any planning or programming 
activity. In the first instance the system must handle 
data by individual documents or transactions. The 
planner, however, is concerned with data behavioral 
patterns, trend analysis of many types, simulations or 
model studies. All of these demand the aggregation of 
information from many diverse scmrces, such as the 
Bureau of the Census, Housing and Development 
Authority, or the tax assessor's records-and perhaps 
the total incidence of police or fire calls, welfare cases 
and so on. 

With the increasing mountain of data being made 

available by the growing world of computers, the 
planner, to avoid being buried or immobilized, must be 
supported by distilled data in the form of computer 
reports or graphic displays or, most likely, a com­
bination of both. 

The need of a combination of maps and specific data 
was proven, and was used by military, navigational, 
and government planners thousands of years ago. Today 
the fantastic growth in available planning data and the 
volatile nature of today's world will force further 
sophistication and use of computer-driven graphic 
displays. 

N ow let's take a look at the classes and specific types 
of computer-driven graphics currently in use by 
government at various levels. 

HIGH-SPEED PRINTERS 

First and currently most widely developed and used 
are high-speed printers which use the characters of the 
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Figure I-Manhattan Health Areas-Shading is proportional to 
number of public assistance cases-SYMAP-Conformal option 



printer and overprints of characters to produce various 
levels and densities of shading to illustrate data on 
areas representing map areas. Since lines cannot be 
drawn on this type of map, boundaries of areas can 
only be approximated. These approximations, however, 
are often adequate for planning support. In addition to 
shading, specific data values can be shown for certain 
points on the map. 

The two mapping programs using high-speed printers 
that are in most common use by governmental planners 
are "SYMAP" and "GRIDS." 

SYMAP is the best known, most comprehensive, and 
most widely used computer mapping program currently 
available. It uses a standard high-speed printer to print 
typewriter-like characters, on a standard 11 X 15-inch 
computer printout sheet. Lines can be roughly approxi­
mated with printer characters, and areas can be shaded 
with up to 10 progressively darker shades. The darkest 
shades are created by overprinting two or more printer 
characters. 

The original SYMAP program was written in 1963 
under the direction of Howard Fisher at Northwestern 
University. The program is currently being maintained 
by the Harvard Laboratory for Computer Graphics, 
where it is supported by a technical staff, ongoing 
research, and teaching materials such as correspondence 
courses and seminars. 

Figure 2-0utpatient residence distribution for Montefiore 
Hospital by Bronx health areas-SYMAP-Conformal 

option 
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Figure 3-Ratio of shelters to daytime population in 
Long Island City-SYMAP-Contour option 

Generally, SYMAP has been programmed for the 
larger scale IBM systems, although modifications of 
SYMAP have been used on other computer vendors' 
large scale computers. 

SYMAP enables three basic types of maps to be 
produced through its three primary options: the con­
formal option, where the areas shaded are approximate 
representations of the polygonal geographic areas that 
they represent; the contour option, where the data 
values are assigned to particular points (such as block 
face centers or block or tract centroids) and the program 
shades contours by establishing equal-width intervals 
representing the range of values between each pair of 
points; and the proximal option, where the data values 
are again assigned to particular points and the. program 
shades the respective values from each point to an 
imaginary line equidistant between each pair of ad­
j acent points. 

In Conformal (see Figures one and two), the areas 
shaded represent the actual areas which the data values 
represent. In Contour (see Figures three and four) 2, 

the areas shaded represent equal-width intervals 
between the centroids of the data areas. For example, 
between the centroid of the area with data value six 
and the centroid of the. area with data value four, three 
equal-width intervals have been established repre­
senting data values six, five and four. In Proximal, the 
areas shaded are represented by imaginary polygons 
whose boundaries are described as equidistant from the 
centroids of the actual data areas. For example, the 
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Figure 4-SYMAP shading map showing contour levels-Density 
of preschool children 

boundaries of the imaginary polygon describing data 
value two are equidistant from the centroid of the actual 
data area for two and the centroids of the surrounding 
actual data areas. 

In addition, SYMAP has a large number of statistical­
support options which permit calculations of means, 
standard deviations, histograms, and percentile 
groups-all within the same mapping program package. 

Within the SYMAP system, changing from one type 
of map using one mapping option to another type of 
map is not easy. For instance, switching from a map 
using irregular polygon areas, as in conformal block 
shading, to a map using single data points, as in contour 
shading, requires the input of a completely rearranged 
geographic data base. 

"GRIDS" (Grid Relat~d Information Display 
System) produces maps by dividing the area to be 
mapped into a network of rectangular grid cells. A grid 
cell may be as small as one printed character or as large 
as 55 X 55 characters. 

The system was developed by the Census Bureau's 
Southern California Regional Information Study in an 
effort to simplify required programming skills and data 
preparation. 

GRIDS is very flexible both in digesting input data 
and producing maps. There are three types of maps 
available: (1) shaded, in which data values are repre­
sented by overprinted characters of varying darkness; 

(2) density, in which a character is splattered randomly 
throughout each grid cell with more characters repre­
senting higher values; (3) value, in which the actual 
data value is printed in each grid cell. 

GRIDS accepts as many as 10 input variables to be 
mapped, provides for manipulation of the data in any 
desired way, and produces up to five different maps for 
each run. No previous preparation of the data is neces­
sary and no knowledge of the data values is necessary. 
GRIDS provides for data manipulation through 
MAPTRAN, a built-in FORTRAN-like programming 
language, or a user exit routine if necessary. 

GRIDS is especially easy to use because all specifica­
tions are free format keyword type and there are many 
default values for the user with simple needs. 

The program will run on nearly any system with a 
FORTRAN Compiler. It has been run on an IBM 
360-30 with 32K bytes of storage. 

Among the most published users of line printers and 
SYMAP for graphical display programs is the U. S. 
Census Bureau. They have used both census related 
data and locally obtainable data to perform comparisons 
and display of results such as Densities of Populations 
of Preschool Children, and Hour's Spent by Visiting 
Nurses (Figures four and fi:ve).2 

The University of Kansas, at Wichita, has experi­
mented with line printer graphics' at the block level 
using SYMAP, to display correlated data of land value 
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Figure 5~SYMAP shading map showing grid cell levels­
Adjusted hours spent by visiting nurses association 



by block area. This is different from Census Bureau 
studies which are predominantly oriented to aggrega­
tions at the tract level. 

N ew York City has made extensive use of SYMAP 
capabilities to analyze and display a variety of City 
problems, including air pollution, health statistics and 
public assistance cases. It has also been used in con­
junction with a" highly sophisticated emergency pre­
paredness display system. 

The Battelle Memorial Institute is using SYMAP in 
conjunction with their pollution research efforts. These 
include studies that determine patterns of waste-water 
discharges from industrial and municipal operations 

Figure 6-Pen plotter tract outline map showing tract levels­
Percent non-white 

and to evaluate their effects on surrounding waters. 
The research technique, developed by Battelle, consists 
of collecting aerial infrared and tracer dye imagery of 
surface water discharges. Data recorded from the 
infrared imager is processed and a high-speed printer 
then prints out isothermal plots, density plots, and 
contour plots. The contour plots provide two different 
views. Used with a stereoscope, these two views provide 
simulated three-dimensional temperature contours. 

PEN PLOTTERS physically move a pen over a 
piece of paper, under program control, to produce a 
graphic output. Examples of graphics produced by 
these plotters are shown in Figures six, seven and eight.2 

The first mechanical computer-driven pen plotters were 
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Figure 7-Pen plotter tract outline map showing incidence 
occurrence-U nder-weigh t births 

flatbed models on which the pen is moved over a flat 
sheet of paper in both the X and Y direction. 

Later, California Computer Products, Inc. (CAL 
COMP) and the Benson-Lehner Corporation developed 

Figure 8-Pen plotter outline map of Northwestern New Haven 



520 Spring Joint Computer Conference, 1972 

drum plotters which move the pen to obtain one direc­
tion and the paper to obtain the other. 

An important difference in plotters is the manner in 
which the movement of the pen is controlled. 

Analog Plotting Systems convert the (X, Y) distance 
through which the pen must be moved to a voltage or 
other electrical measurement which in turn is used to 
drive motors through a proportional number of turns 
to reposition the pen. Thus the digital input is con­
verted to a specific distance or analog value. 

Digital Incremental Plotting Systems drive the pen 
(and the paper, in the case of drum plotters) on a quite 
different principle. The drive mechanisms on these 
machines operate in discrete steps, or increments. The 
step size is usually 0.005 or 0.010 inch, or the metric 
equivalent to the nearest tenth of a millimeter. So­
called step motors control these motions. The step 
motors can make from two hundred (on the slowest 
plotters) to about sixteen or eighteen hundred (on the 
fastest) steps per second for a corresponding plotting 
speed of between two and eighteen inches per second. 

The input to the step motors comes from the magnetic 
tape or computer to which the plotter is attached. This 
input, under program control, specifies the exact 
number of steps through which the motors are to move. 
There is thus no conversion from digital to analog 
values. At anyone time the program preparing input 
for the plotter "knows" the exact location of the pen, 
and thus, even after drawing thousands of lines on the 
paper the pen can return to the exact starting point. 

There is another important difference between the 
analog and the incremental plotters. On the former the 
regular pen is useful for drawing lines, and can draw 
them quickly once set into motion; but the line-drawing 
pen is very slow if used to annotate the plot with 
numbers or letters. Hence, many analog plotters have a 
separate device, which may ride on the same arm as the 
regular pen or on a separate one and which is used 
exclusively for annotating the plot. The mechanism 
usually consists of a type wheel set in a vertical plane, 
which is rotated to bring each desired character next to 
the paper and then forced down to make its impression 
on the plot through a ribbon. The process is slow and 
cumbersome. Such a character-printing turret can 
increase the price of the plotter by several thousand 
dollars. Moreover, the size of the characters is fixed, 
and they can be placed on the plot only in one or at 
most two orientations. 

On the incremental plotters the same pen mechanism 
that draws Jines is also used to perform all desired 
annotation. Only with such plotters is it usually practical 
to do extensive annotating on a plot. The characters 

can be made in any size, at any desired orientation, and 
they may be of any kind, subject only to the symbol 
table built into the computer programs used to create 
the plot. 

The New Haven Census Use study was an early 
user of a GBF and SYMAP to plot census data. This 
was done to show comparisons of data at the Census 
Tract level, with distinctly drawn tract boundary lines, 
such as percent of non-white to white populations 
throughout New Haven, Connecticut (Figure six).2 

The Santa Clara County (Cal.) Planning Depart­
ment has developed a census tract polygon base fi]e 
which they have been using with a pen plotter to 
graphically depict employment, population and housing 
data by Census tracts within the county. They are also 
using their pen plotter to prepare map overlays, which 

Figure 9-Geo-space plotter map showing blocks of 
lower Manhattan 



correspond to county base maps with a high degree of 
resolution, to illustrate census tract level information 
in conjunction with block level street maps. 

New York City, as part of a voter redistricting 
demonstration project, prepared a block map of a 
section of the City which indicated the number of 
registered voters at the approximate location of their 
house on the block. 

CATHODE RAY TUBE (CRT) PLOTTERS most 
likely will show the/greatest advancement in computer 
graphics in the next few years. As most of us know, a 
cathode ray tube (CRT) is a display device similar to a 
television picture tube for which programs are written 
to control the generation of displays on the face. of the 
tube. These images can be observed, recorded on 
microfilm for permanent storage or recorded on photo­
sensitive paper which can be developed into distrib­
utable hard copy. 

There are a number of CRT based scanrnng and 
plotting devices currently in the research and develop­
ment stage and under intensive study by various 
branches of the government. 

Although some of these projects offer the possibility 
of significant advances in computer graphics, con­
clusions that would be useful to you do not yet exist. 
We will confine our discussion, therefore, to hardware 
and systems that have given at least limited support to 
government planners. 

Figure lO-Geo-Space plotter shading map identifying block area 
levels percent of owner occupied housing 
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Figure 11 ~Geo-Space plotter outline map showing 
incidence occurrence-Police calls 

The Geo-Space Plotter produced by the Geo-Space 
Corporation of Houston, Texas is a digital CRT drum 
plotter that will produce map and data representations 
on up to 40"X60" film or photo sensitive paper. 
Figures 9, 10 and 11 illustrate maps drawn by this 
device (Figures 10 and 11).2 

The Geo-Space uses a cathode ray tube and a lens 
assembly which focuses its rayon the film or paper. 
The CRT and lens assembly are housed in a tube that 
can be moved horizontally 40 inches. The media (paper 
or film) is attached to a drum large enough to hold a 
sheet sixty inches long. The arrangement is analogous 
to a drum pen plotter with the CRT and lens replacing 
the pen. 

The Geo-Space is designed for on-line operation with 
a digital computer and is available with the channel 
interface for several different computers. Information 
to be plotted is developed within the digital computer 
central processing unit and stored in a prescribed format 
in core storage, or disk storage. The information to be 
plotted is then transferred from the on-line storage 
device to the plotter for display. 

Plotting can be accomplished at 32 levels of intensity. 
A plot of 40 by 60 inches can be completed in less than 
two minutes regardless of the amount of data to be 
plotted. This rate is many, many times faster than the 
fastest mechanical plotters. 
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Figure 12-Typical use of GIS programs 

DENSITY 
:'~TRIBUT10N 

The software support supplied by Geo-Space is a 
program called ALPACA which uses FORTRAN 
subroutines to perform character generation, generate 
lines and circles and control the operation of the plotter. 

I t might be timely to remind ourselves that each 
computer driven plotter, including the Geo-Space, 
requires the user to develop the programs needed to edit 
and to reformat the data to be displayed in the array or 
sequence demanded by the plotter under consideration. 

In the case of Geo-Space, the data to be plotted 
must be manipulated within core on a large computer 
or retrieved from a disk on smaller computers to enable 
the plotter to produce 2-inch wide strips up to 60 
inches long and then produce the adjacent 2-inch strip 
until the entire sheet (up to 40 inches wide) has been 
completed. 

SCRIS (Southern California Regional Information 
Study) is currently developing user software to facilitate 

data comparisons and display of Census data on a 
"Geo-Space" CRT plotter. They are also preparing 
state and county outlines for use throughout the 
United States. Previous use of Geo-Space equipment was 
performed during the New Haven Census Use Study. 

The United States Army Map Service, in conjunction 
with IBM, is developing software for use with IBM's 
Multipurpose Digitizer/Plotter. This work has been 
primarily concerned with automated cartography; 
however, the equipment and software developed 
appears to have direct applicability to urban data users. 

A frequent need in planning operations is to determine 
where a pattern or a concentration of a particular 
activity is occurring. New York City, using a Geo­
Space plotter, has prepared a block map of Manhattan, 
indicating where high valued real estate changed hands. 
This provided a good indicator of the areas where new 
building activity is likely to be concentrated and where 
new utilities and support services will be needed. 

TYPICAL GIS PROCESSING 

Figure 12 is a system flowchart that illustrates the 
typical processing one may go through in utilizing the 
principal components of a GIS. 

SUMMARY 

Geographic Information System development and 
application is proceeding at a rapidly accelerating pace. 
We envision a continuance of this over the foreseeable 
future as improved files get built, as more files are put 
on-line with more sophisticated accessing schemes, and 
as these systems become more and more involved with 
operational as well as planning type applications. 
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INTRODUCTION 

The Census Use Study of the Bureau of the Census is 
planning to release a computer program package to the 
general public providing a generalized record linkage 
capability, under the name of UNIlV[ATCH (for 
UNI versal MATCHer). 

For the purposes of this paper, record linkage may 
be defined as the process of examining each record 
independently on a data file, and comparing informa­
tion with a domain of records on a second file, which 
will henceforth be referred to as the reference file, 
according to pre-determined comparison criteria with 
the object of selecting a unique record on the reference 
file that maximally meets or exceeds the criteria (if 
such a record exists), and transferring (or linking) 
information from the selected reference file record (if 
any) to the data file record. 

If a unique reference file record is successfully ob­
tained for a given data file record, that data file rec­
ord is considered to be accepted (or matched), and the 
transfer of information from the reference file to the 
data file can occur. If no un:que reference file record 
is obtained, the data file record in question is con­
sidered to be rejected (or nonmatched), and no linkage 
of information will transpire. 

The most rudimentary example of the record linkage 
process is the file update problem, where a master 
data file is e{Camined sequentially, and a key field 
(such as a record control number) is compared with 
an identical field on the transaction update file (the 
reference file). If the fields match, information is trans­
ferred from the reference file to the data file, thereby 
updating the master record. If the fields do not match, 
the data file is advanced to the next record with no 
data transfer occurring. The reference file is sorted by 
the key field, and every equal or high comparison 
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causes the reference file to be advanced by one record. 
In this case, the domain of the candidate records on 
the reference file is one, since a single reference file 
record is a prospective match candidate for each data 
file record (it is assumed that the key numbers are 
unique in this example). 

CRITICAL FIELDS AND CANDIDACY D01V[AIN 

Any key field where an exact match is necessary 
before any further comparisons or data transfer can 
be considered will be referred to as a critical field. It 
follows then, that a mis-match on any critical field is 
sufficient to cause the rejection of the data record. 
Matches (successful comparisons) on all critical fields 
are necessary (but often, not sufficient) conditions to 
cause the acceptance of a data file record. 

Critical fields serve to limit the domain of reference 
file candidacy. If no critical fields are defined for a 
record linkage application, the entire reference file 
must be examined for each data file record. This 
universal domain will provide the greatest potential 
for a high match rate, but is often prohibitively ex­
pensive in terms of execution efficiency, and generally 
does not provide a sufficient cost/benefit for a real 
application. The total number of records that must 
be examined by the system in a universal domain ap­
plication is the product of the number of data file 
records and the number of reference file records, added 
to the number of data file records, so that large files 
~~ill require a considerable number of comparisons. 

The number of records that must be examinea in 
the other extreme, where the reference file candidacy 
domain is limited to one record (as in the file update 
example), is equal to the sum of the number of data 
file records and the number of reference file records. 
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In this case, the selectivity of the system is nearly 
zero, since at most only one record is considered for 
candidacy. For this reason, a match on critical fields 
only will provide the least potential for a high match 
rate. 

The reference file domain of a real application can 
be determined by weighing the reliability gained by 
increasing the domain against the resultant cost in­
crease. Let the average domain be defined as the num­
ber of reference file records accepted as match candi­
dates for the average data record. The average domain 
can be computed by first summing the number of 
candidates for each data record. If a data record does 
not match on all critical fields, the number of candi­
dates is considered to be zero. If a data record does 
match on all critical fields, the number of candidates 
is equal to the number of reference file records having 
identical critical field values. The final sum can be 
divided by the number of data records read, yielding 
the average domain. The average domain ranges from 
zero (if no data record matches any reference file 
record on all critical fields) to the number of reference 
file records (if the entire reference file becomes the 
domain because of the omission of critical field com­
parisons). The average domain is not meaningful if 
all comparisons are critical field comparisons (that is, 
there are no probabilistic or weighted comparisons), 
since the result of the match is based only upon the 
values of the critical field keys, and additional reference 
file records bearing the same key values need not be 
examined. In the file update problem, for example, 
where the only comparisons made are key field com­
parisons, no additional information will be obtained 
by reading all reference file records having the same 
key values. In fact, such applications generally require 
that the key numbers be unique. 

THE COST OF A RECORD LINKAGE 
APPLICATION 

The cost of an individual record linkage application 
can be computed as follows: 

Cost=n·Cn+m·Cm+max(n,m) . 

where: 
Ce+D·n·Cd+f·n·Ct+H (1) 

n = number of data file records read 
m = number of reference file records read. All 

the reference file records on the file will 
not be read if the reference file contains 
critical field key data values that are greater 
than any found on the data file. 

Cn = cost of reading and writing one data file 
record. 

Cm = cost of reading one reference file record 
from original data set. 

Ce = cost of comparing the critical fields. This 
cost is an average cost, since the highest 
level critical fie~d mis-match terminates 
the comparison algorithm. 

D = average domain. The number of reference 
file records accepted as match candidates 
for the average data file record. 

Cd = cost of comparing all non-critical fields for 
one data record with one reference fi Ie 
record within the domain. 

f = the fraction of the file that ,,,ill be matched 
(successfully linked). 

Ct = cost of linking one reference file record to 
one data file record. This is an average cost 
based on the number of co mparisons and 
lengths of strings to be moved. 

H = system overhead. 

The cost of comparing all non-critical fields for one 
data record with one reference file record within the 
domain (Cd), which is the most complex factor in 
equation (1), may be computed as follows: 

where: 

g ki 

Cd=g·(Cz+Px·Cx)+ 2: 2:cij 

i=l j=l 

g=number of ranked groups (the concept of 
ranked groups is discussed in the section on 
ranked grouping). 

ki=number of fields in group i. 
Cz = cost of determining whether group score 

for one reference file candidate record 
exceeds maximum score. 

Cx == cost of storing all group scores in the case 
that the reference file candidate record has 
a higher score than any yet encountered. 

P x = fraction of ranked groups whose scores are 
monotonically increasing (i.e., the number 
of groups where it is necessary to replace a 
previously encountered maximum score 
divided by the total number of groups). 

Cij = cost of comparing field j in group i. This 
includes the cost of string compression 
(such as SOUNDEX), field padding, fixed 
or interval logical comparisons, weight 
determination and adding the derived 
weights and penalties to the total ranked 
group scores. 



Note: The derivation of these terms will become 
apparent when the ranked grouping algorithm is 
discussed. 

CRITICAL FIELD HIERARCHY 

Since the critical fields serve to limit the domain of 
reference file candidacy, each critical field is an identi­
fication key. For sequential files, these identification 
keys must be sort keys, and both the data file and the 
reference file must be sorted on all such keys in ascend­
ing collating sequence. For direct access files, the 
identification keys can be used to retrieve records 
sequentially. For the purposes of this paper, it is 
assumed that both files are sequent:al files, since 
direct access files can be processed sequentially. 

Let the major critical field be defined as the critical 
field with the highest level (major) sort key. The major 
critical field must be the major sort key. The minor 
critical field (or search field) is, of course, the critical 
field with a sort key of lower hierarchy (more minor) 
than any other critical field. It is therefore the minor 
sort key in the set of all critical fields, and not neces­
sarily the true minor sort key. The minor critical 
field is the search field. This field is used to construct 
the domain of reference file candidacy. All reference 
file records having the same search field (minor critical 
field) contents as the equivalent field on the data file 
will become prospective match candidates for that 
data file record. S:nce the minor critical field defines 
the domain (which is the most important factor to 
the cost of a record linkage application), this field 
should be chosen with great care. 

THE UNIMATCH LANGUAGE 

Before embarking upon a discussion of the record 
linkage theory governing the comparisons of non­
critical fields, the relationships between critical field 
hierarchy, domain construction, and field definitions 
within the UNIMATCH language will be explained. 
The basic operation of the system and the structure 
of the UNIl\;IATCH language are prerequisite topics 
toward an understanding of these relationships, and 
will therefore be discussed presently. 

The language itself is composed of a series of state­
ments consisting of fixed-field keywords with operands, 
and tables which follow some statements. The keyword 
identifying a certain statement type is always punched 
in· column one of the control stream record. The num­
ber and position of the operands are dependent upon 
the individual statement. In general, the statements 
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are not directly executable commands (like the FOR­
TRAN Arithmetic statements), but are for the most 
part, definitions. The statements are edited, and 
reduced to numerical form by the UNIMATCH 
Compiler. Arrays defining the structure of the problem, 
and blocks containing control information are created. 
The UNIMATCH Assembler reduces this basically 
tabular compilation into blocks of relocatable execut­
able machine code for the IBlVI System/360, and 
blocks of control information. These blocks are loaded 
and executed under control of the UNIMA TCH 
Executer. The three programs of the UNIMATCH 
system (the Compiler, the Assembler and the Exe­
cuter) are written in IBlVI System 360 Assembler 
Language, and both OS and DOS versions of the 
system will be released. 

As many runs as desired may be compiled, assem­
bled and executed by each phase, respectively, so that 
multiple-pass linkage applications can be executed 
during one job step. Splitting the system into three 
phases enables the generation of efficient program 
code that will not penalize the user for features not 
desired, and provides greater core storage for users of 
limited computer facilities. Furthermore, production 
runs need only be compiled and assembled initially 
because the assembler creates object modules that 
can be retained. 

FIELD DEFINITION 

Due to their importance in subsequent discussion, 
considerable attent~on will be g',ven to the KEYFIELD 
and EQUATE statements. In general, however, exact 
details of the language will not be presented in this 
paper. Every field used in a comparison (critical or 
non-critical), and every field used in a field manipula­
tion context must be defined via the KEYFIELD 
statement. This statement consists of the keyword 
(KEYFIELD) followed by the beginning character 
position of the field, the field width in characters, and 
a 1-8 character label (or field name) which provides 
reference to the unique field. Unless otherwise specified 
(via the EQUATE statement), all fields are considered 
to be identical (having the same beginning column 
and fie:d width) in both the data and reference files. 
The inclusion of a field in the KEYFIELD or EQUATE 
statements does not necessarily imply that any actions 
or comparisons will be made on the field, but inclusion 
does define the comparison configuration, should 
subsequent statements require such comparisons. 

The EQUATE statement allows the user to define 
the appropriate comparison configuration for the 
defined fields, and to establish which fields belong to 
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either the data file or the reference file (the omiss' on 
of an EQUATE statement for a field results in that 
field belonging to both the data and reference files). 
The EQUATE statement consists of the keyword 
followed by a two character code, followed by two or 
three names (prev:ously defined in a KEYFIELD 
statement). The first name given in all cases is called 
the base name. All subsequent references to equated 
fields should be by base name. The true configuration 
of the comparison and aL fields involved will be uti­
lized in creating the object code blocks, without having 
to be restated by the user. A code of FC or FN re­
quires two names: the name of the data file field fol­
lowed by the name of the reference file field. The 
locations and lengths of these fields have been previ­
ously defined (by KEYFIELD statements). The 
field on the data file will be compared character by 
character with the equated field on the reference file 
should any subsequent statement require a compari­
son. Codes FC and FN differ in their treatment of 
unequal length fields (the data file field is not equal 
in length to the reference file field). FC causes padding 
of the short field with blanks to the right, and FN 
causes padding of the short field with leading zeros, 
to equalize the lengths. FC can therefore be used with 
character data, and FN with numeric data. 

Codes RI and RP requ' re three names: the name of 
the data file field, followed by the name of the refer­
ence file field contain:ng the low extreme of a closed 
interval, followed by the name of the reference file field 
containing the high extreme of the interval. By this 
means, comparisons may be made between fixed values 
on the data file, and closed intervals (where the end­
points are included in the interval) on the reference 
file. Subsequent statements will only require the base 
name (in this case the data file field name) to cause 
the appropriate interval comparisons to be made. 
Code RP is identical to RI except that the parity of 
the fixed field must match the parity of the low extreme 
of the interval. In this case parity refers to whether 
the values are even or odd. Parity agreement is useful 
for street address matching, where a house number 
is to be compared to a range of addresses on a street, 
and the odd and even addresses are on differing street 
sides. Codes DI and DP pertain to fixed fields on the 
reference file being compared to intervals on the data 
file. All interval fields are treated as numeric, and the 
short fields are padded with leading zeros at execution 
time before comparisons are made. 

CRITICAL FIELD DEFINITION 

The l\1:ATCH, SORT, and SEARCH statements 
define the hierarchy of the critical field structure and 

the domain construction. The keyword lVIATCH, 
followed by a field name, indicates that the field is a 
critical field, and the appropriate comparisons will be 
made for the configuration defined via the KEYFIELD 
and EQUATE statements. A mis-match on any critical 
field is sufficient to reject the data file record. The 
domain of candidacy is thereby reduced by means of 
the lVIATCH statements. If a critical field represents 
an interval comparison, the ranges covered by the 
interval must not overlap. The SORT statement 
defines the sort order of the critical fields by requiring 
a level number and critical field name. The SEARCH 
statement defines the reference file domain. The 
keyword SEARCH is followed by a field name (which 
must appear in the SORT statement). All reference 
file records having the same search field contents as 
the equivalent field on the data file record will become 
prospective match candidates for that data file record. 
Operationally, reference file records are read into core 
storage, until the end Of the partition is reached, at 
which time they are written on disk and paged in as 
required. The program will operate more efficiently in 
larger storage partitions. If the domain is chosen 
carefully, there should be few (if any) input/output 
operations of this sort. The program will process 
domains as large or small as desired without any user 
modification. The disk paging operations are optimized 
to minimize the number of accesses. 

WEIGHTED COl\1:P ARISONS 

After the reference file domain is constructed, it is 
often desirable to make a number of comparisons with 
the object of selecting the most probable record for a 
match if that record is within the acceptability tol­
erances. The concept of weighted comparisons makes 
this possible. l\/Iuch work has been done on the deriva­
tion of weighting schema. A paper written by Sidney 
H. Brounstein of the IBl\f Corp.1 provides a com­
prehensive review of the weighting techniques de­
veloped, and will be quoted extensively in this section. 
Robert T. O'Reagan of the Census Bureau2

•
3 has 

done considerable work in the derivation of practical 
weighting algorithms. The fundamental weight" ng 
theory underlying most modern methods is the "Direct 
Weighting Concept", derived by N ewcombe4~5. The 
following quote from Brounstein ,vill illustrate the 
basic concept: 

Given a pair of records that are candidates for a 
match, the number of the components that agree 
and disagree is observed. If equal impact were 
given to each component, the discriminating 
power of some components that are measurably 



more powerful than others would be wasted. For 
example, if two American health records agree on 
the surname Smith, that would be some ind~cation 
that this m;ght be a true match. However, if they 
agree and both say Hinton in that component, it 
is a much stronger clue. The rarer the argument, 
the less like" y that accidental agreement will 
occur between components in records brought 
together at random. 

If the sets 1\1: (matched pairs) and U (unmatched 
pairs) preexisted in totality, there would be no 
matching problem. The problem exists because 
some method of characterizing M and U is re­
quired to decide to which of the sets a new com­
parison pair (representing two records not pre­
viously linked) belongs. This implies the use of 
sampling methods, computations based on fre­
quency analyses of the separate files, or inferences 
based on knowledge of the total populations from 
which the data files are drawn. 

Practical weights and penalties (negative weights) 
can be computed by determining the following four 
probabilities (by dividing the frequency of occurence 
by the number of compari;son pairs tested). 

P1=Pr(component agreeslpair is a true match) 
P2=Pr(component agreeslpair is not a true match) 
P 3 = Pre component disagreeslpair is a true match) 
P4 =Pr(component disagreeslpair is not a true match) 

The appropriate weight for the comparison pair can 
be computed by: 

Sw=log2 (PdP2) 

The appropriate penalty can be computed by: 

Sp = log2(P3/P4) 

Weights and penalties can be derived in this manner 
for all components (or configurations of components). 
A component is a field for which a weighted compari­
son is to be made, and its configuration is the value of 
the field on both the data and reference files. The score 
for each prospective candidate in the domain can be 
computed by adding (separately) the weights and' 
penalties for each component (determined before the 
actual record linkage application by means of a sample 
population, and the above method). The reference 
file record· with the greatest weight and lowest penalty 
is the most probable match within the domain. If the 
penalty of this best record is greater than a certain 
threshold value, the data file record can be rejected 
on the basis that the probability of the chosen reference 
file record being a correct link is too low for the par­
ticular application. 
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This method of computing weights and penalties 
assumes the statistical independence of each compo­
nent (if this is not true, then joint distributions must 
be computed by taking the set of all components at 
one time," generally an immense undertaking). For 
address matching purposes (geographic coding), the 
assumption of independence is fairly good. Allowing 
this assumption, the addition of the logarithmic weight 
scores for each component is equivalent to multiplying 
the likelihood ratios, thereby attaining the joint prob­
ability for the record being a match. 

The following example will illustrate the method of 
deriving weights for an address coding application. 
The probabilities PI to P 4 are computed using a sample 
file where all records have been linked manually 
(assuming no clerical error!). Consider the component 
"street type": 

PI = Pr(street type agreeslpair is a match) = 0.64 
P2=Pr(street type agreeslpair is not a match) =0.16 
P3 = Pr(street type disagrees I pair is a match) = 0.02 
P4 =Pr(street type disagreeslpair is not a match) =0.74 

These probabilities are based on frequencies of oc­
currences divided by the number of comparisons made. 
One comparison is made for every reference file record 
in the domain for a given data file record. The weight 
for a match on street type is: 

log2(0.64/0.16) =log2(4) =2 

The penalty for a mis-match on street type is: 

log2(0.02/0. 74) = log2(1/32) = - 5 

Next consider an additional component "direction". 
Assume that weights derived in a similar manner are 
4 and - 6 respectively. 

In future record linkage applications the two com­
ponents can be examined against the equivalent refer­
ence file components. If both street type and direction 
matched, the total weight for the candidate record 
would be 2+4 = 6, with a penalty of zero. If direction 
matched, but street type did not, the weight would 
be 4 and the penalty would be 5 (the penalty score is 
considered to be a positive number, not a negative 
weight). The converse case would produce a weight of 
2 and penalty of 6. Disagreement on both components 
would produce a weight of zero and a penalty of 11. 

THRESHOLD LEVELS 

The we~ghts and penalties computed in the previous 
section can" be used to determine the threshold level 
for the data file record rejection. If the weight obtained 
for a particular record is equal to the penalty score, 
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then there is a 50 percent chance (1: 1 odds) that the 
reference file record will provide a correct match. If the 
weight obtained is one greater than the penalty, the 
odds favoring a correct match are 2: 1. If the weight 
is lessthan the penalty, the odds do not favor a correct 
match. In general, the difference between the weight 
and penalty scores is the logarithm (to the base two) 
of the odds favor ng a match. 

Odds in favor of a correct match = 2(Sw-Sp) 

The amount of error tolerable for a given application 
must be determined by the user, in order to set an 
appropriate threshold level. 

RANKED GROUPING 

The UNIMATCH system has a feature whereby as 
many fields as desired may be grouped together. 
Grouping establishes a separate weight and penalty 
score counter for the set of fields in each group, as well 
as group hierarchy (or ranking). The selection of the 
best reference file candidate is determined by examining 
the domain, and retaining only those reference file 
records having the maximum weight in the highest 
ranking group. All other records are removed from 
the domain. The remaining records are examined, and 
only those reference file records having the maximum 
weight in the second highest ranking group are re­
tained. All others are removed from the domain. This 
process is continued until the lowest ranking group 
weights are examined. In practice, this process is con­
ducted in a single pass through the reference file do­
main. The weights for all groups are computed for a 
given record, if the weights are better than the maxi­
mum encountered previously, then the current record 
becomes the prospective candidate, if not, the next 
record is inspected. At the termination of the scan, the 
weight and penalty counters reflect the values of the 
best record, and pointers indicate the position of that 
record in the domain. A record is better than a pre­
vious one if there exists a "\veight in a high ranking 
group that is greater than the existing weight (weight 
scores are maximized within rank, e.g., a record bearing 
a score of 1,4,7 will not replace a record bearing a 
score of 2, 1 ,1 where the first number in each set of 
three is the highest rank). 

A further condition is added to the criteria for 
reference file record selection: If the weight score for 
any group (regardless of rank) is zero, that record 
will not be considered a prospective candidate. This 
convention allows a secondary hierarchy· to be con­
structed. It may be desirable to automatically reject 
the data file record if certain minimum information 
is desired. 

The ranked grouping concept allows a system of 
intuitive weighting to be established, where the ranks 
are assigned upon the basis of the information content 
of each field, and group of fie~ds. ~Iore importantly, 
the ranked grouping concept permits reduction of the 
reference file domain when the fields cannot be ex­
pressed as sort keys (via the critical field :.\IATCH 
statements). A common example of this is the compari­
son of a field to an interval where the intervals are 
allowed to overlap. No sorting scheme will be able to 
construct a domain that will ;nclude various values of 
the single field if the ranges of the intervals vary and 
the values overlap. Including all va:ues of the intervals 
(within the critical sort keys, of course) into the do­
main, and defining the interval comparison to be within 
a group, and assigning a weight of one for a match 
and a weight of zero for a mis-match, will result in the 
retention of all intervals containing the field value (or 
vice versa, if the interval is on the data file) in the 
domain. Another example, is the phonetic compression 
of a character string (another feature provided by 
UNIl\1ATCH). All values sufficiently close to the 
data file value can be retained in the domain. This is 
useful for name matching. The interval comparison 
method given is useful for matching a street address 
to a range of addresses in a city. 

IMPLEMENTATION OF WEIGHTED 
C01VIPARISONS 

The UNIl\1ATCH system requires all fields where 
weighted comparisons are needed, to be organized into 
ranked groups. The GROUP statement requires a 
group name (which is a 1-8 character label not previ­
ously used, that will uniquely identify the group), 
and a list of all fields (by field name) that comprise 
the group. Any particular field may be used in as many 
groups as desired. At least one group must be defined 
to allow weighted comparisons, but fields may be 
grouped in any fashion desired. Each group carries its 
o\vn weight and penalty score counters. The LEVEL 
statement defines the group ranking. It consists of 
the level number and group name. The ACCEPT 
statement defines the maximum penalty score per­
mitted for the group named. If the penalty score of 
the chosen candidate (the reference file record with 
the highest ranked positive weight scores) is greater 
than the amount specified in the ACCEPT statement, 
the data file record will be rejected. 

WEIGHT statements must be provided for all 
fields specified in GROUP statements. Rather than 
specifying the two states discussed earlier (match and 
mis-match), the WEIGHT statement prov des for five 
possible states:(l) the data file field matches the refer-



ence file field, and neither field contains blank nor 
zero entries (match) ;(2) the data file field contains a 
blank or zero entry and the reference file field does 
not (data file omission) ;(3) the data file field contaIns 
a coded entry and the reference file field contains a 
blank or zero entry (reference file omission);( 4) both 
fields contain blank or zero entries (null match) ;(5) the 
fields conta"n conflicting non-zero (or non-blank) 
entries (mis-match). These states also apply to inter­
vals. 

An interval is considered null if both extremes are 
zero. Conditional weight tables may be created which 
will modify the group weights contingent upon certain 
configurations of reference file field values. For example, 
if the "street type" field is considered, and the data 
file record has no entry coded, it might be desirable 
to give added weight to those reference file candidates 
containing a street type of "ST", "BLVD", "RD", 
etc., over those containing street types of "PL", "CT", 
"SQ" etc., on the basis that the frequency of occurrence 
of "ST", "BLVD" etc., is likely to be higher. Con­
versely, if the data file field value is "COURT" and 
it matched the reference file field, a higher weight may 
be assigned because the frequency of occurrence is 
less than "ST" and therefore the information content 
is greater. 

DATA TRANSFER CONTROL 

Since the object of the record linkage process is the 
transfer of data from the reference file to the data file, 
considerable thought was given to the design of an 
effective data transfer control system. The system 
allows the user to code a number of executable com­
mands describing the procedure for transferring in­
formation from the chosen reference file record to the 
data file record (or if the data file record is rejected, 
transferring messages to the data file record). The 
unconditional "move" is the simplest operation. A 
field in the reference file is moved to a location on the 
data file (or appended to the end of the record, if 
desired). A "compare" command causes transfer of 
information contingent upon the stated value being 
present in the data file or reference file. This allows 
records of different types to be processed correctly. 
UNIMATCH maintains a set of internal flags which 
indicate whether individual fields were successfully 
matched for the chosen candidate record. Data trans­
fer can occur contingent upon the successful linking 
(or non-linking) of any individual field for the candi­
date. 

This feature makes it possible to take alternative 
actions for various comparison results. A practical 
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example is in address coding against a Geographic 
Base File where the records contain two address ranges, 
one for each side of the street. If a match occurred 
with a range on one side of the street, it is desirable 
to transfer the geographic codes relating to that side 
only. Other commands permit examination of the 
group weight and penalty scores providing for data 
transfer contingent upon a range of values. Character 
text can be moved into the data file record instead of 
information from the reference file record. The transfer 
of text can be conditional upon comparison results, 
weight and penalty values, etc. Simple arithmetic 
functions can be executed upon the weights and penal­
ties, allowing for example, the placing of the odds 
favoring a match on each data file record. A memory 
feature allows the reformatting of fields on the data 
file, imputation of information on the data file, as well 
as computations on data file fields. 

FIELD MANIPULATION AND FILE CONTROL 
FEATURES 

The UNIMATCH system provides the capability 
of converting input field values to new values on the 
basis of conversion tables. For example, area codes 
may differ between both files, in which case a corre­
spondence dictionary may be prepared to provide for 
conversion of the area codes. The capability of assign­
ing default values to fields not coded is also provided. 
Selection of data file records for matching may be 
accomplished via SELECT statements. For example, 
it may be desired only to match records occurring in 
one city where a number of cities are present in the 
data file. 

The file management system provides the capability 
of separating rejected output records from the ac­
cepted ones, or combining them as desired. In addition, 
it is possible to separate rejected records of different 
types, and to print listings of selected records in the 
output file. A post-processor feature allows the matcher 
to be used in non-record linkage applications where 
field conversion, record selection, and reject separation 
tasks can be performed on single data files. 

STATISTICAL INFORJVfATION 

UNIMATCH provides much statistical information 
regarding each run that is executed. The output data 
records contain twelve digit status codes prefixed to 
the body of the record which indicate the status of 
that output record. A code of "lVIT" indicates that 
the record was matched successfully, and the penalty 
scores of up to five high ranking groups are printed. 
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I t is thereby possible to determine if a given data file 
record is an exact match, and if not, what the degree 
of uncertainty is. Critical field rejects are indicated 
by a code of "CR" followed by the name of the field 
that caused the mismatch. Group rejects produce a 
code of "GR" followed by the group name and the 
penalty score for that group. This gives the user an 
indication of how much he must "loosen the reins" to 
permit the record to be linked. Selection rejects and 
search field rejects are also flagged. 

At the end of each run the number of rejects by 
type, field name and group name are printed. In addi­
tion, statistics are printed tabulating the number of 
exact matches, the number of input/ output disk 
operations required, the number of different reference 
file domains used, the average domain, the effective 
domain (the average number of records for any do­
main), input and output record counts, etc. This 
information provides the user with a good picture of 
the effectiveness of the record linkage application. 

CONCLUSION 

This paper has attempted to present the operation of 
UNIMATCH by presenting both the theory under­
lying the development and the physical implementa­
tion of the system. All features and the exact details 
of the specifications could not be discussed in a paper 
of this scope. UNIMATCH will provide a generalized 
record linkage capability to IBM System/360 users, 
but more importantly will permit experimentation 
with varying linkage algorithms with resultant greater 
knowledge of the practical considerations of the record 
linkage problem. Since a large portion of the record 

linkage problem is record standardization, a Universal 
Standardizer (UNISTAND) is being written as a 
companion system for UNIlVIATCH. UNISTAND 
will scan free-form text under pattern recognition 
control in order to place recognizable components in 
fixed fields for matching. Procedures will be supplied 
to the user of both systems to process the most com­
mon problems (such as address coding, transportation 
coding, etc.). These procedures will allow the user to 
perform complex record linkage tasks without requiring 
the sophistication needed for weight and algorithm 
development. It is expected that these systems, along 
with supplied procedures, will provide the capa,bility 
of solving most of the current record linkage problems. 
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INTRODUCTION 

Present areas of application of computers to the law 
fall into three broad categories: (1) those involving 
applications of business accounting techniques such as 
in tax preparation and client billing, (2) those involving 
data management techniques such as law enforcement, 
criminal justice, and keyword legal source material 
information systems, and (3) those involving on-line 
file manipulation in such areas as text-editing and 
drafting. These systems demonstrate that computers 
can work very well with problems that can be expressed 
in terms of numbers or information that can be handled 
on the basis of its external form. 

During the coming decade, we foresee the continued 
expansion of the use of existing systems and also the 
development of some new systems based on conven­
tional data processing techniques. Such new systems 
may be expected in automating the accession to index 
systems patterned on existing manual systems, process­
ing land use documents, supervising paroled offenders, 
etc. However, ordinary data processing methods are 
by their very nature incapable of providing much­
needed assistance in the central area of legal work, 
where the content of the material at hand (laws, con­
tracts, depositions, etc.) must be understood and ana­
lyzed in terms of its meaning and logical relationships. 
It is impossible, using file management techniques to 
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deal with, for example, a set of conflicting laws or 
regulations. Problems such as these must be attacked 
at a level where the interrelationships among the vari­
ous words and phrases (as well as their individual 
meanings) are understood. 

Comprehensive machine-readable data bases of legal 
materials are rapidly becoming available as a result of 
the economies they afford in such areas as typesetting 
and legislative drafting. However, the conversion of 
legal materials to machine-readable form has not made 
them significantly more accessible to those who must 
use them. Because of the great complexity and volume 
of legal materials their analysis now requires great 
investment of time by highly trained personnel. If 
computers could "understand" legal materials, their 
attractive assets (their large reliable memory, and their 
extraordinary capacity for rapid and accurate informa­
tion processing) would make them ideal assistants in 
the field of law. 

The ability to provide such an understanding is 
emerging in new techniques currently being developed 
in a computer area called "artificial intelligence" in 
dealing with such problems as automated logical deduc­
tion, problem solving, and natural language under­
standing. These techniques appear to be the key to 
solving many of the problems of legal automation. 

In particular, we foresee the development of a num­
ber of computer based services in this new technology. 
These include: 

1. Automated systems to provide quick and inex­
pensive assistance for many non-controversial, 
but not necessarily simple legal questions to aid 
lawyers, social and welfare workers, adminis­
trators, police, and of course the public itself; 

2. Automated consistency-checking, and conse­
quence-finding systems to aid in codification 
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and law reform for legislative and administrative 
bodies; 

3. Automated systems to assist in teaching law 
and legal reasoning for those who need to know 
the law; and 

4. Automated interviewing systems for initial 
client and witness screening. 

In this paper we include a brief survey of recent 
applications of computers to the law, a discussion of 
the further types of automation that are needed in the 
law, an outline of current developments in artificial 
intelligence which could be applied to aid in the auto­
mation of the law, and finally a description of the new 
directions we envision for legal information processing 
during the 1970s. 

A SURVEY OF RECENT APPLICATIONS OF 
COMPUTERS TO THE LAW 

Automation has been applied to problems in criminal 
justice and law enforcement as well as a host of other 
applications including legal information retrieval, in­
come tax preparation, and legislative drafting systems. 
In this section a brief description of these application 
areas is given. For a more thorough survey of this 
work see Robins;47 Bigelow,1 the May, 1971 issue of 
Law Library Journal, which is devoted to computers 
and law; and the individual references cited in this 
paper. 

Criminal justice and law enforcement information systems 

For our purposes, we can view criminal justice and 
law enforcement information systems as consisting of 
users, a computer, and an ever changing data base 
being used to collect, store, and update information in 
such a way so as to facilitate the retrieval and ex­
change of criminal justice and law enforcement informa­
tion for governmental units. The most advanced of 
these systems include: Project SEARCH61 (System for 
Electronic Analysis and Retrieval of Criminal Histo­
ries) developed jointly by LEAA (Law Enforcement 
Assistance Administration) of the Justice Department 
and a number of participating states, the NCIC19,23 
(N ational Criminal Information Center) computer net­
work of the Federal Bureau of Investigation, and the 
NYSIIS22 (N ew York State Identification and In­
telligence System). 

Legal information retrieval systems 

The volume of jurisprudential reference material in 
the· form of cases, statutes, and administrative rulings 

and regulations has prompted the development of 
automated law retrieval systems to aid the legal re­
searcher. This work has been based in part upon re­
search being carried out in the area of library automa­
tion and is specifically related to the problem of 
document retrieval. 

Of the experimental projects that have been under­
taken for performing automated legal information re­
trieval the basic assumptions have been that a person 
seeking technical legal information can be led to 
relevant information using a keyword type approach, 
and that technical legal information can be categorized 
in such a fashion as to be retrieved by a keyword type 
approach. Within this framework there are basically 
two approaches that have been taken: those systems 
which rely on prior manual abstracting of library 
material and those which operate on full natural text 
without abstracting. 

Systems requiring manual abstracting 

The first system for computer storage and retrieval 
of legal material developed by Morgan42 ,58 was used 
for the retrieval of case law. It employed an approach 
where concepts were identified and assigned code num­
bers which were in turn linked back to the original 
case. Thus, having once determined the relevant con­
cepts one could retrieve the citations to pertinent 
cases. This approach was very similar to the manual 
indices that have widespread use today such as the 
West Key Number System. Other attempts at auto­
mated legal research using this approach have been 
made by the Federal Trade Commission,2 and the 
Antitrust Division of the Department of Justice.47 

Systems operating on full natural text 

A significant departure from the manual abstract­
ing approach is the Key Word in Combination approach 
of John Horty.28,29,31 Here, no abstracting or indexing 
of the material was done manually. Retrieval was done 
by finding combinations of keywords in the original 
text. A researcher could specify lists of words that must 
appear in the same sentence or statute as well as the 
desired word ordering. The LITE (Legal Information 
Through Electronics) Project developed by the Air 
Force Accounting and Finance Center37 and the Root 
Index System developed by the Southwestern Legal 
Foundation43 ,49,56 are two other systems that are similar 
in design with the Key Word in Combination approach. 
The OBAR System developed by the Ohio Bar As­
sociation45 and Mead Data Central has added signifi-



cant on-line interactive capabilities to this type of 
approach. 

The ABF-IBM project 

The ABF-IBM (American Bar Foundation and 
International Business Machines) Project15- 18 at­
tempted to overcome the disadvantages of either of the 
other previous approaches by automatically generating 
frequencies for each word used in the original case. 
Deviations or "skewness" of certain words from a 
normal distribution were assumed to convey informa­
tion about the contents of the case. 

Other applications of computers to the law 

There are many other applications within the legal 
area for which automation has been proposed, and in 
some cases even implemented. 6,34,35,39 Most of this work 
represents straightforward applications of current 
technology to the particular problems encountered in 
the legal area using methodology well established in 
other areas, such as office management and business 
accounting. Automated legislative drafting and re­
vision, will drafting, as well as general law office docu­
ment drafting are good examples of the extension of 
available hardware and software that has been made 
available in recent years. Automated court manage­
ment, legislative reapportionment, law office manage­
ment, income tax preparation, land title recording, 
and estate planning are examples of established data 
processing techniques that have been used for legal 
problems. 

THE NEED FOR NEW DIRECTIONS 

The quantity and complexity of legal materials is 
increasing at a rate that cannot be adequately handled 
by traditional means. In many areas the growing de­
mands of modern society have been met by automation. 
However, modern computer techniques have had only 
a minor effect on the three major areas of legal work 
where they might seem applicable : legal research, 
legislation, and legal education. As mentioned above 
numerous attempts have been made to apply scientific 
and business data processing techniques to such legal 
problems, but all have fallen short of major impact 
because they have been by their nature unable to deal 
with the verbal and logical complexities of the law. 

Most areas of legal work have remained relatively 
untouched by automation. The problem is not that the 
legal profession has neglected automation; rather it is 
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that technology has failed to meet the demands of the 
law. What is lacking is the capacity to give legal per­
sonnel the same sort of assistance in their routine work 
with words and concepts that engineers get from the 
computer in their routine work with numbers and 
formulas. What is needed is the automation of the pro­
cess involved in routine legal reasoning and research. 

Modern statutes and administrative regulations are 
of such immense complexity as to be impossible to 
understand for the layman and difficult even for the 
lawyer. The problem is particularly acute in many 
areas where the task of interpreting and enforcing the 
law has traditionally been left to non-lawyers, for in­
stance, welfare administration. 

To give an example of the problem: At present when 
local administrative authorities receive an application 
for welfare benefits, the eligibility of the applicant and 
the benefits to which he is entitled are determined by 
a large and conflicting body of local, state, and federal 
welfare laws and regulations which may total hundreds, 
if not thousands, of pages in length. Typically an appli­
cant may have to wait for weeks or even months while 
an overburdened administrator attempts to determine 
his legal status. As another example, a business trans­
action involving questions of tax laws, zoning regula­
tions, and building codes may fall through because of 
the delays and expense involved in the drafting of the 
transaction to conform to the many, and possibly con­
flicting, requirements of the law. 

The successful development of automated techniques 
for dealing with complex legal situations would help in 
these and many other areas by providing quick and 
inexpensive answers to many routine legal questions. 
Such techniques could also help employers and em­
ployees determine their rights under labor relations 
contracts. They could help both the taxpayer and the 
government in tax planning and administration. It 
would be possible to provide legal guidance for some 
small businessman's transactions which involve too 
little money to justify full scale analysis by a law­
yer. 

In many areas, where the law now consists of con­
fusing and conflicting regulations at different levels­
federal, state, and local, the first step toward law reform 
would be the unscrambling of a situation that has been 
caused by years of haphazard legislation so as to provide 
a clearer assignment of rights, duties, and administra­
tive responsibilities. However, legislators have been 
unable to take even this first step, not merely because 
of the cost, but also because human ability to enact 
complex legislation appears to exceed human ability to 
reorganize, recodify and simplify that legislation. 

The total length of the United States Code and the 
collected statutes of the various states has doubled in 
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Figure I-Network of References from 42 U.S.C. §602, "State 
Plans for Aid and Services to Needy Families with Children." 
References to the laws of the fifty states, implicit cross references, 
and references to federal and state administrative and judicial 
interpretation of the statute have been omitted for lack of space. 

the past few years and promises to double again in this 
decade. In commercially important areas such as tax 
law, it is possible, at high cost, to find specialists who 
understand even the present incredibly complex legal 
picture. In many socially important areas, such as wel­
fare law, pollution control law, environmental quality 
law, and urban planning law, it is almost impossible 
to find anyone who has a thorough working knowledge 
of the field. As a result, many important social programs 
are either slowed down or stifled. 

To illustrate the complexity of the problems involved 
consider a single section of federal welfare legislation, 
for instance, that dealing with state plans for aid to 
needy families with children (42 U.S.C. §602). This 
single section refers to eight other sections, most of 

which in turn refer to still other sections creating an 
incredibly complex network (as illustrated in Figure 1). 
Even one of the shortest sections referred to by §602, 
namely §625, which defines "child welfare service" has 
an extraordinarily complicated internal logical struc­
ture (as illustrated in Figure 2). 

There is a major unfilled demand for legal services 
in the United States. It is particularly acute for lower 

....----------, No 
r---------------~ 

No 

Supervision No 

No 

No 

Figure 2-Logical structure of 42 U.S.C. §625 " 'Child-Welfare 
Services' Defined." One of the Simpler Sections. The appendix 

contains the text of this section 



income groups, but legal services, like other unauto­
mated services, are increasingly becoming priced out of 
the reach of larger and larger segments of the American 
public. At present large law firms provide excellent 
legal services for those able to pay their fees. Most of 
the lawyers in these firms spend most of their time in 
legal research and drafting legal documents. 55 The small 
businessman or average citizen, if he can afford legal 
service at all, typically employs a sole practitioner who 
cannot afford the library or the time necessary to do an 
adequate job of legal research on his client's problems. ll 

The experience of the medical profession in dealing 
with the problem of the cost of doctors' services sug­
gests that two approaches be tried simultaneously. 
First, the rapid automation of those areas suitable for 
automation, and second the training of paraprofes­
sionals to free the professional from routine tasks. How­
ever, the training of paraprofessionals in law-welfare 
administrators, social workers, lay magistrates, law 
clerks, etc., has been neglected by American education 
until very recently. Application of traditional methods 
of legal education to the problem would be possible, 
but it would be expensive, and would be difficult in 
view of the fact that all American law schools are filled 
to capacity. 5 

RECENT DEVELOPMENTS IN ARTIFICIAL 
INTELLIGENCE APPLICABLE TO LEGAL 
AUTOMATION 

A significantly broad theoretical framework has been 
established for the application of computers to the law 
as the result of research and development in the area of 
artificial intelligence, in particular in question-answer­
ing systems where work has been carried on for over a 
decade. For information concerning such systems we 
refer the reader to Simmons. 52,53 Of the more advanced 
question-answering systems Green and Raphae124,25 
have developed a very powerful deductive procedure, 
and Simmons, Burger, and Schwarcz51 ,54 introduced an 
extremely attractive representation scheme, while 
Biss, Chien and Stahl8 have developed the R2 system 
which incorporates a number of advanced features not 
found in these other systems. These systems have at­
tacked the problem of understanding facts and answer­
ing questions about them on an automatic basis. It is 
understood as a result of the development of these 
systems, how to, for example, resolve certain kinds of 
semantic and syntactic ambiguities. In addition, a num­
ber of sophisticated formal internal structures have 
been developed that allow much of the expressiveness 
found in natural English and yet can be manipulated 
by machines in a systematic fashion. 
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Transformation of natural English into a formal internal 
representation 

Generally, natural language question-answering sys­
tems use some formal internal representation for in­
formation in order to facilitate deductive manipula­
tions. In a number of earlier systems the representation 
was based upon some type of limited relational calculi, 
as for example Raphael's SIR,64 and Black's SQA.9 
Green and Raphael24, 25 subsequently developed a sys­
tem that offered the full expressiveness of the first-order 
predicate calculus for the representation of natural lan­
guage information. Simmons, Burger, and Schwarcz51,54 

developed a system that used nested binary relations 
for the formal representation of natural language in­
formation. The R2 question-answering system de­
veloped by Biss, Chien, and Stahl8 uses a high-order 
formal language for the internal representation of in­
formation. This system represents relations between 
relations and quantification of variables ranging over 
rather complex structures. The data base chosen to 
demonstrate the capabilities of this system is an in­
formal description of the motor vechicle laws of Illinois. 

Logical deduction as performed by computers 

What types of "reasoning" or logical operations can 
be. performed by a computer upon factual information 
expressed in a formal language? There has been signifi­
cant progress in recent years in the research of deduc­
tive reasoning as performed by computers. N everthe­
less the computer's ability to reason with formal 
concepts such as those as found in legal materials is 
still far from fully realized. 

Automated deduction procedures have been devel­
oped for the propositional calculus, but the limitations 
of this calculus for most practical applications led to 
the search for automated procedures for the first-order 
predicate calculus. For the first-order predicate calculus, 
an effective deduction procedure based upon an auto­
matic theorem-proving algorithm was first described by 
Robinson48 and was improved upon by Wos, et al. 62-65 
and others.3,4,33 Currently work is being done by a 
number of researchers to find effective procedures for 
high-order logic where concepts that cannot be handled 
adequately in the first-order logic can be accommo­
dated. 

NEW DIRECTIONS 

The use of computers as an aid to the legal process is 
already extensive as indicated by the work described 
above. There is, however, a vast difference between 
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providing automated criminal justice and law enforce­
ment information systems or legal information retrieval 
systems on the one hand, and improving the availa­
bility and quality of legal services on the other hand. 
In the first case the computer is used to accomplish 
well-defined but time-consuming routine tasks; the 
second case has been almost completely ignored with 
respect to the cognitive potential that computers can 
provide. Research in this country in this second area is 
virtually non-existent. 

We envision the initiation of research programs 
within the near future to meet the need for automation 
in the law with the following objectives: first, to increase 
the ability of lawyers, administrators and the public to 
deal effectively with many of their legal problems; 
second, to aid legislative and administrative agencies 
in the reform and development of legislation and regu­
lations concerning current social problems; third, to 
provide legal training on an automated basis for law­
yers, social workers, police, and others who need to 
know the law for the performance of their duties; and 
fourth, to automate client and witness interviewing 
and screening. 

As outlined above, the theoretical framework for 
such research must be drawn from the field of artificial 
intelligence and in particular from current investiga­
tions in automated natural language question-answering 
and logical deduction. Eventually the development of 
automated inductive logic may also offer significant 
aid in legal work. For an excellent discussion of this 
possibility see Reference 10. Numerous data bases of 
machine-readable legal materials already exist. The 
specific tasks that must be accomplished are: 

1. The development of techniques for the trans­
formation of natural language legal information 
into formal internal representations. 

2. The development of techniques for automated 
logical deduction from legal materials in formal 
internal representations. 

3. The development of practical automated legal 
question-answering systems based upon these 
logical deduction techniques. 

4. The development of systems for machine assisted 
consistency-checking and consequence-finding to 
aid in the normalization, integration, and mod­
ification of legislation and administrative 
regulations. 

5. The development of computer based legal edu­
cation systems based upon the automation of 
the traditional Socratic method of legal instruc­
tion, using dynamic question-generating tech­
niques rather than preprogrammed instruction; 
and 

6. The development of conversational computer 
techniques for obtaining information from clients 
and witnesses. 

The data base 

A large quantity of federal and state legislation has 
already been converted to machine-readable form, and 
in a number of jurisdictions new legislation is being re­
corded initially in machine-readable form. The avail­
ability of legislation in this form has led to significant 
economies in the process of inserting amendments both 
at the original enactment of a statute and as a result 
of later legislative action, and has helped in the de­
velopment of keyword document retrieval schemes. The 
Illinois Legislative Reference Bureau, for instance, has 
an advanced on-line system developed by Data Re­
trieval Corporation, with a dozen terminals for use in 
legislative drafting, law revision and keyword retrieval. 
While these techniques are not in the central area of 
legal work, their existence, and the benefits and econ­
omies they provide, guarantee the availability of data 
bases in machine readable form. 

Existing machine-readable materials include all 
types of primary legal sources. These are: comprehen­
sive codes such as the Uniform Commercial Code and 
the Internal Revenue Code; un codified legislation such 
as state statute collections; and judicial and adminis­
trative decisions. 

Selection of relevant materials from the data base 

The selection of relevant materials from the data 
base may be based on a combination of four methods. 
The keyword method, despite the shortcomings which 
have prevented its widespread adoption in legal re­
search, is very efficient for certain types of questions. 
The automation of the present manual system involving 
networks of case and statutory citations would present 
few technical problems.36 The automation of the current 
system of abstracts and digests combined with new 
techniques of automated abstracting might save the 
current system from the strain of the legal information 
explosion. Finally, as computer time becomes cheaper 
and cheaper, the artificial intelligence techniques dis­
cussed below (which might be expected to bring sig­
nificantly better results but to use substantially more 
computer time) might supplant the other methods. 

Transformation of legal English into a formal internal 
representation 

Lawyers have already developed a highly formalized 
language as a means of communication. Development 



of effective legal information systems will require in­
vestigation of the problems associated with transform­
ing this subset of natural English into an internal 
representation suitable for use in legal question­
answering, consistency-checking, consequence-finding, 
and instruction systems. This research can draw upon 
recent advances in automated syntactic and semantic 
analysis, e.g. 7,5 0,59 

Logical deduction 

In order to automate the processes involved in legal 
reasoning an analysis of the logical structure of legal 
information is necessary. Knowledge of this structure 
will aid in the selection and development of effective 
automated legal reasoning techniques based upon 
theorem-proving techniques mentioned above. Within 
the framework provided by automated theorem-proving 
techniques it is necessary to find reasonable models for 
deductive legal reasoning. These procedures can be in­
corporated in the legal question-answering, consistency­
checking, consequence-finding, and instruction systems 
described in the next few paragraphs. 

Legal question-answering 

Interactive legal question-answering systems with 
internal representation and logical deduction techniques 
adapted from prior research on general natural lan­
guage question-answering systems to reflect the nature 
of legal materials should be developed, for only natural 
language question-answering systems allow the user to 
engage a machine in a meaningful dialogue in order to 
specify his needs and receive appropriate responses. 
Since almost no legal personnel have any knowledge of 
computer programming, communications between the 
user and the machine should be performed entirely in 
the natural language question-answering mode in 
English. 

C onsistency-checki ng and consequence-finding 

In addition to the question-answering function of the 
future systems, the ability to find relevant consequences 
for given sets of facts with respect to specified rules, 
regulations, laws, statutes, contracts, etc., should be 
incorporated. They should be capable of determining 
the relative consistency of any body of legal informa­
tion. At present these functions, as carried out by 
lawyers on a manual basis, are very time consuming 
and are subject to error. 

These systems when completed will involve direct 
benefits for legislators and administrative rule-makers. 
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They will be able to use their capabilities to help in the 
detection and elimination of contradictions and am­
biguities in existing law. Legislators will also be able to 
examine more fully the implications of proposed addi­
tions to the existing body of legislations. 

A utomated legal instruction 

Legal instruction now takes many forms.5 Some of 
the methods which are and will be most important in 
the future lend themselves to automation using arti­
ficial intelligence techniques. These include basic in­
struction in legal doctrine and method designed to give 
the student basic skills in legal vocabulary and reason­
ing;5, pp. 17-18 extensive instruction designed to ex­
pose the student to surveys of broad areas of the 
law,5, pp. 21-22 and simulated clinical instruction designed 
to develop practical skills and awareness.5, pp. 41-42 

The accepted method of teaching basic skills in legal 
vocabulary and reasoning in the United States has long 
involved the asking of specific questions and their 
answering by the students as a major if not the major 
component of the instructional process. However, be­
cause this procedure is effective only when applied by 
highly qualified instructors to relatively small groups, 
it has been expensive to use in law schools and it has 
found comparatively little use in programs of legal 
education for non-lawyers. An authoritative recent 
study places the cost per legal instructor in programs 
for non-lawyers at $55,000, a large figure, even though 
less than the $80,000 a year cost for each professor in 
regular law school instruction.5, pp. 69 It is hoped that 
the automation of this process will reduce its cost and 
extend its availability. 

A legal question-answering system may be modified 
to form a system where questions are generated auto­
matically to aid in the instruction of the law. Such a 
system could supplement some of the instruction now 
being given in law schools, but perhaps a more impor­
tant application would be in training administrative 
officials, police, social workers, and others whose job 
requires day-to-day legal interpretation and ad­
ministration. 

One approach to such a system would be as follows: 
A series of typical factual situations would be posed 
for each of the conditions of a given statute. In order to 
ask a question an appropriate selection of a number of 
conditions would be automatically made such that the 
conclusion under consideration would be true. A ques­
tion could be made false by eliminating some necessary 
conditions, and could be made more difficult by adding 
some irrelevant condition. In either case the answer 
given would be checked for consistency against the 
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given situation and pertinent statutes. The coverage 
and difficulty of the questions could be structured by a 
dynamic teaching strategy determined by the nature 
and quality of student response. 

Survey courses for practitioners, advanced law stu­
dents, and non-lawyers are now taught largely by a 
lecture method, a method adopted largely for reasons of 
speed and economy. Automation would allow the insti­
tution of more efficient interactive methods of this 
type of instruction. 

Computer-simulated clinical instruction, even with­
out natural language capability, has already proved to 
be of considerable significance in medical teaching. It 
could be of similar importance in law if artificial intelli­
gence techniques capable of handling the highly verbal 
nature of the lawyer-client interview were developed. 
Prototypes of this approach already existing in the 
medical area suggest the direction simulated legal 
clinic instruction can take.12 ,13,60 

A utomated client and witness screening 

An experimental program has already been put into 
use for automated client interviewing at a legal aid 
office. Because the program lacks natural language 
capabilities, it can only accept yes/no or multiple 
choice answers from the interviewee.3s Addition of 
natural language interactive capability would greatly 
enhance the power of such computerized interviewing 
and allow a real dialogue between the interviewee and 
the system. 

CONCLUSION 

The American public is becoming increasingly dissatis­
fied with the expense, delay, and inefficiency of the legal 
system. Application of existing computer techniques 
can help with some of these problems. However, real 
progress . during the next decade demands new direc­
tions. Recent success in the field of artificial intelligence 
points the way for the future of legal automation. 
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APPENDIX 

Text of 42 U.S.C. §625-"Child-welfare services" defined 

§625. "Child-welfare services" defined. 
For pruposes of this subchapter, the term ."child­

welfare services" means public social services which 
supplement, or substitute for, parental care and super­
vision for the purpose of (1) preventing or remedying, 
or assisting in the solution of problems which may result 
in, the neglect, abuse, exploitation, or deliquency of 
children, (2) protecting and caring for homeless, de­
pendent, or neglected children, (3) protecting and 
promoting the welfare of children of working mothers, 
and (4) otherwise protecting and promoting the welfare 
of children, including the strengthening of their own 
homes where possible or, where needed, the provision 
of adequate care of children away from their homes in 
foster family homes or day-care or other child-care 
facilities. (Aug. 14, 1935, ch. 531, title IV, §425, as 
added Jan. 2, 1968, Pub.L.90-248, title II, §250(c), 
81 Stat.914.) 



HOMLIST-A computerized real estate 
information retrieval system 

by DONALD J. SIMON and BARRY L. BATElVIAN 

University of Southwestern Louisiana 
Lafayette, Louisiana 

INTRODUCTION 

An automated information retrieval system for real 
estate dealers would be desirable when the number of 
business transactions is large and the file of available 
homes is also quite large. A manual search of such a 
large file may be tedious and, most important, may 
fail to retrieve the desired information when it is 
actually contained within the file. 1 

In designing such a retrieval system for high-volume 
dealers, the fact that many homes have quite similar 
specifications must be borne in mind. The designer of 
the system must strive for a workable balance between 
lack of specificity and too great a degree of specificity 
in creating records for such real estate files. Too great 
a degree of specificity will result in a very limited 
number of records from which to choose and too little 
specificity may result in an unwieldy list which could 
only confuse the customer. It is apparent that an 
information retrieval system designed for this purpose 
should allow for future modification so as to incorporate 
the optimum degree of specificity in record and file 
structure as determined through usage. 

THE HOMLST SYSTEM 

The HOMLST system is an information retrieval 
system designed for the recording, updating, and listing 
of homes for sale by a real estate dealer. 

System requirements 

The HOMLST system, written in the COBOL 
language, was designed to be implemented on the 
RCA Spectra 70j46-G TSOS. The M70-590 disk 
storage unit is required for file storage and file access 
is achieved through a remote terminal. 

541 

Outline of the system 

The HOMLST system is designed to be operated 
from a remote termina12 and employs the indexed­
sequential file processing facility3 to add, delete, and 
retrieve records. These records each contain a unique 
record-key, part of which is constructed manually, 
and part by programming. 

Two indexed-sequential disk files are used in 
the operation of the HOMLST system. One file, 
(HOMFIL), contains records of the homes for sale 
and the other, (KEYFIL), is a file of sequential num­
bers used to create part of the record-key for each 
record on HOMFIL. 

The system consists of two main programs each 
having several routines which perform various func­
tions. One of the main programs, HOMUP, performs 
updating functions and the other, HOMRET, is used 
for retrieval of records from HOMFIL. 

Record descriptions 

The record description for a record in HOMFIL is 
as follows: 

HOMFIL utilizes a variable length record which 
is accessed by a unique record-key containing 14 
digits. The first 9 digit field is referred to as the 
HOME-RECORD-CODE and is constructed as 
shown below: 

DIGITS 
1-2 determine price range of home-for 

example 15 would be entered for a home 
costing between $15,000 and $20,000; 
20 for a home costing between $20,000 
and $25,000, etc. 
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3 

4 

5 

6 

7 

8 

9 

Location: North = 1, South=2, 
East=3, West=4 

Exterior: Brick = 1, Wood=2, Frame =3 
Baths: 1 Bath = 1, 1};2 Bath=2, 

2 Baths =3 
Carpet: None = 0, Carpeting = 1 
Bedrooms: 1 Bedroom = 1, 2 Bedrooms 

= 2, 3 Bedrooms = 3 
Carport: None = 0, Single = 1, 

Double=2 
Garage: None=O, Single = 1, 

Double = 2 

The remammg 5 digits are taken from KEYFIL 
which contains sequentially generated, unique numbers 
so as to make each record-key unique even in cases 
where the home's specifications are the same as an­
other's and the first 9 digits are identical. The following 
example of a record-key illustrates how it was 
constructed: 

15121322000150 

This record-key represents a home costing between 
$15,000 and $20,000, located on the north side of the 
city, with brick exterior, having two bathrooms, 
carpeting, and three bedrooms with a double carport. 
This was the 150th home record added to the file. 

The following record description, using COBOL 
field designators, shows the positions of the data fields 
wi thin the record: 

01 HOM-REC. 
02 DUM PICTURE X. 
02 FIX-PRT. 

03 HOM-KEY PICTURE X (14). 
03 ACT-PRC PICTURE 9(6) v99. 
03 IRC PICTURE S99 

COMPUTATIONAL 
02 VAR-PRT OCCURS 10 TIMES 

DEPENDING ON 
IRC. 

03 DETAL PICTURE X (65). 

DUM-this is a dummy character which, by its 
position in the record, is used for deletion of 
records. In COBOL, a READ followed by a 
move of HIGH-VALUE to this data field with 
a subsequent REWRITE will delete the desired 
record. 

FIX-PRT-this part of the record consits of fixed 
length data fields. 

HOM-KEY-this field contains the record-key. 
ACT-PRC-this field contains the actual price 
of the home. 
IRC-this field, depending on its value, will 
determine how many lines of descriptive data 
about the home are contained in the record. 

VAR-PRT-this part of the record is variable in 
length. 
DET AL-this field is used to enter descriptive 
data about the home. In the record description 
shown above, there may be as many as 10 lines 
of descriptive data each containing 65 characters. 

The record description for a record in KEYFIL is as 
follows: 

01 KEY-REC. 
02 DUM2 PICTURE X. 
02 KEY-NO PICTURE X (5). 
DUM2-this data field is used to delete the 

record from the file in the manner described 
above. 

KEY-NO-this is the record-key and also the 
record itself. These records are 5 digit 
numbers, sequentially generated for subse­
quent use in the formation of a unique 
record-key for records on HOMFIL. 

File construction and maintenance 

The files comprising the HOMLST system are 
constructed as follows: 

KEYFIL-this indexed-sequential file, containing 
only 5 digit unique numbers as records, is constructed 
using the PRIMARY LOAD MODE of the indexed­
sequential file processing facility. A pre-determined 
number of records is placed on the file during this load 
routine. 

HOMFIL-this indexed-sequential file containing 
the records of homes for sale is constructed by entering 
a previously determined HOME-RECORD-CODE 
on a remote terminal during the execution of the up­
dating program, HOMUP. The program then obtains 
a 5 digit number from KEYFIL and deletes this number 
from the file in order that no other record on HOMFIL 
may contain this number. This 5 digit number is then 
appended to the 9 digit HOME-RECORD-CODE 
thereby comprising a 14 digit, unique record-key. The 
actual price is then entered and finally from 1 to 10 
lines of descriptive data about the home is entered as 
part of the record. 



The two above files are updated each time a home is 
added to or deleted from HOMFIL. Detailed descrip­
tions of the updating routines are contained in the 
section on HOMUP's routines. 

H omret' s routines 

Operating instructions for this program and for 
HOMUP are provided to an operator upon request. 
Both programs provide the operator of the system with 
simple and direct instructions in response to the 
message: DO YOU WISH INSTRUCTIONS (YES 
OR NO)?-

Other than providing operating instructions, 
HOMRET has essentially only one routine whose 
function is to retrieve records of homes upon request. 
In response to the message: ENTER HOME­
RECORD-CODE, a previously constructed HOME­
RECORD-CODE is entered from the terminal. The 
14 digit FULL-RECORD-KEY is displayed as the 
first item in the home record followed by the actual 
price and the descriptive data for the home. If there 
are no homes matching the specifications denoted by the 
HOME-RECORD-CODE, a message is displayed 
stating this. After all homes fitting the desired specifi­
cations are listed, a message is displayed on the terminal 
indicating such. The operator is then asked-if he wishes 
to enter other specifications or terminate the program. 

HOMRET has an error recovery routine to provide 
for the entrance of a non-numeric HOME-RECORD­
CODE wherein the operator is informed of this fact 
and asked to reenter the number. 

H omup' s routines 

HOMUP contains a CONTROL ROUTINE from 
which the operator may branch to anyone of three 
separate routines to perform various functions. These 
routines are as follows: 

1. ADD ROUTINE-the functions of this routine 
were described under HOMFIL in the section on File 
Construction and Maintenance. 

2. DELETE ROUTINE-this routine provides for 
the deletion of records from HOMFIL. The record-key 
is entered from the terminal in response to the message: 
ENTER FULL-RECORD-KEY. The record-key is 
obtained from the listing of the home record by 
HOMRET. It is the first item listed in the home record. 
When this record-key is entered and a READ to 
HOMFIL is issued, a move of HIGH-VALUE to the 
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first character in the record (the dummy character) 
with a subsequent REWRITE, results in the deletion 
of the desired record from HOMFIL. As part of the 
delete operation, the 5 digit suffix of the record-key is 
replaced on KEYFIL for reuse at a later time. 

3. UPDATE ROUTINE-if a change in the selling 
price of a home is required, this may be accomplished 
in this routine. The record-key is entered from the 
terminal and the record is retrieved indicating the old 
price. The new price is then entered and a REWRITE 
is issued thereby updating the record. 

When the functions of the above routines are com­
plete, a branch to the CONTROL ROUTINE may 
be executed by the operator or he may terminate the 
program. 

There are several error recovery provisions in the 
above routines. If a non-numeric HOME-RECORD­
CODE or FULL-RECORD-KEY is entered, the 
operator is notified of this and asked to reenter the 
number. If the actual price of the home entered is 
non-numeric the same messages are displayed. Also, 
when the price entered exceeds the range implied by 
the first two digits of the HOME-RECORD-CODE, a 
message is displayed stating this and the operator is 
asked to reenter the price. 

PROPOSED EXTENSIONS 

Since many home specifications are sometimes 
quite similar, a greater degree of specificity may be 
required in constructing the HOME-RECORD­
CODE. This would require changing the length of this 
subfield from 9 digits to the desired length. This could 
be accomplished with little difficulty if the record-key 
length would be made greater by increasing the length 
of the suffix from 5 digits to possibly 10 digits. Hence, 
when a lengthening of the HOME-RECORD-CODE 
is desired, the suffix could be shortened thereby not 
affecting the record-key length and the total record 
length would also be unaffected. 

EVALUATION 

Retrieval of records using the HOMLST system is 
sufficiently fast and the record provision of descriptive 
data concerning the homes simulates the detailed 
description found in most home listings. This provides 
the customer with most of the detailed information 
he requires. This provision also imposes little format 
restriction when entering data for a record. 
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Organization of a natural resources 
data hank system 

by ALVIN J. SURKAN 

University of Nebraska 
Lincoln, Nebraska 

INTRODUCTION 

The growing dependence on electronic computers for 
analysis of geophysical and other environmental data, 
brings an increasing awareness that the organization 
of these data in storage and retrieval systems is in­
timately connected with the acquisition systems and 
analytic transformations the data are to undergo. 
Current computer technology is almost totally dom­
inated by serial storage and processing mechanisms. 
This peculiarity of available hardware dictates a 
design of data structures oriented toward the storage, 
retrieval and analysis of time series. 

Nearly every acquisition system, whether it consists 
of automatic analog or digital recording instruments 
or humans manually keeping records, generates time 
HcricH that are subsequently analyzed as continuous 
HcqucneCH. The subl"iequent analysis requires either 
int.ernal tompadr-:;ons within sequences or intercom­
pariHonH among other sequences collected in the same 
general area. Consequently, an appropriate organiza­
tion for such sequenced data should readily allow a 
natural decomposition of the entire data base into 
time series-like sequences of elements which are the 
values of either time varying data at fixed locations 
or of data differing at various geographic locations 
and changing negligibly during the period in which 
observations over a set of locations are made. 

The organization of the blocks of time series data 
generated by some acquisition system is relatively 
straightforward since the acquisition device dictates 
the sequencing. Attention must be given only to de:­
vising an indexing system that allows each such series 
to be located whenever its space and time coordinates 
fall inside a particular search window supplied to the 
retrieval system. 

The procedure for casting the geophysical data 
specifying geographic variations into a time series form 
is not so straightforward. For example, it may be 
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necessary to store as a time series such irregular en­
tities as mapped areas of rock or soil type and land use 
variations or descriptions of river systems and the 
locations of natural boundaries of watersheds, lakes 
and coastlines or sometimes artificial administrative 
boundaries created by govern~ent agencies. After 
it is clear how such data might be cast into a time 
series form, it is possible to describe general algorithms 
for performing operations on the series to accomplish 
the transformation needed in analyzing the internal 
structure and interrelationships of such geographic 
entities. 

If one is to accept that nearly all geophysical data 
can be stored and processed in time series form, it is 
necessary to show how a data bank system storing the 
various series can be related to the acquisition system 
and logically organized to now accommodate current 
types of data and ideally, other data arising in the 
future. The approach taken here for the design of such 
a data bank system is an evolutionary one as indicated 
in Figure 1. The results of this paper include a review 
of relateds ystems, a formulation of objectives and the 
identification of an approach to the decomposition of 
the data base. 

CONSTRAINTS ON THE ORGANIZATION OF 
THE DATA BANK SYSTEM 

The system must provide a data organization 
flexible enough to accommodate geophysical, environ­
mental or administrative information that is now useful 
in connection with the natural resources of a state. 
Emphasis must be placed on preserving the natural 
groupings arising from proximity or other regional 
factors which influence the sequences of acquisition or 
use, such as the topologic connections within hydrologic 
networks, geographic location within basin boundaries 
or position with respect to a natural divide. The same 
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system should accommodate artificially grouped data 
within the same framework as those data with natural 
groupings. Artificially grouped data might, for example, 
be based on arbitrary and idealized administrative 
factors such as the positions of state or county boun­
daries or arbitrarily mapped survey grids, shorelines, 
stream limits and ridges. 

Various networks such as the mathematical tree 
structure representations of drainage systems or ad­
ministrative hierarchies, must be stored in some 
representation which can be easily retrieved, updated 
or analyzed. The analysis of such· tree structures must 

provide the capability of identifying those subsets of 
structures modeled by mathematical trees which in­
fluence a particular point in the modeled system or 
those which are influenced by changes at a given point. 
For example, one might program the computer to 
indicate which points of a system are possibly re­
sponsible for pollution appearing at a specific point, 
or in the case of a known pollution source, it might be 
necessary to know what points could be influenced. 

PARAMETERS 
BANK 

CHARACTERIZING A DATA 

In describing a data bank system, it is convenient 
to separate the parameters into two classes. The first 
class characterizes the input and storage while the 
second characterizes the output functions and internal 
transformations that are associated with its operation. 
Parameters identified in each of these classes are sum­
marized in Table I. 

After identifying these parameters, one then seeks 
independent methods for finding what values apply to 
a data bank system needed for the geophysical data of 
a state. The data members will, in general, be labeled 
time series-like vectors. The amount of data in each 
consists of bit or character estimates for the size of 
the label plus the total number of bits or characters 
required for representing all the elements of the as­
sociated data vector. The total number of such vectors 
will, of course, depend on how finely divided, on the 
average, is the area of interest. For an area corre­
sponding to an average sized state, one expects 105 

square units of area could have varying data vectors of 
importance. The amount of data in each vector will 
typically be a few hundreds of characters or thousands 
of bits. Thus, the most conservative estimates of the 
amount of data that must be stored is 108 bits. In 
practice one must expect about 1010 bits and at most 

CLASSr:S 

TABLE I 

Estimate Range 
DESCRIPTIG:1 OF PARAMETER of Values 

Initial amounts of data 10 8-10 12 bits 

Rate of adding data 10 7_10 11 bits/yr 

Rate of data purging 0-10 7 bits/yr 

Rate of updating of data value 10 6_10 10 bits/yr 

Levels of data categorization levels 

Rate of arrival of search requests 0.1-1.10 min 

Number of search priority categories 6 

Documents retrieval rate .01-.1 

Number of types of document display 2-6 

levels 

document/ 
minute 
types 
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1012 bits after continued data accumulation concurrent 
with a maximum of purging of obsolete data. 

The rate at which data will be added will increase 
with time and therefore might best be estimated for a 
particular time from the number of sources of data 
multiplied by the average number of bits or pages 
delivered by each. Again a conservative estimate 
might be 500 sources, each delivering 2 X 105 bits. 
These would yield 107 bits per year ora growth factor 
of 0.1 in static or permanent data. This growth factor 
is also reasonable for the continuously recorded time 
series data, if it is assumed that effectively such data 
would also have a ten year life and could be auto­
matically purged to microfilm archives after that 
period of time. 

The purge rate will then also be a function of time 
which is initially zero and then should grow to approach 
the addition rate. Such growth will require a period of 
time approximately of the order of the mean useful 
lifetime for all non-permanent information. 

The rate of modification or updating of values for 
permanent data is estimated not to exceed 0.01 of the 
static component of the data base. Thus, a time of 100 
years would have elapsed before the entire base would 
be renewed. 

The number of levels of categorization of data could 
be kept small. The categorized data members would 
be vectors of typically 104 bits, the elements of each 
being addressable only by index. This would mean the 
number of logical routes or decision points leading to 
all data vectors or stored series would be between 104 

and 106. Suppose there were on the average a 10-way 
branch or an organization tree having an average dis­
persion or bifurcation ratio of 10, only log 10104 = 4 or 
at most log 10106 = 6 levels of classification would 
suffice. An estimate of the number of levels of cate­
gorization needed is important because it is directly 
related to the ease with which time series information 

~ 

can be classified and retrieved. Classification is con-
sciously or unconsciously imposed by the person pre­
senting information to the data bank. Not more than 
six different qualifiers each chosen from an alphabet of 
ten or fewer letters or words need be specified to enter 
or retrieve a vector or time series. This estimate can 
serve as' a realistic guideline in the structuring of the 
index for a properly organized, practical data bank 
system. 

ESTIMATES OF VALUES OF PERFORMANCE 
PARAMETERS 

The rate of arrival of requests for searches of the data 
bank is most important, and in fact, is a self-dependent 

parameter. Whenever the value of results of the search, 
measured in terms of its completeness and freedom from 
errors, compared with cost and time required is high, 
the arrival rate for requests will increase. This will in 
turn degrade the subsequent service of any system 
operated close to its ultimate capability. For planning 
purposes, one might arbitrarily select a request rate 
which is consistent with the economics of storage for 
the various data sequences in the data bank system. 
On the assumption there are between 104 and 106 

documents or time series stored in the system when 
in operation and that such a system might cost $1000 
to $10,000 per year to operate, it seems reasonable to 
expect a request rate of 1000 to 10,000 per year or 
~30-300/day or ~0.1-1.0/minute. 

Priority categories for search could allow for a range 
of search services and responses ranging from im­
mediate with the system dedicated to a single user to 
delayed service permitting economization resulting 
from periods for the accumulation or batching of 
search arguments. Six appropriate priority categories 
might be (a) no waiting; (b) 1 minute; (c) 6 minutes; 
(d) 30 minutes; (e) half day; and (f) daily. 

Document retrieval rate might be estimated as 0.1 
to 0.5 times the search rate. The number of classes of 
document display will depend on what output terminal 
devices are available. These might include the printed 
page, magnetic tape, paper tape, cathode ray tube 
photographs, and incremental plotters. Thus, control 
signals or interfacing with at least six different output 
devices must be provided. 

DESIGN GOALS OR OBJECTIVES FOR 
A FUNCTIONAL SYSTEM 

The central reason for constructing a data bank 
system is the concentration or channeling of the output 
from a number of acquisition systems into a single 
channel that leads to unique storage and complete 
updating functions. The systems make nearly simul­
taneous modifications of what is stored and make it 
feasible to detect duplication of information by in­
dependent sources. It then becomes possible to de­
termine if specific information has been previously 
introduced. These capabilities of a data bank system 
provide the information needed for generating reports 
on the current state or past changes in certain re­
sources. The ability to determine which data are not 
present provides the information directly needed for 
planning data collection programs. Using the system 
to provide the amount and location of resources makes 
it possible for various strategies of resource manage-
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ment to be optimized with respect to certain objectives. 
In the case of exhaustible or unreplenished resources, 
the depletion rates of the remnants may be quanti­
tatively monitored. This information can then be used 
for making policy with regard to the updating of records 
of licenses or other legal rights to resource utilization. 

FUNCTIONS OF COMPUTER DATA 
BANK SYSTEM 

Three broad classes of functions that the system 
must perform with the information handled by it are: 
(1) storage, (2) retrieval, and (3) reporting. The first 
function, storage, has two subdivisions, namely (a) 
the classification of a series and (b) the writing of its 
elements into machine addressable locations. The 
classification aspect of storage facilitates the retrieval 
and introduces local coherence into the storage system 
that will permit data with similar space and time 
coordinates to be obtained with a minimum of reac­
cessing of the storage medium. The writing aspect of 
storage is the production of a machine-readable change 
of state at the addressed locations of memory. 

The retrieval of information proceeds in two phases. 
The first, which is referred to as a search, identifies 
the entries which satisfy the given search arguments 
according to some criterion and indicates some of the 
descriptive properties of each, such as the location, 
size and the nature of contents. The extraction or 
display phase of retrieval then copies the set or subset 
of desired entries to an output unit which may make 
an electronic record, a physical punched or printed 
record, or a temporary image such as a cathode ray 
tube display. 

The third function, that of reporting, involves an 
automatic use of the retrieval function for the purpose 
of generating reports with statistical or other measures 
summarizing the data present or indicating what data 
are missing in a specified region and time interval. 

FEATURES REQUIRED IN A PRACTICAL 
IMPLEMENTATION 

The central feature of a data bank system that gives 
rise to its value is the provision for sharing single copies 
of data, programs and processing units. The system 
can remain useful and manageable if it can be insured 
that only one internal and one or more external backup 
copies of a specific set of data from any given source 
can be retained. Also, storage wastage must be mini­
mized by the elimination of unallocated locations 
through the use of chaining vectors and list structures. 

The locations of a specific file entry or retrieval point 
should not be available without a protective password. 
A provision for enciphering and deciphering the data 
in sensitive files using pseudo-random number sequences 
should be available (Carrol 1970). The user should 
be provided with a facility for creating personal index 
files to be created for individual user's own applica­
tions. Data should be accepted by the system only if 
it is accompanied by an automatic purge date. All 
active system files should be backed up by external 
self-contained files with both table of contents directory 
and the data records. 

OVERALL VIEW OF A DATA BANK SYSTEM 

The key feature of a natural resources data bank 
system is the high degree of structuring derived from 
the geographic proximity in natural networks and 
environmental factors such as geologic composition, 
soil types and rainfall patterns. The total data bank 
system involves the three components (Figure 2); 
(1) personnel, (2) programs, and (3) hardware or 
equipment. The personnel constitute an interface 
between the acquisition system and the input devices. 
They also demand that the system stores, searches for, 
and retrieves data. The programs serve as a vehicle for 
instructing the hardware to accept instructions from 
the users. Additional functions that can be performed 
by the programs include directing further data ac­
quisition, reducing data, and preparing summaries 
and reports (Figure 3). 

It is expected that user's requirements can continue 
tOe be met by direct communication of data from the 
acquisition system and augmented increasingly by 
the computer-based data bank system. The latter 
should permit the generation of a central data deposi­
tory making possible unique and complete updating 
as well as automation in search and retrieval functions. 

Figure 2 
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Figure 3 

The creation of a data bank system, because of 
changes in needs and computing systems, must be 
evolutionary. It is proposed that effective steps are: 
(1) review of other viable systems, (2) design a system 
based on data acquisition and unmet needs, (3) simu-

. lation of the proposed system design, (4) implementa­
tion and use, and finally (5) a redesign or extension 
repeated recursively, followed by steps 3 through 5. 

ENTITIES RECOGNIZED IN THE DATA 
BANK SYSTEM 

One may recognize four distinct classes of natural 
resources or environmental data, namely: (1) observa-

tory sequences, (2) labeled document-type objects, 
(3) graph or mathematical tree structures, and (4) area 
boundaries. Each entity upon undergoing appropriate 
transformations can be reduced to series to be stored 
by a computer. The observatory sequences are usually 
numeric and require little altering other than the af­
fixing of appropriate labels. The sequencing of the 
elements or values constituting these entities remain, 
at least within each stored data member, as supplied 
by the acquisition system. Labeled objects refer to 
documents with two specified source dimensions. For 
storage purposes their representation must be decom­
posed into one-dimensional bit sequences which can 
be used to reconstruct a display of the source. The 
graph structures of most frequent interest in natural 
resources systems are the trees representing drainage 
networks. These may be decomposed into a binary 
vector specifying the topology of a particular network 
and auxiliary vectors corresponding with the types of 
data associated with each link of the network as shown 
in Figure 5(a). All such vectors have the same length. 
Consequently, storing of graphs this way reduces to 
storing matrices or families of regular sequences. 
Finally, the fourth distinct entity that arises in natural 
resources systems are area boundaries. Vectors of equal 
length may also be used for specifying these by choosing 

Figure 4 
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to approximate a boundary of an area with a sequence 
of linear segments forming a closed polygon. A pair 
of vectors with length equal to the number of linear 
segments can provide the values of coordinate pairs at 
the terminus of each segment as shown in Figure 5(b). 
The current word size of computers allows adequate 
resolution for specifying the segments with all the 
precision of currently used survey data. 

AN ORGANIZATIONAL TREE REDUCING 
DATA ENTITIES TO SERIES 

Data, independent of the form in which it is presented 
to a computer-based system, must for purposes of 
computer manipulation be reduced to sequences of 
bits representing characters or numeric words. The 
effectiveness with which these data can be retrieved 
and manipulated depends on how well adapted to the 
applications is its reduction to the internal form stored 
within the computer. Economy and rapidity in the 
manipulation of data depend largely on the data struc­
tures chosen for representing the entities of interest. 

A practical system should allow the naturally se­
quenced time series type of data such as observatory 
records to be stored in their numeric form as directly 
as possible. A data entity such as time series after 
being labeled need only have its file entry indexed with 
respect to geographic location, time, and appropriate 
documentation. 

Another type of data entity, referred to here as 
labeled objects, may be utilized for storing such docu­
mentation. These labeled objects may also take on a 
number of different forms of literal, numeric or graphi­
cal information. The common feature of the members 
of this entity is their internal structure being es­
sentially the sequences of markings· and control infor­
mation required to reconstruct charts or pages of 
symbols, print, tables, or line drawings. The possibility 
of the further decompositions of the labeled object 
type of entity is shown in Figure 4. 

Natural resources are usually associated with loca­
tions or networks that are concentrated at points or 
along lines. The points are frequently linked to at 
least their nearest neighbors by some relationship 
described by mathematical graph representations which 
are very often tree structures. An example of a usually 
low area-density tree is the system of converging 
channels which make up drainage basins. It is neces­
sary that in the acquisition and storage of the data 
associated with such systems there be recognized a 
graph or tree type of entity to provide a consistent and 
organized way of coding and storing their linked data 
in series form. It is then possible to formulate algorithms 
to perform operations defined with respect to the sys­
tems they constitute. For example, one might define 
operations which would correspond with the transport 
of pollutants from a point in a network to downstream 
points and identify the latter. Similar tree structures 
may be needed for storing administrative linkages 
important in organized data acquisition. 

Finally, the fourth entity or data type recognized 
to be important in geophysical and natural resources 
information is that of the geographic area which is 
most economically delineated by describing the path 
of its boundary. These areas and the boundaries 
representing them may be natural such as those of 
watersheds and soil or rock types or artificial such as 
those representing administrative districts or land use 
patterns. In many cases the areas overlap or have 
important memberships in larger areas. Such rela­
tionships can be established using appropriate programs 
designed to operate on series representations of the 
areas. These representations may be formed out of 
vectors containing sequenced pairs of numbers cor­
responding to boundary segments. 

CONCLUSIONS 

The organization structure identifies a natural re­
sources data bank system with flexibility to accom-
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Figure 5b 
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modate environmental data within a standardized 
framework designed to insure low redundancy and 
high accessibility for regionally distributed data. The 
central thesis for efficient storage and retrieval is a 
classification based on the type of format or medium 
available from the acquisition source and an indexing 
based on the geographic and time frames of the data. 
Four types of data entities are proposed, namely: 
(1) observatory records, (2) labeled objects, (3) tree 
structures, and (4) geographic areas. Each entity of 
this classification is decomposed to terminal members 
which point to the stored sequences or time series-­
like vectors. Such classification structure is aimed at 
ideally structured hardware independence to be ex­
ploited for the efficient distribution or selective dis­
semination of geophysical data. 

The current acquisition methods and uses of en­
vironmental data require a computer based storage 
system that is organized to facilitate selective retrieval 
and mapping or data displays. Important features of 
the system include program controlled purging of 
obsolescent data and objective program-implemented 
measures that determine the potential value of par­
ticular data members. These two features are needed 
for the judicious release and allocation of computing 
resources. The actual implementation of such a system 
will always be some compromise among cost, access 
time, integrity of data, and the ease of use. Ease of use 
refers primarily to data and updating but it is also 
necessary that requesting a search or retrieval be 

simple. Search programs serve either to locate available 
data or indicate data not available. The retrieval 
function may be used for acquiring statistics on data 
values, for monitoring purposes, scientific studies, or 
administrative report generation. 
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THE COMMAND TERMINAL-A computerized law 
enforcement tool 

by DAVID M. HUDAK 

Automation Technology, Incorporated 
Champaign, Illinois 

INTRODUCTION 

The most crucial problems being faced by local law en­
forcement agencies today are the collection, analysis, 
and utilization of police-oriented data. Information is 
the life blood of any law enforcement agency, and there 
exists a continuous requirement to collect and produce 
data which provide information useful to operation, 
planning, records maintenance, and management de­
cision making. l 

Police data may occur in many forms; i.e., contact 
reports, patrol observations, fingerprint files, arrest re­
ports, warrant files, or other identification files. Govern­
ment agencies at the federal and state level are cur­
rently collecting information and making it available to 
local law enforcement agencies via police teleprocessing 
techniques (see Figure 1). The NCIC (National Crime 
Information Center) operated by the Federal Bureau of 
Investigation in Washington, D.C. is an example of this 
type of system. It can best be described as a compu­
terized index to documented police information concern­
ing crime and criminals of nationwide interest.2 Over 25 
states now have their own computerized law enforce­
ment systems modeled after the NCIC. 

With information pertaining to criminals and crimi­
nal activity being maintained at the federal and some 
state levels, it is to the advantage of police officers to 
have access to that information whenever possible. If a 
patrol officer at the scene of an incident or investigation 
is able to query these data banks at the state and 
federal levels for the "wanted" status of vehicles or 
people, he will be able to use this information to make a 
better judgment of his situation. The timeliness of this 
inquiry and subsequent response is extremely impor­
tant, and should be typically less than three to four 
minutes. Unfortunately, most of the systems currently 
in use do not accomplish this in an efficient manner, 
and thus the prime user, the patrol officer, is dis-
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couraged from using the system because he usually can­
not obtain responses in the time frame that he requires. 1 

THE DISPATCH CENTER 

The patrol officer's contact with supporting resources 
is through the radio or dispatch center. Almost all of his 
assignments and emergency directives come to him via 
radio communications and under the control of a radio 
dispatcher. 

Radio dispatchers, monitoring the activities of a 
widely scattered fleet of vehicles, are the recipients of a 
vast amount of vital information which has to be sifted, 
organized, and made available for use in making opera­
tional and administrative decisions. The dispatcher's 
effectiveness depends critically upon the ability of his 
information handling systems to supply critical data as 
quickly as possible, with a minimum of wasted effort. 

The functions of the dispatch center have changed 
tremendously in recent years. With the advent of 
modern communication techniquef) which can effectively 
place a two-way radio on every patrol officer, and with 
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the mobile capabilities of law enforcement forces such 
as patrol cars, motorcycles, scooters, and even heli­
copters, the dispatch center has become a scene of busy 
and sometimes frenzied activity, with a corresponding 
increase in paperwork. 4 lVlost radio rooms or dispatch 
centers are not prepared to handle the current volume 
of activity that exists in law enforcement agencies 
today. They are often overcrowded, understaffed, and 
are usually working under an antiquated system that 
has been "updated" only occasionally over the past 
years. Although the dispatcher is the field officer's link 
to other law enforcement resources, responses to their 
requests for information are frequently delayed minutes, 
and sometimes hours. 

Another important function of the dispatcher accept­
ing complaints or requests for service from citizens is 
assigning the proper personnel to those incidents from a 
list of available resources. Recent studies show that 65 
percent of all crimes can be solved if the police respond 
within two minutes of an occurrence of the crime, but if 
they are delayed up to five minutes, this efficiency drops 
to 20 percent.5 In making these assignments, the dis­
patcher usually makes use of policy and procedure guide­
lines, experience, and sometimes visual aids such as 
status boards. It is necessary that he have at his finger 
tips the status, location, and degree of availability of all 
of his forces, in order to assign the correct resource to 
each task. 6 

RADIO TICKETS 

The flow of data through a dispatch center is usually 
controlled by paper forms called radio tickets (or dis­
patch tickets, complaint tickets, etc.). This is a data col­
lection method that has been used in police departments 
throughout the country for a number of years. As much 
as they may vary from department to department, radio 
tickets are generally used to record some basic facts 
about each assignment, event, or incident that requires 
the use of the police departments' primary resource, 
manpower.7 Some of the most common elements of the 
radio ticket include: time complaint was received, type 
of incident, location of incident, unit number assigned, 
time dispatched, time of arrival on scene, a document 
control number, time assignment was concluded, etc. 
These tickets may be completed entirely by the dis­
patcher as the incident progresses, or may be later filled 
in by the patrol officer when he returns to the station. 
In larger departments the radio tickets are initiated by 
complaint clerks who take the complaints from the 
public and pass them on to dispatchers, who assign the 
mobile units and complete the radio tickets. 

Current manual radio tickets provide a very im­
portant collection device in the data management pro­
cedures of a law enforcement agency. However, there 
are some serious drawbacks to their use. For instance, 
if the data are going to be input to a law enforcement 
management information system, then the information 
on the radio ticket must be recorded twice, once by the 
dispatcher as it occurs, and again by a clerk who codes 
the information into machine-sensible form. In some 
cases the physical environment of the dispatch room re­
quires that some mechanical method be used to trans­
port the radio ticket from one position to another, there­
by increasing the time from receipt of complaint to the 
time the unit is dispatched. 

Should a patrol officer wish to make an inquiry on a 
wanted person or car, the request for information must 
be logged on a radio ticket, and the dispatcher must 
relay the request via a terminal to the state or regional 
data base inquiry system. The dispatcher must input the 
inquiry in a very rigorous format, because errors will 
cause it to be rejected and necessitate its reentry. Not 
only is this activity frustrating to the operator of the 
terminal, but in emergency situations it could en­
danger the patrol officer who has asked for this informa-

. tion NOW and is unable to get it. 
It is readily apparent that there are many stumbling 

blocks between the information system and its user, the 
officer on patrol. The system often appears unresponsive 
to his needs, so he tends to use it only when absolutely 
necessary, and not as part of a normal operating se­
quence. To cope with these problems, the attack must 
be launched at the nucleus of the difficulty, the radio 
room itself, its operating personnel and procedures, and 
the operator-information system interface. The radio 
dispatcher must be provided with an integrated mecha­
nism for handling his normal dispatching and data col­
lection duties, and also for interfacing with the auto­
mated information system in an efficient manner. A 
system has been constructed which will solve many of 
these problems. This system is called the COMMAND 
TERMINAL. 

FUNCTIONS OF THE COMMAND TERMINAL 
SYSTEM 

The basic COMMAND TERlVHNAL System is com­
posed of a minicomputer, a disk, a visual display device 
(CRT), a standard keyboard unit, a special function 
keyboard unit, a standard teletypewriter, and a set of 
operational computer programs. While the system is 
welded together logically into a total operating package, 
the dispatcher is physically confronted with only the 



visual display device, the two keyboards, and infre­
quently, the teletypewriter (see Figure 2). 

In many cases the visual display device can be inte­
grated into the radio console itself, so that it is im­
mediately in front of the dispatcher when he is seated 
in his normal operating position. The two keyboards are 
placed on the console desk top in front of the dispatcher. 
The teletypewriter, which is used primarily for hard 
copy output, may be located in various places, depend­
ing upon the department's normal operational proce­
dures. All other equipment may be located in a separate 
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Figure 2-Information flow for COMMAND TERMINAL 
SYSTEM 

room with the communications equipment, or in any 
other suitable place. The system is designed to replace, 
on a plug-for-plug basis, the present real-time informa­
tion system terminal. Since the COMl\1AND TERl\1I­
NAL can emulate the previous type of terminal, no 
modification to the real-time system's programs is 
necessary. 

With the COMMAND TER1VIINAL, radio tickets 
are no longer pieces of paper to be completed in hand­
writing, time stamped, filed in slots, and ultimately key­
punched to permit further analysis by computer. In-
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COMPLAINT ~ NUMBER ® 
OISTRICT ~ RECEIVED ® 
~~?TU~TS OSP'O @ OUT &ISPO~~T~H ® 
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PL YR , ST ~ NR @ 
CR YR MK 6 STL @ CLR @) 
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Dispatched Time 21 Date of Birth 

Out-of-service Time 22 Type of ID Number Following 

In-service Time 23 State, if Driver's License Number 
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License Plate Year 25 Additional Comments 

License Plate State 

Figure 3a-Blank radio ticket 

stead, the radio ticket is an electronic form appearing 
before the dispatcher on a display device. The dis­
patcher fills in some of the blanks by utilizing a key­
board, while the system assists him by filling in others 
automatically (see Figure 3). In some cases, when data 
fields have been filled in by the dispatcher, an auto-

COMPLAINT 1023 HUMBER Q23S592S0 
DISTRICT 2 RECEIVED 1629 
ALL UNITS A2 AS K9-2 DISPOSITION 
UNIT AS OSP'O 1623 OUT 1643 IN 

LOCATION, ETC. FIGHT AT SAM'S BAR - CORNER OF 
FRINK AND RUSSELL 

PL YR 71 ST OH NR 729 4963 
CR YR 11K STL CLR 

** HIT ** NAME SAMUEL J. SMITH R/S WM 
OOB 10-18-36 
10 TYPE SS ST HR 039-14-3952 

** MISS ** 

Figure 3b-Radio ticket in progress 
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IN SERVICE • 
Al 1 1697 Cl 1 1697 
A3 3 1607 84 4 1609 
F6 6 1641 BS a 1609 

Ale 10 1609 All 11 1609 
A12 12 1689 AIJ 13 1609 
813 13 1649 A14 14 1609 
B14 14 1649 AIS IS 1609 
A16 16 1609 C16 16 !~.;a 
A22 CENT 1699 A24 sou 16e~ 
064 SPEC 1619 A83 SPEC 1619 
A6S SPEC 1619 K9-4 SPEC 1611 

OUT OF SERVICE • 
F1 1019 1616 A2 1023 1623 
F2 1019 1617 A4 1019 1616 
AS 1028 1634 AS 1023 1643 

A23 1014 1619 A2S 1027 161S 
C64 HH9 1618 B7G la2S 1615 

TAC 1 1050 1613 B21 113513 1613 
DEPRESS MORE TEXT OR OTHER -

Figure 4-Mobile unit status 

matic edit is performed by the system to check the 
validity of the data. 

Tickets may be temporarily filed a way in the system's 
computer memory at any time to permit the dispatcher 
to process or initiate other tickets. These stored-away 
tickets may be recalled at will by the dispatcher until 
such time as the particular assignment has been con­
cluded and the mobile unit is back in service. 

A mobile unit status display is maintained on an up­
to-the-minute basis by the system as a by-product of 
processing the radio tickets. Thus, the dispatcher can 
at any time press one function key and review the in- or 
out-of-service status of all cars under his command, 
along with some additional facts about various units 
(see Figure 4). 

As the dispatcher records the particular beat or 
patrol area identifier for an incoming complaint, the 
system will automatically recommend a specific mobile 
unit to handle the incident. The recommendation is 
based on a priority structure established initially by the 
department and, naturally, also considers the present 
availability status of all units. On more sophisticated 
models of the system, it will be possible to automatically 
translate a street address into the appropriate beat 
number, thereby saving the dispatcher this task. 

The dispatcher also has the option of placing a new 
incident on backlog status, instead of assigning it im­
mediately to a unit. If he does, the system automatically 
assigns the ticket a priority based on the type of inci­
dent, and backlogs it for future reference. Subsequently, 
it will be brought to the attention of the dispatcher as a 
logical unit becomes available. A status report on the 
backlog can be viewed at any time by the dispatcher 
(see Figure 5). 

As name and vehicle checks come in from the mobile 
unit handling a specific incident, the dispatcher need 
only fill in the necessary fields on that unit's radio ticket. 
The system then automatically formats this data into 
the proper inquiry language, and transmits the re­
sultant inquiry to the real-time system. 

As a safety feature for the man on the street, the sys­
tem contains a "watchdog timer" which notifies the 
dispatcher if no contact has been made with a particular 
unit within some predetermined amount of time. The 
amount of time permitted before an alert message is 
displayed can vary, depending upon the type of incident 
being handled. 

Complete radio tickets, being recorded originally in 
machine-sensible form, can be sent directly to the 
management information system computer if it is cap­
able of accepting data this way, or it can be recorded on 
any type of output medium desired, such as paper tape, 
punched cards, or magnetic tape. 

Directed or point-to-point messages coming to the 
agency through the real-time-information/message­
switching system are automatically routed for output 
to the teletype by the COMMAND TERMINAL's 
small computer. This precludes interference with the 
dispatcher's normal operation. Outgoing directed mes­
sages can be sent from the dispatcher's visual display 
unit, or the teletype. In either event, the system will 
handle all necessary formatting and the insertion of fixed 
message header elements. 

SYSTEM CONFIGURATION 

As mentioned before, the basic system consists of a 
minicomputer, a disk, a CRT with a standard keyboard, 

------------------------------.---------, 

REQUESTS FOR SERVICE 
DCN INC BEAT TIME DCN INC BEAT TIME PRIORITY 1 8249 1053 8 

8253 1053 13 1637 6234 1005 CENT 
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8252 112187 sou 1636 8256 1044 8 1638 
8257 leaa 17 163a 92sa 1065 RICH 1638 

TO ASSIGN BACKLOG. PRESS SKIP 

Figure 5-Backlog status 



and a function keyboard. One of the design goals in the 
development of the COMMAND TER]VIINAL was to 
achieve a satisfactory price/performance relationship 
with a sound functional system. The Honeywell H316 
computer was selected as the system CPU. The Engi­
neered Data Peripherals 3032 disk was interfaced in­
house, and the basic sector size set at 128 16-bit words. 
This sector size was defined so as to contain a single 
radio ticket with an average number of entries, and to 
minimize the number of sector transfers when executing 
program overlays. The CRT used is a TEC Model 400 
with a complete set of edit functions and standard alpha­
numeric keyboard. The special function keyboard was 
built in house and merely converts the dispatcher's 
finger stroke into an 8-bit character. All of the system 
functions are implemented by programming. 

All of the computer programs were coded in DAP, 
the machine assembly language of the Honeywell com­
puter. A disk-based monitor was designed to control 
the disk-resident overlay processors and data storage. 
Almost all of the data being handled are maintained on 
the disk. This includes completed radio tickets, radio 
tickets in progress, unit status tables, patrol area status 
tables, input and output message queues, and other 
user-specified information that needs to be maintained 
in real-time. 

Due to the variety of data base structures and the 
individuality of each law enforcement agency, a major 
design goal was modularity of function programs. It is 
now a minimal effort to design and implement a tailor­
made system to any agency's specifications. Parameters 
such as radio ticket format, patrol area labels, response 
patterns, and even incident priorities can be specified 
during an installation by a short system generation pro­
cedure. 

EXPANDABILITY 

The basic system is easily expandable both in core 
and disk size. For larger installations that require more 
than one dispatcher station, additional CRTs and key­
boards may be added to the system (see Figure 6). 
However, each additional dispatcher station approxi­
mately doubles the processing requirements of the sys­
tem, and therefore usually requires additional core and 
disk space in order to guarantee acceptable interaction 
of the dispatcher with the system. "Acceptable Inter­
action" is defined as the system's response to data in­
put or action by the dispatcher, and has a maximum 
time lapse of two seconds. The COMlVIAND TERlVII­
NAL interface to a police real-time information system 
is usually via a modem and requires only specific for-
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Figure 6-Medium-sized city configuration 

matting of already developed character streams, and is, 
therefore, relatively easy to implement. 

SUMMARY 

We have described a system that has been designed to 
facilitate the flow of police information through the 
dispatch station of a typical law enforcement agency. 
Particular attention has been given to system modu­
larity, flexibility, and ease of modification for varied 
installations. Use of a general purpose computer as the 
system controller guarantees ease of expandability when 
future "add-ons," such as mobile teleprinters and auto­
matic vehicle monitoring devices, become available. 
These two items would serve to automatically close the 
loop for an integrated command-and-control system.9 

The COMMAND TERlVIINAL has proved itself a 
capable tool in a real-time computer-oriented dispatch 
environment. It is valuable because any tool that col­
lects and organizes data in a complicated and changing 
fact situation is a significant aid to judgment.1o And that 
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is the goal-to provide a tool for our law enforcement 
officers. 
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Experience gained in the development and use of TSS 

by RICHARD E. SCHWEMM 

IBM Corporation 
White Plains, New York 

INTRODUCTION 

Six and a half years have elapsed since W. T. Comfort 
described TSSj360 to the 1965 Fall Joint Computer 
Conference.1 Since that time, much has been learned by 
IBM and its customers about time-sharing, about 
TSS, and about large-scale, interactive systems in 
general. Scores of people have worked with the system; 
dozens of articles have been published; it would clearly 
be impossible to put in one paper a comprehensive 
answer to the question-what has been learned de­
veloping TSS? Yet, with the availability of Release 8.1, 
the major development work on the system has been 
completed, and this is an appropriate time to take stock 
of where we have been, where we are, and where we 
might go from here. 

One summary paragraph of that 1965 paper says the 
following: "This report attempts to give an overall 
picture of the Systemj360 Model 67 Time-Sharing 
System, its system design, and major hardwa!e ~nd 
control program characteristics. The unique comblnatlOn 
of hardware and software objectives makes a very 
complex problem, for which a simple and efficient 
solution is desired-a difficult task at best." Indeed, 
bringing TSSj360 to the marketplace and making it 
productive in customer installations has been a very 
difficult task, both technically and financially. . 

No attempt has been made in this paper to gIve 
detailed technical descriptions of programming systems 
problems and solutions. Instead problems have been 
described in a general way, their impact on the system 
discussed and the strategy for solution outlined along 
with the' results obtained. Four major areas will be 
discussed: 

• Lessons Learned about System Structure 
• Lessons Learned about System Performance 

Analysis 
• Lessons Learned about Software Development 

Tools 
• Lessons Learned about Management of Software 

Development 

559 

SYSTEM STRUCTURE 

Version 1 of TSSj360 was released in October, 1967. 
Use for experimental, developmental, and instructional 
purposes was advised. By the fall of 1968, A. S. L.ett 
and W. L. Konigsford were able to report2 on a verSlOn 
which was more stable, performed better, and contained 
more function. Based on this progress made during the 
first year in the field, plus progress anticipated ~r?m 
items designed and then in development, a very pOSItive 
view of the system was presented. 

Several important lessons had emerged from the 
TSS experience by this time. It seems clear that the 
proper way to construct a system of this type is to build 
a small hard-core base first, and add function later. 
As Lett and Konigsford put it-"The initial emphasis 
was on building a stable system, followed by extensive 
measurement-and-analysis efforts to identify poten­
tial system modifications." 

The same paper reported that the design of the TSS 
Resident Supervisor had proved sound and remain~d 
essentially as described in 1965, a statement as va~ld 
today .as it was in 1968. On the other hand, major 
portions of the original design had to be abandoned for 
the simple reason that they were unacceptable to the 
Users. One example of this was the replacement of the 
original rigid set of commands with Command System 
II.3 Another was the replacement of the system's 
hard-coded scheduling algorithm with an extremely 
flexible Table Driven Scheduler.4 The important thing 
here is not that the original design was unacceptable, 
but that a communication channel was open from the 
Users to TSS Development, and that the latter was 

, . t * responsive to the former s reqUlremen s. 

* In both cases cited as examples, Users made strong technical 
presentations. T. A. Dolotta of Princeton University and 
A. Irvine of System Development Corporation made a "Proposal 
for Time-Sharing Command Structure" at SHARE in August, 
1966. The basic thinking behind table driven scheduling came 
from F. G. Livermore of General Motors Research. 
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The table below displays the functional buildup of 
TSSj360 by release: 

TABLE I-Summary of Major Functions Added to TSS/360 

Date 

2/1/68 
4/15/68 

7/1/68 

10/21/68 

Date 

1/20/69 

7/8/69 

10/15/69 

3/31/70 

Release Major Functions Added 

1.1 (Incremental reliability improvements only) 
1.2 (Incremental performance improvements 

only) 
2.0 • Support for Extended Address Translation 

(32 bit) 
On Model 67 equipped with the special 
feature, users can address up to 4096 
virtual memory segments. 

• Multiple Sequential Access Method 
(MSAM) 
This is a special access method for card 
equipment and printers which allows a 
single task (BULKIO) to process all 
spooling operations. 

3.0 • Command System II 
This system provides a consistent com­
mand syntax, an extensive default and 
profile facility, a general editing capa­
bility, and allows users to define their own 
commands and call programs directly. 

Release Major Functions Added 
• Time Sharing Support System (TS3) 

A Virtual Support SUbsystem executes in 
parallel with other TSS operations, allow­
ing system programmers to access and 
modify the privileged, shared Virtual 
Memory; a Resident Support SUbsystem 
provides the same facility for the resident 
supervisor in a non time-shared mode. 

4.0 • Table Driven Scheduler 
This technique provides installation con­
trol and dynamic regulation of scheduling 
parameters, for complete flexibility in 
obtaining optimum scheduling balance 
within and among tasks. 

5.0 • Support For Duplex Configurations 
This was the first system release which 
was tested on and suitable for a multi­
processing configuration. 

• Virtual Access M eihod I I 
This rewrite of V AM provides more 
efficient handling of physical devices, 
ability to create duplicate data sets, and 
an overall improvement to data set 
integrity. 

5.1 (Incremental human factors improvements 
only) 

6.0 • Resident Terminal Access Method 
(RTAM) 
Removing TAM from shared virtual 
memory reduces paging which i'lignifi­
cantly improves conversational task 
performance. 

Date 
5/15/70 
6/30/70 

12/17/70 
10/1/71 

Release 
6.1 
7.0 

8.0 
8.1 

• Multiple Terminals per Task (MTT) 
A large number of users can share the 
same task and the concomitant overhead. 
The effect is the addition of a generalized 
way to add subsystems. 

Major Functions Added 
(Maintenance only) 

• PL/I Compiler 
A version of the OS/360 F-Ievel compiler 
is modified to operate within TSS. 

• Remote Job Entry 
Non-conversational job streams can be 
introduced into TSS from a remotely 
located work station; spooling to/from 
the work station is also provided. 

(Incremental improvements only) 
• Dynamic Catalog 

The user portion of the master catalog is 
made a working catalog for the duration 
of the user's task, eliminating contention 
for the master catalog. 

• Page Table Paging 
Demand paging of page tables allows 
effective use of very large virtual 
memories. 

This functional buildup was accompanied by a 
steady improvement in performance and reliability. 
The performance picture is discussed in detail in a 
subsequent section. To date, a total of 2442 program 
errors detected by Users have been corrected. 

Figure 1 displays the system size as a function of 
release. It is worthy of note that only the addition of 
the PLjI Compiler caused a significant increase in 
system size. 

SYSTEM PERFORMANCE ANALYSIS 

The economic viability of any system is determined 
by a complex equation which combines price, per­
formance, and the value of function. Ii Since a given set of 
hardware has a fixed price, and a given set of software 
functions appear to a User to have a constant value, 
performance is the critical factor in determining success 
or failure. A simple example will illustrate this: 

Let us assume that an interactive system operates 
on a configuration that costs $1,000,000 per year. 
Let us further assume that users feel that each 
professional employee using this system. will 
double his productive output and that an average 
employee of this type costs $30,000. Then the 
value of the system is a simple function of how 
many users it can support-if it supports 33 or 
fewer, it will be a loser, 34 or more a winner. 



During the development of TSS/360, a compre­
hensive scheme for treatment of system performance 
evolved. The elements of this scheme are: 

• Establishment of Performance Objectives 
• Creation of External Performance Measurement 

Tools 
• Creation of Internal Recording Tools and Appro­

priate Data Reduction Facilities 

Performance objectives 

How well will the system perform the functions it 
provides? This simple question receives a complex 
answer. TSS/360 is designed for conversational use, 
batch use, and a mixture of the two. A performance 
objective was established for each type of use. The 
conversational objective is the most difficult to describe 
and of greatest interest here, so our discussion will 
be restricted to it. 

Basically, conversational performance is defined as 
the maximum number of tasks which the system will 
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Figure I-Size of TSS/360 as a function of release 
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support with acceptable response time. This very 
general definition is made more specific by creating a 
benchmark terminal session and dividing the inter­
actions created by the session into three classes-trivial 
response, non-trivial response, and data-dependent 
response. Acceptable response to trivial commands 
(such as text entry) is defined as four seconds. Ac­
ceptable response to non-trivial commands (such as 
data set creation) is defined as 7.5 seconds. Data­
dependent commands (such as compilation) have no 
specific acceptability criteria. With this definition of 
conversational performance, we have a constant, 
calibrated yardstick that answers the performance 
question. 

Here we should point out that no User of TSS accepts 
our benchmark terminal session as typical of his con­
versational work load. :\Iost have specified their own 
benchmarks. However, there is general agreement that 
the definition of performance is adequate. We have a 
yardstick; the users have metersticks; we are in fact 
measuring the same thing. 

The initial conversational performance objective 
established for TSS/360 was to support 40 tasks running 
the benchmark terminal session on a configuration 
composed of 1 processing unit, 512K bytes of memory, 
1 paging drum, and disk modules on 1 channel. Sub­
sequep.tly, objectives for larger configurations were 
established. 

External performance measurement tools 

TSS operates in an extremely dynamic environment, 
and the load imposed upon it by live users is char­
acterized by peaks and valleys of activity and demands 
for services. Yet, for performance objectives to be 
useful, they must be measurable, and the measurements 
must be repeatable. To achieve this, a measurement 
driver was created to simulate the actual environment 
under controlled and reproducible conditions. 

Shown schematically in Figure 2, the driver has the 
following characteristics: 

• It interfaces with the system in the same manner 
as actual terminals and, to the system, appears 
indistinguishable from them. 

• It is capable of bringing the system up to a stable 
load level and keeping it there during the measure­
ment period in order to eliminate starting and 
stopping transients from a measurement. 

• It is capable of recognizing the expected system 
response for each transmission and contains suffi­
cient logic to take appropriate action for any 
response received. 
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Figure 2-Schematic view of TSSj360 measurement driver 

• It is capable of recovery from at least the "ordinary" 
kind of unexpected response, such as might result 

. from transmission errors . 
• It accepts as a parameter, a "human keying rate" 

for each "terminal" to adjust for the .difference 

between machine-driven transmission rates and 
real keying rates. 

• It records and time-stamps all transmissions in 
both directions on all lines, together with the 
control parameters and other such data, to allow 
data reduction and analysis at a later time. 

• It is capable of terminating a run, based upon 
cut-off criteria specified for that run, to avoid 
wasteful use of machine time. 

• It is data directed in its operation, so that not only 
the transaction to be transmitted but also the 
control of the individual delays between each 
interaction can be specified in the conversational 
benchmarks, in accordance with the measurement 
rules. 

Conversational performance is measured by executing 
a series of driver runs varying the number of tasks for 
each run. A curve is then constructed which represents 
response time as a function of the number of tasks. Such 
a curve for TSS Release 6.0 is shown in Figure 3. 

The measurement driver developed by IBM runs on 
a System/360 Model 40. Several Users of TSS have used 
this system to evaluate system performance on their 
own benchmarks. A second measurement driver has 
been developed by Carnegie-Mellon University. This 
driver has the advantage of running on the System/360 
Model 67 with the version of TSS under study. Although 
compensation must be made for the system resources 
devoted to the driver function, the Carnegie-Mellon 
Simulator (SLIN) is compatible in script and timing 
characteristics with IBM's, and the output produced 
is comparable. 

I nternal recording tools 

Answering the question "how well is the system 
performing?" from an external viewpoint provides 
little insight into the question "how can performance 
be improved?" For this task, internal recording tools 
must be used to obtain knowledge of the internal 
operation of the programming system and of how that 
system utilizes its hardware facilities. The basic mea­
surement and recording tools used by TSS Development 
are Systems Performance Activity Recorder (SPAR), 6 

Systems Internal Performance Evaluation (SIPE),7 
and Instruction Trace Monitor (ITM). 

The System Performance Activity Recorder (SPAR) 
is a one-of-a-kind hardware recording system. It is 
hardwired to the system being monitored and does not 
cause any degradation in performance. * SPAR can 

* Similar capability is provided by IBM's System Measure­
ment Instrument Unit (SMI). 
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Figure 3-TSSj360 release 6.D response to trivial commands as a function of number of tasks 

provide accurate measurements of system facility 
utilization. The facilities monitored for TSS/360 
include the CPU, processor storage, I/O channels, and 
direct access devices. SPAR is used to provide the 
following types of information: 

• Time utilization of the system hardware facilities 
• Counts and time relationship of indentifiable 

events such as: 

• Time-slice ends 
• Pages transferred between devices 
• Entries to a module 

System Internal Performance Evaluation (SIPE) is 
a software recording system that produces a degradation 
of approximately five percent in system performance. 
Hooks in the resident supervisor cause information to 
be collected and written on tape. The internal actions 
of the supervisor are then available for later data 
reduction. SIPE is used to provide the following types 
of information: 

• Time utilization of system hardware facilities 
• Space utilization of processor storage, drum, 

disk storage 
• Counts of system events 
• Time relationship of important internal events in 

the supervisor 

The Instruction Trace l\10nitor (IT::\1) is a hardware 
and software combination that causes every instruction 
executed to be written in sequence on tape. The instruc­
tion sequence in resident supervisor or virtual memory 
is thus available for later data reduction. It should be 
noted that ITM causes a relatively large degradation in 
system performance by increasing system running time. 
ITM is used to provide the following types of in­
formation: 

• Time sequence of virtual memory modules executed 
and referenced 

• Time spent in each module 
• SVC's issued from each module 

With these tools, and with an appropriate set of 
reduction programs, virtually any question dealing \vith 
the internal system performance can be ans\vered. 
Access to information of this type, allows an intelligent, 
aggressive program of performance improvement to be 
carried out. The results of such a program are shmvn 
in Figure 4. 

One final point should be made about internal 
recording tools-they have been as valuable to Users 
as they were to the development organization. As 
mentioned earlier, Users have their unique workloads, 
and TSS's completely flexible scheduling technique is 
most effectively used with detailed knowledge of how 
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reduction, and the monitoring of tasks that are im-
100 posing an excessive load upon the system, with the 

possibility of changing priorities and scheduling param­
eters for such tasks. 
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the system is operating on that individual workload. 
SIPE is in use at most TSS installations, and several 
Users have developed their own measurement tools. Of 
particular interest in this category are DEMON-a 
real time software measurement morn tor developed at 
Bell Telephone Laboratories, Naperville, Illinois and 
XDEMON-an expanded version developed jointly 
by Carnegie-Mellon University and IBM's Watson 
Research Center. 

XDEMON is a time-driven measurement tool pro­
viding statistics on the usage of resources in TSSj360. 
XD~MON works as a shared facility under the system 
maintaining a set of public tables, whose information 
is updated automatically and made available to the 
users, who can display selected information concerning 
TSS usage accumulated since STARTUP time and for 
the period since the last update. There is a privileged 
user, called the 'MONITOR' who has the capability of 
issuing some selected commands, including the updating 
of the shared tables, the recording of statistics for later 

The types of tools utilized can be broken into three 
general categories: 

• IVlachinery 
• Language Translator with appropriate utilities 
• Debugging Aids 

Little that is unique in the first two categories was 
done by TSS Development. As in the case of many total 
systems projects (hardware and software combinations) 
software development began well in advance of the 
availability of the Systemj360 Model 67 hardware. To 
overcome this situation, a Model 67 Simulator was 
created to operate on the standard Systemj360. The 
TSS system itself is written in Macro Assembler. 
Initial assemblies were accomplished on a version of the 
Basic Operating Systemj360 (BOSj360) Assembler 
modified to expand TSS macros. Additionally, a utility 
function was created which produced TSS object 
module format from the output of the BOSj360 
Linkage Editor. 

Debugging aids 

The initial set of TSS debugging aids was provided 
by a system called Support for Test, Release and 
Time-Shared Operations (STRATO). STRATO was a 
major modification of BOSj360. It provided three 
major functions: 

• An Interactive Console Command Language 
• A Model 67 Simulator 
• A Test Case Driver 

The STRATO Command Language provided facili­
ties to system programmers to load and unload pro­
grams, to start, stop, and dynamically interrupt 
programs, to display, alter and dump memory. The 
Test Case Driver would supply inputs to a version of 
TSS running under the Simulator and record outputs. 

Early versions of the TSS Resident Supervisor were 
hand-built as BOSj360 Jobs and then run and tested 



under STRATa. Once the Supervisor was cycling, 
critical Virtual Memory Functions were integrated. 
Much of this work was completed on Model 40 systems 
before the first Model 67 was installed. 

The second phase in the development of debugging 
aids consisted of removing the dependency upon 
STRATa. With the availability of the Model 67, the 
Simulator function was removed, and STRATa was 
moved to the Model 67. Integration and Test of the 
TSS Assembler and Dynamic Loader was the next 
milestone; the dependency upon the BaS Assembler 
was removed. STRATa itself was released with TSS, 
since it remained the only system programmer tool for 
manipulating the resident supervisor and shared virtual 
memory. 

The Time-Sharing Support System (TS3) which was 

I I IPL L ______ _ -------, 
I 
I 

L _____ _ 

STARTUP 
interrogates 
operator 

for CSECTs; con­
tinues processing 

STARTUP 
COMPLETE 

TSS/360 is 
operational 

I 
I 
I 

STARTUP loads 
N CSECTs in SYSIVM. 

RESSUP. and 
RSSSUP from 
IPL Volume 

Figure 5-TSS/360 dynamic modification procedure 
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Figure 6-Schematic views of TSS/360 debugging aids 

delivered with Release 3.0 removed the final dependency 
upon STRATO. The Resident Support Subsystem 
(RSS) and Virtual Support Subsystem (VSS) are 
more general and easier to use than STRATa command 
language, but they have one significant weakness. 
RSS itself is dependent upon some resident supervisor 
facilities, e.g., interrupt stacker and supervisor core 
allocation. The effect is that RSS is not a valuable 
debugging aid for those parts of the resident supervisor. 

One of the most valuable aids in TSS was a fortuitous 
invention-dynamic modification of the system through 
the use of Delta Data Sets. The system initialization 
program, STARTUP, builds both the resident super­
visor and Initial Virtual Memory (IV::\l) from modules 
stored on the Initial Program L'Jad (IPL) Control 
Volume. (This is in contrast to OS/360 in which the 
entire supervisor is link edited together during the 
System Generation procedure.) If dynamic modifica-
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tion of the resident supervisor or IVM is desired, the 
changes are prepared on a private disk and the operator 
informs STARTUP to search this disk for "deltas." 
The process is shown schematically in Figure 5. The 
modifications included in this manner stay in effect 
only until shutdown. The next time the system is 
started, they can be removed or altered at the user's 
option. 

To understand the next phase in the development of 
debugging aids, let us summarize where we stood with 
Release 3.0. Figure 6 gives a schematic view of the 
system operation. At his individual terminal, each user 
had at his command a comprehensive set of debugging 
aids to work within his virtual memory. With the 
Program Control Subsystem (PCS) of Command 
System II, he could dynamically start, stop, or inter­
rupt programs, and he could display or patch within 
them. The TSS Dynamic Loader allowed him to 
substitute an altered copy for any module within his 
virtual memory. This power and flexibility was repli­
cated for each active user, i.e., debugging in non-shared 
virtual memory was time-shared. 

The sa~e was not true either for shared virtual 
memory or the resident supervisor. Exploratory de­
bugging could be done with RSS and VSS but modules 
could only be replaced by going through STARTUP. 
What was desired beyond these aids were techniques 
to allow time-shared debugging work on both shared 
virtual memory and the resident supervisor. 

Such a facility for modules within shared virtual 
memory is provided by HOOK. With HOOK a system 
programmer can cause a private (modified) copy of a 
shared virtual memory module to be used for his task 
only. Linkage to the private copy is established dynami­
cally in response to a HK command. If testing shows an 
error in the module, the programmer can UNHOOK it, 
assemble further modifications, and HOOK that version 
for further testing. This activity goes on in parallel with 
other use of the system, including other users of HOOK. 
What was said previously about the value of measure­
ment tools to users is probably more true of debugging 
aids. Recognizing this and realizing that users desire to 
modify shared as well as non-shared virtual memory, 
HOOK was made available to all TSS users late in 
1971. 

Achieving time-shared debugging for the resident 
supervisor is a more difficult challenge. To meet it, 
TSS Development looked outside its own domain to 
Virtual Machines. Such technology underlies the design 
of CP-67/CMS.s CP-67 creates a complete Virtual 
Machine for each user, so several users can work with 
virtual Model 67 machines and debug versions of CPo 
It is clearly feasible to provide Virtual Machines under 

TSS, and the addition of such a facility would complete 
a most powerful set of program debugging aids. With 
Virtual Machines, there would be little, if any, need for 
single-thread, restart-prone debugging. Figure 7 shows 
the debugging aids as they could be with Virtual 
Machine added. 

MANAGING SOFTWARE DEVELOPMENT 

Bringing any large system from concept to fruition 
is a difficult task. TSS Development had many problems, 
some not unlike those described recently by F. P. 
Brooks, Jr.9 Probably the most valuable lesson learned 
in the process was how to manage a large software 
development proj ect in the "steady state." 

The TSS development organization was composed of 
three major functions: Design, Development, and 
Build and Test. lO Ideally, these functions should be 
accomplished serially, for in this case, the same people 
could do the work, and no need would exist for com­
munications mechanisms between functions. For prac­
tical purposes, the functions do overlap. The design 
cannot be complete or perfect. The development job 
must continue to correct program errors and implement 
new functions. Build and Test is required until the total 
system is stabilized. Further, the size of TSS both in 
concept and design precluded implementation by a 
small group. 

Here I will insert an opinion on the merits of large 
versus small development groups. A small group has 
two distinct advantages. It is easy to manage (one 

VI RTUAL Model 67 Machines 

Figure 7-Schematic views of TSSj360 debugging aids 



person can direct the efforts of 7-12 people); and a 
uniformly high standard of quality can be maintained 
in the selection of the group's members. Large groups 
suffer from the opposite problems. There is, however, 
nothing inherently bad about a large programming 
group. The critical requirement is for effective manage­
ment. 

The systems management technique employed in 
TSS was known as the New Scope Review Board 
(NSRB). Control was exercised in the following way. 
The design of TSS was considered complete at the 
Release 1.0 level so that the only source of new code 
would be fixes to identified programming errors 
(APAR's). Any other change that was identified was 
designed and presented to the NSRB for approval. 
The board was composed of representatives of all 
functional areas with the System Manager serving as 
chairman. Approval of a given item meant inclusion of 
its design into the system and hence implementation, 
test, and integration in a System Release. With this 
mechanism in place, sources of new code were restricted 
to error correction and approved NSRB items. 

Each proposal to change TSS was described in an 
NSRB Technical Summary, composed of eight (8) 
parts. 

1. Title of the item and sequence number 

2. Four line abstract of the item 

3. Reference to the design document 

4. List of all external publications affected 

5. A description of the character of the change, 
e.g., does the item affect performance, reliability, 
human factors, or function-positively or 
negatively-and how much? 

6. List of other items upon which this item depends, 
i.e., other NSRB items, APAR's or hardware 
Engineering Changes 

7. List of all parts of the system affected, e.g., 
what modules, DSECT's, Macros, or Data Sets 
are revised, added or deleted-and, if a revision, 
is the change small, medium, or large? 

8. Signature of the designer and his manager 

With all proposals for new programming before the 
Board and in a standard format, the system became 
manageable. For instance, a concentrated program to 
improve performance was instituted by selecting 
NSRB items whose character indicated large, per­
formance plus while rejecting others. A control on 
resources was also possible since each NSRB item 
carried with it an estimate of the work required to 
complete it. The System Manager could either restrict 
the quantity of new scope to match his resource or he 
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could add or substract resource to match the new 
scope desired. 

Figure 8 illustrates the interrelationships of the 
various functions and the flow of information behveen 
them. 

The major sources for requirements input are the 
System Users and a Business Planning Group. Once a 
requirement is known, a dpsign is prepared and the 
item is submitted to the NSRB. Those items 'which are 
approved form one of two sources of work for the 
development group. 

Here a word should be said about the unique place 
occupied by the design function. We have mentioned 
that TSS had a sound basic design, and certainly this 
was essential to the success of its implementation. ,We 
also subscribe to the philosophy that designers must 
have control over the manner in which the system is 
developed. Yet, design must be responsive to a multi­
tude of outside influences, including Systems ::\lanage­
ment. Several of the best features of TSS have resulted 
from corrections to short-sited design. 
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A philosophy used throughout TSS has been to 
deliver the best possible code. Therefore, all program 
errors detected by the build and test group are sub­
mitted to the same AP AR Control group as U ser­
detected errors. APAR control verifies the error, 
eliminates duplicates, and tracks the status of all errors. 
Errors to be fixed form the second source of work for 
Development. Here we have had success with the idea 
of module ownership. The development programmer 
responsible for a module does all the work necessary to 
implement NSRB changes and AP AR corrections. 
(Having a separate maintenance group tends to remove 
an incentive for qualtity development work, i.e., ones 
bugs come back to haunt the maintenance programmer 
not the developer.) The resultant changed modules are 
the source of input to Build and Test. 

The cycle is completed when Build and Test ships a 
system release. 

The table below shows the activity of TSS Develop­
ment from the three sources described. 

TABLE II-System Content by Release 

Number of N umber of AP ARS Corrected 
NSRB 

Release Items Included User-detected Internal 

1.1 9 91 
1.2 32 136 7 
2.0 49 181 72 
3.0 56 190 255 
4.0 42 111 201 
5.0 80 321 534 
5.1 32 192 471 
6.0 84 226 538 
6.1 40 85 
7.0 64 174 466 
8.0 50 206 442 
8.1 70 574 1016 

Subsequent NA NA 

TOTAL 568 2442 4087 

CONCLUSION 

Where does TSS go from here? What is the prognosis 
for large-scale, interactive systems in general? The 
first question is easier to answer. 

Work remains to be done to bring TSS up to a high 
degree of reliability. This task is receiving the highest 
priority. In addition, we are dedicated to improving the 

system's error recovery facilities. There is a high 
potential plateau for dependability and availability; 
we are working to reach it. 

Impresfive as the TSS performance story has' been, 
we accept our users' contention that performance is 
not as good as it needs to be. The proper course now is 
to specify new benchmarks that more closely parallel 
the real customers workloads, and to use the powerful 
tools previously described to drive performance upward. 

Last, but not least, is the fact that TSS users have 
been and are continuing to improve the system. Both 
the usability and the utility of TSS continue to grow. 

The prognosis? I cannot provide that, but I can put 
forward two thoughts-both deeply rooted in the 
TSSj360 experience. 

I have noted that where TSSj360 has succeeded 
people efficiency is held more important than machine 
efficiency, and that it is becoming broadly accepted that 
the availability of skilled people, not the availability of 
better hardware, is the limiting factor in the growth of 
our industry. From this I conclude that, if our industry 
is to thrive, systems which go to the user, which make 
people more efficient, in short, interactive systems like 
TSS must playa dominant role in the decade ahead. 

Finally, I will express my belief that the single most 
important requirement before us is to modernize the 
program development process itself. Years ago, the 
application of computing to hardware design and 
manufacture removed bottlenecks which threatened to 
retard industry growth. Today, the bottlenecks are in 
software design and manufacture. 
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INTRODUCTION 

In 1964, following implementation of the Compatible 
Time-Sharing System (CTSS)l,2 serious planning began 
on the development of a new computer system specifi­
cally organized as a prototype of a computer utility. The 
plans and aspirations for this system, called Multics 
(for Multiplexed Information and Computing Service), 
were described in a set of six papers presented at the 
1965 Fall Joint Computer Conference.3- 8 The develop­
ment of the system was undertaken as a cooperative ef­
fort involving the Bell Telephone Laboratories (from 
1965 to 1969), the computer department of the General 
Electric Company,* and Project 1\1AC of lVL I. T. 

Implicit in the 1965 papers was the expectation that 
there should be a later examination of the development 
effort. From the present vantage point, however, it is 
clear that a definitive examination cannot be presented 
in a single paper. As a result, the present paper discusses 
only some of the many possible topics. First we review 
the goals, history and current status of the lVlultics proj­
ect. This review is followed by a brief description of the 
appearance of the lVlultics system to its various classes 
of users. Finally several topics are given which represent 
some of the research insights which have come out of 
the development activities. This organization has been 
chosen in order to emphasize those aspects of software 
systems having the goals of a computer utility which we 

* Work reported herein was sponsored (in part) by Project MAC, 
an M.LT. research program sponsored by the Advanced Research 
Projects Agency, Department of Defense, under office of Naval 
Research Contract Number N00014-70-A-0362-0001. Re­
production is permitted for any purpose of the United States 
Government. 
* Subsequently acquired by Honeywell Information Systems Inc. 
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feel to be of special interest. We do not attempt detailed 
discussion of the organization of lVlultics; that is the 
purpose of specialized technical books and papers. * 

GOALS 

The goals of the computer utility, although stated at 
length in the 1/965 papers, deserve a brief review. By a 
computer utility it was meant that one had a com­
munity computer facility with: 

(1) Convenient remote terminal access as the normal 
mode of system usage; 

(2) A view of continuous operation analogous to that 
of the electric power and telephone companies; 

(3) A wide range of capacity to allow growth or 
contraction without either system or user re­
organization; 

(4) An internal file system so reliable that users trust 
their only copy of programs and data to be stored 
in it; 

(5) Sufficient control of access to allow selective 
sharing of information; 

(6) The ability to structure hierarchically both the 
logical storage of information as well as the ad­
ministration of the system; 

(7) The capability of serving large and small users 
without inefficiency to either; 

(8) The ability to support different programming 
environments and human interfaces within a 
single system; 

* For example, the essential mechanisms for much of the Multics 
system are given in books by Organick9 and Watson.10 

/ 
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(9) The flexibility and generality of system organiza­
tion required for evolution through successive 
waves of technological improvements and the 
inevitable growth of user expectations. 

In an absolute sense the above goals are extremely 
difficult to achieve. Nevertheless, it is our belief that 
Multics, as it now exists, has made substantial progress 
toward achieving each of the nine goals. * Most im­
portantly, none of these goals had to be compromised 
in any important way. 

HISTORY OF THE DEVELOPMENT 

As previously mentioned, the 1\lultics project got 
under way in the Fall of 1964. The computer equipment 
to be used was a modified General Electric 635 which 
was later named the 645. The most significant changes 
made were in the processor addressing and access control 
logic where paging and segmentation were introduced; 
A completely new Generalized Input/Output Controller 
was designed and implemented to accommodate the 
varied needs of devices such as disks, tapes and tele­
typewriters without presenting an excessive interrupt 
burden to the processors. To handle the expected paging 
traffic, a 4-million word (36-bit) high-performance drum 
system with hardware queueing was developed. The 
design specifications for these items were completed by 
Fall 1965, and the equipment became available for soft­
ware development in early 1967. 

Software preparation underwent several phases. The 
first phase was the development and blocking out of 
major ideas, followed by the writing of detailed program 
module specifications. The resulting 3,000 typewritten 
pages formed the Multics System Programmers' Man­
ual and served as the starting point for all program­
ming. Furthermore, the software designers were ex­
pected to implement their own designs. As a general 
policy PL/I was used as the system programming 
language wherever possible to maximize lucidity and 
maintainability of the system. 14, 15 This policy also in­
creased the effectiveness of system programmers by al­
lowing each one to keep more of the system within his 
grasp. 

The second major phase of software development, 
well under way by early 1967, was that of module im­
plementation and unit checkout followed by merging 
into larger aggregates for integrated testing. Up to then 
most software and hardware difficulties had been antici­
pated on the basis of previous experience. But what 

* To the best of our knowledge, the only other attempt to 
comprehensively attack all of these goals simultaneously is the 
TSSj360 project at IBMy,12,13 

gradually became apparent as the module integration 
continued was that there were gross discrepancies be­
tween actual and expected performance of the various 
logical execution paths throughout the software. The 
result was that an unanticipated phase of design itera­
tions was necessary. These design iterations did not 
mean that major portions of the system were scrapped 
without being used. On the contrary, until their re­
placements could be implemented, often months later, 
they were crucially necessary to allow the testing and 
evaluation of the other portions of the system. The 
cause of the required redesigns was rarely "bad coding" 
since most of the system programmers were well above 
average ability. 1\loreover the redesigns did not mean 
that the goals of the project were compromised. Rather 
three recurrent phenomena were observed: (1) typically, 
specifications representing less-important features were 
found to be introducing much of the complexity, (2) 
the initial choice of modularity and interfacing between 
modules was sometimes awkward and (3) it was re­
discovered that the most important property of al­
gorithms is simplicity rather than special mechanisms 
for unusual cases.* 

The reason for bringing out in detail the above design 
iteration experience is that frequently the planning of 
large software projects still does not properly take the 
need for continuing iteration into account. And yet we 
believe that design iterations are a required activity on 
any large scale system which attempts to break new con­
ceptual ground such that individual programmers can­
not comprehend the entire system in detail. For when 
new ground is broken, it is usually impossible to de­
duce the consequent system behavior except by experi­
mental operation. Simulation is not particularly ef­
fective when the system concepts and user behavior are 
new. Unfortunately, one does not understand the system 
well enough to simplify it correctly and thereby obtain 
a manageable model which requires less effort to imple­
ment than the system itself. Instead one must develop 
a different view: 

(1) The initial program version of a module should 
be viewed only as the first complete specification 
of the module and should be subject to design 
review before being debugged or checked out. 

(2) l\1odule design and implementation should be 
based upon an assumption of periodic evaluation, 
redesign, and evolution. 

In retrospect, the design iteration effect was apparent 

* "In anything at all, perfection is finally attained not when there 
is no longer anything to add, but when there is no longer anything 
to take away ... " 

-Antoine de Saint-Exupery, Wind, Sand and Stars Quoted 
with permission of Harcourt Brace Jovanovich, Inc. 



even in the development of the earlier Compatible Time­
Sharing System (CTSS) when a second file system with 
many functional improvements turned out to have poor 
performance when initially installed. A hasty design 
iteration succeeded in rectifying the matter but the 
episode at the time was viewed as an anomaly perhaps 
due to inadequate technical review of individual pro­
gramming efforts. 

CURRENT STATUS 

In spite of the unexpected design iteration phase, the 
lVIultics system became sufficiently effective by late 1968 
to allow system programmers to use the system while 
still developing it. By October 1969, the system was 
made available for general use on a "cost-recovery" 
charging basis similar to that used for other major 
computation facilities at M.LT. Multics is now the 
most widely used time-sharing system at lVLLT., sup­
porting a user community of some 500 registered sub­
scribers. The system is currently operated for users 22 
hours per day, 7 days per week. For at least eight hours 
each day the system operates with two processors and 
three memory modules containing a total of 384k (k = 
1024) 36-bit words. This configuration currently is rated 
at a capacity of about 55 fairly demanding users such 
that most trivial requests obtain response in one to five 
seconds. (Future design iterations are expected to in­
crease the capacity rating.) Several times a day during 
the off-peak usage hours the system is dynamically re­
configured into two systems: a reduced capacity service 
system and an independent development system. The 
development system is used for testing those hardware 
and software changes which cannot be done under nor­
mal service operation. 

The reliability of the round-the-clock system opera­
tion described above has been a matter of great con­
cern, for in anyon-line real-time system the impact of 
mishaps is usually far more severe than in batch pro­
cessing systems. In an on-line system especially im­
portant considerations are: 

(1) the time required before the system is usable 
again following a mishap, 

(2) the extra precautions required for restoring pos­
sibly lost files, and 

(3) the psychological stress of breaking the inter­
active dialogue with users who were counting on 
system availability. 

Because of the importance of these considerations, care­
ful logs are kept of all lVlultics "crashes" (i.e., system 
service disruption for all active users) at M.LT. in 
order that analysis can reveal their causes. These analy­
ses indicate currently an average of between one and 
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TABLE I-A comparison of the system development and use 
periods of CTSS and Multics. The Multics develop­
ment period is not significantly longer than that for 
CTSS despite the development of about 10 times as 
much code for Multics as for CTSS and a geographi­
cally distributed staff. Although reasons for this 
similarity in time span include the use of a higher­
level programming language and a somewhat larger 
staff, the use of CTSS as a develonment tool for 
Multics was of pivitol importance. 

System 

CTSS 
Multics 

Development 
Only 

1960-1963 
1964-1969 

Development 
+ Use 

1963-1965 
1969-present 

Use Only 

1965-present 

two crashes per 24 hour day. These crashes have no 
single cause. Some are due to hardware failures, others 
to operator error and still others to software bugs intro­
duced during the course of development. At the two 
other sites where lVlultics is operated, but where active 
system development does not take place, there have 
been almost no system failures traced to software. 

Currently the lVlultics system, including compilers, 
commands, and subroutine libraries, consists of about 
1500 modules, averaging roughly 200 lines of PL/I 
apiece. These compile to produce some 1,000,000 words 
of procedure code. Another measure of the system is the 
size of the resident supervisor which is about 30k words 
of procedure and, for a 55 user load, about 36k words of 
data and buffer areas. 

Because the system is so large, the most powerful 
maintenance tool available was chosen-the system it­
self. vVith all of the system modules stored on-line, it is 
easy to manipulate the many components of different 
versions of the system. Thus it has been possible to 
maintain steadily for the last year or so a pace of install­
ing 5 or 10 new or modified system modules a day. 
Some three-quarters of these changes can be installed 
while the system is in operation. The remainder, per­
taining to the central supervisor, are installed in batches 
once or twice a week. This on-line maintenance capa­
bility has proven indispensable to the rapid develop­
ment and maintenance of Multics since it permits con­
stant upgrading of the user interface without interrupt­
ing the service. Weare just beginning to see instances of 
user-written applications which require this same capa­
bility so that the application users need not be inter­
rupted while the software they are using is being 
modified. 

The software effort which has been spent on Multics 
is difficult to est:mate. Approximately 150 man-years 
were applied directly to design and system programming 
during the "development-only" period of Table 1. 
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Since then we estimate that another .50 man-years have 
been devoted to improving and extending the system. 
But the actual cost of a single successful system is mis­
leading, for if one starts afresh to build a similar system, 
one must compensate for the non-zero probability of 
failure. 

THE APPEARANCE OF lVIULTICS TO 
ITS USERS 

Having reviewed the background of the project, we 
may now ask who are the users of the lVlultics system 
and what do the facilities that lVlultics provides mean 
to these users. Before answering, it is worth describing 
the generic user as "viewed" by l\1ultics. Although 
from the system's point of view all users have the same 
general characteristics and interface with it uniformly, 
no single human interface represents the l\1ultics ma­
chine. That machine is determined by each user's 
initial procedure coupled with those functions accessible 
to him. Thus there exists the potential to present each 
Multics user with a unique external interface. 

However, Multics does provide a native internal 
program environment consisting of a stack-oriented, 
pure-procedure, collection of PL/I procedures imbedded 
in a segmented virtual memory containing all pro­
cedures and data stored on-line. The extent to which 
some, all, or none of this internal environment is visible 
to the various users is an administrative choice. 

The implications of these two views-both the ex­
ternal interface and the internal programming environ­
ment-are discussed in terms of the following categories 
of users: 

• System programmers and user application pro­
grammers responsible for writing system and user 
software. 

• Administrative personnel responsible for the man­
agement of system resources and privileges. 

• The ultimate users of applications systems. 
• Operations and hardware maintenance personnel 

responsible, respectively, for running the machine 
room and maintaining the hardware. 

M ultics as viewed by system and subsystem programmers 

The machine presented to both the Multics system 
programmer and the application system programmer is 
the one with which we have the most experience; it is 
the raw material from which one constructs other en­
vironments. It is worth reemphasizing that the only 
differentiation between l\1ultics system programmers 
and user programmers is embodied in the access control 

mechanism ,vhich determines what on-line information 
can be referenced; therefore, what are apparently two 
groups of users can be discussed as one. 

l\lajor interfaces presented to programmers on the 
l\Iultics system can be classified as the program prepara­
tion and documentation facilities and the program exe­
cution and debugging environment.·· They will be 
touched upon briefly, in the order used for program 
preparation. 

Progralll preparation and doculllen ta tion 

The facilities for program preparation on ::\Iultics are 
typical of those found on other time-sharing systems, 
with some shifts in emphasis (see the Appendix). For 
example, programmers consider the file system suffi­
ciently invulnerable to physical loss that it is used 
casually and routinely to save all information. Thus, 
the punched card has vanished from the work routine 
of l\1ultics programmers and access to one's programs 
and the ability to work on them are provided by the 
closest terminal. 

As another example, the full ASCII character set is 
employed in preparing programs, data, and documenta­
tion, thereby eliminating the need for multiple text 
editors, several varieties of text formatting and com­
parison programs, and multiple facilities for printing 
information both on-line and off-line. This generaliza­
tion of user interfaces facilitates the learning and sub­
sequent use of the system by reducing the number of 
conventions. which must be mastered. 

Finally, because the PL/I compiler is a large set of 
programs, considerable attention was given to shielding 
the user from the size of the compiler and to aiding 
him in mastering the complexities of the language. As 
in many other time-sharing systems, the compiler is 
invoked by issuing a simple command line from a 
terminal exactly as for the less ambitious commands. 
No ~nowledge is required of the user regarding the 
various phases of compilation, temporary files required, 
and optional capabilities for the specialist; explanatory 
"sermons" diagnosing syntactic errors are delivered to 
the terminal to effect a self-teaching session during each 
compilation. To the programmer, the PLjI compiler is 
just another command. 

Progralll execution environlllen t 

Another set of interfaces is embodied in the imple­
mentation environment seen by PL/I programmers. 
This environment consists of a directly addressable 
virtual memory containing the entire hierarchy of on­
line information, a dynamic linking facility which 



searches this hierarchy to bind procedure references, a 
device-independent input/output16 system, * and pro­
gram debugging and metering facilities. These facilities 
enjoy a symbiotic relationship with the PL/I procedure 
environment used both to implement them and to im­
plement user facilities co-existing with them. Of major 
significance is that the natural internal environment 
provided and required by the system is exactly that 
environment expected by PL/I procedures. For example, 
PL/I pointer variables, call and return statements, 
conditions, and static and automatic storage all corre­
spond directly to mechanisms provided in the internal 
environment. Consequently, the system supports PL/I 
code as a matter of course. 

The main effect of the combination of these features 
is to permit the implementer to spend his time concen­
trating on the logic of his problem; for the most part 
he is freed from the usual mechanical problems of 
storage management and overlays, input/output device 
quirks, and machine-dependent features. 

SOIlle iIllpleIllentation experience 

The l\1:ultics team began to be much more productive 
once the l\1:ultics system became useful for software 
development. A few cases are worth citing to illustrate 
the effectiveness of the implementation environment. 
A good example is the current PL/I compiler, which is 
the third one to be implemented for the project, and 
which consists of some 250 procedures and about 125k 
words of object code. Four people implemented this 
compiler in two years, from start to first general use. 
The first version of the Multics program debugging 
system, composed of over 3,000 lines of source code, 
was usable after one person spent some six months of 
nights and weekends "bootlegging" its implementation. 
As a last example, a facility consisting of 50 procedures 
with a total of nearly 4,000 PL/I statements permitting 
execution of Honeywell 635 programs under Multics 
became operational after- one person spent eight months 
learning about the GCOS operating system for the 635, 
PL/I, and Multics, and then implemented the environ­
ment. In each of these examples the implementation 
was accomplished from remote terminals usingPL/I. 

l\1ultics users have discovered that it is possible to 
get their programs running very quickly in this environ­
ment. They frequently prepare "rough drafts" of pro­
grams, execute them, and then improve their overall 
design and operating strategy using the results of ex­
perience obtained during actual operation. As an ex­
ample, again drawn from the implementation of Mul-

* The Michigan Terminal System17 has a similar device-inde­
pendent input/output system. 
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tics, the early designs and implementations of the pro­
grams supporting the virtual memory18 made over­
optimistic use of variable-sized storage allocation 
techniques. The result was a functionally correct but 
inadequately performing set of programs. Nevertheless, 
these modules were used as the foundation for subse­
quent work for many months. When they were finally 
replaced with modules using simplified fixed-size storage 
techniques, performance improvements of over an order 
of magnitude were realized. This technique emphasizes 
two points: first, it is frequently possible to provide a 
practical, usable facility containing temporary versions 
of programs; second, often the insight required to sig­
nificantly improve the behavior of a program comes 
only after it is studied in operation. As implied in the 
earlier discussion of design iteration, our experience has 
been that structural and strategic changes rather than 
"polishing" (or recoding in assembly language) produce 
the most significant performance improvements. 

In general, we have noticed a significant "amplifier" 
or "leverage" effect with the use of an effective on-line 
environment as a system programming facility. Major 
implementation projects on the l\1:ultics system seldom 
involve more than a few programmers, thereby easing 
the management and communications problems usually 
entailed by complex system implementations. As would 
be expected, the amplification effect is most apparent 
with the best project personnel. 

Administration oJMultics facilities and resources 

The problem of managing the capabilities of a com­
puter utility with geographically dispersed subscribers 
leads to a requirement of decentralized administration. 
At the apex of an administrative pyramid resides a sys­
tem administrator with the ability to register new users, 
confer resource quotas, and generate periodi2 bills for 
services rendered. The system administrator deals with 
user groups called projects. Each group can in turn 
designate a project administrator who is delegated the 
authority to manage a budget of system resources on 
behalf of the project. The project administrator is then 
free to d<jal directly with project members without fur­
ther intervention from the system administrator, 
thereby greatly reducing the bottlenecks inherent in a 
completely centralized administrative structure. 

EnvironIllent shaping 

In addition to having immediate control of such re­
sources as secondary storage, port access, and rate of 
processor usage, the project administrator is also able 
to define or shape the environment seen by the members 
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of his project when they log into the system. He does 
this by defining those procedures that can be accessed 
by members of his project and by specifying the initial 
procedure executed by each member of his project when 
he logs in. This environment shaping facility has led to 
the notion of a private project subsystem on Multics. 
It co~bines the administrative and programming facili­
ties of Multics so that a project administrator and a 
few project implementers can build, maintain, and 
evolve environments entirely on their own. Thus, some 
subsystems bear no internal resemblance to the stand­
ard JVlultics procedure environment. 

For example, the Dartmouth BASIC19 compiler exe­
cutes in a closed subsystem implemented by an J\tLI.T. 
student group for use by undergraduate students. The 
compiler, its object code, and all support routines exe­
cute in a simulation of the native environment provided 
at Dartmouth. The users of this subsystem need little, 
if any, knowledge of Multics and are able to behave as 
if logged into the Dartmouth system proper. Other 
examples of controlled environment subsystems include 
one to permit many programs which-normally run 
under the GCOS operating system to also run unmodi­
fied in JVlultics. Finally, an APL20 subsystem allows the 
user to behave for the most part as if he were logged 
into an APL machine. The significance of these sub­
systems is that their implementers did not need to 
interact with the system administrator or to modify 
already existing Multics capabilities. The administra­
tive facilities permit each such subsystem to be offered 
by its supporters as a private service with its own group 
of users, each effectively having its own private com­
puter system. 

Other M ultics users 

Finally, we observe that the roles of the application 
user, the system operators and the hardware main­
tainers as seen by the system are simply those of or­
dinary Multics users with specialized access to the 
on-line procedures and data. The effect of this uni­
formity of treatment is to reduce greatly the mainte­
nance burden of the system control software. One 
example, of great practical importance, has been the 
ease with which system performance measurement 
tools have been prepared for use by the operating 
staff. 

INSIGHTS 

So far, we have discussed the status and appearance 
of the Multics system. A further question is what has 
been learned in the construction of Multics which is of 

use to the designers of other systems. Having a bright 
idea which clearly solves a problem is not sufficient 
cause to claim a contribution if the idea is to be part of 
a complex system. In order to establish the real feasi­
bility of an idea, all of its implications and consequences 
must be followed out. Much of the work on Multics 
since 1965 has involved following out implications and 
consequences of the many ideas then proposed for the 
prototype computer utility. That following out is an 
essential part of proof of ideas is attested by the diffi­
culties which have been encountered in other engineer­
ing efforts such as the development of nuclear fusion 
power plants and the electric automobile. Not all pro­
posals work out; for example, extended attempts to 
engineer an atomic powered airplane suggest in­
feasibility. 

Perhaps Multics' most significant single contribution 
to the state of the art of computer system construction 
is the demonstration of a large set of fully implemented 
ideas in a working system. Further, most of these ideas 
have been integrated without straining the overall de­
sign; most additional proposals would not topple the 
structure. Ideas such as virtual memory access to on­
line storage, parallel process organization, routine but 
controlled information sharing, dynamic link;ng of 
procedures, and high-level language implementa-

Address map 
for user 1 

- Virtual memory storage system -

Figure I-The entire storage hierarchy may be mapped into 
individual user process address spaces (see arrows) as if contained 
in primary memory. Illustrated are the sharing of a supervisor 
segment by user I and user 2 and private access to segment a 
and segment b. The necessary primary storage is simulated by a 
demand paging technique which moves information between 

the real primary memory and secondary storage 



tion have proven remarkably compatible and 
com pIe men tary. 

To illustrate some of the areas of progress in under­
standing of system organization and construction which 
have been achieved in lVIultics, we consider here the 
following five topics: 

1. l\10dular division of responsibility 
2. Dynamic reconfiguration 
3. Automatically managed multilevel memory 
4. Protection of programs and data 
5. System programming language 

JIIJ odular division of responsibility 

Early in the design of IVIultics a decision had to be 
made whether or not to treat the segmented virtual 
memory as a separately usable "feature," independent 
of a traditionally organized read/write type file system. 
The alternative, to use the segmented virtual memory 
as the file system itself, providing the illusion of direct 
"in-core" access to all on-line storage, was certainly the 
less conservative approach (see Figure 1). The second 
approach, which was the one chosen, led to a strong 
test of the ability of a computing system to support an 
apparent one-level memory for an arbitrarily large in­
formation base. It is interesting that the resulting al­
most total decoupling between physical storage alloca­
tion and data movement on the one hand and directory 
structure, naming, and file organization on the other led 
to a remarkably simple and functionally modular struc­
ture for that part of the system18 (see Figure 2). 

"Another area of Multics in which a high degree of 

I User programs and command /subroutine I ibrary I 
I 
I _________ .1 __________________ ------ --

General user 
interface 

I I Directory User I/O device 
I address space control and 
I management buffering 

: : /' 
I I / , , / 

Vi;t-;;al~;,;o_;y/-I-- ---1-- ---;/------ ------ --
, I' /' multi- process 

interface 1 1 ,/ 
Dram. disk. core 
demand paging 

contro lIer 

Processor multi­
--+ plexing and process 

synchronization 

Figure 2-Major lines of modular division in Multics. Solid lines 
indicate calls for services. Dotted lines indicate implicit use of 

the virtual memory 
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functional modularity was achieved was in the area of 
scheduling, multiprogramming, and processor manage­
ment. Because harnessing of multiple processors was an 
objective from the beginning, a careful and methodical 
approach to multiplexing processors, handling inter­
rupts, and providing interprocess synchronizing primi­
tives was developed. The resulting design, known as the 
l\1ultics traffic controller, absorbed into a single, simple 
module a set of responsibilities often diffused among a 
scheduling algorithm, the input/output controlling sys­
tem, the on-line file management system, and special 
purpose inter-user communication mechanisms.21 

Finally, with processor management and on-line 
storage management uncoupled into well-isolated 
modules, the lVlultics input/output system was left 
with the similarly isolatable function of managing 
streams of data flowing from and to source and sink 
type devices. 16 Thus, this section of the system concen­
trates only on switching of the streams, allocation of 
data buffering areas, and device control strategies. 

Each of the divisions of labor described above repre­
sents an interesting result primarily because it is so 
difficult to discover appropriate divisions of complex 
systems. * Establishing that a certain proposed division 
results in simplicity, creates an uncluttered interface, 
and does not interfere with performance, is generally 
cause for a minor celebration. 

Dynamic reconfiguration 

If the computer utility is ever to become as much a 
reality as the electric power utility or the telephone 
communication service, its continued operation must 
not be dependent upon any single physical component, 
since individual components will eventually require 
maintenance. This observation leads an electric power 
utility to provide procedures whereby an idle generator 
may be dynamically added to the utility's generating 
capacity, while another is removed for maintenance, all 
without any disruption of service to customers. A simi­
lar scenario has long been proposed for multiprocessor, 
multi memory computer systems, in which one would 
dynamically switch processsors and memory boxes in 
and out of the operating configuration as needed. Un­
fortunately, though there have been demonstrated a 
few "special purpose" designs,* it has not been apparent 
how to provide for such operations in a general purpose 
system. A recent thesis24 proposed a general model for 
the dynamic binding and unbinding of computation 
and memory structures to and from ongoing computa-

* See Dijkstra22 for a further discussion of this point. 
* An outstanding example is the American Airlines SABRE 
system.23 
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Figure 3-Dynamic reconfiguration permits switching among 
the three typical operating configurations shown here, without 
currently logged-in users being aware that a change has taken 

place 

tions. Using this model as a basis, the thesis also pro­
posed a specific implementation for a typical multi­
processor, multi memory computing system. One of the 
results of this work was the addition to the operating 
Multics system of the capability of dynamically adding 
and removing central processors and memory modules 
as in Figure 3. The usefulness of the idea maybe gauged 
by observing that at lVLI.T. five to ten such reconfigura­
tions are performed in a typical 24-hour operating day. 
Most of the reconfigurations are used to provide a 
secondary system for Multics development. 

A utomatically managed multilevel memory 

By now it has become accepted lore in the computer 
system field that the use of automatic management 
algorithms for memory systems constructed of several 
levels with different access times can provide a signifi­
cant reduction of user programming effort. Examples of 
such automatic management strategies include the 
buffer memories of the IB~\I system 370 models 1.1:55, 
165, and 19525 and the demand paging virtual memories 
of l\lultics, IBl\I's CP-6726 and the ::Uichigan Terminal 
SystemY Unfortunately, behind the mask of accep­
tance hides a worrisome lack of knowledge about how to 
engineer a multilevel memory system with appropriate 
strategy algorithms which are matched to the load and 
hardware characteristics. One of the goals of the ::\Iultics 
project has been to instrument and experiment with the 
multilevel memory system of ::\1ultics, in order to learn 
better how to predict in advance the performance of 
proposed n'ew automatically managed multilevel mem­
ory systems. Several specific aspects of this goal have 
been explored: 

• A strategy to treat core memory, drum, and disk as 
a three-level system has been proposed, including 
a "least-recently-used" algorithm for moving in­
formation from drum to disk. Such an algorithm 
has been used for some time to determine which 
pages should be removed from core memory. 27 The 
dynamics of interaction among two such algorithms 
operating at different levels are weakly understood, 
and some experimental work should provide much 
insight. The proposed strategy will be imple­
mented, and then compared with the simpler pres­
ent strategy which never moves things from drum 
to disk, but instead makes educated "guesses" as 
to which device is most appropriate for the perma­
nent residence of a given page. If the automatic 
algorithm is at least as good as the older, static one, 
it would represent an improvement in overall de­
sign by itself, since it would automatically track 
changes in user behavior, while the static algorithm 
requires attention to the validity of its guesses. 

• A scheme to permit experimentation with predic­
tive paging algorithms was devised. The scheme 
provides for each process a list of pages to be pre­
loaded whenever the process is run, and a second 
list to be immediately purged whenever the process 
stops. The updating of these lists is controlled by a 
decision table exercised every time the process 
stops running. Since every page of the Multics 
virtual memory is potentially shared, the decision 
table represents a set of heuristics designed to 
separate out those which are probably not being 
shared at the moment. 



• A series of measurements was made to establish 
the effectiveness of a small hardware associative 
memory used to hold recently accessed page de­
scriptors. These measurements established a profile 
of hit ratio (probability of finding a page descriptor 
in the associative memory) versus associative 
memory size which should be useful to the designers 
of virtual memory systems.28 

• A set of models, both analytic and simulation, was 
constructed to try to understand program behavior 
in a virtual memory. So far, two results have been 
obtained. One is the finding that a single program 
characteristic (the mean execution time before en­
countering a "missing" page in the virtual memory 
as a function of memory size) suffices to provide a 
quite accurate prediction of paging and idle over­
heads. The second is direct calculation of the dis­
tribution of response times under multiprogram­
ming. Having available the entire response time 
distribution, rather than just averages, permits 
estimation of the variance and 90-percentile points 
of the distribution, which may be more meaningful 
than just the average. A doctoral thesis is in prog­
ress on this topic. 

Although the immediate effect of each of these in­
vestigations is to improve the understanding or per­
formance of the current version of Multics, the long­
range payoff in methodical engineering using better­
understood memory structures is also evident. 

Protection of programs and data 

A long-standing objective of the public computer 
utility has been to provide facilities for the protection 
of executing programs from one another, so that users 
may with confidence place appropriate control on the 
release of their private information. In 1967, a mecha­
nism was proposed29 and implemented in software 
which generalized the usual supervisor-user protection 
relationship. This mechanism, named "rings of protec­
tion," provides user-written subsystems with the same 
protection from other users that the supervisor has, yet 
does not require that the user-written subsystem be in­
corporated into the supervisor. Recently, this approach 
was brought under intense review, with two results: 

• A hardware architecture which implements the 
mechanism was proposed.30 One of the chief fea­
tures of the proposed architecture is that subrou­
tine calls from one protection ring to another use 
exactly the same mechanisms as do subroutine 
calls among procedures within a protection area. 
The proposal appears sufficiently promising that it 
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is included in the specifications for the next genera 
tion of hardware to be used for Multics. 

• As an experiment in the feasibility of a multi­
layered supervisor, several supervisor procedures 
which required protection, but not all supervisor 
privileges,- were moved into a ring of protection 
intermediate between the users and the main 
supervisor. The success of this experiment estab­
lished that such layering is a practical way to re­
duce the quantity of supervisor code which must 
be given all privileges. 

Both of these results are viewed as steps toward first, a 
more complete exploitation and understanding of rings 
of protection, and later, a less constrained organization 
of the type suggested by Evans and LeClerc31 and by 
Lampson.32 But more importantly, rings of protection 
appear applicable to any computer system using a seg­
mented virtual memory. Two doctoral theses are under 
way in this area. 

System programming language 

Another technique of system engineering method­
ology being explored within the Multics project is that 
of higher level programming language for system imple­
mentation. The initial step in this direction (which 
proved to be a very big step) was the choice of the PLjI 
language for the implementation of J\1ultics. By now, 
lViultics offers an extensive case study in the viability 
of this strategy. Not only has the cost of using a higher 
level language been acceptable, but increased main­
tainability of the software has permitted more rapid 
evolution of the system in response to development 
ideas as well as user needs. Three specific aspects of this 
experience have now been completed: 

• The transition from an early PLjI subset com­
piler14 to a newer compiler which handles almost the 
entire language was completed. This transition 
was carried out with performance improvement in 
practically every module converted in spite of the 
larger language involved. The significance of the 
transition is the demonstration that it is not neces­
sary to narrow one's sights to a "simple" subset 
language for system programming. If the language 
is thoroughly understood, even a language as com­
plex a~ the full PLjI can be effectively used. As a 
resul t, the same language and compiler provided 
for users can also be used for system implementa­
tion, thereby minimizing maintenance, confusion, 
and specialization. 

• Notwithstanding the observation just made, the 
time required to implement a full PLjI compiler 
is still too great for many situations in which the 
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compiler implementation cannot be started far 
enough in advance of system coding. For this 
reason, there is considerable interest. in defining a 
smaller language which is easily compilable, yet 
retains the features most important for system im­
plementation. On the basis of the experience of 
programming Multics in a subset of PL/I, such a 
language was defined but not implemented, since 
it was not needed. 33 

• A census of M ultics system modules reveals how 
much of the system was actually coded in PL/I, 
and reasons for use of other languages. Roughly, 
of the 1500 system modules, about 250 were written 
in machine language. lVIost of the machine language 
modules represent data bases or small subroutines 
which execute a single privileged instruction. (No 
attempt was made to provide either a data base 
compiler or PL/I built-in functions for specialized 
hardware needs.) Significantly, only a half dozen 
areas (primarily in the traffic controller, the cen­
tral page fault path, and interrupt handlers) which 
were originally written in PL/I have been recoded 
in machine language for reasons of squeezing out 
the utmost in performance. Several programs, 
originally in machine language, have been recoded 
in PL/I to increase their maintainability. 

As with the earlier topics, the implications of this 
work with PL/I should be felt far beyond the Multics 
system. Most implementers, when faced with the eco­
nomic uncertainties of a higher-level language, have 
chosen machine language for their central operating 
systems. The experience of PL/I in Multics when added 
to the expanding collection of experience elsewhere34 

should help reduce the uncertainty. 
In a research project as large, long, and complex as 

Multics, any paper such as this must necessarily omit 
many equally significant ideas, and touch only a few 
which may happen to have wide current interest. It is 
the purpose of individual and detailed technical papers 
to explain these and other ideas more fully. The bibli­
ography found in Reference 35 contains over twenty 
such technical papers. 

Immediate future plans 

The Multics software is continuing to evolve in re­
sponse to user needs and improved understanding of its 
organization. In 1972 a new hardware base for l\i[ultics 
will be installed by the Information Processing Center 
at M.LT. for use by the M.LT. computing community. 
This program compatible hardware base contains small 

but significant architectural extensions to the current 
hardware. The circuit technology used will be that of 
the Honeywell 6080 computer. The substantial changes 
include: 

(1) replacement of the high-performance paging 
drum initially with bulk core and, when avail­
able, LSI memory, and 

(2) implementation of rings of protection as part of 
the paging and segmentation hardware. 

Wherever possible the strategy of using off-the-shelf 
standard equipment rather than specially engineered 
units for Multics has been followed. This strategy is 
intended to simplify maintenance. 

CONCLUSIONS 

There are many conclusions which could possibly be 
drawn from the experience of the ::\Iultics project. Of 
these, we consider four to be major and worthy of note. 
First, we feel it is clear that it is possible to achieve the 
goals of a prototype computer utility. The current im­
plementation of }Vlultics provides a measure of the 
mechanisms required. ::\10reover, the specific imple­
mentation of the system, because it has been written 
in PL/I, forms a model for other system designers to 
draw upon when constructing similar systems. 

Second, the question of whether or not the specific 
software features and mechanisms which were postu­
lated for effective computer utility operation are desir­
able has now been tested with specific user experience. 
Although the specific mechanisms implemented subse­
quently may be superseded by better ones, it is certainly 
clear that the improvement of the user environment 
which was wanted has been achieved. 

Third, systems of the computer utiiity class must 
evolve indefinitely since the cost of starting over is 
usually prohibitive and the many-year lead time re­
quired may be equally unacceptable. The requirement 
of evolvability places stringent demands on design, 
maintainability, and implementation techniques. 

Fourth and finally, the very act of creating a system 
which solves many of the problems posed in 1965 has 
opened up many new directions of research and develop­
ment. It would appear almost a certainty that increased 
user aspirations will continue to require intensive work 
in the areas of computer system principles and 
techniques. , 

In closing, perhaps we should take note that in the 
seven. years since l\Iultics was proposed, a great many 
other systems have also been proposed and constructed; 



many of these have developed similar ideas. * In most 
cases, their designers have developed effective imple­
mentations which are directed to a different interpreta­
tion of the goals, or to a smaller set of goals than those 
required for the complete computer utility. This di­
versity is valuable, and probably necessary, to accom­
plish a thorough exploration of many individually com­
plex ideas, and thereby to meet a future which holds 
increasing demand for systems which embrace the 
totality of computer utility requirements. 
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APPENDIX: A CHECKLIST OF ~IULTICS 
FEATURES 

Follmving is a checklist of currently available features 
and facilities of ~Iultics. Although many of the features 
are described in cryptic and untranslated local jargon, 
one can at least obtain a feel for the range of facilities 
now provided. Further information on most of these 
features may be found in the ::\Iultics Programmers' 
}\lanua1.35 

Interactive Time-Sharing Facilities 
file editors 
file manipulation (rename/move/delete) 
personal command abbreviations 
recursive command language 
source language debugging with breakpoints 
subroutine call tracer 
can stop any running command or program 

Programming Languages 
PL/I 
FORTRAN 
BASIC* 
APL 
LISP 
BCPL 
AL1VI (assembly language/::\lultics) 

Information Storage System 
configuration independent 
accessed through virtual memory (segments) 
access control lists by user and project 
links to segments of other users 
hierarchical directory (catalog) arrangement 
public library facilities 
sharing at all levels 
multiple segment names (synonyms) 
separate control of read, write, and execute 

Programming Environment 
segmented virtual memory 
dynamic linking of procedures and data, or prelinking 
interprocess communication 
independent of configuration 
uniform error handling mechanism 
user definable protection rings 
microsecond calendar clock with interrupt 
program interrupt signal from console 

Input and Output 
standard typewriter interface for device independence 
ASCII character set used throughout 
input characters converted to canonical form 
erase and kill editing on typed input 



I/O streams switchable during execution 
magnetic tape, printer, card punch, card reader 
typewriter terminals: IBlVI 2741, 1050 

Teletype 37,33, 35 
Dura, Datel, Execuport, 

Terminet-300 
graphic support library (devices: ARDS, IMLAC, 

DEC 338) 
ARPA network 
interfaces at three levels: 

formatted data conversion 
bit stream control 
full device control 

Management Facilities 
passwords required for login 
project may interpose authentication procedure 
decentralized projects 
accounting, billing, and quotas 
on-line probing and account adjustment 
operator or system initiated logout of users 
unlisted and anonymous users 
limited service system 
dynamic reconfiguration of memories and processors 
system performance metering for parameter 

adjustment 
project-imposed starting procedure 

Communication Facilities 
interuser mail 
help command; help files 
message of the day I 

on-line error reporting and consultation service 
on-line user graffiti board 
operations message broadcast to logged-in users 

Absentee Facilities 
priority /defer queues for printer, card punch 
queued translator facility 
general absentee job facility 

Reliability Measures 
weekly file copies onto tape 
daily disk/drum copy onto tape 
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incremental file copies onto tape, Y2 hour behind use 
salvager to clean up files after system crash 
emergency shutdown entry to system 

Maintenance Features 
on-line library change, no disruption of current users 
entire system source on-line, maintenance tools 
system checkout on small hardware configuration 
on-line performance monitoring of 

multiprogramming 
paging traffic 
drum/ disk usage 
typewriter traffic 

user performance feedback: 
cpu time and paging load on each command 
page trace always operating 
subroutine call counters 

Private Project Subsystems 
project providable command interface 
Dartmouth environment* 
student environment 

Miscellaneous Facilities 
desk calculators 
sort command 
memorandum formatting and typing subsystem 
user-provided list of programs to be automatically 

executed when user logs in 
GCOS environment 

* The BASIC system and the Dartmouth environment were 
developed at Dartmouth College. They are used at M.LT. by 
permission of Dartmou th College. 





Organization and features of the Michigan terminal system 

by MICHAEL T. ALEXANDER 

University of Michigan 
Ann Arbor, Michigan 

INTRODUCTION 

This paper will explore some aspects of the Michigan 
Terminal System (MTS) developed at the University 
of Michigan. MTS is the operating system used on the 
IBM 360/67 at the University of Michigan Computing 
Center, as well as at several other installations. It 
supports a large variety of uses ranging from very 
small student-type jobs to large jobs requiring several 
million bytes of storage and hours of processor time. 
Currently at the University of Michigan there are 
about 13,000 users running as many as 86,000 jobs per 
month. 

MTS was developed almost entirely by the staff of 
the University of IVlichigan Computing Center, al­
though some components were developed by other 
installations using it, and many compilers and sub­
systems were borrowed from other systems. Fewer 
man-years have been spent developing and maintain­
ing MTS than most comparable systems (about 50 
man-years total for both development and main­
tenance), and some of the organizational aspects that 
allow this will be explored here. A few of the more 
unusual aspects of the system will be considered, along 
with an attempt to evaluate their effectiveness. 

HISTORY 

I t will be useful to consider the history of the develop­
ment of MTS in order to provide the proper perspective 
for later discussions. The course of its development 
was rather unusual and influenced some of the features 
to be mentioned later. 

In 1965 the University of Michigan· Computing 
Center made plans to install an IBM 360/674 in late 
1966. It was planned to use the standard IBM operating 
system (Time-Sharing System/3606) for this machine 
rather than to develop an operating system for it. 
Since the model 67 includes special features to simplify 
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time-sharing, a special operating system was required 
for it. The Computing Center acquired an IBM 360/50 
for use both in performing peripheral operations for 
the IBl\rI 7090 then in use and in checking out 360/67 
programs to be used with TSS. In 1Vlay 1966 develop­
ment of a very small operating system for this machine 
was initiated by two members of the Computing Center 
staff. This system had very modest goals: to allow one 
or two Computing Center staff members to run certain 
360 programs, and to handle at the same time the 
peripheral operations for the 7090. These goals were 
reached within a few months, and the system was in 
use by Computing Center staff by the first part of 
1966. 

When the 360/67 was delivered in early 1967 the 
plan was still to run TSS as soon as it reached an ac­
ceptable level of reliability. In the meantime, the 
360/50 software system was moved over to the 360/67, 
but it still did not use any of the special hardware on 
the 360/67. 

At this point ]\tITS was a rather primitive system 
which would allow the simultaneous use of the machine 
by one or two batch jobs and three or four conversa­
tional users. The facilities available included most of 
the essentials but very few frills, and the system was 
used almost exclusively by Computing Center staff 
members. However, from the very beginning the 
system had been designed to be open ended, so that 
more facilities could be easily added. 

By the spring of 1967, it was decided to make MTS 
available to a limited number of persons not on the 
Computing Center staff who were most interested in 
conversational computing. This required a number of 
changes, the most important of which was the addition 
of accounting procedures to charge for machine usage, 
and the decision also provided an impetus to further 
augment the system. Although the system was far 
from complete at this time, it had already been. in daily 
use for several months. 

The first of several major changes in the system 
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TABLKI-Summary of MTS Usage for One Year 

Number Jobs CPU Time Lines Printed 
(Hours) 

DEC. 1970 68040 400 28520413 
JAN. 1971 48909 304 20.564780 
FEB. 1971 64734 388 25029078 
MAR. 1971 81894 481 32936379 
APR. 1971 57558 356 24968176 
MAY 1971 35141 232 16487547 
JUNE 1971 62079 431 28782123 
JULY 1971 57927 415 27112847 
AUG. 1971 55996 379 25756018 
SEP. 1971 56302 301 20030212 
OCT. 1971 86107 380 27795205 
NOV. 1971 90243 394 29264425 

occured in November 1967 when it was modified to use 
both the special relocation hardware of the 360/67 
and the paging drum. This required replacing one 
component and adding two components to the system, 
and was done without any changes to user programs or 
procedures. In fact it was so transparent to users of 
the system that for several weeks after it was put into 
use people were still asking when it would be installed. 
More importantly, the change was transparent to the 
rest of· the system, most of which was not even reas­
sembled. The most notable external sign of the change 
was a ·sudden eightfold jump in system capaeity. 

Other changes of similar magnitude have been made 
since then with equal success. For example, the super­
visor was changed in September 1968 to support hard­
ware configurations with more than one central pro­
cessing unit. This change was made with modifications 
to only two components. Another example was the 
addition of remote job entry to the batch monitor, 
which was done without significant changes to other 
modules. 

The resulting system is capable of serving the needs 
of a large and sophisticated user population. On a 
typical day there will be about 70 people using the 
system from terminals with any remaining processor 
time being used by up t05 or 6 batch jobs. This load 
runs with response times of about a second on a two 
processor machine with L5 million bytes of storage. 
Table 1 gives sOIne information concerning the usage 
of the system ih the last year and Table II gives more 
details concerning November 1971. 

In summary, MTS has grown from a very small, 
simple system to a sophisticated one that supports a 
wide variety of applications for over 20,000 users at 
five installations. This growth has been achieved with­
out requiring reprogramming or control language 

Pages Printed Cards Punched Cards Read 

835019 387423 6785972 
597105 274767 4050356 
740910 259886 5323226 
982605 318247 7623300 
754722 455143 6100019 
449463 216799 3741426 
804884 454602 6070196 
765186 422543 4970674 
734292 453018 4743966 
567504 325344 3659216 
830841 404359 5773416 
879604 381753 6268137 

changes by users of the system. This evolutionary 
approach to system development contrasts with the 
more usual approach in which most of the system is 
designed on paper before any of it is in regular use. The 
evolutionary approach has a number of advantages 
and perhaps should be more frequently considered. It 
allows the designers of the system to use it and become 
aware of its advantages and disadvantages while it is 
still possible to change parts of the design with relative 
ease. It also allows the best people to work on the whole 
system since they can move from component to com­
ponent as the system develops. On the other hand, it 
requires that the designers be able to foresee possible 

TABLE II-MTS usage during November, 1971 

TOTAL NUMBER OF JOBS RUN 90243 
TOTAL NUMBER OF BATCH JOBS RUN 52903 
TOTAL NUMBER OF TERMINAL SESSIONS 37340 
TOTAL CONNECT TIME: 10735 HOURS 
TOTAL CPU TIME: 394 HOURS 
MAXIMUM NUMBER OF TERMINAL USERS SIGNED 

ON AT ONE TIME: 72 

Total Batch Terminal 

Number of Jobs Run AVERAGE: 3008 1763 1245 
per Day, MAXIMUM: 4825 3079 2076 

MINIMUM: 171 94 44 
Number of Jobs Run AVERAGE: 2790 1606 1185 

8 TO 12, MAXIMUM: 4363 2691 1901 
MINIMUM: 9 1 8 

Number of Jobs Run AVERAGE: 1492 718 774 
9 TO 5, MAXIMUM: 2311 1311 1215 

MINIMUM: 0 0 0 
Number of Jobs Run AVERAGE: 125 73 52 

per Hour, MAXIMUM: 377 295 205 
MINIMUM: 0 0 0 
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directions for change and to allow for them when de­
signing parts of the system. 

ORGANIZATION AND IMPLElVIENTATION OF 
MTS 

In order to be able to extend and modify the system 
easily, it was organized as a set of independent com­
ponents with well-defined interfaces between them. 
This idea is, of course, neither new nor unique; but 
there are differences in this respect between MTS and 
other systems. For one thing the term "component" 
as used here refers to a rather large fragment of the 
system, for example the entire supervisor. Also the 
interfaces between components are much more rigid 
than in many systems. The result is that components 
are independent of one another to the extent that it is 
quite easy to replace almost anyone of them without 
affecting any other. Quite major changes can be intro­
duced this way with relatively little work or trouble. 

The dependence of components on one another is 
reduced by the fact that most components communi­
cate with only a few others. Almost all components 
communicate with the supervisor, and with at most 
one or two other components. The interface with the 
supervisor is the same for all components and is the 
most important in the system. Dependency is further 
reduced by allowing very few special cases in interfaces; 
for example, all input/output operations are done using 
the same supervisor facilities whether the input/output 
is for a card reader, a paging drum, or anything else. 

It is very important that any tables or control blocks 
maintained by the system should be directly referenced 
by as few programs as possible. For example, the con­
trol blocks relating to the file system should be ac­
cessed only by the subroutines comprising the file 
system. Other programs that wish to access a table or 
control block should call a subroutine that is part of 
the component that "owns" it. It is not enough to 
simply parameterize the format of the table or control 
block, since even finding all components that refer to it 
and reassembling them can be a very difficult and time 
consuming project. MTS is superior in this respect, and 
this is one maj or reason the system has developed 
smoothly. It is often necessary to reformat some system 
control block and it must be possible to do so easily. 

One interface that must be well-designed is the one 
between the system and the application program. This 
must be the cleanest of all since there is no hope of 
changing the application programs when the system 
changes. In particular, no user program should ever 
refer directly to any system control block. If the in­
formation is needed it should be made available through 
a subroutine in the system. If the hardware allows it 

at a reasonable price, all system control blocks should 
be protected from user programs for both reference and 
change. 

Since most large programs written for the IB:\I/360 
are written to run under IB:\l's OS/360 system, it was 
desirable to make it easy to convert programs written 
for OS/360 to run in :\lTS. For this reason :\ITS pro­
vides many of the same services as OS/360. It also pro­
vides many other services and most of the similar ones 
are different in detail, requiring some modification to 
OS/360 programs. However, programs written in 
Fortran or PL/I can normally be run without modi­
fication since all dependency on OS/360 is in the run 
time library which has been converted to run in :\tiTS. 
Furthermore, there is a program that allows some OS/ 
360 object programs, such as the COBOL compiler 
and its object programs, to run in :\;lTS by simulating 
exactly the services that are provided by OS/360. 

With large components and well-defined interfaces 
it has been possible to divide the programming effort 
for MTS vertically rather than horizontally. By this 
it is meant that one or two individuals are assigned 
responsibility for a component and then follow it from 
design through implementation and even maintenance. 
The person responsible for a component is given con­
siderable freedom to design the internal structure of 
the component so long as the interfaces are maintained 
unchanged. The fact that he also must implement and 
maintain the component means both that the design 
will be realistic and that it will be conformed to. This 
organization avoids part of the trouble many systems 
have had in trying to translate the design into code, 
since the people writing the code are not novices and 
thoroughly understand the design of the component. 

Most components of the system can be debugged and 
many can be installed while the system is running 
without affecting the reliability of operation. It is 
possible to substitute a private copy of all components 
except the supervisor, the batch monitor, parts of the 
command language, and certain other similar things. 
It is also possible to replace a module without shutting 
down in most cases. Those modules that cannot be 
debugged in this way can be debugged by running the 
system in a "virtual machine" under the production 
system. The virtual machine program allows any 
system designed to run on a 360/67, including OS/360, 
MTS, or any other "stand alone" program, to be run. 
This type of operation does not greatly affect relia­
bility. Indeed the software reliability of ::'vlTS is good. 
Between September 1970 and September 1971 there 
were 38 software caused system crashes. This is only 
9 percent of the total crashes in this period, 85 percent 
of which were caused by hardware failure. During this 
time many parts of the system were debugged online. 
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FILE AND DEVICE MANAGEMENT 

Perhaps the most interesting technical innovation 
in MTS is found in the methods used to support dif­
ferent types of input/output devices and files. These 
methods also provide a good example of how a well­
defined interface can solve many problems. 

A major problem in the implementation of any 
operating system is providing software support for 
the many different types of input/output devices to 
be used with it. This can consume a very large amount 
of time and energy. Furthermore, if the system does 
not provide truly device-independent input/output 
it will be much more difficult to debug and run pro­
grams under it. The approach taken toward I/O in 
MTS solves these problems better than in most com­
monly used systems. 

The first and most important consideration con­
cerning the I/O structure in MTS is that all input/ 
output, whether by MTS itself or by a program running 
under MTS, is done by the same set of subroutine 
calls. These calls are independent of what program is 
doing the I/O and of the type of file or device being 
used. This means that any program including any 
part of MTS can read or write from any type of file 
or device with no code changes .. This extends to all 
devices including typewriter and graphic terminals, 
unit record devices, files, magnetic and paper tape, etc. 
Of course a program may be designed to take advan­
tage of special characteristics of a particular device 
type-for example, it might use the vector generating 
capabilities of a graphics terminal-and if it does so 
it loses some of its device independence. 

Any call to the input/output routines in MTS 
specifies, either implicitly or explicitly, a quantity 
known as a File or Device name (FDname). The call 
may specify a Logical Unit Name to which an FDname 
has been attached, or it may specify the internal repre­
sentation of a specific FDname returned by a subroutine 
for the purpose. An understanding of the concept of 
an FDname is crucial to an understanding of MTS 
input/ output processing. 

The simplest form of an FDname is simply the name 
of some file or device known to the system. For example, 

SOURCEFILE 

An FDname can also specify a subset of a file by ap­
pending a line number range to' the simple name: 

SOURCEFILE (10,20) 

specifies lines 10 though 20 of the file SOURCEFILE. 
It is also possible to specify "modifiers" that determine 

special processing to be done for I/O on this FDname. 
For example, to convert all data read or written to 
upper case one could use 

SOURCEFILE@UC 

This will not affect the contents of the file on read 
operations, but only the data read or written using 
this FDname. More complicated FDnames can be 
constructed by concatenating the simple ones de­
scribed so far. For example, 

SOURCEFILEI (10 ,20) +SOURCEFILE2( - 23,32) 
+ (100.75,123) 

specifies lines 10 through 20 from SOURCEFILEI 
followed by lines -23 through 32 and lines 100.75 
through 123 from SOURCEFILE2. This type of con­
catenation is called explicit concatenation; it is also 
possible to specify concatenation implicitly by the data 
read. If a line read from any FDname is of the form 
"$CONTINUE WITH FDname [RETURN]" then 
the contents of the FDname given in this line will be 
used for further input, followed by the remaining lines 
from the current FDname if RETURN is specified. 
This action can of course be turned off to allow such 
records to be read directly. This generality in specifi­
cation of FDnames is the single most useful feature of 
MTS and allows great flexibility in the use of commands 
and files. 

It is difficult to design a set of input/output sub­
routines that will be suitable for all different types of 
input/output devices, and inevitably certain com­
promises must be made. It was decided to treat input/ 
output as a transmission of a series of logical records, 
not as an unbroken stream of characters. It seemed that 
too many input/output devices had "natural" record 
boundaries that are hard to ignore. Hence the basic 
subroutines are subroutines to read or write a single 
record to or from an input/output device or file. In 
general the approach has been to make the various 
different files and devices look as much as possible like 
line files, which consist of a sequence of records as­
sociated with line numbers. 

It was intended to develop an input/output system 
designed so that it would be easy to add support for 
any type of device that would fit into the structure 
described above. It was necessary that it be possible 
to debug support routines, and to install new ones, 
without disrupting normal operation of the system. 
It was also necessary that all code peculiar to a par­
ticular type of device be located in a single component 
of the system. To meet these and other goals the concept 
of a Device Support Routine (DSR) was created. There 
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is a DSR for each type of device supported by MTS 
(some 20 in all) and each one supports one class of de­
vices, for example low speed telephone lines, line files, 
magnetic tape drives, or some similar category of file 
or device. 

The interface between a DSR and MTS is com­
pletely independent of the type of file or device. Every 
DSR has the same eight entry points and when lVITS 
calls one of them it is completely unaware of the nature 
of the device. When a DSR is called at one of its en­
tries it is responsible for interpreting the parameters 
properly for the device in question and for initiating, 
via calls on the supervisor, any actual input/output 
operations. The communication between MTS and 
the DSR is on a record level, while the communication 
between the DSR and the supervisor or the device is 
on a channel program level. 

A DSR may be either private to a single task or 
shared among some or all tasks using the appropriate 
type of device. Furthermore any task may use a private 
copy of a shared DSR, for example to allow a DSR to 
be debugged. Using this technique it was possible to 
completely rewrite and install the DSR for magnetic 
tapes without any time on a dedicated machine; all 
development was done under regular production MTS 
without any adverse effects on the rest of the system. 
This was possible largely because the interface between 
l\1TS and the DSR is extremely clean and each side is 
independent of the other; This interface is described 
in reference 8 on pages 353 and following. 

VIRTUAL MEMORY AND l\1ULTI-PROCESSING 

Two of the aspects of the system that attract the 
most attention are its use of virtual memory2 with 
demand paging and the fact that it supports multiple 
central processors. The most interesting thing about 
these is that both were added to the system after it was 
already operational. This provided a good opportunity 
to observe both the implementation difficulty and the 
effect on performance of paging and multi-processor 
support. 

Adding virtual memory to the system required about 
six man-months of work and improved performance at 
least tenfold. The performance comparison should not 
be taken too seriously sinc~ the pre-paging version of 
MTS did not make use of any swapping techniques, 
but rather kept all programs in main storage at all 
times they were in use. A more meaningful comparison 
is currently being attempted at the University of New­
castle upon Tyne in England where a version of l\1TS 
that runs on a standard 360 and uses swapping has 
been prepared. It is planned to perform some com-

parisons between this system and the model 67 version 
ofMTS. 

Modifying the system to support multiple processors 
required only about four man-months of work. About 
half of this was spent writing code to handle the more 
complex input/output hardware configurations possible 
with larger versions of the model 67, and the rest was 
spent adding code to the supervisor to avoid simul­
taneous destructive access to data by more than one 
processor. To do this required a great deal less work 
than most people would think, with quite effective 
results. 

Measurements have been made of the amount of 
degradation due to interference between processors in a 
two processor configuration. There are two major 
sources of interference in such a machine: one processor 
may have to wait to gain access to data the other is 
modifying, and the increased load on main storage may 
cause both processors to run slower. The first source of 
interference was measured directly in lVITS and turned 
out to result in a performance degradation of 1.5 percent 
when the system was operating under a very heavy 
load. It is interesting to note that the average time 
that a processor had to wait for access to data was only 
7.6 microseconds. The second source of interference 
was measured indirectly by running the same job stream 
on different configurations and results indicate that a 
degradation of about 3.6 percent occurs for this job 
stream and that it is highly variable. 

FILE SYSTEM 

In any modern operating system the file system that 
allows users to store and retrieve data in the system 
is most important. This is even more true of systems 
such as l\1TS that encourage conversational use. Un­
fortunately this is not one of the strong points of lVITS 
and perhaps it would be instructive to look at some of 
the advantages and disadvantages of the l\1TS file 
system. 

The lVITS file system supports two types of files. 
"Line files" consist of a set of lines, or records, each of 
which is associated with a line number which is not 
part of the record. Lines may be read, written, inserted, 
or deleted by line number or sequentially. Because of 
the implementation no line may be longer than 255 
characters and no file may be larger than about 300,000 
characters. The ability to write by line number without 
knowing whether the line already exists in the file, and 
the ability to read and write sequentially, ignoring the 
line numbers, make line files very useful and easy to 
use, but the restrictions noted above are severe limita­
tions. 
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The second type of file, "sequential files," consist 
of a set of lines or records which normally are read or 
written sequentially, and which do not have line num­
bers. This type of file was invented later both because 
of the above restrictions and in order to reduce the 
number of accesses to the direct access devices, par­
ticularly the IBM 2321 Data Cell Drives. If line files 
had been. better designed, sequential files would not 
have been necessary. 

The file system in MTS gives the user no opportunity 
or need to worry about the actual format of the in­
formation on the direct access devices. This means 
that the use of these devices can be optimized by using 
a good format and efficient input/output techniques. 
On the other hand, very sophisticated users with 
specialized file requirements could in some cases im­
prove performance by specifying some of this informa­
tion if it were possible. However, very few people have 
the inclination or ability to do this; more importantly, 
a good operating system should not require them to 
do so to get good performance. Furthermore, any 
single user may degrade total system performance by 
optimizing his own performance, for example by using 
too much channel time and thereby locking other users 
out of their files. 

In the opinion of the implementors of MTS one 
major disadvantage of the file system is that it is in­
dependent of the paging system. It would be much 
better to treat file I/O in the same way as paging I/O, 
as is done in Multics,1 This would allow much better 
optimization of direct access device operations and it 
would allow users to treat files as extensions of their 
virtual memory. It is hoped that someday such a 
virtual memory file system may be installed in MTS. 

Another major disadvantage that we see in the MTS 
file system is that it uses a direct access volume format 
compatible with that of 08/360.5 This format is very 
restrictive and slow with respect to allocation and 
deallocation of space. It would be much better to use 
a format similar to that of TSS/360,7 in which the con­
cept of an "extent" of contiguous space does not exist. 

BATCH VERSUS TERMINAL USAGE 

When development of MTS was started it was an­
ticipated that it would be primarily a terminal system 
with batch or non conversational usage playing a much 
more limited role. This prediction turned out to be 
completely wrong. In fact, the use of terminals started 
out on a much smaller scale than the use of batch, and 
only recently have the two modes become about equally 
popular. There are probably several reasons for this, 
not the least of which is habit. From the beginning 

l\1TS has made batch and terminal usage as nearly 
compatible as possible and equally convenient, and 
many people simply continued to use the computer in 
the way they were used to. Other reasons are that in 
the early days there were relatively few terminals 
available and they were rather expensive to use. Both 
of these problems have been largely corrected, but 
those who were burned are reluctant to try again. 

It is important that a system provide compatible 
batch and terminal modes of operation with the same 
command language and facilities. Most uses of the 
system will require both modes of operation to some 
extent and switching back and forth is difficult if the 
modes are not compatible. In particular it must be 
possible to run any program in either mode. 

FUTURE TIME-SHARING SYSTEMS 

It is difficult, even foolhardy, to make specific pre­
dictions for the future in computing, but some trends 
seem clear at this time. For example, there are more 
and more terminals available and they are becoming 
more and more sophisticated. 

There is a current trend toward computer net­
working which is approaching the point where practical 
networks will soon be operational. Most work in this 
area so far has focused on the technical problems of 
connecting dissimilar isolated systems, while the dif­
ficult problem of what is to be transmitted has been 
largely ignored. When networks become truly opera­
tional, there will be very difficult problems with stan­
dards for data formats, data description languages, 
programming languages, etc. These problem of course 
already exist, but the closer connection between systems 
resulting from networking will greatly aggravate them. 

Another problem which mu~t be overcome before 
networking is really practical is the administrative 
problem. When networks include nodes that must bill 
for all services rendered it becomes difficult to integrate 
these nodes into the network unless some convenient 
way can be found to bill for services provided to other 
nodes in the network. This may seem like a trivial 
problem; but since a very large number of end users 
may be involved, making it difficult for each node to 
bill them directly, and since nodes in the network will 
vary widely in accounting standards· and practices, it 
is not trivial at all. 

The term "computer utility" is used so frequently 
these days that is has almost lost any meaning. It 
does not accurately describe any existing system al­
though some systems such as MTS include some aspects 
of it. However, we are approaching the time when we 
will see the first true computer utilities, and it is worth-
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while to look at some of the problems that may be en­
countered. 

One thing that seems obvious at this point is that 
most customers of the computer utility of the future 
will have little programming knowledge. IVlost pro­
gramming will be done by organizations and individuals 
that wish to sell a problem-solving service to people 
who know little or nothing about programming. Some 
of these services will be provided by those who provide 
the computer; many or most, however, will be provided 
by third parties. 

The computer utility of the future must somehow 
separate the customer from many of the details of the 
computing system he is using. There is no reason the 
customer needs to know, or should know, about such 
things as the characteristics of the direct access devices 
he is using. To involve the end user in this sort of thing 
is both a waste of his time and unduly restrictive to 
those operating the computer. 

Closely related is the same old problem of com­
patibility and standardization. The users of the com­
puter must be able to switch from one system to another 
with a minimum of necessary changes. Those who are 
developing programs for use by nonprogrammers will 
not be able or willing to rewrite them for the peculiari­
ties of every computing system. To do so would be like 
having every TV station using its own video trans­
mission techniques. 

To allow problem solving services to be sold by third 
parties will require facilities which are not available 
in most current systems. The programs and data which 
comprise such a service will be stored in files in the 
system which must of course be protected from un­
authorized access. In addition there must be facilities 
to allow for proper accounting by those providing the 
service. Implementation of this will require much 
better protection of different levels of code within the 
system. The main limitation to this presently is the 
lack of suitable hardware on most machines available 
today. The IBM 360 series, including the model 67, 
is particularly bad in this respect, since it does nothing 
to help implement levels of protection within a task 
as is done on the Honeywell 645.3 

Better protection of this sort is also required in 
order to be able to solve some of the problems that are 
becoming acute concerning privacy and data bases. 
These problems, however, require more than technical 
innovation to solve. In general they are problems that 
have been around for a long time, but which had not 
been acute when the harmful information was so widely 
distributed as to be almost inaccessible. The role of 
the computer industry in the solution of these problems 
would seem to be to provide the technical tools and 

advice that will allow those outside the industry who 
must find solutions to do so. 

There seems to be a trend away from the type of 
multiprocessor organization found in the 360/67 in 
which all processors and input/output equipment is 
connected symmetrically, and this is disturbing. The 
symmetric type of organization found in the 360/67 
is much easier to support in software since no part of 
the system need ever be aware of which processor it is 
executing on, as is necessary in machines such as 360 
1\1651VIP in which certain input/output equipment is 
accessible from only one processor. Furthermore the 
360/67 organization is very flexible in that almost any 
single hardware component can be removed from the 
system and the system can still run. This has been very 
valuable at the University· of ::\lichigan, where this 
capability has resulted in about 10 percent more "up 
time" for the system as a whole. 

On the other hand, there seems to be growing ac­
ceptance of address translation hardware such as ap­
pears on the 360/67. This hardware is very valuable 
for a variety of reasons and should be on all machines 
in the future. It has rarely been exploited to its fullest 
but even in present systems it more than pays for itself. 

In summary, it is clear that computing is still in its 
adolescence and that we are just beginning to involve 
the nonprofessional in it. This change will be both 
exciting and painful as we face the technical and 
ethical problems of the future. 
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Regulatory developments in data 
communications-The past five years 
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INTRODUCTION 

Since its creation in 1934, the Federal Communications 
Commission has exercised regulatory jurisdiction over 
all interstate common carrier communications service in 
the U.S. The Commission has broad powers to review 
rates and tariffs, determine investment and operating 
practices, approve new plant installations, and literally 
shape the entire communications carrier industry, but 
historically the Commission has failed to exercise these 
powers vigorously. Instead it, like most government 
regulatory agencies, has tended to become dominated by 
the industry it supposedly regulates, and has come to 
place the status quo high on its list of values to be 
protected; until recently, that is. 

Communications carrier services in the U.S. are today 
provided on a monopoly, or at best, duopoly basis. Each 
telephone company has a monopoly in providing dial 
telephone service in its geographic operating area, and 
although Western Union provides private line services 
"competitive" with those of the telephone companies, 
WU's service offerings and rates are identical to those 
established by the Bell System and copied by all 
independent (non-Bell) telephone companies as well. 
Bell's mammoth size (serving over 83 percent of all 
U.S. telephones) as compared with WU and the 
independent telephone companies has made the terms 
"Bell" and "communications carrier industry" virtually 
synonymous, with effective competition within the 
industry nonexistent. Thus, decisions regarding intro­
duction of new services and equipment, rates, and tariff 
regulations have been made by a single firm, with 
minimal federal and state regulatory control in most 
cases. The result with respect to data communications 
has been a sluggish response to user demand for new 
and improved services (especially felt by data users 
during the early and mid-60s), restrictive tariffs which 
impeded the user's ability to obtain maximum benefit 
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from the communications network, and higher costs 
than might prevail in a competitive atmosphere. 

Fortunately for the communications user, the past 
five years have seen tremendous changes in this picture. 
Some of these changes are the result of the rapid growth 
of computing and data communications, and the 
carrier's natural response to that growth, but the most 
fundamental changes are in the regulatory and policy 
environment. After decades of apparent satisfaction 
with regulated monopoly as the modus operandi of the 
communications industry, the FCC seems to have done 
a turn-about and embraced competition as a means of 
stimulating innovation and efficiency in this industry. 
For example, in its landmark Carterfone decision in 
1968,15. the Commission broke the carriers' monopoly on 
the supply of terminal equipment and systems to be 
attached to or interconnected with the telephone 
network. The following year, in its equally precedent­
setting MCI decision,S the Commission authorized the 
first specialized private-line carrier to enter the market 
and compete with Bell and Western Union. A year later 
the FCC, urged by the White House,16 reversed its 
previous attitude toward the establishment of domestic 
communications satellite systems and invited applica­
tions for competitive systems from all interested 
parties.6 

More recently the Commission has somewhat relaxed 
its attitude toward the competitive offering of hybrid 
data processing-message switching services,12 and has 
opened the way for cable television (CATV) systems to 
enter the major metropolitan markets and supply a wide 
variety of new communications services. 7 During this 
same five-year time period, President Johnson's Task 
Force on Communications Policy issued a comprehen­
sive report27 endorsing the wider use of competition in 
the communications carrier industry, and several years 
later President Nixon's new Office of Telecommunica­
tions Policy also began to advocate increased reliance 
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upon the forces of competition to achieve our national 
communications goals. This paper attempts to provide 
an overview of these developments, and to assess their 
importance for the future. 

THE FCC COMPUTER INQUIRY 

In late 1966, the Federal Communications Commis­
sion began what has since become a widely-discussed 
public Inquiry into the "Regulatory and Policy 
Problems Presented by the Interdependence of Com­
puter and Communication Services and Facilities."9,21 
Rapid developments in digital technology, and cor­
responding growth of the computer equipment manu­
facturing and computer services industry had been on 
what some have termed a collision course with tele­
communications and the communications common 
carriers. Several controversies in recent years brought 
this home to the FCC and pointed out the need for 
policy guidance.17 ,18 The FCC's reaction was to publish 
a list of broad and interrelated questions and to invite 
comments from all interested parties, hoping thereby to 
develop the framework for such policy formulation. Over 
sixty responses to this Notice of Inquiry, totaling over 
3,000 pages, were received by the Commission before its 
deadline in March, 1968. 

To assist in evaluation of this material, the Commis­
sion then engaged Stanford Research Institute, which 
submitted its report in early 1969-summarizing the 
responses and analyzing the issues, but raising more 
questions than it answered.29 Soon thereafter, the 
Commission issued a Report and Further Notice of 
Inquiry,IO asking for comments on the SRI report. 
A year later, after receiving additional comments from 
some of the parties to the Inquiry, the Commission 
issued its Tentative Decision.ll Finally, after receiving 
another round of written comments from, and hearing 
oral argument by, the parties, the Commission in March, 
1971 issued its Final Decision and Order.12 As might be 
expected during the course of a five-year proceeding, 
some of the issues originally addressed in the Inquiry 
were overtaken by the course of events and became 
moot by the time of the Commission's final decision; 
unfortunately, certain other issues were not adequatel! 
resolved in the final decision, and at the time of thIs 
writing they remain a source of uncertainty. 

Regulation of computer services 

Let us now consider the issues addressed by the FCC 
in this Inquiry. First was the question of whether, and 
under what circumstances, computer-based data pro­
cessing or information services-remote-access services 

employing communication lines, and also perhaps 
stand-alone services-should be deemed subject to FCC 
regulation under the Communications Act of 1934. 

The anticipated growth of the "computer utility" 
concept, much-discussed during the mid-60s, had 
suggested to some observers the possible need for some 
sort of government regulation of that utility. On many 
issues in the FCC Inquiry there developed a dichotomy 
of opinion, with the communications common carriers 
on one side and the computer firms and users on the 
other; but regarding this first question there was 
general agreement that no need for government 
regulation of computer services exists or is likely to exist 
in the future. 

There are a number of factors which may indicate the 
need for regulation of an industry, such as the existence 
of natural monopoly characteristics which make effective 
competition impossible in the industry (e.g., the electric 
utility industry), or compelling requirements that the 
quality and integrity of the industry's product be 
insured (e.g., the pharmaceutical and banking in­
dustries). Comprehensive rate and profit regulation is 
imposed upon the common carrier communications 
industry because of its natural monopoly characteristics 
(continually increasing economies to scale) and the 
public interest requirement that the service be offered 
on a regular, well neigh universal basis. The data 
services industry exhibits none of these qualities; on the 
contrary, it is thriving in an atmosphere approach~ng 
the pure competitive model. Concern for the protectIOn 
of the consuming public has led to certain types of 
regulatory controls in other industries such as insurance 
and banking. On this score, also, data and information 
services do not appear to warrant regulatory attention. 
Signific'ant abuses have not arisen yet, and there is no 
reason to believe that they will occur in the future. The 
FCC therefore concluded that "In view of all the 
foregoing evidence of an effective competitive situation, 
we see no need to assert regulatory authority over data 
processing services whether or not such services employ 
communications facilities in order to link the terminals 
of subscribers to centralized computers."ll 

The protection of privacy 

A second question asked by the FCC concerned the 
need for legislative or other government action to 
protect the privacy and security of data stored in 
computers that are interconnected with common 
carrier communication lines. The respondents discussed 
a number of protection measures available to users and 
system operators, and generally felt that FCC in.ter;en­
tion or regulatory control was not needed at thIS tIme. 



The Commission, noting that the privacy and security 
issues extended well beyond the scope of its jurisdiction 
to regulate communications, and observing other efforts 
taking place in Congress and elsewhere in government 
concerning this problem, elected to follow the advice of 
the respondents and refrain from taking any action 
pending further developments or abuses. While this was 
probably the best course for the Commission to follow 
for the present, it seems clear that the multitude of 
privacy and security problems associated with wide­
spread usage of the computer, and especially the large 
multiple-access system, in all areas of our society is 
growing as fast as-or perhaps faster than-the use of 
such systems. 20,22 Government controls of some sort thus 
appear inevitable, and the FCC will probably play a 
role in future years in attacking that part of the 
problem which falls within its regulatory jurisdiction. 
Proposals have been made for the creation of a new 
federal agency to provide regulatory control of the 
computer-privacy area,22 and such an approach, if 
adopted, might reduce or eliminate the FCC's role in 
this area. But it seems at least equally likely that 
Congress may choose instead to provide for the 
protection of computer data-bank privacy and security 
through expansion of the regulatory jurisdiction of the 
FCC and other relevant federal agencies rather than 
through creation of a new agency. 

Adequacy of facilities for data transmission 

The third topic in the Inquiry which the FCC 
disposed of without taking any action concerned the 
adequacy of common carrier services and facilities for 
data transmission. Many of the computer-industry firms 
and users who participated in the Inquiry identified 
serious deficiencies in the service offerings of the 
telephone companies and Western Union, circa 1968, 
and urged certain modifications and improvements.21 

These included the provision of additional channel 
bandwidths, the development of a widespread switched 
broadband service, a reduction in the three-minute 
minimum charging period on the dial network, a 
reduction of error rates in data transmission generally, 
more rapid introduction of digital transmission systems 
such as T-carrier and digital microwave, and lower costs. 

The FCC recognized these needs of the computer 
community, but concluded that several other events 
which had occurred during the pendency of the Inquiry 
obviated the need for any Commission action in the 
Inquiry docket. These external events included the 
FCC's approval in 1969 of the first specialized carrier, 
M CI, to compete with the established carriers8 ,21,30,31 
(discussed below); the Commission's landmark Carter-
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fone decision in 1968 which permitted competitive 
supply of subscriber terminal equipment for use on the 
telephone network15 ,21 (discussed below); and the advent 
of a number of new and improved data transmission 
services being planned and phased in by the existing 
carriers-partly in response to the new competition 
created by Mel and Carterfone.30 In effect, the Com­
mission opted to rely upon this new competition to 
achieve its goals of improved common carrier service for 
data transmission, rather than taking direct action 
itself to attempt to improve the carriers' performance. 

While these competitive developments certainly have 
had a beneficial effect upon the quality and adequacy 
of the carriers' data transmission service, it is un­
fortunately not clear that all of the user's problems have 
been solved-or that they will be in the future. The 
telephone industry, as with most regulated quasi­
monopoly public utilities (for the vast majority of the 
telephone carriers' revenues are safe from competitive 
inroads), continues to respond to customer demand 
rather sluggishly when measured by a competitive­
industry yardstick. Telephone company performance is 
on the uptrend, but so are rates in many cases, and 
careful regulatory agency attention will be needed in 
the coming years-at both the federal and state 
levels-to insure that the user obtains maximum value 
for his data communications dollar. In the author's 
view, it is unfortunate that the FCC chose to sweep this 
problem under the rug in its final order in the computer 
inquiry. 

Common carrier tariff restrictions 

One additional issue in the Inquiry, very important 
when it was posed in 1966, was later found by the FCC 
to have been also largely mooted by ensuing events. 
This concerned the reasonableness of the carriers' 
traditional tariff prohibitions of (1) customer-owned 
"foreign" attachments on the telephone network, (2) 
interconnection to the network of customer-owned 
communications systems, and (3) customer sharing or 
resale of carrier lines. The Commission's 1968 Carterfone 
decision forbade unreasonable carrier restrictions upon 
the user's freedom to attach or interconnect harmless 
terminal equipment or communications systems, and 
the carriers subsequently made certain changes in their 
tariffs to comply with this ruling.21 As discussed below, 
considerable disagreement remained as to whether the 
carriers went far enough in compliance with Carterfone, 
but the Commission had instituted procedures for 
continued discussion and study of this question, and 
felt that no additional action was required in the 
computer inquiry itself. 
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Concerning sharing and resale of private line channels 
released from the carriers, several things occurred during 
the pendency of the computer inquiry. First, MCI had 
previously proposed to offer sharing in its new private 
line service pending before the Commission. Sensing the 
likelihood of FCC approval of MCl's license applica­
tions (which in fact occurred in August, 1969), and 
perhaps also influenced by the numerous users' requests 
for sharing voiced in the computer inquiry, the Bell 
System in February, 1969 relaxed its tariffs to permit 
sharing ("joint use") of its voice-grade and telegraph­
grade private lines.21 

This relaxation of the prohibition against sharing did 
not apply to channels of greater than voice bandwidth, 
for most broadband channels are leased under the 
Telpak tariff at greatly reduced bulk rates, and sharing 
of such channels raises complex economic questions. 
Telpak has been in litigation during much of its ten-:-year 
history, most recently concerning the reasonableness of 
the carriers' permitting certain classes of customers to 
share, while barring others from doing likewise. In 1970 
the FCC found that this restricted sharing was 
unreasonably discriminatory, and ordered unlimited 
Telpak sharing; after partial reversal by the Court of 
Appeals, the Commission modified its order to require 
only that the unlawful discrimination be removed­
leaving the carriers free to permit unlimited Telpak 
sharing, abolish sharing altogether, or change the whole 
nature of the Telpak service.14 At this wrjting the 
outcome is unclear, but it seems likely that even though 
Telpak as we have known it may cease to exist, competi­
tive pressures will dictate that a bulk-rate private line 
offering of some sort remain. 

Provision of data processing services by communications 
carriers 

The most significant results of the FCC Inquiry were 
with respect to the very controversial issues of market 
entry and industry structure in the computer services 
and communications fields. This has two aspects. First, 
as communications common carriers began to enter the 
computer and information services field in the mid-60s, 
the FCC realized that it must face questions of possible 
unfair competition. Should the carriers be permitted to 
engage in data processing service activities; and if so, 
under what ground rules? On the other side of the fence, 
unregulated firms in the computer services industry had 
expressed their desire to offer computer-based store-and­
forward message switching services, both on a stand­
alone "pure" basis and also as a "hybrid" system 
combined· with various data processing functions. All 
such attempts were rebuffed by the carriers-to whom 

message switching is merely another form of communi­
cation service, long regarded as an exclusive common 
carrier activity. Perhaps, the Commission speculated, 
this policy should be modified in light of today's 
changing technology. 

There are several frameworks within which one might 
consider common carrier participation in the data 
processing services area. The first of these, and perhaps 
the most obvious, is simply that they be permitted to 
enter without restriction of any sort. This assumes that 
data processing services will remain an unregulated 
activity-which, as discussed above, is the way the 
FCC has left the matter. The common carriers would 
then be (1) offering both a regulated monopoly com­
munication service and an unregulated highly-competi­
tive data processing service, and (2) using common 
plant and personnel, at least to some degree, because of 
the economies that would be realized in that way. * Both 
factors would lead to problems of cost separation and 
allocation. 

The FCC and the state public utility commissions in 
the U.S. establish rate and profit ceilings for common 
carrier services. This is done by setting rates for 
communications services at a level which will permit the 
carrier to recover his operating costs for the service, and 
earn a profit equal to a fixed percentage or percentage 
range (established by the regulatory commission) of his 
plant investment, or "rate base," associated with the 
service. This approach, called "rate base regulation," 
encourages the carrier to capitalize as many of his costs 
as possible, so as to increase the size of the rate base. 

For the competitive (unregulated) data processing 
service, on the other hand, the carrier's incentive is to 
minimize the cost charged to that service. One then sees 
the immediate possibility for an intentional or covert 
type of cross-subsidization in which certain costs 
properly attributable to the data processing service 
would, in fact, be charged to the communications 
service-forcing the communications user, who has no 
choice in the matter, to bear a portion of the carrier's 
cost of entry into the data services market. The 
avoidance of this problem would require stringent cost 
separation techniques, and would require allocation of 
joint costs in the case of common use of facilities or 
personnel. These might be possible to accomplish, but 
only with some difficulty and with certain questions 
remaining. 

* There is disagreement as to the importance of any economies 
which might be achieved by using common facilities for both 
communications and data processing services.29 Western Union 
has urged that it be permitted to utilize off-peak capacity in its 
switching computers for data processing services, but some 
observers have estimated that any savings from such a practice 
would have a negligible effect upon WU's overall costs. 3 



One possible solution which had been proposed21 

would be to require that a common carrier offering data 
processing services do so under the framework of a 
separate corporate subsidiary which would not share 
resources with the carrier, thereby avoiding many of the 
cost separation problems. To avoid cross-subsidization 
from one service to another, the data processing 
subsidiary would be charged full price for the communi­
cation lines that it might require for a multi-access 
service, the same as any other user would pay. This 
would eliminate some of the potential problems of 
cross-subsidization. However, an additional form of 
cross-subsidization could occur if the parent corporation 
were buying data processing services (either machine 
time rental, or programming and consulting services) 
from the subsidiary. Intentional over-charging of the 
common carrier for these services would be just another 
way of the subsidiary's receiving undeserved revenue 
from the carrier's communications customers. To pre­
vent this from occurring, the carrier could be barred 
from obtaining data processing service from its affiliate. 

In its final decision in the computer inquiry, the FCC 
accepted these proposals, and adopted rules providing 
that "common carriers desiring to provide data pro­
cessing services [can] do so only through affiliates 
utilizing separate books of account, separate officers, 
separate operating personnel, and separate equipment 
and facilities devoted exclusively to the rendition of 
data processing services." The Commission also pro­
hibited the data processing affiliate from using the 
carrier's name and barred the carrier from obtaining 
any data processing services from the affiliate. 12 (Small 
carriers with annual revenues of less than one million 
dollars were exempted from these prohibitions.) Several 
independent telephone companies appealed this decision 
to the courts, and other parties petitioned the FCC for 
reconsideration. Pending disposition of these matters, 
the U.S. Court of Appeals stayed the effectiveness of the 
FCC's order. At the time of this writing, no further 
action has been taken, so the outcome remains unclear. 
The Commission has shown no inclination to sub­
stantially change its order, however, and it appears 
doubtful that the carriers will be able to convince the 
court that the Commission acted in an "arbitrary and 
capricious" manner-which would be necessary in order 
for their appeal to succeed. The likelihood thus is that 
the thrust of the 1971 order requiring complete separa­
tion of common carrier communications and data 
processing activities will remain. 

Hybrid message-switching services 

The second aspect of the market entry question 
studied in the FCC Inquiry regarding computer and 
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communication services concerns those services which 
combine both data processing and communications 
(message-switching) functions in a single "hybrid" 
package. Should the provision of such computer-based 
services be treated as a common carrier undertaking and 
regulated accordingly, or would regulatory forbearance 
be more appropriate? 

Message-switching is a relatively old communications 
concept. Most readers are familiar with the old punched 
paper tape reperforator systems sold by AT&T and 
Western Union. Western Union's Public Message 
Service (the common telegram) also uses a paper tape 
reperforator network. The only thing new in the 
message-switching concept is the fact that we are now 
using general-purpose digital computers to perform the 
switching function, and these same computers may also 
perform data processing functions-yielding a hybrid 
remote-access system which offers both communications 
and data processing services to its users. Since the FCC 
decided in the Inquiry that data processing services 
would not be regulated, whether using communications 
lines or not, and since the Commission considered and 
rejected the possibility that it might "de-regulate" pure 
message-switching services, how should the in-between 
hybrid service be treated? 

One possibility was that the entire hybrid service 
could be exempted from regulation, even where it is 
oriented essentially to satisfying communications 
(message-switching) requirements of the subscriber. 
Some of the parties in the Inquiry suggested this course 
on the grounds that to do otherwise might retard the 
development of valuable hybrid services-which the 
carriers might not choose to offer, if given an exclusive 
monopoly in this area-and also that such computer­
based services had few, if any, of the characteristics of 
traditional common carrier undertakings requiring 
government regulation (natural monopoly, need to make 
service widely available to the public, etc.). Rather, the 
argument ran, the hybrid service would flourish best in 
an unregulated competitive environment, regardless of 
the mix of data processing and communications features 
it might exhibit. The FCC rejected this argument, for 
two reasons: (1) it felt that there was a real question 
whether it had the authority under the Communications 
Act to decline to regulate a public communications 
service after Congress has decided that all such services 
are subject to regulation, and (2) it concluded that, 
based on the record in the Inquiry, those hybrid services 
which are "essentially communications"· in nature 
"warrant appropriate regulatory treatment as common 
carrier services under the Act."12 The Commission did 
not explain how it reached this latter conclusion, but one 
might assume that it did so merely because the pro­
ponents of change failed to convince it that the 
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traditional regulatory treatment of communications 
services was inappropriate in this case. 

On the other extreme, some of the common carrier 
respondents in the Inquiry urged that the Commission 
is obligated by law to regulate the hybrid service insofar 
as it contains a communication component. This view 
was rejected as well, for the Commission felt that the 
imposition of regulatory constraints on what is 
essentially a data processing service, just because it 
contained some incidental communications elements, 
would inhibit flexibility in the development of such 
services and would be contrary to the public interest. 
Furthermore, the Commission held that it has discre­
tionary latitude "to refrain from subjecting a marginal 
activity to [its] regulatory process where it is clear that 
the public interest will be served by such a course."12 

Having rejected both extremes-to regulate or to 
decline to regulate all hybrid services, regardless of their 
primary orientation or purpose-the FCC adopted a 
middle position calling for regulation of only those 
hybrid services which are essentially communications­
oriented and in which data processing plays just an 
incidental part. This approach is unfortunately much 
more difficult to administer, and requires a case-by-case 
examination of each service to determine on which side 
of the line it falls. Perhaps even more important, the 
dividing line itself must be clearly defined by the 
Commission, in order to provide advance guidance to 
the entrepreneur and system designer and to avoid 
endless litigation. 

The Commission made an attempt to define a clear 
line between regulated and unregulated hybrid systems, 
but it is questionable whether this guidance will suffice. 
First it said that, 

"where message-switching is offered as an inte­
gral part of and as an incidental feature of a 
package offering that is primarily data pro­
cessing, there will be total regulatory forbearance 
with respect to the entire service whether offered 
by a common carrier or non-common carrier, 
except to the extent that common carriers offering 
such a hybrid service will do so through [separate] 
affiliates . ... If, on the other hand, the package 
offering is oriented essentially to satisfy the 
communications or message-switching require­
ments of the subscriber, and the data processing 
feature or function is an integral part of and 
incidental to message-switching, the entire service 
will be treated as a communications service for 
hire, whether offered by a common carrier or a 
non-common carrier and will be subject to regula­
tion under the Communications Act."Il (emphasis 
added.) 

Two tests were given to help apply this criterion: 

(1) Does the service, by virtue of its message­
switching capability, have the attributes of the 
point-to-point services offered by conventional com­
munications carriers, and is it basically a substitute 
therefor? It so, this suggests that regulation may be 
applicable. 

(2) Does the message-switching feature of the 
service facilitate or relate to the data processing 
component, or are the two components essentially 
independent? 

In order to avoid regulation, the message-switching 
feature must be not only secondary in importance as 
compared with the data processing aspect of the service, 
but also the two must be closely related to one another. 
If the two components are functionally independent of 
one another (although perhaps performed on the same 
computer), the FCC's staff has indicated that it would 
regulate the entire service-regardless of the pre­
ponderance of the data processing element. 

Considering this second test, it is interesting to note 
a certain circularity in the Commission's reasoning. If a 
firm desires to offer the public a hybrid service having 
essentially unrelated data processing and message­
switching components, this test would require that the 
service be offered only on a regulated common-carrier 
basis. The firm could perhaps convince the FCC to 
grant it a certificate of public convenience, interest, and 
necessity so that it could do business as a common 
carrier, but then it would encounter another snag. As a 
common carrier, the firm (if it or its corporate affiliates 
had annual revenues of $1 million or more) would be 
barred from offering data processing services except 
through a wholly separate affiliate. Therefore, the 
proposed hybrid service could never be offered-the new 
carrier could not provide data processing, its unregu­
lated affiliate could not provide communications service, 
and the two could not collaborate in a joint "package" 
offering. If this is the result the Commission really 
intended, it would have been better for it simply to have 
stated that a hybrid service can be offered only when the 
two components are closely related and integral to one 
another-and that the service will then be regulated or 
not depending upon which component is preponderant. 

We should also note, however, that the FCC will 
undoubtedly apply a de minimis rule, which will as a 
practical matter exempt from regulatory control those 
systems having a non-integrally-related communications 
element which theoretically makes them subject to 
regulation, but which is just too small or insignificant 
for the Commission to worry about. The chances of such 
a system escaping the regulatory net are probably 



greater where the system operator attaches little 
importance to the communications-for-communica­
tions' -sake capability of his system, in his promotional 
literature, advertising, and so forth. Thus, a remote­
access computer service in which the central processor 
spent 99 percent of its useful time doing data processing 
and 1 percent of its time doing unrelated message­
switching for system subscribers could probably be 
offered to the public by a private firm without FCC 
objection, but if the supplier placed a promotional 
emphasis on the communications aspect of the system it 
would become more likely that the common carrier 
providing communication circuits for the system would 
object and the FCC would be forced to rule on the case. 

The FCC has emphasized that it considers the whole 
field of hybrid systems as being in its infancy, and that 
it (the Commission) will not hesitate to modify its rules 
regarding such systems as they mature and perhaps 
require different treatment. For this reason, we should 
not regard the above-stated guidelines as forever frozen 
in concrete, but it is still appropriate to consider 
whether their effect will be beneficial or detrimental in 
the near future. 

Perhaps the most serious shortcoming of these rules is 
their vagueness. Just what is "integral" and "inci­
dental," and what is not? How does one determine 
which component is the dog and which the tail in a 
hybrid system containing large doses of both data 
processing and message switching? As a procedural 
matter, can a system designer obtain a definIte FCC 
ruling in advance (or, indeed, would he want to disclose 
his plans and thus forewarn his competitors?), or must 
he risk his capital by building the system and hoping 
that he does not encounter regulatory difficulties at a 
later date? 

The above guidelines regarding hybrid systems were 
tentatively established by the FCC in 1970 and 
finalized in 1971. Since then there have been no formal 
FCC proceedings involving hybrid systems, and few, 
if any, informal requests to the Commission's staff for 
advice or opinion concerning a specific proposed system 
or service. Yet the author is personally aware of at least 
two instances since 1970 in which data processing­
oriented firms have contemplated implementing hybrid 
computer-communications services and have backed 
away because of the regulatory uncertainty involved. 
One can only wonder how many other innovative new 
hybrid services have been stopped before they began by 
the same uncertainity. Since the investment required to 
implement a sophisticated remote-access system is high, 
and the time delay and cost involved in an adjudicatory 
proceeding at the FCC is substantial (often consuming 
several years and several hundred thousand dollars), it 
is easy to see why the entrepreneur is hesitant to go 
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ahead without knowing what lies in store for him. And 
this hesitation is especially true with respect to the 
smaller firms in the computer services industry, from 
whom might otherwise come some of the most innova­
tive and socially-desirable computer communication 
serVIces. 

In summary, the FCC has addressed a broad set of 
issues in its Inquiry into the interrelationship of 
computers and communications. Its initiation of this 
Inquiry was a very farsighted approach to policy 
determination in an era of new and rapidly changing 
technology, and the outcome was in general quite 
beneficial to the computer communications community. 
The Commission could have taken some positive steps 
in the Inquiry to help insure the availability of adequate 
data transmission services and facilities, but this failure 
to act seems less serious than the inadequate 
"resolution" of the question of the regulatory status of 
hybrid computer-communications services. Hopefully, 
additional steps will be taken in the coming years to 
remove the uncertainty presently surrounding such 
services and to encourage the development in a competi­
tive market of creative new services of this kind. 

INTERCONNECTION 

One of the regulatory policy issues which has gener­
ated considerable discussion in the past half-decade 
concerns the interconnection to the telephone network 
of privately-owned terminal devices and communication 
systems. Historically, the telephone companies have 
generally prohibited such interconnection by their 
subscribers, which might jeopardize the telephone net­
work if uncontrolled and almost certainly would cut 
into carrier equipment-rental revenues. Until recent 
years the carriers' well-developed arguments of potential 
harm have been accepted without question by the FCC 
and the various state utility commissions, which per­
mitted the carriers to build a seemingly-impregnable 
wall around the telephone network; but starting in 1956 
the wall began to crumble. 

A decade before the famous Carterfone ruling, the 
legality of the carriers' blanket foreign attachment/ 
interconnection prohibition was tested before the U.S. 
Court of Appeals, in Hush-a-Phone Corporation v. 
United States, 238 F.2d 266 (D.C. Cir. 1956). This case 
concerned a cuplike rubber device designed to be 
attached to the microphone portion of the telephone 
handset to provide privacy in conversation; its use on 
the dial network had been barred by the foreign 
attachments rule. Reviewing the tariff in question, 
a prior version of the AT&T interstate toll telephone 
tariff, the court found it illegal and held specifically that 
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this ban was" ... an unwarranted interference with the 
telephone subscriber's right to use his telephone in ways 
which are privately beneficial without being publicly 
detrimental." AT&T was ordered to revise its tariff to 
permit use of the Hush-a-Phone device, and did so-but 
retained the general foreign attachment prohibition in 
the tariff. Three years later the Carterfone struggle 
began. 

The Carterfone case 

The Carterfone is an acoustic/inductive device for 
interconnection of the base station of a mobile radio 
system (or other private communication system) with 
the dial telephone network. The Carter Electronics 
Corporation of Dallas, Texas, which developed the 
Carterfone, sold approximately 3,500 of these devices in 
the United States and overseas between 1959 and 1966. 
The Bell System and the General Telephone System 
warned Carter's customers that their tariffs prohibited 
devices such as the Carterfone on the telephone network, 
and that customers who violated these tariff provisions 
risked having their telephone service terminated. 
Finally, in 1966, Carter brought an antitrust suit against 
the Bell System and the General Telephone Company of 
the Southwest. The U.S. District Court in Texas referred 
the case to the Federal Communications Commission 
because the Commission has primary jurisdiction in 
interstate communications matters. 

AT&T and GTE argued before the FCC that use of 
the Carterfone violated their tariffs, and presented 
several technical arguments to support their position 
that the integrity of the telephone system necessitated 
the use of only carrier-supplied attachments, whether 
acoustically coupled or directly wired to the telephone 
network. 21 The FCC was unpersuaded by the telephone 
companies' arguments and, in a unanimous opinion 
issued in June,1968, found that the tariff restrictions 
"are, and have since their inception been, unreasonable, 
unlawful, and unreasonably discriminatory under the 
Communications Act of 1934." The Commission further 
concluded: 

,c ••• a customer desiring to use an interconnecting 
device to improve the utility to him of both the 
telephone system and a private radio system 
should be able to do so, so long as the interconnec­
tion does not adversely affect the telephone com­
pany's operations or the telephone system's utility 
for others. A tariff which prevents this is unreason­
able; it is also unduly discriminatory where, as 
here, the telephone company's own intercon­
necting equipment is approved for use. The vice of 

the present tariff . .. is that it prohibits the use of 
harmless, as well as harmful devices." 

*** 
"In view of the unlawfulness of the tariff, there 
would be no point in declaring it invalid as 
applied to the Carterfone and permitting it to 
continue in operation as to other interconnection 
devices. This would also put a clearly improper 
burden upon the manufacturers and users of other 
devices. The appropriate remedy is to strike the 
tariff and permit the carriers, if they so desire, to 
propose new tariffs which will protect the tele­
phone system against harmful devices, and they 
may specify technical standards if they wish. "15 

The carriers initially responded to Carterfone by 
seeking FCC reconsideration; however, this was not 
granted. AT&T and GTE then filed for judicial review 
but, realizing this was fruitless, shortly withdrew their 
appeals and began to revise their interstate tariffs to 
conform with the FCC's decision. 

Tariff revisions following Carterfone 

The revised tariffs permitted the attachment of 
customer-provided devices, such as data modems, to the 
dial telephone network; they also permitted the inter­
connection of customer-provided communication sys­
tems, such as private branch exchange (PBX) 
switchboards, to both the dial telephone network and to 
"private line" channels leased from the carriers. Three 
new restrictions were imposed, however: 

(1) The tariffs require that the power and spectral 
energy distribution of signals entering the switched 
network from interconnected customer equipment stay 
within prescribed limits. These criteria are intended to 
protect network services from excessive noise, intelligi­
ble crosstalk, and other forms of interference as well as 
to minimize circuit interruption, disconnections, im­
proper billing, and voltages which might be hazardous to 
line maintenance personnel. 

(2) A "protective connecting arrangement" supplied 
by the telephone company, for several dollars per month, 
is required where customer-provided devices or systems 
are interconnected to the dial telephone network. This 
coupler, called a data access arrangement (DAA) or 
voice access arrangement (V AA), effectively isolates the 
line from hazardous voltages potentially generated by 
customer attachments, and ensures that proper signal 
levels are not exceeded. 

(3) The tariffs require that telephone-company-sup-
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plied equipment perform all "network control signaling" 
functions on the dial telephone network, such as dialing 
and hook switch connect/disconnect. An exception to 
this rule became effective in 1971, to permit the use of 
customer-owned Touch-Tone dialing units (but not 
conventional rotary dials). This requirement is intended 
to prevent improper network signaling which may result 
in frequent wrong numbers, improper billing, and wasted 
maintenance and administrative effort. 

The N AS report 

Many users and potential suppliers of telephone 
equipment objected to the new tariffs filed by AT&T, on 
the grounds that they are still too restrictive by 
requiring both telephone company-supplied protective 
couplers and rotary dial equipment, and did not reflect 
the spirit of the Carterfone decision. In response to these 
objections, the FCC initiated informal engineering and 
technical conferences to assist in resolving questions 
raised by the tariff revisions and to ascertain the 
desirability and feasibility of further tariff changes. The 
informal conferences were conducted under the impartial 
auspices of a panel appointed by the Computer Sciences 
and Engineering Board of the National Academy of 
Sciences. The panel reported its findings in mid-1970.26 

The National Academy of Sciences (N AS) panel 
reached the following conclusions: 

(1) Uncontrolled interconnection can cause harm to 
personnel, network performance, and property. 

(2) The use of protective couplers and signal level 
criteria is an acceptable way of assuring network 
protection; however, the added equipment reduces 
overall reliability while increasing costs. 

(3) A program of standards and enforced certification 
of equipment would be another acceptable way of 
assuring network protection. This would increase the 
opportunities for innovation by users, without signifi­
cantly impeding innovation by carriers. According to 
the panel, an equipment manufacturer could not be 
relied upon to certify its own equipment, thus requiring 
certification by an independent organization or govern­
ment agency. The panel further concluded that 
equipment certification alone is inadequate; licensing of 
installation and maintenance personnel would also be 
required. 

In essence, the NAS panel concluded that either of 
two approaches could assure a satisfactory degree of 
network protection: 

(1) The use of protective connecting devices supplied 
by the telephone companies; or 

(2) A program of standardization and properly 
enforced certification of equipment, plus licensing of 
installation and maintenance personnel. 

A subsequent report to the FCC, prepared by 
Dittberner Associates, a Washington-based firm of 
data communications consultants, concluded that man­
ufacturers of data modems and other sorts of intercon­
nected customer equipment could easily build into their 
equipment the necessary circuitry to protect the 
telephone network.4 It further found that the carriers 
need not have the exclusive right to provide network 
protective couplers. The report also concluded that a 
program of standards and certification of installation 
and maintenance organi.zations (rather than licensing of 
individual persons) would be an inexpensive way to 
extend interconnection privileges without harm to the 
common carrier network. 

Recent interconnection developments 

Both the NAS and Dittberner reports to the FCC 
concluded that safe and reliable interconnection of 
subscriber equipment could be accomplished without 
need for the onerous carrier-supplied access arrangement 
or coupler. The FCC had received many complaints 
frornusers and equipment manufacturers that the access 
arrangement represented a serious burden upon them~ 
long delays were often encountered in obtaining a unit, 
once installed it sometimes degraded the signals passing 
through it, Bell kept changing its interface specifications, 
the device was grossly overpriced, etc.-and the 
Commission was eager to begin to implement an 
alternative program of equipment standards and certifi­
cation. To get its feet wet, the Commission chose the 
private branch exchange (PBX) area for initial con­
sideration, with the hope that experience gained there 
could soon be transferred to other interconnection areas 
(such as data communications) as well. 

In March, 1971 the Commission established a PBX 
industry advisory committee with some thirty members 
representing carriers, equipment manufacturers, and 
users, and charged it with making recommendations 
concerning standards applicable to customer-provided 
PBX equipment. The PBX advisory committee intially 
proposed that the FCC establish a permanent Inter­
connect Board to oversee standards-making, equipment 
testing and certification, and other administrative 
aspects of an expanded interconnection program. This 
plan was criticized as being overly complex and 
bureaucratically cumbersome, and also several of the 
state utility commissions objected to Federal control of 
standards for installation, maintenance, or inspection of 
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customer-owned equipment, or the licensing of inspec­
tors for such equipment-feeling these to be matters of 
primarily local concern. NARUC, the national associa­
tion of state regulatory commissioners, proposed the 
establishment of a federal-state joint board to provide 
policy guidance in interconnection matters; the FCC 
agreed to this proposal and promised to refer to the 
joint board for its consideration the final recommenda­
tions of the PBX advisory committee. Meanwhile, the 
PBX committee continued to explore feasible technical 
standards and less complex procedural machinery which 
might be established, and set April 1, 1972 as a target 
date for completion of the first phase of its final report. 

At the time of this writing there is optimism that the, 
FCC's PBX industry advisory committee will make 
significant headway in developing a workable inter­
connection program which will give maximum freedom 
to the PBX manufacturer and user without compromis­
ing the security of the telephone network. Such a 
program, if successful, can then serve as a model for 
other types of interconnection, such as data communica­
tions equipment. Unfortunately, the state commissions 
appear to represent a potentially significant obstacle to 
the liberalization of interconnection regulations. Com­
menting on the PBX advisory committee's equipment 
certification concept, NARUC expressed its traditional 
populist bias and said, "The liberalized interconnection 
of customer-provided PBX equipment will benefit a 
very affluent class of users by reducing their communica­
tion costs and, further, will benefit unregulated 
manufacturers of PBX equipment. by increasing their 
profits." Perhaps NARUC should consider that 
communications represents a major part of the cost of 
doing business today, and when that cost is reduced, 
everyone benefits-the consumer as well as the 
corporation which sells to him. Also worth noting are 
AT&T's own admissions that the increased competition 
in communications-primarily through interconnection 
and the advent of specialized common carriers-has 
been good for Bell and good for the public.28 

The changes brought on by Carterfone have been 
truly revolutionary, both in terms of creation of a new 
"interconnect" equipment industry and stimulation of 
innovation and lower costs in data communications 
hardware. It is estimated that nearly 200 firms have 
entered the data modem market since the FCC decision, 
bringing with them in many cases technology developed 
for defense and aerospace applications which previously 
had no commercial outlet. A wide variety of new, 
improved, and less expensive products have been 
introduced. Data terminal and multiplex manufacturers 
can now reduce overall system costs by incorporating 
modems (which they can manufacture themselves or 

obtain in the OEM market) directly into their 
equipment.21 

The carriers have responded to this new competition 
by developing new products and cutting prices-much 
to the benefit of data communications users. For 
example, the "standard" low-speed modem has been 
Bell's series 103 data set, which has originate/answer 
capability (although many users operate in an originate­
only mode) and rents for approximately $25 per month. 
When independent suppliers began to offer originate­
only units for a small fraction of that price, Bell 
responded by introducing the 113 data set-originate­
only, for roughly half the 103 price. Interestingly, 103 
units in the field were then "converted" to 113s by 
merely snipping a lead to disable the unneeded "answer" 
capability. In the same vein, Bell in late 1971 announced 
plans to cut rental rates by 35 percent on its medium­
speed series 200 data sets. 

In spite of this vigorous competitive response by the 
telephone company, there is every indication that the 
interconnect industry is just beginning to take off. In 
the first 33 months since January, 1969 when Bell's new 
interconnection tariffs went into effect, Bell installed 
8,100 data access arrangements for customer-owned 
modems-with almost 3,600, or 44 percent, of them put 
into service in the last six months of the period alone. 
The further regulatory changes which will hopefully be 
forthcoming soon through efforts such as those of the 
FCC's PBX advisory committee can only spur this 
growth and make available to more users the benefits of 
competition in the communications equipment industry. 

SPECIALIZED COMMON CARRIERS 

When one mentions "introduction of new competi­
tion" in the common carrier communications arena, 
probably the first thing which comes to mind is 
Carterfone, which introduced competition into the 
terminal equipment portion of the telephone network. 
But equally important for the future of data communi­
cations is a decision by the FCC the year after Carter­
fone, authorizing the first new "specialized carrier" to 
compete with the backbone intercity telephone network 
itself. This new carrier was Microwave Communications, 
Inc. (MCI), which had applied to the FCC in 1963 for 
permission to construct a microwave radio relay system 
between Chicago and St. Louis in order to offer the 
public a variety of dedicated private-line communica­
tions services in direct competition with Bell and 
Western Union. 

MCI argued persuasively before the FCC that the 
established carriers were not adequately meeting all the 



specialized needs of business and data communications 
users and that its proposed services, tailored to these 
needs, would be in the public interest. On the other 
hand, the established carriers contended that FCC 
approval of a competing long-haul carrier would result 
in a wasteful duplication of facilities and would impair 
their ability to achieve maximum economies of scale. 
Furthermore, they said, MCI was just a "cream 
skimmer" trying to reap the profits of a dense high­
traffic route while leaving the established carriers to 
serve the boondocks; if this were permitted it would 
destroy the traditional average-cost pricing system for 
telephone service and force the rates on less dense routes 
to rise. After almost six years of delay, hearings, legal 
briefs, and more delay, the FCC rejected the established 
carriers' arguments and approved the new entrant. 8 

MCI was given construction permits for its 263-mile 
microwave system, and after some further procedural 
delays the company finally constructed its system and 
went on the air as a full-fledged carrier on January 1, 
1972. 

If this were all that happened, there would be little 
cause for more than academic interest among most data 
communications users. But the FCC's approval of MCI 
triggered a flood of over 1900 new microwave-station 
applications by several dozen firms proposing to build 
more than 40,000 miles of new specialized carrier 
communications facilities throughout the country. All 
but one of the applicants (16 of whom are affiliated with 
MCI) proposed MCI-like analog microwave facilities 
which would offer a variety of business-oriented 
private-line communication channels as well as channels 
specifically designed for data transmission. The excep­
tion was the Data Transmission Company, or Datran 
(a subsidiary of University Computing Co.), which 
proposed to build a nationwide all-digital switched 
network to offer exclusively data transmission services 
on both a switched and private-line basis. 

These ~pplications presented the FCC with a major 
policy problem, for the Commission was not sure that its 
MCl precedent should be extended on a nationwide 
basis without further analysis of the effects of such 
widespread competition among carriers. So the Com­
mission in July, 1970 instituted a public inquiry into the 
merits of the specialized carrier concept. As might have 
been anticipated from previous experience in the 
computer inquiry, in which numerous respondents 
complained about the inadequacy of existing carrier 
services for data transmission, the specialized carrier 
inquiry elicited strong support for the MCI and Datran 
concepts from all sectors of the computer industry and 
from data communications users. The established 
carriers, of course; continued to bitterly oppose the new 
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competition. The same issues concerning public need, 
effects upon telephone rate-averaging, and duplication 
of facilities were debated and resolved by the FCC in 
the same manner as it had done in the original MCl case. 
In May, 1971 the Commission issued its decision,13 
permitting virtually free entry of all financially and 
technically qualified applicants for specialized carrier 
service (many of whom had filed for the same routes and 
thus would compete with each other as well as with Bell 
and Western Union), subject only to resolution of any 
radio-frequency interference with existing microwave 
systems. 

At the time of this writing a second specialized 
carrier has been granted construction permits by the 
FCC, for private-line service between New York City 
and Washington, D.C., and other systems will be cleared 
shortly. By the end of 1973 MCI-type specialized 
carrier systems could be operational throughout the 
country, and by the end of 1974 Datran could have its 
digital network on the air. It is inevitable that as the 
various specialized carriers construct their regional 
microwave systems they will interconnect with each 
other in order to offer through service between different 
parts of the country, and thus a nationwide "second 
network" will come into being to compete with the 
telephone network. In addition to the microwave relay 
facilities which will form the backbone of this new 
network (just as microwave is the backbone of today's 
long distance telephone network), other types of 
communications facilities may also be used; domestic 
satellites may provide economical long-haul trunk 
circuits (note that two specialized carriers, MCI and 
Western Tele-Communications, Inc., have applied for 
permission to operate domestic satellite systems) and 
two-way CATV systems may be used for local distribu­
tion to subscribers in urban areas. 

In terms of impact upon data communications, the 
advent of the specialized carrier will bring with it a 
number of important and generally beneficial results: 

• New data communication services (many different 
channel sizes, rapid-connect switched service, etc.). 

• Lower error rates in data transmission. 
• Specialized carrier rates considerably lower than 

today's telephone rates for equivalent service. 
• Modification of certain telephone rate structures, 

as a response to the new competition. 

• More rapid introduction of new technology (e.g., 
advanced digital microwave and solid-state switch­
ing) by the new and old carriers alike. 

• More responsiveness by the telephone companies to 
the needs of data communications users. 
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• Ability of the FCC to use the new carriers as a 
yardstick to measure the performance of Bell and 
the other telephone companies. 

The degree to which the individual user will be affected 
by or able to take advantage of these results will 
obviously vary widely depending upon individual 
circumstances, but it is safe to predict that the overall 
impact of the specialized carriers will be substantial. 

Due to limitations of space this has been a necessarily 
brief and superficial overview of a rather involved 
subject. The reader interested in a comprehensive 
discussion of the specialized carrier concept, specific 
features of the MCI and Datran systems, policy 
considerations, and outlook for the future is referred to 
recent papers by the author in References 30 and 31. 

DOMESTIC SATELLITES AND CABLE 
TELEVISION 

During the past several years the FCC has taken 
action to open the communications market to the 
entrance of new competitors and to make available new 
services to the public in two important areas: domestic 
communications satellites and cable television (CATV). 
Both of these developments hold great potential 
significance for data communications. 

Domestic communications satellites 

The world's first satellite, Sputnik I, was launched 
fifteen years ago. Congress formed the Communications 
Satellite Corporation (COMSAT) ten years ago, to 
serve as the U.S. agent in establishing and operating an 
international communications satellite network. The 
first operational satellite in this international network 
was launched seven years ago, and in the same year the 
first of many proposals was made to establish a domestic 
communications satellite network for the U.S. Today. 
Russia has such a network (albeit with random-orbiting 
rather than synchronous satellites). Canada will launch 
its first domestic satellite later this year and other 
nations are also moving toward a similar goal. Still the 
U.S. does not have a domestic satellite system or even 
approved plans to build one. At last, however, it 
appears that one or more firms will be given FCC 
approval to establish such a system or systems in this 
country. 

The economic benefits of a domestic communications 

satellite system were appreciated years ago, * and the 
technology to implement such a system has also been 
available for five years or more-for a domestic system 
would use essentially the same sort of geostationary 
synchronous satellite which INTELSAT has been using 
in its international ne.twork since 1965 (quantum 
improvements in system performance, cost, and channel 
capacity have been made since 1965, and several new 
generations of satellites have appeared, but the concept 
has remained unchanged). The stumbling block which 
has kept the U.S. from taking advantage of this 
technology has been a series of unresolved fundamental 
policy questions such as whether there should be only 
one or more than one domestic system, who should be 
permitted to operate such system(s), whether the 
satellite operator should sell service directly to the public 
or through the established terrestrial carriers (such as 
COMSAT does in the international arena), and other 
issues. 

After the American Broadcasting Company submitted 
to the FCC in 1965 a semi-serious proposal to build a 
domestic satellite system for low-cost television distri­
bution, the Commission opened an inquiry on this 
subject and invited comments and counter-proposals. 
Several alternative satellite proposals were promptly 
submitted by other organizations, and considerable 
public interest was generated. The FCC began its 
deliberations and for a while it looked as if we would 
have a satellite system in operation by 1970 or 1971. But 
then the Commission's decision-making process ground 
to a halt for more than a year while President Johnson's 
Task Force on Communications Policy studied the 
issues in late 1967 and 1968. The Task Force eventually 
recommended approval of a single "pilot" program to be 
run by COMSAT,27 much as COMSAT had proposed in 
1967 (see Figure 1), and the FCC-predisposed in this 
direction anyway-began to move once more toward a 
decision along these lines. 

But President Nixon took office a few weeks after the 
Task Force report was received, and before the FCC 
had time to act the White House requested another 
delay so that the President's staff could study the issues 
anew. This study was directed by Dr. Clay T. ("Tom") 
Whitehead-a White House staff assistant who was 

* For the data communications user, these benefits include a 
distance-independent cost structure, with circuit costs only a 
fraction of corresponding terrestrial microwave or cable costs for 
long-haul circuits-those over a thousand or so miles in length; 
a potential wide variety of channel bandwidths and data trans­
mission capacities; lower error rates than frequently experienced 
on long terrestrial circuits; and relatively easy and economical 
access to remote areas of the country which may lack adequate 
terrestrial transmission facilities. 



1957 Sputnik I launched by USSR-the world's 
first satellite. 

1962 Congress passes Communications Satellite 
Act, providing for establishment of a new 
privately-owned corporation, Communica­
tions Satellite Corporation (COMSAT), to 
serve as the U.S. entity in international 
satellite communications. 

1963 Syncom launched by NASA-the first geo­
stationary synchronous satellite. 

1964 International Telecommunications Satellite 
Consortium (INTELSAT) formed to create 
international satellite communications net­
work. 

1965 Early Bird launched-the first commercial 
communications satellite and the beginning 
of the INTELSAT network. 

1965 American Broadcasting Co. submits proposal 
to FCC for a domestic TV-distribution 
satellite. 

1966 FCC opens inquiry on domestic satellites, and 
asks broad policy questions regarding estab­
lishment of systems by non-government 
entities. 

1966 Ford Foundation submits counter-proposal 
for a multi-purpose domestic satellite, with 
profits to be used to support educational 
television. 

1966 COMSAT proposes a multi-purpose domestic 
satellite, to be operated by COMSAT as a 
"direct-to-end-user" carrier (not a "carrier's 
carrier," as COMSAT operates internation­
ally). Four other organizations also propose 
satellite systems. 

March 1967 COMSAT proposes "pilot demonstration 
program," with two satellites to be operated 
by COM SAT as trustee until FCC decides 
ownership issue. 

August 1967 President Johnson appoints Task Force on 
Communications Policy to study domestic 
satellites and other issues; FCC suspends 
action in its domestic satellite inquiry pending 
receipt of Task Force recommendations. 

December 1968 President's Task Force submits report recom­
mending approval of a single "pilot" domestic 
satellite program, with COMSAT having 
primary responsibility. 

February 1969 General Electric Co. proposes domestic 
satellite concept using time-division multiple 
access (TDMA) techniques to provide new 
and expanded services. 

July 1969 As FCC prepares to approve a pilot domestic 
system substantially as recommended by 
President Johnson's Task Force, the White 
House requests a delay until President 
Nixon's staff can study the matter and submit 
recommendations. 

January 1970 White House sends memo to FCC urging 
approval of all financially and technically 
qualified applicants for common carrier or 
private domestic satellite systems-instead of 
single pilot system as contemplated by FCC. 
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March 1970 

March 1971 

May & July 1971 

Fall 1971 

Early 1972 

FCC issues Report and Order in domestic 
satellite inquiry, adopting White House 
recommendation and inviting all interested 
parties to submit domestic satellite proposals. 
Before its deadline, FCC receives eight 
applications for satellite systems. 
FCC receives comments and reply comments 
from the applicants and other interested 
parties regarding the eight applications. 
NASA performs technical evaluation of the 
applications for FCC. 
FCC decision expected. 

Figure 1-Domestic satellite chronology 

later to become the first director of the new Office of 
Telecommunications Policy (OTP) in the Executive 
Office of the President-and came to conclusions quite 
different from those of President Johnson's Task Force 
and the FCC. Rather than supporting the concept of a 
single pilot system to test and demonstrate the work­
ability of domestic satellite communications, which 
would create at least a temporary and perhaps a 
permanent monopoly structure in this new field, the 
White House in January, 1970 recommended to the FCC 
a policy of immediate open entry and free competition. 
In summary, it was urged, 

"Subject to appropriate conditions to preclude 
harmful interference and anti-competitive prac­
tices, any financially qualifi.ed public or private 
entity, including Government corporations, 
should be permitted to establish and operate 
domestic satellite facilities for its own needs; join 
with related entities in common-user, cooperative 
facilities; establish facilities for lease to prospec­
tive users; or establish facilities to be used in 
providing specialized carrier services on a 
competitive basis."16 

Although theoretically the FCC is an independent 
regulatory agency, and need answer only to Congress 
for its policies, in practice it is difficult to ignore such 
direct pressure from the White House. Therefore, 
within three months after receiving these recommenda­
tions the Commission changed course and issued a report 
and order adopting the concept of open entry and free 
competition in domestic satellites.6 Since the satellite 
applications submitted back in 1965-67 were technically 
out-of-date by 1970, the Commission invited the 
submission of new applications by all organizations 
interested in building either common carrier or private 
domestic satellite systems. Before its deadline in early 
1971 the Commission received eight applications for 
satellite systems, all to be used to provide various types 
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Applicant Operational In-orbit Transponders Total no. of Transmit-receive Receive-only 
satellites spares per satellite1 transponders1 earth stations earth stations 

AT&T/COMSAT Corp. 2 1 24 48 5 0 
COMSAT Corp. 2 1 24 48 4 1 
Fairchild Hiller Corp. 1 1 120 120 6 02 

Hughes Aircraft Co./General 2 0 12 24 6 72 

Telephone & Electronics Corp. 
MCI Lockheed Satellite Corp. 1 1 48 48 20 0 
RCA Glob com/ Alascom 13 1 12 123 132 02 

Western Tele-Communications, Inc. 2 0 12 24 42 22 
Western Union Telegraph Co. 2 1 12 24 7 6 

Figure 2-Proposed domestic satellite systems 

1 Each transponder has a capacity of some 900 one-way telephone channels, or one color television channel, or some 35 megabits/sec. 
of time-division multiplexed (TDM) data. 

2 Plans include numerous additional earth stations of this type in the future. 
3 Initial system only. An additional satellite is proposed for later launch, when the first one approaches saturation. 

of common carrier services. Figure 2 lists the applicants 
and gives a rough idea of the size of their proposed 
systems-number of satellites, transponders (the broad­
band microwave communications repeaters aboard the 
satellite), and earth stations. The different applicants 
proposed to offer a wide variety of communications 
services with their systems, including the following:5 

• Augmentation of existing common carrier (AT&T, 
WU, GTE) trunk-capacity, for traditional switched 
and private-line services (voice telephone, data, 
teletype, facsimile, etc.). 

• High-speed data channels at speeds well above the 
maximum available from the carriers today. 

• Multi-destination one-way data channels for the 
distribution of news, educational material, finan­
cial, medical and scientific data. 

• Video channels for studio-to~studio program distri­
bution for the three commercial television networks 
and for CATV operators throughout the nation. 

• Cost reductions of 50 percent and more for 
conventional voice, data, and video private line 
(leased) service. 

• Public interest services such as free or reduced-rate 
video channels for educational television; free 
service to the medical community for improvement 
of health care; and full service to remote areas such 
as the Alaskan bush and the Panama Canal Zone. 

• Intercity Picturephone service. 
• Motion picture distribution service. 
• Electronic mail service, in conjunction with the 

U.S. Postal Service. 
• Lease of circuits or entire transponders to other 

carrIers. 

It is anticipated that the FCC will act on these 
applications in 1972, and will almost certainly approve 
several-if not all-of them. Two to three years 
thereafter, the U.S. will finally have an operational 
domestic satellite network, probably composed of a 
number of firms in hot competition with one another. 
Based on our national experience with industrial 
performance in a wide variety of competitive and 
non-competitive industries, it is reasonable to expect 
this competition to yield significant benefits. In the first 
place, it is unlikely that any single firm which might 
have been chosen to provide domestic satellite service on 
a monopoly basis would offer the wide range of services 
listed above, for several reasons-lack of competitive 
pressures, desire to protect existing terrestrial communi­
cations revenues (if the satellite firm were an established 
carrier), unwillingness to face the risksof introducing so 
many untried new services, lack of capacity of a single 
satellite system, etc. With multiple competing suppliers 
in the marketplace, the rate of innovation will be higher 
and the cost savings due to the new technology will be 
passed on to the user to a greater degree. Of course, if 
the market for domestic satellite service is inadequate to 
support all the competitors, ill effects of "ruinous 
competition" could occur; but it is expected that the 
would-be satellite operators will evaluate this risk 
carefully before undertaking actual system construction 
(and for this reason not all of the systems which the 
FCC might authorize may actually be built-just as 
with the specialized carriers, some of the weaker 
applicants may fall by the wayside). 

In conclusion, it is unfortunate that this country, 
which was responsible for the development of most of 
today's impressive communications satellite technology, 
has had to wait so long to take advantage of it at home. 
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However, the changes in national communications 
policy thinking-from a monopoly environment to free 
competition in domestic satellites-which began to 
occur in 1969 should make our experience with the 
domestic satellite much more meaningful and beneficial. 
So perhaps it is worth waiting for after all. 

Cable television service 

When the data communications user or the designer 
of remote-access computer systems thinks about the 
communications resources at his disposal, he generally 
limits his universe to the various services offered by the 
traditional common carriers-the telephone company 
and Western Union. As we have seen, the new capa­
bilities of specialized carrier systems and of domestic 
communications satellites have come onto the horizon 
in the last several years, and will have a large impact in 
the near future. Many users are at least vaguely aware 
of these developments and eager to begin to reap the 
benefits they hold in store. But few people in the 
computer community have given serious attention to 
yet another new technology and new communications 
sub-industry which has been evolving around us and 
which may eventually have an even larger impact in 
making the power of the computer widely and economi­
cally available throughout our society. This is the field 
of cable television, or CATV (sometimes referred to as 
community antenna television), which began in 1949 in 
the hills of eastern Pennsylvania and Oregon and has 
since spread to over 4000 cities and towns throughout 
the country. 

The early CATV systems were located in isolated 
rural communities and consisted simply of a taJI 
antenna (perhaps mounted atop a nearby hill) to pick 
up broadcast television signals from cities some distance 
away, amplifiers to boost the weak signals, and a coaxial 
cable network to distribute the signals to subscribing 
households in the community. Later, microwave radio 
began to be used to enhance the value of many CATV 
systems, by piping in signals from TV stations so distant 
that they could not be received by even the cable 
system's master antenna. In some isolated communities 
CATV provided the only means of television reception; 
and in other areas it enabled viewers to receive many 
more TV channels than they could by using a home 
antenna. The new medium thus offered a real benefit to 
the consumer and was also beneficial to the broadcaster, 
for it enlarged the size of his audience and thus his 
advertising revenues. But it was not long before cable 
outgrew its small-town beginnings and began to look 
toward the cities where the most dense and lucrative 
concentrations of viewers are located. 

Sometimes a big-city cable system could (and can) 
attract subscribers by merely providing clear ghost-free 
reception of the local TV stations (e.g., in New York 
City, where ghosts are a serious problem for many 
viewers); but generally the cable operators found that 
success in the metropolitan areas depended upon their 
ability to "import" distant signals from other cities-for 
otherwise why would a viewer who already has several 
local channels pay $5.00 or so per month to connect to 
the cable? And, of course, the local over-the-air 
broadcasters were afraid that their previously captive 
audience would be fragmented if the cable system were 
permitted to import attractive distant signals. The 
stage was thus set for a regulatory battIe of major 
proportions. 

After previously declining to regulate cable television 
on the grounds that it was unsure of its jurisdiction 
under the Communications Act of 1934, the FCC 
changed course in 1965 and asserted jurisdiction over 
microwave-fed cable systems. Then in 1966, acting 
under pressure from the broadcasters, the Commission 
asserted jurisdiction over all CATV systems and 
imposed severe restrictions upon the carriage of distant 
signals in the top-l00 television markets [which range 
from New York City (No.1) to places like Fargo-Grand 
Forks-Valley City, N.D. (No. 98) and Monroe, La.-EI 
Dorado, Ark. (No. 99)]. In 1968 the Supreme Court 
affirmed the FCC's assertion of regulatory jurisdiction 
over CATV, and soon thereafter the Commission 
imposed a virtual freeze on new CATV systems in the 
top markets-until the issues could be sorted out and a 
workable means found to open up cable's potential to 
serve the public without at the same time undermining 
the foundation of the existing over-the-air broadcast 
structure. 

The Commission saw in CATV a threefold potential 
contribution toward improving the nation's communica­
tions system: "providing additional diversity of 
programming, serving as a communications outlet for 
many who previously have had little or no chance of 
ownership of or access to the television broadcast 
system, and creating the potential for a host of new 
communications services."7 This third characteristic of 
cable is, of course, the important one for the data 
processing and data communications community and it 
is also the aspect of cable which has caused the most 
speculation about the future nature of the industry. The 
literature is replete with discussions of the "wired city" 
concept, which is based upon the broadband communi­
cations capability of the CATV cable.25 Not only can 
cable provide 20, 40, or more channels of commercial, 
educational, and special-purpose (e.g., weather, stock 
ticker, news wire) television, but also it can provide a 
great variety of computer-oriented services such as 



608 Spring Joint Computer Conference, 1972 

information distribution and retrieval, interactive com­
puting, remote shopping, computer-assisted instruction, 
opinion polling, and many others. In order to provide 
most of these services, CATV systems must have 
two-way transmission capability (for at least low-speed 
data input from the user in his home or office) rather 
than the one-way cable system designs which are almost 
universally used today. Considerable development work 
on two-way cable has been undertaken, and several 
experimental systems are presently in operation1 •19 .24_ 

so the most critical problems today are regulatory and 
economic rather than technical in nature. 

After freezing the growth of cable in the major 
metropolitan centers, and thus gaining a little breathing 
room, the FCC began to explore the policy problems in 
depth. In the fall of 1969 the Commission took an 
important step to further the growth and economic 
viability of cable, and permitted CATV systems to 
originate programming and to sell advertising. The key 
issue of distant signal importation, and a related 
question of compensation for program copyright owners, 
were the subjects of several attempted compromises 
between cable and broadcast interests during the period 
1969-71. Finally in 1971 the FCC announced its 
intention to issue a comprehensive set of rules which 
would permit limited importation of distant signals into 
the major markets, would at the same time provide a 
measure of protection for affected broadcasters, and 
would require that cable systems include substantial 
non-broadcast features-mandatory two-way capabil­
ity, free channels for public access, government and 
educational use, and excess channel capacity to be sold 
on a common carrier basis to all comers.2 •7 In late 1971 
the FCC and OTP engineered a cable/broadcasting 
compromise agreement essentially along these lines, and 
at the time of this writing new FCC rules were expected 
momentarily. 

Some observers feel that the expected FCC rules are 
still overly protective of broadcasters in the top-50 
markets (the rules are less protective in markets 
51-100), and will slow the development of cable in those 
cities. Thus, the Commission may need to liberalize its 
rules in the future after more experience is gained. In 
the meanwhile, at least the 1968 freeze is broken and 
cable can begin to enter the large cities and hopefully to 
fulfill the many promises which have been made about 
its potential. 

The long-range implications of CATV for data 
communications and remote-access computer services 
are enormous. Once high-capacity two-way cable 
systems are operational in the major urban areas they 
will provide cost/effective access to the homes and 
offices of the customers of many of the remote-access 
computer services now on the drawing boards; they will 

provide broadband point-to-point transmission capacity 
for data communications users in the urban area; they 
will provide an additional alternative means of con­
necting specialized intercity microwave carriers with 
their customers in the city; and very likely many of the 
urban CATV systems will eventually be interconnected 
with one another through domestic satellite facilities, 
making possible a nationwide broadband network of 
enormous potential. The cable system already finds 
itself in ever-increasing competition with the broad­
caster; soon it will also compete with the telephone 
company and perhaps with other sorts of communica­
tions entities as well, in providing a wide range of new 
communications services. Having set the stage by 
permitting CATV to compete, the FCC must now face 
the problems of regulating the new competition-setting 
detailed standards for common carrier services on the 
cable, etc.-so that CATV technology will most effec­
tively serve the public. Questions of state regulation33 

and of possible new federal legislation will also be 
important in the coming years as cable matures. 

SUMMARY 

The past five years have witnessed a number of regula­
tory developments which will have a major impact upon 
the future of data communications. The FCC has 
introduced competition into the "interconnect" equip­
ment market and into the long-haul communications 
carrier market, it has invited proposals for competitive 
domestic communications satellite systems from all 
interested parties, and it has cleared the way for cable 
television to enter the large urban areas and to provide a 
variety of new competitive communication services. 
Meanwhile, in its computer inquiry the Commission has 
studied several important computer-communications 
policy issues and has taken action regarding some of 
them, such as attempting to establish a regulatory 
framework for the public offering of hybrid message­
switching services. Each of these developments is 
important in its own right for the benefits it brings to 
data communications; but viewed together they take on 
a larger importance, signaling the beginning of a new 
competitive era in the communications industry-a 
change in regulatory thinking which should benefit all 
members of the computer-communications community. 
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Data communications in 1930-A capital market view 

by ROBERT E. LA BLANC and W. E. HIMSWORTH 

Salomon Brothers 
New York, New York 

INTRODUCTION 

Communications industry revenues presently represent 
approximately 2 percent of the GNP and are growing 
substantially faster than the GNP. The important 
question thus arises as to what capital resources will be 
available to support continued growth in the Seven­
ties-a question of particular interest to the data 
communication user, whose needs are projected to 
expand at an explosive rate. By 1980, this growth 
could occur in any of the following areas: 

• Continued use of the existing analog telephone 
network as well as new data services on the 
Picturephone network; 

• New digital private line facilities offered by the 
existing carriers; 

• Expansion of Western Union facilities and service 
offerings; 

• Domestic satellite systems; 
• Private line and switched facilities of the special 

service common carriers; 
• Possible joint use of data on CATV systems. 

This paper examines the capital resource needs of 
each of the major communications industry segments, 
and then, in the light of the likely expansion of the 
GNP and the consequent expansion of funds available 
from the capital markets, projects what data com­
munication facilities are likely to be available by 1980. 

While it is obviously difficult, if not impossible, to 
accurately project ten years into the future, we hope 
that the estimates made in this paper will provide a 
basic understanding of the problems and opportunities 
confronting the industry in the coming decade. 

CAPITAL REQUIREMENTS TO 1980 

The capital requirements of the communications 
industry for 1971-1980 are developed in this section 
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for each of six market segments. Projections of operating 
revenue and gross plant, based primarily on industry 
expectations, are shown in Table 1. Plant investment 
provides an indication of total financial requirements 
which, in turn, leads to our estimates of capital market 
demands shown in Table II. 

Telephone 

In terms of revenue and capital requirements, the 
telephone companies, and the Bell System in particular, 
have dominated and will continue to dominate the 
communications industry. The present telephone net­
work, including the independents, serves a total of 
about 125 million telephones, which is up from 74 
million in 1960 and 94 million in 1965. Interstate mes­
sages handled per year have increased from 1.0 billion 
in 1960 to 1.6 in 1965 to 2.7 billion by the end of last 
year. Gross plant investment has increased 134 percent 
in the decade of the Sixties, and today stands at over 
$66 bilJion. Annual revenues during the same period 
grew from $7.8 billion to $16.8 billion, or an increase 
of 215 percent. 

In looking ahead to 1980, several factors should 
be kept in mind. AT&T has shown that local telephone 
service growth correlates closely with the growth in 
new family formations, and that demographic statistics 
indicate that with those entering the 18-to-25-year 
marriageable age category in the coming ten years, 
local telephone growth is expected to average 8 percent 
yearly. Toll service revenue, which grew an average of 
11.5 percent yearly in the 1960s, finished the decade 
with growth of 15.2 percent in 1969. In 1970, during the 
economic downturn, network long distance revenues 
grew close to 8 percent for Bell. Interstate telephone 
message volume, excluding WATS, is expected to in­
crease to about 10 billion messages per year by 1980 and 
Bell expects the number of private line circuits to more 
than double. We thus believe that total revenue growth 
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TABLE I-Revenue and Plant Projections 
(Billions of Dollars) 

1960 1965 1970 1975E 1980E 

Operating Revenue 
Bell System $8.1 $11.3 $17.0 $28.0 $40.0 
Independent 1.0 1.7 2.9 4.7 7.3 

Telephone 
CATV 0.0 0.1 0.4 1.0 3.1 
Special Service 0.1 0.8 

Common Carriers 
Western Union 0.3 0.3 0.4 0.8 1.5 
Domestic Satellite 0.2 0.4 

Gross Plant 
Bell System 24.8 36.3 54.8 90.0 130.0 
Independent 4.0 7.0 12.6 21.4 34.8 

Telephone 
CATV 0.1 0.2 0.9 2.6 7.8 
Special Service 0.5 1.5 

Common Carriers 
Western Union 0.3 0.5 0.7 1.5 3.0 
Domestic Satellite 0.6 1.2 

Source: Salomon Brothers' estimates. 

from the telephone sector of communications can be 
reasonably expected to grow at an 8.5 percent to 10 
percent compound rate through 1980. 

Certainly, additional revenues generated by such 
growth areas as data communications and the Picture­
phone network will augment this growth. Bell has fore­
cast growth in data transmission revenues from $500 
million in 1970 to $5 billion in 1980. A Picturephone 
network of from 500,000 to one million terminals can be 
safely assumed for 1980, with data usage estimated at 
25 percent of total network usage. 

The telephone industry has conservatively estimated 
annual revenues approaching $50 billion by 1980. This 
would imply gross plant investment of over $160 
billion in the industry by 1980. Based on our models 
of the industry, we estimate a need for about $63 
billion in outside financing to fund this telephone plant 
investment. This includes roughly $5 billion in 1971, 
which accounted for almost all of the communication 
industry's capital demand. 

CATV 

CATV today serves over 6 million homes in over 
4500 communities. Growth from 650,000 homes in 
1960 and 1.3 million in 1965 has been at an annual rate 
of about 25 percent. With the projected implementation 
of the recent FCC proposals, growth to 25-30 million 

subscribers by 1980 is indicated. Revenues, up from an 
estimated $39 million in 1960 and about $80 million in 
1965, reached $360 million in 1970. We believe revenues 
can reasonably be on the order of $1 billion by 1975 
and $3.1 billion by 1980, reflecting greater channel 
usage and two-way services. Gross plant investment 
from a $900 million level in 1970 should be at about 
the $2.6 billion level in 1975 and $7.8 billion in 1980. 
This will require an estimated $5.7 billion in outside 
financing. 

Special service common carriers 

The special service common carriers, both DATRAN 
and the Mel types, are obviously starting from scratch. 
Construction permits are being issued by the FCC in 
accordance with the broad general policy laid out in 
the final order in Docket 18920. Estimates vary as 
to the impact these carriers will have on the industry. 
Forecasts of 1980 revenues range from $750 million 
(Arthur D. Little) to $2 billion (Frost and Sullivan). 
Taking a conservative approach, an estimated gross 
plant investment of at least $1.5 billion by 1980 and an 
external financing requirement of $1.2 billion is 
indicated. 

W estern Union 

Western Union is rapidly moving to become the 
major provider of computer-enhanced record com-

TABLE II-External Financing Projections 
(Billions of Dollars) 

1971-75 1976-80 Total 

Telephone $28.0 $34.5 $62.5 
CATV 1.4 4.3 5.7 
Special Service Common Carriers .5 .7 1.2 
Western Union .4 .7 1.1 
Domestic Satellite .4 .4 .8 

30.7 40.6 71.3 
Refinancing .5 4.8 5.3 

$31.2 $45.4 $76.8 

Total Est. Annual Requirements 

1975 $ 7.0 
1980 $10.0 

Source: Salomon Brothers' estimates. 



munication in the United States. The concept of pro­
viding a fully integrated family of common user and 
private line message switching services took a giant 
step forward with the cutover in January of this year 
of the first of its Phase II ISCS Centers at Middletown, 
Virginia. This center, with a capacity of over one 
million prime time business messages per year, is 
currently being used to provide a wide variety of data 
communications services. Based on projections of 
growth for these varied services, revenues are likely to 
grow from the current $400 million level to over $1.5 
billion by 1980. Since Western Union's computer­
enhanced communications services provide an in­
herently efficient utilization of transmission and 
message switching facilities, this revenue level can be 
supported with a gross plant investment of only an 
estimated $3 billion, with $1.1 billion of external 
financing required. 

Domestic satellites 

Domestic satellites represent another exciting po­
tential source of facilities for the data communications 
user in 1980. Here, however, it is necessary to realize 
the type of data communications which lend themselves 
feasibly to Domsat carriage. Due to the inherent time 
delay involved in an approximately 45,000-mile earth 
station-to-earth station path, these facilities are not 
really suitable for interactive types of data communi­
cations. Bulk transfer of one-way information, similar 
to the type of electronic mail currently being offered 
by the joint Postal Service/Western Union Mailgram 
service, is ideal, and certainly must be viewed as tech­
nically and economically feasible. Based on a projection 
of three operational systems carrying a variety of 
communications services by 1980, potential revenues of 
$400 million with a gross plant investment in both 
satellite and earth station facilities of about $1.2 billion 
seems reasonable. Taking into account the high de­
preciation rates on the satellites, we estimate that 
$0.8 billion will have to be raised from the capital 
markets. 

Total requirements 

The sum total of our projections shows a demand for 
new external capital of over $71 billion which must be 
raised in the ten-year period from 1971 to 1980. Addi­
tionally, over $5 billion must be raised to refinance 
telephone company bonds that will be maturing in the 
same period. The total capital requirements of the 
communications industry, therefore, exceeds $76 billion. 
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T ABLE III -Capital Market Overview 
(Billions of Dollars) 

1960 1965 191'0 1975E 1980E 

GNP $504 $632 $977 $1300-1450 $1800-2200 

Total Credit & 

Equity 
Market 
Supply 

35 68 92 120-140 

Source: Salomon Brothers' estimates. 

150-200 

This amounts to an annual rate of approximately $7 
billion a year in 1975 and $10 billion in 1980. As shown 
on Table II, the telephone companies will use about 
90 percent of this capital. 

CAPITAL MARKETS THROUGH 1980 

To fully understand the significance of these demands 
by the communications industry on the capital market, 
it is necessary to examine trends in both total money 
supply and demand in competing sectors of the 
economy. 

GNP and net new capital 

The GNP in current dollar terms stood at $504 billion 
in 1960, $632 billion in 1965, and $977 billion in 1970. 
This represents a growth in current dollar terms of 
over 6.8 percent per year. Looking out to 1975 and 1980 
real growth in constant dollar terms of between 3.5 
percent to 4.0 percent is estimated, with inflation of 
3.0 percent to 4.5 percent yearly, yielding a growth in 
current dollar terms of 6.5 percent to 8.5 percent. 
It is estimated that the 1975 GNP will fall in a range 
of $1300 billion to $1450 billion, and the 1980 GNP 
will be between $1800 billion and $2200 billion (Table 
III). 

In the late 1960s the average percent of the GNP 
saved and invested by government, business, and 
individuals ranged between 8.1 percent and 9.9 percent, 
with 9.0 percent as an average. Using the late 1960s as a 
representative model of what is likely to be encountered 
in the 1971-1980 time period, the total supply of debt 
and equity available for funding growth in the U.S. 
economy will likely be between $120 billion and $140 
billion in 1975, and between $150 billion and $200 
billion in 1980. 
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TABLE IV-Selected Demands Segments 

Percent 

1961-65 1966-70 1971E 

Private Mortgages 41.6 26.3 32.3 
Total Corporate 12.4 22.7 23.5 
State & Local 10.8 14.1 16.5 
Federal Agencies 2.5 7.7 2.6 

Sub-total 67.3 70.8 74.9 
All Others 32.7 29.2 25.1 

Source: Salomon Brothers' estimates. 

Market demand 

The total demand for funds can be categorized as 
follows: 

A. Debt 

1. Privately held mortgages 
2. Corporate bonds 
3. State and local securities 
4. Foreign bonds 
5. Business, consumer, and bank loans 
6. Open market paper 
7. Privately held Treasury and Federal Agency 

Securities 

B. Corporate Equity 

1. New cash offerings 
2. Sale of stock options 
3. Conversions of bonds 

Of these categories, total corporate demand, mort­
gages, and certain governmental segments are of 
particular interest. The historic trends for these selected 
demand segments are shown in Table IV. 

In the early 1960s corporations were relatively 
modest demanders of capital. In the 1961-65 period, 
corporate demand represented $35 billion, or 12 percent 
of the total demand for capital. By contrast, privately 
held mortgages consumed $117 billion, or 42 percent, 
of the total available funds. In the 1966-70 timeframe 
a number of factors caused significant changes. The 
credit crunch of 1966 coupled with the many statutory 
limitations on allowable interest that could be charged 
for mortgages caused the mortgage markets to tighten, 
and this sector declined to $105 billion, or 26 percent 
of total available funds. Corporate demands, on the 
other hand, more than doubled to a total of $91 billion, 
or 23 percent of total funds available. In 1971, with the 

"Federalization" of the mortgage market through 
such Federal agencies as FNMA, G NMA, and the Farm 
Home Loan Agency, mortgage demand is estimated 
at $40 billion, or 32 percent of totally available funds. 
Corporate demands, used largely to fund short-term 
liabilities, increased during the recent downturn in the 
economy, remaining relatively high at $29 billion or 
23 percent. 

State and local governments, responding to increasing 
pressure to meet the needs of society, have almost 
doubled their requirements for funds. In the 1961-65 
period demand from this sector totaled $30 billion or 
11 percent of total supply, while in the 1966-70 time­
frame the comparable figures were $56 billion and 14 
percent. For 1971, state and local governments required 
about $20 billion, or 16 percent, and demand from this 
sector is expected to continue to increase. 

Another factor to consider is the growth in Federal 
Agency financing. In the 1961-65 timeframe these 
agencies funded $7 billion of debt-only 3 percent of 
the funds available. By the 1966-70 period total 
Agency demand had increased over four times to $31 
billion or almost 8 percent of the total. The 1971 
Agency demand is estimated at only $3 billion, or 3 
percent. 

CONCLUSIONS 

Financial competition 

Based on the above analysis, projected communica­
tions demands can now be placed in perspective, 
comparing them to the rising demand for corporate 
funds as a whole. In the 1961-65 period the communi­
cations industry required $7 billion in outside financing 
or some 20 percent of all corporate demand. Comparable 
figures for the 1966-70 timeframe were $13 billion and 
14 percent. In both 1970 and 1971, however, annual 
requirements exceeded $5 billion and accounted for 
17 -18 percent. 

T ABLE V-Communications Financing Demand 
(Billions of Dollars) 

1961-65 1966-70 1971 1971-75 1976-80 

Total Communi- $7.0 
cations 

Percent Total 
Corporate 

20 

$12.7 $5.4 $31.2 

14 18 15-18 

Source: Salomon Brothers' estimates. 

$45.4 

15-20 



As shown in Table V, it is estimated that the com­
munications industry wiIl continue to require 15-20 
percent of the total corporate needs for external 
financing. In the coming decade, with increasing de­
mands from all sectors of the economy, the industry 
wiIl have to make itself relatively more attractive 
than its competitors in the capital markets in order 
to continue to attract this large a share. This means 
good balance sheets, "clean" accounting practices, 
attractive rates of return on both total capital and 
equity, and, of course, growth in earnings per share. 

Very obviously, these requirements may be very 
difficult to achieve for the new entrants in the com­
munications industry. In the more competitive, less 
sheltered atmosphere envisioned by both the FCC and 
the President's Office of Telecommunications Policy, 
a license to get into the business may not necessarily 
be a guarantee for making a profit, nor adequate 
collateral for obtaining capital funds. We feel very 
strongly, therefore, that communications in this decade 
wiIl be shaped more decisively by financial constraints 
than by any other factor. 

Data communications in 1980 

In light of our view of the future of the communica­
tions industry as a whole, the following predictions 
can be made about the availability of data communica­
tions facilities in 1980. 

A. The Bell System, with its continuing strong 
financial position, will continue "to dominate the 
data communications business. Now that Bell 
has recognized that there will be a $5 billion 
data communications market in 1980, and that 
competition is increasing, we think you will see 
many more services geared to the data user. It is 
important to note that these services can be 
provided as an adjunct to voice (and, eventually, 
Picturephone services) with a relatively small 
incremental investment. Last year's announce­
ment of, future digital services, based on a 
"Data Under Voice" technique, is an indication 
of this approach. We also believe that, with the 
possible congestion of microwave frequencies 
for use in urban distribution of data communica­
tions signals, Bell will open up its cable distribu­
tion plant to low level, direct current type 
signals, eliminating the need for costly modems 
for limited distance use. 

B. CATV will not have achieved its potential as a 

Data Communications in 1980 615 

major provider of local data interchange services 
by 1980. The CATV business is a particularly 
capital-intensive one, whose growth will be 
financially limited. It is our opinion that the 
primary industry thrust in this decade will be 
to use its available financial resources to expand 
its subscriber base in the residential entertain­
ment market. While certain token two-way 
services may be offered to serve specific markets 
or meet FCC regulations, full-scale development 
in this area will be postponed until the late 
Seventies or early Eighties. 

C. The competitive response of the established 
common carriers to the MCI-type carriers will 
sufficiently limit the financial attractiveness of 
new point-to-point services, and keep them from 
becoming a major communications factor. 
DATRAN's nationwide, switched, digital sys­
tem, on the other hand, is both technically 
unique and inherently more economical than 
either private line or switched analog facilitOes, 
or private line digital facilities. We feel 
DATRAN can be providing about 10 percent 
of the data communications traffic by 1980, 
assuming that its initially high capital require­
ments can be met. 

D. We believe Western Union's centralized thrust­
that of providing a fully integrated computer­
centered message switching and I transmission 
system to serve the record communications needs 
of business, government, and the general 
public-is an extremely viable one. Western 
Union's overbuild of its existing microwave 
network with full digital transmission capa­
bility very obviously allows them to make the 
most efficient use of their plant, with minimal 
capital investment. It is our feeling that Western 
Union will continue to aggressively market new 
communications services, as they have done 
with DATACOM, and that with the availability 
of their new Electronic Data Switch Network 
the company can be providing a whole range 
of switched and private line digital data services 
by 1975. 

E. The use of satellite systems, except those pro­
vided by Bell and Western Union as fully inte­
grated parts of their already existing and cur­
rently planned network operations, will be far 
too costly and far too limited for broad applica­
bility to data communications. 

The growth of data communications services and, in 
a broader sense, of the entire communications industry, 
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is governed by the technological, marketing, and 
financial capabilities of the competing companies. Too 
often, discussions on the future of data communica­
tions concentrate on its exciting technological develop­
ments and potential applications demands while 

neglecting the very obvious fact that facility growth 
must be financed. As shown by the projections made 
in this paper, financing communications growth in the 
Seventies is a non-trivial problem with broad implica­
tions for users and providers alike. 



Allocation of copies of a file in an information network 

by R. G. CASEY 

IBM Research Laboratory 
San Jose, California 

INTRODUCTION 

We consider a mathematical model of an information 
network of n nodes, some of which contain copies of a 
given data file. Within this network, every node is able 
to communicate with every other node over com­
munication links (a process which may entail routing 
through intermediate nodes). In particular, we are 
concerned with transactions with the multiply-located 
file. Such transactions fall into one of two classes: 
(1) query traffic between a node and the file, and (2) 
update traffic. An update message is assumed to be 
transmitted to every copy of the file, whereas a query 
is communicated only to a single copy. 

We proceed to demonstrate, within a simple linear 
cost model for the network, several properties of the 
optimal assignment of files to nodes. One set of results 
expresses bounds on the number of copies of the file that 
should be included in the network, as a function of the 
relative volume of query and update traffic. Secondly, 
a test useful in determining the optimum configuration 
is derived. 

The problem of allocating resources in a network 
first arose within the context of determining the most 
economical location for manufacturing plants and 
warehouses. 1 ,2 ,3 In some studies, the model of the 
network is made in such a way that an efficient algorithm 
yielding the optimal allocation is not readily obtainable, 
and heuristic or approximate techniques are tried 
instead. Frazer,4 for example, has developed a method 
for allocating production facilities when the cost of 
deploying a resource at a given node consists of a fixed 
overhead expenditure plus an amount proportional to 
the total demand on the facility. 

These manufacturing models are conceptually 
different from the file allocation problem, when updating 
traffic is considered in the latter. Since all copies of a 
file are modified by each update message, the total 
volume of data transmitted in the network is not 
independent of the allocation policy, as is the total 
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volume of goods shipped in a manufacturing environ­
ment, but rather increases with the number of file 
copies allocated. Yet, as will be shown, the models are 
mathematically equivalent to the file model analyzed 
here. 

Chu5 has investigated a linear programming solution 
to the file allocation problem. His model includes 
storage costs and queuing delays, but the number of 
copies of each file in the system is assumed to be known. 
Whitney6 has formulated a similar model, and applied 
it to the task of designing network topology, as well as 
that of allocating copies of the file. 

THE MODEL 

The fixed cost (mainly for storage) of locating a 
copy of the file at the kth node (k = 1, 2, ... , n) will be 
denoted by an amount Uk, measured in, say, dollars per 
month. The symbols Aj and tf;j will be used to represent 
the volume of query traffic and of update traffic, 
respectively, emanating from node j(j=l, 2, ... , n). 
The quantities djk and djk' are the costs of a unit of 
communication from node j to node k for a query and 
an update transaction, respectively. Thus, djk and djk' 

might be measured in dollars per megabit transmitted, 
and Aj and tf;j expressed in megabits per month. The 
possibility of a difference in cost rates is included in the 
model on the premise that in many applications updates 
can be accumulated and transmitted either via a cheaper 
medium (e.g., by mailing magnetic tapes), or at a time 
when communications rates are lower (e.g., at night 
using switched lines). * Queries are assumed to be 
entered on-line, at a higher communication rate. If the 
kth node contains a copy of the file, then communica­
tions from the jth node produce a cost term of Ajdjk for 
query transactions and an amount tf;jdj/ for update 

* The author is indebted to Dr. W. D. Frazer of IBM Research 
for pointing out this generalization. 
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transactions. Actually, in much of the discussion that 
follows, and in the experiments carried out, we assume 
equal cost rates for inquiry and update. 

In practice, the cost of shipping information may not 
be linear with the amount sent; the assumption is 
nonetheless of theoretical interest in order to obtain a 
first-order approximation to a rather complex mono­
tonically increasing function. 

Weare concerned with the problem of determining 
at which nodes of the network copies of the file shall 
reside. We shall assume that this allocation is to be 
done in such a way as to minimize the total cost of 
communication between users and files. In general, the 
cost of querying is reduced as we increase the number 
of file nodes in the network (users near a new file node 
find their querying more economical; the other users are 
no worse off). On the other hand, storage costs and the 
cost of updating go up as new copies of the file are 
introduced, since every copy must be updated. In the 
limiting cases, if no updating is done, and if storage 
costs are low, a copy of the file should be kept at every 
node (and network communication not used), whereas 
if only updating is done, and no querying, a single copy 
of the file should be maintained at some optimal node 
of the network. 

By an assignment of the file we shall mean a choice 
of nodes at which to locate the file. Let I denote a set of 
node indexes representing a given assignment. The total 
communication cost resulting from this choice of file 
locations is a sum over individual user nodes. In the 
case of query traffic, we assume that the user accesses 
that copy of the file which minimizes his communication 
cost. His updates, of course, must be transmitted to all 
the file nodes. The general expression for total cost is 
therefore: 

n 

C(I)= L[L~jdjk'+AjmindjkJ+ LUk 
1=1 keI keI keI 

The problem of file allocation in this context is to 
choos_e the index set, I, so as to minimize C (I). 

This cost function can be written in the form 

where 

n 

C (I) = L Uk+ 2: Gj(I) 
keI 1=1 

n 

Uk=Uk+ L ~jdjk' 
1=1 

Gj(I) = Aj min djk 
keI 

With C (I) expressed in this form the problem of 
minimizing cost is seen to be exactly the problem 
investigated by Efroymson and Ray,! Feldman, et al.,2 

Frazer,4 and others. The update costs of the file model 
are analogous to the fixed costs of the plant location 
model, while query costs are analogous to the trans­
portation costs. Previous researchers tried mixed 
integer-linear programmin,g techniques for obtaining 
solutions to the minimization problem. Generally, the 
true minimum of C (1) is computationally very expen­
sive to obtain by such methods, and heuristics are 
developed that sacrifice optimality in order to arrive 
at "good" solutions quickly. 

Here, we take an alternative approach. We shall first 
exhibit several mathematical properties of the cost 
function. We shall use these to construct a search 
procedure which is guaranteed to produce the minimum 
of C (1). Finally, we suggest heuristic modifications to 
the general agorithm for use in cases where it is too 
expensive to be applied. Thus, both attempts to solve 
the problem, by means of integer programming and by 
exploiting the properties of the cost function, turn to 
ad hoc adjustments in order to obtain relief from the 
expense of guaranteeing an optimum solution. It would 
be of interest to compare the performance of the two 
approaches on the same problems. 

The initial examination of the properties of C (I) 
yields bounds on the number of elements in the optimal 
file node set I, when storage costs do not vary. This will 
be shown by means of the following theorem. 

Let the cost of update communication be equal to 
the cost of query communication (djk = djk') . 

Theorem 1: 

If for some integer r~n ~j>Aj/(r-l) for each 
j = 1, 2, ... , n then any r-node file assignment is more 
costly than the optimal one-node assignment. 

We prove the theorem by means of the following 
lemma: 

Lemma: 

If ~j= PAj for j = 1,2, ... ,n then, an r-node assign­
ment cannot be less costly than the optimal one-node 
assignment if p?l/ (r-l). 

Proof of Lemma: 

Consider an arbitrary assignment 1= {I, 2, ... , r}. 
Let the elements of I be ordered such that node 1 is the 
lowest cost single-node assignment. 

We have 
r n n r 

C(I) =PL LAjdjk+ L min Ajdjk+ L Uk 
k=1 1=1 1=1 kEI k=1 
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and 
n 

C( {k}) = (1+p) L Ajdjk+Uk k= 1,2, ... , r 
i=1 

By the optimality of node 1 there are nonnegative 
numbers a2, ... , aT such that 

k=2,3, ... ,r. 

Substituting the above, we can write 

n T 

C(/) -C( {I}) = [pr-p-1] L Ajdj1+ L pak 
i=1 k=2 

+ ~ . "\ d + p(r-1)ul 
£.... mIn I\j jk 
i=1 k l+p 

1 r 

+-LUk 
l+p k=2 

which is certainly nonnegative if (pr- p-1) is non­
negative. That is, p~ 1/ (r-1) implies that C (1) ~ 
C({l}). 

If the optimal single node assignment is in I, then it 
is node 1 and the lemma is proved. If the optimal node, 
say k', is not in I, then we have p~ 1/ (r-1) implies 
C(/) ~C( {I}) >C({k'}) and so the lemma is true in 
this case as well. 

Proof of Theorem 1 

The lemma concerns the case where each user 
generates the same proportion of update traffic to query 
traffic. Suppose now that the proportions vary from 
node to node, but always exceed a given amount p. 

Then, there are nonnegative quantities Ej such that 

j=1,2, ... ,n 

The cost functions can now be written: 

n n 

C'( {I}) = L (1+P+Ej)AjdJ1+u=C( {I}) +L EjAjdjl 
i=1 i=1 

n T 

C' (/) = L (P+Ej) Aj L djk 
i=1 k=1 

n 

+ L min (P+Ej) djk+rou 
i=1 k 

n r n 

= C (/) + L EjAj L djk+ L Ej min djk 
i=1 k=1 i=1 k 

where the unprimed costs are those given in the lemma. 

But clearly C' (/) ~ C' ( {I}) whenever C (/) ~ C ( {I} ). 
Then applying the lemma, the condition p~ 1/ (r-1) is 
sufficient to ensure that the r-node assignment is not 
optimal. In addition, if at least one of the E/S is greater 
than zero, we must have the strict inequality C (/) > 
C({I}). 

Corollary 1 

If the update/query traffic ratio satisfies p~ 1/ (r-l) 
(r an integer) then the optimal allocation consists of 
no more than r nodes. 

Proof 

If 1/1 j ~ Ail (r -1) for each j then certainly for any 
integer l 

and so theorem 1 rules out the optimality of an (r+l)­
node assignment. 

Corollary 2 

If each user generates at least 50 percent of his 
traffic in the form of updates, then the optimal assign­
ment policy is to locate only a single copy of the file 
in the network. 

The corollary follows directly from the theorem by 
setting r = 2, but is worth stating separately since it 
sets a bound beyond which multiple copies of the file 
should not be considered. Furthermore, it is easy to 
show that for equal proportions of update and query 
traffic the two-node assignment is no more costly than 
a one-node assignment of the file only if storage costs 
are neglected, and the rows and columns of the cost 
matrix can be permuted to yield the form: 

[:. 
0 ... 0 al a2 .. . am 0 

0 ... ] 

b2 . .. bl 0 0 ... 0 0 0 ... 0 

(rest of matrix) 

where 

m m 

L aiAa = L biAb, 
i=1 i=1 

Aa and Ab being the respective traffic volumes for the 
first two rows (query or update) . 
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A PROPERTY OF THE OPTIMAL FILE 
ALLOCATION 

In this section, we examine the behavior of the cost 
function as additional file nodes are added. In particu­
lar, we consider a graph such as Figure 1, where each 
vertex is identified with a file assignment (denoted by 
a binary vector having l's in those positions corre­
sponding to file nodes, O's elsewhere). Associated with 
each vertex is the corresponding value of the cost 
function (not shown in Figure 1). For mathematical 
convenience the null vertex is assigned infinite cost. 
The edges of the graph are directed paths corresponding 
to the addition of a single file node to the previous 
assignment. The graph is conveniently arranged in 
levels where the vertices at the kth level represent all 
k-node file assignments. 

We demonstrate the significant property of this 
graph (which we shall call the "cost" graph) that if a 
given vertex has a cost less than the cost of any vertex 
along the paths leading to it, then the sequence of costs 
encountered along anyone of these paths decreases 
monotonically. Thus, in order to find the optimal 
allocation policy, it is sufficient to follow every path of 
the cost graph until the cost increases, and no further. 
Because of this property, only a small subset of the 
possible assignments need be tested, compared with the 
exhaustive search procedure in which 2n different file 
allocations must be evaluated. 

The monotonicity will be exhibited in two stages: 
first, for the case of two steps through the graph, and 
then for the general case. 

Let I'""X, where XCI, denote the index set I with 
the elements of set X removed. 

Consider an arbitrary file assignment corresponding 

/ 

Figure 1-Graph of the allocation process 

to index set I, and assume the nodes are so numbered 
that 1= [1,2, ... ,r]. We proceed to show: 

Lemma: 

If C(I) ~C(I'""{k}) for k= 1,2, then C (I'"" {k} ~ 
C(I'""{l, 2}) fork=l, 2. 

Proof of Lemma: 

The cost function can be written, in general, 

n 

C(I'""X) = L: Uk+ L: Aj min djk 
keI,...,X i=I keI,...,X 

Thus 

n 

C(I) -C(I'""{l}) = U1 - L: Ajdj 
i=I 

where 
dj = min d jk - min d jk 

keI,...,{ I} keI 

Also 

n 

C(I,",,{2}) -C(I'""{l, 2}) = U1 - L Ajd/ 
i=I 

where 
d/ = min d jk - mIn d jk 

keI,...,{ I,2} keI,...,{ 2} 

Consider the difference 

d/-dj= min d jk+ mindjk - min d jk - min djk 
kEI,...,{ I,2} keI keI,...,{ 2} keI,...,{ I} 

We have 

min d jk = mine min d jk , mIn d jk ) 

keI keI,...,{ I} keI,...,{ 2} 

min djk~ max (min d jk , min d jk ) 

keI,...,{ I,2} keI,...,{ I} keI,...,{ 2} 

Therefore 

d/-dj~O, that is d/~dh 
and so 

C (I'"" { 2 } ) - C (I'"" { 1, 2} ) ~ C (I) - C (I'" { 1 } ) 

thus, 

implies that 

By a mere permutation of indexes we may likewise 
prove that 
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implies that 
C(lrv{l}) :::;C(1rv{l, 2}) 

and so the lemma is true. 
By means of this lemma, we can now prove the 

general theorem: 

Theorem 2: 

Given an index set X CI containing r elements, and 
having the property 

C(l) :::;C(lrv{x}) for each xeX 

then for every sequence RCI), R(2), ... ,RCT) of subsets 
of X such that RCk) has k elements, and RCk)CRCHI) it 
is true that 

C(l) :::;C(lrvR(l) :::;C(lrvRC2) 

:::;C(lrvRC3):::; ••• :::;C(1rvRCT) 

Proof: (by induction) 

The first inequality above is given in the hypothesis. 
Since R(2) has two elements the second inequality 
follows from the lemma. I t may thus be taken as 
hypothesis to prove the third, and so on. Each inequality 
proved can be used together with the lemma to prove 
the inequality to its right. 

Observations: 

If we take X = I in the theorem, then it states that 
along any path in the cost graph from the null vertex 
(which we have assigned infinite cost) to the vertex 
corresponding to I, cost decreases monotonically from 
one vertex to the next, providing of course that index 
set I satisfies the hypothesis of the theorem. The 
monotonic decreasing property can also be shown to 
hold in the reverse direction; i.e., for paths from the 
vertex {1, 2, ... ,n} to the optimum.* 

APPLICATION TO FILE ALLOCATION 

The theorem just proved provides a test that is 
useful in determining the minimum cost allocation of 
file copies to nodes of the network. Referring to the 
cost graph (Figure 1), let us define an '''antecedent'' of 
an arbitrary vertex v as a vertex which has a connection 
to v from the next lower level, and a "successor" of v 
as a vertex connected to v at the next higher level. An 

* A reviewer pointed out this generalization. 

antecedent contains the file nodes of v less one node, 
while each successor contains the nodes of v plus one 
additional node. A vertex at the rth level of the graph 
has r antecedents, and (n-r) successors, where n is 
the number of nodes in the network. (Note that, for 
clarity, we use the term "node" in referring to the 
computer network, and the term "vertex" with respect 
to the cost graph.) 

We shall also define a "local optimum" of the cost 
graph as a vertex which is less costly than all of its 
antecedents and successors. Clearly, the global optimum 
we seek belongs to the set of local optima of the graph. 

The theorem permits us to discover all the local 
optima without computing the cost of every vertex, for 
each path leading from the 0 level to a local optimum 
must give rise to a monotonically decreasing sequence cJ 
costs. Whenever an increase is encountered in a step 
forward through the graph, that path can be abandoned 
since it cannot lead to a local (or global) optimum. A 
"path-tracing" routine which evaluates each possible 
sequence of node additions in this way is certain to 
produce the minimum value of C (1). The amount of 
computation needed to extract the minimum will 
increase with the number of local optima, and with the 
number of nodes in the optimal configuration. 

A computer algorithm can be implemented in several 
different ways to select file nodes one at a time up to 
the optimum configuration. One approach is to follow 
all paths in parallel through the cost graph, stepping 

COST PER 
INPUT PARAMETERS MEGABYTE SHIPPED 

QUERY UPDATE FILE NODES 
TRAFFIC TRAFFIC 1 2 3 4 5 

U 1 24 2 0 6 12 9 6 
S 2 24 3 6 0 6 12 9 
E 3 24 4 12 6 0 6 12 
R 4 24 6 9 12 6 0 6 
S 5 24 8 6 9 12 6 0 

QUERYING COSTS 

1 2 3 4 5 
1 0 144 288 216 144 
2 144 0 144 288 216 
3 288 144 0 144 288 
4 216 288 144 0 144 
5 144 216 288 144 0 

UPDATE COSTS 

1 2 3 4 5 
1 0 12 24 18 12 
2 18 0 18 36 27 
3 48 24 0 24 48 
4 54 72 36 0 36 
5 48 72 96 48 0 

Figure 2-A five-node example 
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"%\ 

Figure 3-The cost graph for the example. 
J.Jocal optima are circled 

one level per iteration. This method is computationally 
efficient, but may require a great deal of storage in a 
large problem. Alternatively, a program can be written 
to trace systematically one path at a time. Such a 
technique uses less storage, but may require redundant 
calculations since many different paths intersect each 
vertex. 

EXAMPLES 

We consider a five-node network with query and 
update parameters, and cost matrix as in Figure 2. 
Figure 3 shows the file node cost graph, and indicates 
the optimal allocations. This small-scale example 
illustrates the monotonicity of the cost function along 
paths leading to a local optimum. 

Note that the matrix {d jk } is symmetric and has zero 
elements along the main diagonal. This is a plausible 
condition in a practical case, but is not required in any 
way by the theorems proven here. 

As a second example, we postulate the ARP A com­
puter network and its traffic matrix as given by Klein­
rock.7 In order to treat this case, which is not initially 
posed as a centralized data base configuration, we make 
the following rather arbitrary assumptions: 

(1) All the resources of the network represented in 
the traffic matrix are gathered into one large 
file, copies of which are to be allocated to a 
subset of the nodes. 

(2) The query traffic (Figure 4) from each user to 
the file is as given under the "node output" 
column in Kleinrock's table. If the user is ac­
cessing a program, we may think of this "query" 

traffic as comprising the command messages he 
must send in order to run the program, plus the 
program output sent back to him. (Note: 
Kleinrock does not give figures for each node's 
use of its own facilities.) 

(3) "Update" traffic, which causes modification of 
programs and data in all copies of the· file, is a 
fixed percentage of the query traffic defined in 
(2). The update/query ratio is the same for 
each user, and is varied as a parameter in the 
computer runs described below. 

(4) The "cost" of communicating between two 
network nodes is as shown in Figure 4. The 
quantities given here are roughly the straight­
line distances between nodes. Thus, the cost 
function to be minimized is the total amount of 
"flow" in the network, i.e., the product of 
message length in bits, multiplied by the distance 
through which the message must travel on a 
direct path to its destination, summed over all 
messages. In this view an update message is 
assumed to be sent separately to each file loca­
tion, rather than relayed. 

Assumptions (1)-(4) ignore the network com­
munication links as configured by Kleinrock. Ordinarily 
these would determine the cost matrix. Substituting 
"distance" for "cost," as done here, might be expedient 
in a preliminary analysis to allocate resources prior to a 
topological design of the network. We employ the 
ARPA data primarily because it tests our model on a 
problem involving many nodes. In addition, we should 
like to encourage speculation on the concept of multiple 
copies of a resource (data or programs), and whether 
such a facility is attractive in future ARPA-like net­
works. 

Figure 5 summarizes the file allocation experiments 
conducted using this data, in which the proportion of 
update traffic to query traffic was varied from 100 
percent to 10 percent in steps. As expected, only single 
node allocations are indicated when the two types of 
traffic are equal. As a smaller volume of update traffic 
is generated, multiple node solutions begin to appear. 
The copies of the file are widely distributed geographi­
cally, and the single node solution is centrally located. 
However, such features result from the particular 
traffic distribution assumed, and are not generalizations 
valid for every case. 

I t is interesting to note the large number of local 
optima generated (see Figure 5). Because certain 
ARPA sites, e.g., MIT, BBN, Harvard, and Lincoln 
Laboratories, are very near one another, if one occurs 
in a local optimum one of its neighbors may be sub­
stituted for it to produce a second configuration that 



Allocation of Copies of a File in an Information Network 623 

COST PER MEGABYTE SHIPPED 

QUERY FILE NODES 
TRAFFIC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

U 1 8 0 75 75 75 75 350 450 490 640 900 1050 2080 2700 2700 2700 2670 2610 2610 2610 
S 2 21 75 0 5 5 5 300 400 480 660 920 1060 2110 2720 2720 2720 2700 2640 2640 2640 
E 3 7 75 5 0 5 5 300 400 480 660 920 1060 2110 2720 2720 2720 2700 2640 2640 2640 
R 4 6 75 5 5 0 5 300 400 480 660 920 1060 2110 2720 2720 2720 2700 2640 2640 2640 
S 5 10 75 5 5 5 0 300 400 480 660 920 1060 2110 2720 2720 2720 2700 2640 2640 2640 

6 4 350 300 300 300 300 0 160 280 500 710 850 1940 2570 2570 2570 2520 2450 2450 2450 
7 3 450 400 400 400 400 160 0 190 430 610 730 1850 247 247 247 240 233' 233 233 
8 10 490 480 480 480 480 280 190 0 240 430 570 1670 2300 2300 2300 2240 2170 2170 2170 
9 9 640 660 660 660 660 500 430 240 0 280 430 1460 2090 2090 2090 2050 1980 1980 1980 

10 50 900 920 920 920 920 710 610 430 280 0 160 1250 1860 1860 1860 1800 1730 1730 1730 
11 3 1050 1060 1060 1060 1060 850 730 570 430 160 o 1160 1760 1760 1760 1680 1610 1610 1610 
12 26 2080 2110 2110 2110 2110 1940 1850 1670 1460 1250 1160 0 610 620 620 640 600 600 600 
13 20 2700 2720 2720 2720 2720 2570 2470 2300 2090 1860 1760 610 0 40 40 290 340 340 340 
14 21 2700 2720 2720 2720 2720 2570 2470 2300 2090 1860 1760 620 40 0 5 250 320 320 320 
15 3 2700 2720 2720 2720 2720 2570 2470 2300 2090 1860 1760 620 40 5 0 250 320 320 320 
16 5 2670 2700 2700 2700 2700 2520 2400 2240 2050 1800 1680 640 290 250 250 0 80 80 80 
17 4 2610 2640 2640 2640 2640 2450 2330 2170 1980 1730 1610 600 340 320 320 80 0 10 10 
18 8 2610 2640 2640 2640 2640 2450 2330 2170 1980 1730 1610 600 340 320 320 80 10 0 5 
19 7 2610 2640 2640 2640 2640 2450 2330 2170 1980 1730 1610 600 340 320 320 80 10 5 0 

Figure 4-The ARPA example. The locations of the nodes (from Kleinrock7) are: (1) Hanover, N.H., (2)-(5) Boston Area, (6) Murray 
Hill, N.J., (7) Washington, D.C., (8) Pittsburgh, Pa., (9) Ann Arbor, Michigan, (10) Urbana, Illinois, (11) St. Louis, Mo., (12) Salt 

Lake City, Utah, (13)-(15) San Francisco Bay Area, (16) Santa Barbara, California, (17)-(19) Los Angeles Area 

is also locally optimum. Most of the local optima are 
due to this phenomenom, suggesting that greater 
computational efficiency would have resulted from 
lumping neighboring sites into a single network node 
for an initial application of the algorithm, followed by a 
stage of finer calculations. Such artifices are hardly 
necessary in problems of this size, however. The 
sequence of six runs depicted in Figure 5 was carried 
out on an IBM 360/91 in less than ten seconds, in­
cluding Fortran compilation. 

EXTENSIONS 

Path tracing on a related problem 

One feature of the path-tracing technique is its 
versatility. It can be applied to problems that do not 

Update/Query Optimal Allocation 
Percent 

10 2,10,14 
20 9,14 
30 10,14 
40 10,12 

100 10 

Cost #Local Minima 

117,544 140 
188, 738 88 
242, 546 88 
291, 754 77 
427,460 19 

Figure 5-Results for the ARPA example 

fit the linear programming framework. As one example 
consider the following modification of the file allocation 
model. The cost function as defined in the text assumes 
that the expense of transmitting an update message to 
all copies of the file is the sum of the costs of com­
municating with each copy separately, as if a distinct 
message had to be sent from the up dater to every file 
node. 

Actually, the preferred mode of operation would be 
to relay the message through the network in the most 
economical manner. The resulting cost is less than that 
incurred by sending duplicate messages. It is the cost 
associated with the most economical subtree of the 
network that contains the originating node and the 
file nodes (see Figure 6). This new cost function defined 
when update costs are calculated in this way is non­
linear in a very complex way. Yet the path-tracing 
algorithm can still be applied to the allocation problem. 
We no longer have the assurance provided by Theorem 
2, which guarantees that the method will generate the 
optimal allocation. However, the cost function behaves 
in much the same manner as before. It still consists of 
two parts: an update (and fixed cost) term that in­
creases as additional file copies are allocated, and a 
query term that decreases with additional copies. The 
algorithm may be heuristic in the new framework, but 
with only slight modification it can be programmed to 
determine at least allocations of the type we have called 
"local optima," of which the true optimum is one. 
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4 

Given Network: ~ file nodes, 

Q node originating an update. 

Linear cost of update as per ceI) = 2 + 3 + 8 + (8 + 5) + 7 = 33. 

Figure 6. Most economical subtree. 

Cost of relaying update = 23. 

Figure 6-Most economical subtree for relaying 
an update message 

Heuristic modification of the path-tracing routine 

If the optimal solution to the allocation problem 
consists of many network nodes then the general rule of 
following every monotonically decreasing path in the 
cost graph may be computationally too expensive. For 
example, if the optimum contains 40 nodes then at 
least 240 == 1012 values of the cost function must be 
evaluated. In order to decrease the amount of com­
putation, it is necessary to sacrifice optimality for 
speed. We suggest several methods by which this may 
be done in a reasonable manner. 

Assume that the cost graph is being searched level­
by-level (i.e., in parallel). At each level, the vertices 
which are lower in cost than their antecedents are 
recorded. We call these vertices "admissible" and de­
note them by the set Ak at the kth level. We wish to 
carry only a limited number of the members of Ak into 
the (k+1)th stage. One plausible selection rule is to 
keep the vertices having the lowest cost. Alternatively, 
we may reason that if two assignments are similar 
(i.e., differ in only a few file nodes) then probably 
their union will also lie on a monotonic cost path, and 
it would' be redundant to trace paths through both. In 

this view, we want to select the most "dissimilar" 
vertices from A k • Several techniques are available to 
do this selection. One method, previously used in 
pattern recognition, is the following. Order the members 
of Ak arbitrarily, specify a threshold T (a parameter), 
and examine the members of Ak in order. Denote by 
Ak' the subset being formed. The first member of Ak' 
is the first member of A k, say al. The next member of 
Ak' (denoted a2) is the first member of Ak which differs 
from al by at least T units. Next, test for an aa which 
differs from both al and a2 by at least T and so on. If 
Ak' has too many members, or too few, the routine 
may be repeated with T larger, or smaller, respectively. 
The set Ak' is used to generate Ak+l , which is in turn 
thinned down to A k+l '. 

A third method has actually been programmed and 
compared with the general search technique. The 
procedure is to do complete path-tracing (applying 
Theorem 2) up to a level of the cost graph at which set 
Ak begins to get too large. From this level on, only the 
most "promising" paths are followed. For example, as 
programmed the cost graph is completely evaluated 
through the second level (2-file nodes per vertex). 
From each admissible second level vertex only a single 
path is followed; namely, that path which gives minimal 
cost at each succeeding level. Since this program only 
has one-step look ahead, the optimum may be missed. 
In sample runs on the ARPA problem, the optimum 
was always found (for each value of the update/query 
parameter), although local optima were sometimes 
overlooked. 

This heuristic program was also tested on the ARP A 
configuration using the revised cost function described 
above, i.e., a function which assumes that updates are 
relayed between file notes in the most economical 
manner. Use of a simplified program is called for in this 
case; the heuristic program required 12 minutes to 
repeat the five runs of Figure 5, which were performed 
in under ten seconds using the linear cost relationship. 
Figure 7 shows the allocations produced by this experi­
ment. These assignments may not be global optima. 
They do satisfy our definition of a local optimum. Note 
that, as expected, for the same traffic more copies of the 

Update/Query 
Percent 

10 
20 
30 
40 

100 

Optimal Allocation 
(Nodes) 

2, 6, 8, 9, 10, 12, 13, 14, 16, 18 
2, 8, 10, 12, 14 
2, 8, 10, 12, 14 
8, 10, 12 
10 

Cost 

38, 285 
105, 800 
171, 225 
227,340 
427,460 

Figure 7-Allocation results using the nonlinear cost 
model CARP A network) 
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file are assigned if updates are relayed. In addition, 
total cost is reduced markedly under conditions of low 
update traffic, indicating the importance of including 
the more complex cost relations in the model. 

CONCLUSION 

The analytical properties of a linear-cost model of an 
information network have been investigated. The 
proportions of update traffic to query traffic generated 
by the users of a given file in the network were shown 
to determine an upper bound on the number of copies 
of the file present in the least-cost network. In addition, 
a basic property of the cost function was demonstrated 
and shown to justify a path-tracing procedure for 
determining the optimal assignment of copies of the 
file to nodes of the network. 

The model, while simple, expresses relevant features 
of the tradeoff between the costs of querying and 
updating in the network. Presumably, the general 
properties derived apply at least approximately when 
more complex models are considered. 
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Production and utilization of computer manpower 
in U.S. higher education* 

by JOHN w. HAMBLEN 

Southern Regional Education Board 
Atlanta, Georgia 

SURVEYS 

During the past five years the Computer Science 
Project of the Southern Regional Education Board 
(SREB) has conducted three surveys on Computers in 
U.S. Higher Education including their utilization and 
related educational programs. These studies have re­
sulted in three publications1 ,2,3 the first by the SREB 
and the latter two by the National Science Foundation. 

The first survey was a stratified random sample of 
739 institutions, from a population of 2219, selected by 
systematic random sampling within strata by the U.S. 
Office of Education. Six hundred sixty nine or 92 per­
cent of the institutions in the sample responded. 

The base year for data collection was 1964-65 and 
projections were requested from the institutions for 
1968-69. The data collection instrument was designed 
by the Mathematical Sciences Section of NSF to meet 
their existing program needs for planning. Conse­
quently, emphasis was placed upon the financial aspects 
of college and university computer center operations 
and only limited information was gathered with regard 
to manpower training and utilization. 

The second survey was much more comprehensive 
and was sent to all institutions of higher education 
listed in the U.S. Office of Education's Higher Educa­
tion General Information Survey (HEGIS) file. Nine­
teen hundred sixty five or 79 percent of the 2477 insti­
tutions responded. The data collection forms were de­
signed with the advice and counsel of thirty or more 
national professional and institutional associations and 
government agencies. The base year for reporting data 
was 1966-67. 

* The data upon which this paper is based was collected and 
processed through partial support from the National Science 
Foundation under contracts C465, C508 and C604. The SREB 
Computer Sciences Project is also supported by grants from the 
Esso Education Foundation and the IBM Corporation. 
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Extensive modifications were made in the data collec­
tion forms for the third survey. The base year was 
1969-70. 

Problems resulting from lack of standardization in 
the computer industry are well-known. Unfortunately 
the educational and occupational nomenclature also 
suffers this malady. The shifting of terms and defini­
tions over the years can inject disastrous consequences 
on estimates and, particularly, projections. Attempts 
to make comparisons with other studies become even 
more hazardous. In the following only estimates and 
projections based upon the three surveys described 
abdve will be presented. Two other papers in these 
proceedings4,5 by Gilchrist and Weber will treat com­
parisons and incorporate higher education's role in 
manpower production and utilization· to give a total 
picture of the supply and demand for computer per­
sonnel in the U.S. 

MANPOWER PRODUCTION 

Educational programs in Computer Science, Data 
Processing, Information Science, etc., exist in institu­
tions of higher education at all levels. Two year pro­
grams terminate with an associate degree and four year 
programs with a bachelor's degree. Master's and doc­
torate programs exist at many institutions. Although 
computer science and data processing are by far the 
most popular program names (see Table I) there ap­
pears still to be far too many different names used for 
educational programs in institutions of higher educa­
tion. Further consolidation is necessary to ensure a 
healthy and unified development of the disciplines. The 
efforts of the ACM Curriculum Committee on Com­
puter Science6 and the ACM Committee on Computer 
Education for ManagementS have and will continue to 
have a unifying influence on academic programs in 
computer and information science. The work of these 
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TABLE I-Reported Degree Programs in Computer Science, Data Processing, Information Science, etc. for Academic Years 
1966-67, 1969-70, 1970-71, and 1971-72 

Associate Bachelor's Master's Doctorate 

Program Name 66-67 69-70 70-71 71-72 66-67 69-70 70-71 71-72 66-67 69-70 70-71 71-72 66-67 69:-70 70-71 71-72 

Data Processing: Total 122 
In Departments of: 

Data Processing 
Business Administration 0 
Business 
Computer Science 
Miscellaneous (seven)1 0 

Computer Science: Total 8 
In Departments of: 

Computer Science 7 
Mathematics 0 
Electrical Engineering 0 
Computer and Informa-

tion Science 
Information and 

Computer Science 
Management Science 0 
Industrial Engineering 0 
Miscellaneous (fourteen) 1 

Computer Programming: 
Total 

In Departments of: 
Data Processing 
Computer Programming 
Miscellaneous (eight) 

Computer Technology: 
Total 

In Departments of: 
Computer Technology 
Miscellaneous (eight)1 

Information Systems: 
Total 

In Departments of: 
Miscellaneous (nine) 

Information Science: 
Total 

In Departments of: 
Miscellaneous (six) 

Systems Engineering: 
Total 

In Departments of: 
Systems Engineering 
Electrical Engineering 
Engineering 
Industrial Engineering 

4 

8 

o 

o 

o 

204 217 

136 143 
34 36 
17 20 
3 3 

14 15 

33 37 

20 23 
o 0 
o 0 
1 1 

o 0 

2 2 
o 0 

10 11 

38 

22 
5 

11 

21 

12 
9 

5 

5 

o 

o 

o 

o 
o 
o 
o 

40 

24 
5 

11 

22 

13 
9 

6 

6 

o 

o 

o 

o 
o 
o 
o 

219 

143 
38 
20 
3 

15 

42 

.27 
o 
o 
1 

o 

3 
o 

11 

41 

24 
5 

12 

22 

13 
9 

7 

7 

o 

o 

o 

o 
o 
o 
o 

15 

11 
1 

3 

50 

30 
7 
8 

o 
3 
2 

o 

1 

3 

2 

1 

1 

21 

5 
11 
2 
1 
2 

90 

40 
19 
8 
1 

2 

6 
2 

12 

6 

1 
o 
5 

9 

2 
7 

7 

7 

3 

3 

7 

3 
2 
1 
1 

25 

6 
12 
2 
1 
4 

113 

52 
23 
10 
3 

2 

7 
2 

14 

7 

1 
o 
6 

9 

2 
7 

9 

9 

6 

6 

7 

3 
2 
1 
1 

26 

6 
13 
2 
1 
4 

133 

66 
26 
11 
3 

2 

8 
2 

15 

7 

1 
o 
6 

9 

2 
7 

10 

10 

5 

5 

8 

3 
3 
1 
1 

5 

4 
1 

o 

58 

35 
4 
9 

3 
3 
4 

o 

o 

2 

2 

9 

9 

1 

6 

1 
2 
2 
o 
1 

76 

37 
8 

12 
3 

1 

o 
4 

11 

o 

o 
o 

3 

o 
3 

5 

5 

7 

7 

12 

3 
3 
5 
1 

5 

1 
1 
2 
o 
1 

86 

39 
8 

13 
3 

1 

1 
4 

17 

o 

o 
o 
o 

4 

o 
4 

6 

6 

10 

10 

12 

3 
3 
5 
1 

5 

1 
1 
2 
o 
1 

102 

49 
9 

14. 
3 

2 

2 
4 

19 

o 

o 
o 
o 

3 

o 
3 

6 

6 

10 

10 

12 

3 
3 
5 
1 

1 

1 
o 

o 

35 

22 
4 
6 

1 
o 
2 

o 

o 

1 

8 

1 

1 

1 

o 
o 
o 
o 
1 

50 

24 
3 
9 
2 

2 

o 
2 
8 

1 

o 
o 

2 

o 
2 

3 

3 

6 

6 

7 

o 
3 
3 
1 

2 

o 
o 
1 
o 
1 

54 

25 
3 

10 
2 

2 

o 
3 
9 

o 
o 
1 

2 

o 
2 

4 

4 

6 

6 

8 

o 
3 
4 

1 

o 
o 
1 
o 
o 

59 

28 
3 

10 
2 

3 

o 
3 

10 

1 

o 
o 
1 

2 

o 
2 

4 

4 

6 

6 

7 

o 
3 
3 
1 
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TABLE I-Reported Degree Programs in Computer Science, Data Processing, Information Science, etc. for Academic Years 
1966-67, 1969-70, 1970-71, and 1971-72-Continued 

Miscellaneous (seven): 
Total 1 1 1 5 6 8 1 5 6 6 3 5 5 

In Departments of: 
Miscellaneous (ten) 1 1 1 5 6 8 1 5 6 6 3 5 5 

TOTAL 142 302 323 332 72 148 182 206 78 116 137 142 46 73 82 85 

Estimated Population 178 405 433 445 90 198 244 276 98 155 184 190 58 98 110 114 
Totals2 

! ( ) Refer to 69-70, 70-71, 71-72 
2 Reported Totals x (Number Institutions in Population)/(Number Institutions Responding) 

committees was supported by National Science 
Foundation. 

Since 1966-67 the numbers of degree programs have 
doubled with the highest increase nearly threefold at 
the bachelor's level. Three out of five of the latter 
programs are called Computer Science and the next 
largest group (26) are designated as Data Processing. 
Twenty (20) new programsin Computer Science at the 
bachelor's level were expected to be started during 
1971-72 and the next highest increase was expected to 
be at the master's level in Computer Science with six­
teen new programs. 

After the reportS of the ACM Curriculum Committee 
for Computer Education for Management has had a 
chance to be circulated, I expect to see a surge in the 
master's level programs in Information Systems 
(Analysis and Design). 

The numbers of majors enrolled in undergraduate 
programs have nearly tripled and the numbers of 
graduates per year have increased fourfold between 
1966-67 and 1969-70 (see Table II). Figure 1 shows the 
growth trends at present. I do not expect significant 
changes in these trends for the next three to five years. 
After 1975 I believe that we can expect to see some 

TABLE II-Reported Majors Enrolled for 1966-67 and 1969-70 and Degrees Awarded for 1966-67, 1969-70 and 1970-71 

Undergraduate Graduate 
No. Majors Associate Bachelor's No. Majors Master's Doctorates 

Program Name 66-67 69-70 66-67 69-70 70-71 66-67 69-70 70-71 66-67 69-70 66-67 69-70 70-7166-67 69.;7070-71 

Data Processing 12815 27712 872 3285 3971 74 286 395 317 159 63 9 19 1 0 2 
Computer Science 3187 10909 62 259 435 355 976 1537 2926 4725 446 892 1249 133 187 198 
Computer Programming 281 4786 78 688 819 0 12 32 0 63 0 0 0 0 0 0 
Computer Technology 496 2791 13 218 295 20 60 88 0 53 0 4 9 0 2 2 
Information Systems 737 1198 0 66 94 19 91 133 31 241 6 24 43 0 1 6 
Information Science 100 546 0 0 0 0 28 78 627 240 64 34 66 3 11 13 
Systems Engineering 113 893 0 0 0 7 143 149 48 402 15 85 98 2 10 14 
Miscellaneous (seven) 356 0 0 52 107 925 28 60 18 20 

Total 17729 49191 1025 4516 5614 475 1648 2519 3949 6808 594 1076 1544 139 229 255 

Estimated Population Totals! 22161 65916 1281 6051 7523 594 2208 3375 4936 9123 742 1442 2069 174 307 342 

1 Reported Totals x (Number Institiutions in Population)/(Number Institutions Responding) 
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Figure I-Degrees awarded in computer sciences, data process­
ing, information sciences, etc. (Estimates) 

leveling off at all levels. Table III shows my estimates 
of degrees to be awarded during the year 1974-75. 

When these figures of supply are compared with 
estimates4 of demand we see that there is no longer a 
need to encourage a crash effort to start new degree 
programs at any level. However, if we examine the 
course offerings of the associate and bachelor's degree 
programs, in particular, as I have had occasion to do in 
the two NSF Inventories,7 there is definitely a need to 
strengthen these programs both in facilities available 
and course offerings. During 1966-67 about one out of 
every two programs at the associate and bachelor's 

TABLE III-Estimates of Degrees to be awarded in Computer 
Sciences, Data Processing, Information Science, 

Information Systems,etc. During 1974-75 

To Enter Continue 
Level No. Manpower Pool Education 

Associate 
/ 

11 ,000 9,000 2,000 
Bachelor's 8,000 5,000 3,000 
Master's 3,500 2,500 1,000 
Doctorate 500 500 

Total 23,000 17,000 6,000 

TABLE IV-Estimated Manpower Utilization by Academic 
Departments for Programs in Computer Science, Data 

Processing, Information Science, etc. 1966-67 

Highest Educational Level: No. Percent 

High School Diploma 200 7 
Associate Degree (2 yr.) 80 3 
Bachelor's 770 27 
Master's (IncI. 1st Prof.) 960 33 
Doctorate 870 30 

Total 2,880 100 

Job Category: No. Percent 

Faculty 2,180 76 
Prof (non-Fac) 380 13 
Other 320 11 

Total 2,880 100 

degree levels were judged (by me) to be lacking in 
either course offerings or computer facilities. 7 Prelimi­
nary investigation of data reported for 1969-70 indicate 
that percentagewise there has been little, if any, im­
provement when advances in technology are considered. 

MANPOWER UTILIZATION 

Computer manpower utilization in institutions of 
higher education fall under three broad categories. One 

TABLE V-Reported Manpower Utilization by Academic 
Departments for Programs in Computer Science, Data 

Processing, Information Science, etc. 1969-70 

Staff Type 

Full-time 
Part-time: 

Research Assts. 
Teaching Assts. 
Other 

Total 

Doctorates 

Computer 
Science 

Other 

Total 

Faculty 

345 

785 

1,130 

Number 
People 

2,150 

729 
1,129 
1,578 

5,586 

Position 

Other 

41 

102 

143 

Number 
FTE 

2,150 

1,292 

3,442 

Total 

386 

887 

1,273 
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Figure 2-Estimated manpower utilization by academic depart­
ments for programs in computer sciences, data 
processing, information sciences, etc. 1966-67 highest 
level of education attained and job category 

is the personnel of academic departments offering degree 
programs. For this category we have good estimates of 
the numbers of persons employed for 1966-67 and 
1969-70 (see Tables IV and V and Figure 2). It is of 
interest to note that only about one out of every two 
faculty persons hold a doctorate and of those who do 

TABLE VI-Estimated Manpower Utilization by Computer 
Centers in U. S. Colleges and Universities 1966-67 

Highest Education Level 

Other 
High School Students 
High School Diploma 
Associate Degree 
Undergraduate 
Bachelor's 
Master's (Incl. 1st Prof.) 
Doctorate 

Total 

Job Classification 
Management 
Analysts 
Systems Programmer 
Applications Programmer 
Operators 
Clerical 

Total 

Estimated Total Percent of Total 

210 
160 

4,890 
640 

3,920 
2,860 
1,260 

570 

14,510 

1 
1 

34 
4 

27 
20 
9 
4 

100 

Estimated Total Percent of Total 

FTE 
1,970 14 
1,040 7 
1,350 9 
2,360 16 
5,570 39 
2,220 15 

14,510 100 
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Figure 3-Estimated manpower utilization by computer centers 
in U. S. colleges and universities 1966-67 highest level 
of education attained and job classification 

TABLE VII-Estimated Manpower Utilization by Computer 
Centers in U. S. Colleges and Universities 1969-70 

Highest Education Level: 

High School Diploma 
Associate Degree 

, Undergraduate Students 
Bachelor's Degree: 

Computer Science 
Other 

Master's Degree: 
Computer Science 
Other 

Doctorate: 
Computer Science 
Other 

Total 

Job Classification: 
Management 
Analysts , 
Systems Programmers 
Application Programmers 
Operators 
Clerical 

Total 

Estimated Total 

9,496 
1,360 
6,928 

389 
5,046 

426 
2,054 

174 
829 

26,704 

Estimated Total 

FTE 
3,111 
1,820 
2,131 
4,186 
8,135 
3,725 

23,108 

Percent of 
Total 

36 
5 

26 

1 
19 

2 
8 

1 
3 

100 

Percent of 

Total 
14 
8 
9 

18 
35 
16 

100 
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TABLE VIII-Estimates of Computer Manpower Utilized by 
Institutions of Higher Education in other than 
Computer Centers or Academic Departments 
Offering Degree Program in Computer Science, 
Data Processing, etc. 

Job Classification: 
Applications Programmers 
Other 

TOTAL 

1969-70 

No. of People 
2,000 
1,000 

3,000 

only about one of four have a doctorate in computer 
science, information science, etc. This is not surprising 
because the supply of doctorates in this area has been 
too small to fill the need. However, as the supply in­
creases, replacements will be made from their ranks 
rather than from other fields. 

The second category of computer manpower utiliza­
tion is that of personnel required to man the computer 
facilities of the institutions. This includes facilities for 
all types of uses-research, administration and in­
struction. Since similar data was collected for both 
1966-67 and 1969-70 some comparisons can be made or 
trends noticed. Table VI and Figure 3 present these 
data for 1966-67. 

Table VII shows estimated manpower utilization for 
1969-70 in the computer facilities of institutions of 
higher education. 

The third category of computer manpower is very 
difficult to estimate. These are mostly applications 
programmers, some operators and maintenance per-

/ sonnel who are scattered among the various depart­
ments (both academic and administrative) and are not 
on a computer center payroll. My estimates of such 
personnel are shown in Table VIII. 

SUMMARY 

Th~ numbers of degree programs, majors and degrees 
awarded will be of some surprise to many who are 
proposing to begin new programs. Of course good, solid 
offerings will always be desirable. However, in terms of 
national emphasis it is apparent that we do not need to 
have a national effort to create new programs. On the 
other hand, there is a definite need to encourage and 
assist with the improvement of existing programs at all 
levels. As a starting point the AFIPS Education Com-

mittee sponsored a meeting at the 1971 Fall Joint 
Computer Conference on "Accreditation: What it is, 
Who does it, and How it is done," for leaders of the 
various curriculum committees, special interest groups, 
and others involved with curriculum planning for Com­
puter Science, Data Processing, Information Science, 
etc. This was done with the belief that we can work 
with the various accreditation associations to help 
bring about the improvements needed in these pro­
grams. Government agencies such as the Office of 
Computing Activities of the National Science Founda­
tion can offer invaluable assistance by providing some 
of the resources required for the improvement of these 
programs. 
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Sources of trained computer personnel-A quantitative 
survey* 

by BRUCE GILCHRIST and RICHARD E. WEBER 

American Federation of Information Processing Societies, Inc. 
Montvale, New Jersey 

INTRODUCTION 

The economic recession of the past' two years has em­
phasized the need for better overall manpower planning 
in the computer field. However, such planning can 
only be accomplished if there are reasonably reliable 
data on both the sources of trained personnel and the 
industry needs for such personnel. The purpose of this 
paper is to summarize our current state of knowledge 
of the primary sources of personnel. A companion 
paper in these proceedings discusses' the requirements 
aspects. l It is clear from these two papers that our 
knowledge of both aspects is limited as to accuracy as 
well as coverage. For the present this lack of knowledge 
makes it impossible to construct a manpower model 
suitable for prognostication. However, the growing 
interest of the various groups involved in data ~ollec­
tion gives rise to optimism that a usable manpower 
model can be constructed in the foreseeable future. 

No attempt is made in this paper to distinguish 
between the people who will be employed by computer 
users and those who will be employed by the computer, 
peripherals and software suppliers. This is due to' the 
lack of data giving specific employments. There is good 
evidence, however, that the vast majority will be em­
ployed by the users of computers. It should also be 
emphasized that only the primary sources of trained 
personnel are considered. Promotions from within and 
movement between companies are important compo­
nents of any manpower model but here again the lack 
of data prevents the inclusion of this level of detail at 
the present time. 

In the following sections we review on a type by 
type basis the available quantitative data on the vari­
ous sources of trained computer personnel. It should 

* This paper was prepared as part of the AFIPS Statistical 
Research Program which is partially funded by the National 
Science Foundation under Study Grant GJ 996. 
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be kept in mind throughout that. there are difficulties 
with regard to definitions. In the absence of generally 
accepted industry standards, there are many different 
uses of the titles "programmer" and "systems" analyst 
and many different 'assumptions as to what knowledge 
is required by holders of such titles. The same is true 
of expressions such as "computer science" and "data 
processing" as well as of the training or education 
needed to be eligible to enter one of the computing 
jobs as a trainee. These definitional problems make 
comparisons between various reports difficult, if not 
impossible. We believe,' however, that by summarizing 
in one place all available data, we will point up the 
estimation, definitional and other problems and thereby 
encourage improved collection and standardization. 
This should in turn result in future compilations of 
data being more internally compatible .. Meanwhile we 
believe that these figures give an idea of the order of 
magnitude of the output of the various training 
institutions. 

SOURCES OF TRAINING 

Public secondary schools 

The only comprehensive study at this level is one by 
the American Institutes for Research under a grant 
from the National Science Foundation.2 This study for 
the school year 1969-70 included a combination mail 
and interview survey of 23,030 public secondary schools; 
12,396 (53.8 percent) of the schools responded in some 
form. 

While the report contains a wealth of information, 
the question "how many students in each school were 
receiving instruction in the use of computers" was not 
specifically asked. Some interesting conclusions can, 
however, be drawn from the report. 

Excluding guidance applications, 464 (or 12.3 per-



634 Spring Joint Computer Conference, 1972 

TABLE I-Projections of Students Receiving Computer 
Training in Public Secondary Schools during 1970-71 

Percent of AFIPS 
Sample Popu- Estimate of Total 

lation * Enrolled USA Students En-
N arne of Course in Course rolled in Course 

Some Computer Training 88,500 
Introduction to Data 

Processing .38 66,000 
Computer Operation .01 1,700 
Computer Processing 

Equipment Operation .02 3,400 
Computer Mathematics .12 17,400 

Computer Programming .07 12,100 

Keypunch Operation .02 3,400 

Total .62 104,100 

* Since this is a count of course enrollments, it does not represent 
individual pupils who may be enrolled in two or more courses 
simultaneously. 
Data based on Office of Education pretest sample 

cent) of the 3,770 schools responding to the main 
questionnaire reported that they gave instruction in 
EDP skills. (If guidance and administrative users are 
included this usage increases to 34.4 percent of all 
respondents.) While there were wide variations among 
schools in the number of students involved in each in­
structional application, the median was 50 students, 
each of whom participated on the average about ten 
hours per month. Assuming that the mean number per 
school is equal to this median, extrapolation to the 
total of 23,030 schools gives 

464 
3770 X23,030 X50 = 142,000 

students receiving some instruction in EDP skills dur­
ing the school year 1969-70. 

Furthermore, the report indicates that 3 percent of 
schools not then offering computer instruction were 
planning to do so and 22 percent of those giving in­
struction expected to expand their instructional activi­
ties. It is probable, therefore, that enrollment for 
training in EDP skills in 1970-71 could have reached 
or exceeded 200,000 students. Based on interviews at 
some schools, one of the authors of the report estimates 
that 10 percent or 20,000 of these get sufficient instruc­
tion to be hired directly upon graduation as program­
mer trainees. From the employment viewpoint, we are 
mostly concerned with this 20,000. Of course, many of 

them will not look for such jobs but instead go on with 
their education or go into other fields. 

The numbers given above all relate to student en­
rollments. To obtain an estimate of how many 1971 
high school graduates had received computer instruc­
tion we use the New Jersey statistic that 21.5 percent 
of students in grades 9-12 graduate each year.3 This rc­
sults in an estimate that, of the studcnts graduating 
from high school in June 1971, 43,000 had some com­
puter training and of these 4,300 had significant 
programmer training. 

Additional information on the number of the gradu­
ates will be forthcoming from the U.S. Office of Educa­
tion. They are planning a sample mail survey of public 
schools having at least one of grades 7-12 in order to 
gather course and curriculum information as well as en­
rollments for the 1972-73 school year. In preparation 
for the main survey, a pretest of the questionnaire to 
be used was sent to a sample of 290 out of the 25,128 
public schools on their 1968-69 list. The schools were 
arranged by size and then randomly sampled within 
each state with a minimum-of 3 schools per state as the 
beginning point for each state. 

Table I is a summary of some results from this test.4 

The Office of Education figures are about half those 
inferred from the American Institutes for Research 
report. Each survey has its advantages and drawbacks 
so, for lack of further data, we average the two results 
to obtain an estimated 1971 graduating class of 33,000 
with some computer training of which 3,300 have 
significant programmer training. 

'In order to arrive at job entry estimates we use New 
Jersey data to obtain percentage distributions of what 
happens to high school students after they graduate. 
Applied to the above figures, this results in Table II 
which indicates that about 7,600 entered the labor 
force in June 1971. The big assumption made here is 
that students with some computer training win follow 
the same post high school pattern as the average 
student. 

TABLE II-Estimate of Destination of Students with Some 
Computer Training Graduating from Public Secondary Schools 

in June 1971 

Destination N.J. percent distribution Number 

Technical School 8 2,600 
Junior College 15 5,000 
College 41 13,500 
Other 13 4,300 
Employment 23 7,600 

Totals 100 33,000 
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TABLE III-Students Enrolled in Computer Occupational Courses in Public Vocational 
Schools for the Years 1966-70 

Type of Training 1966 1967 1968 1969 1970 

Business Data Processing 
Scientific Data Processing 

42,764 85,063 109,769 
26,374 

134,723 
35,914 

165,977 
18,162* 26,367 

Total 42,764 111,430 136,143 170,637 184,159* 

* Beginning in 1970, States with less than 5 percent of their enrollments in a particular category 
were permitted to include this number in a general category. This threw many of enrollments 
previously reported under scientific data processing into the general category. The 1970 figure 
is therefore not comparable with previous years nor necessarily indicative of the true picture. 

It should be emphasized that the foregoing estimate 
considers only public secondary schools. In addition to 
these, there are approximately 4,000 private and 
parochial secondary schools with enrollments of about 
1.4 million students.5 If the same proportion of these 
students as of students in public secondary schools re­
ceive computer instruction, their inclusion would In­
crease the numbers in Table II by about 8 percent. 

Public vocational schools 

Under the ongoing vocational education program 
the U.S. Office of Education requires each state to 
make annual reports of their enrollments in vocational 
programs. This data is then summarized and published 
by the Office of Education. Table III gives their latest 
data.6 

Table III, excluding the incompatible 1970 figure, 
shows a fairly consistent annual growth rate. Linear 
extrapolation is therefore used to project the enroll-

ments for 1971. Using these estimates and information 
from follow-up records provided by the U.S. Office of 
Education, Table IV has been prepared to show esti­
mates of the numbers graduating from public voca­
tional programs in June 1971 and of those entering the 
labor force and higher education. 

Although it is impossible to give the exact numbers 
entering each occupation, it has been observed that the 
Business Data Processing program is intended to pre­
pare students for entry into employment as computer 
programmers, computer operators or keypunch opera­
tors; whereas the Scientific Data Processing program 
prepares students for jobs as systems analysts and 
computer programmers. 

It should be noted that these vocational programs 
are offered in comprehensive high schools, community 
colleges and four-year colleges, as well as specialized 
vocational schools. Thus, it is possible that there is some 
duplicate counting between this section and other 
parts of this report. It is believed that this duplication 
is minimal. 

TABLE IV-Estimate of Students Enrolled in and Completing Vocational Programs and Number Placed in 1971 

--

Destination 

Entering Labor Force 

Total In Preparatory Entering Higher Field For Which 
Training and Level Enrollment Programs Total Graduates Education ( Total Trained 

Business Data Processing 196,800 131,200 36,736 5,640 21,674 17,439 
Secondary 52,480 13,120 3,280 6,560 4,592 
Post Secondary 78,720 23,616 2,360 15,114 12,847 

Scientific Data Processing 45,500 30,334 8,691 1,150 5,301 4,336 
Secondary 7,583 1,866 450 933 653 
Post Secondary 22,751 6,825 680 4,368 3,713 

Total 242,300 161,534 45,427 6,790* 26,975* 21,805 

* In addition to these two groups there were 11,662 that went into the armed services, married, became ill, etc., and were thus unavailable 
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TABLE V -Summary of Responses from 41 Private EDP 
Schools 

Number Median Expected 
of Course 1969 

Type of Course Courses Length Graduates 
(Hrs.) 

Programming 44 500 7,994 
Computer Operations 17 180 1,446 
Keypunching 14 78 4,359 
Other 5 1,200 

Totals 80 14,999 

Private vocational schools 

Due to the general shortage of programmers in the 
1960's, a large number of so-called private EDP schools 
were begun; These schools advertised heavily and ap­
pealed to non-college graduates. Such schools are part 
of a larger set of private trade and technical schools. 

Some of these schools are accredited by organiza­
tions such as the National Association of Trade and 
Technical Schools (N ATTS) and in some states there 
are regulations governing various aspects of their opera­
tions. However, there are no nation-wide standards 
with respect to course length or content and no report­
ing scheme for enrollment and graduation data. 

In 1969 Gilchrist made a mail survey of 207 private 
EDP schools located in 10 major U.S. cities.7 The 
questionnaire asked for the number, type and length of 
courses offered together with the estimated number of 
graduates from such courses in 1969. The 41 schools 
which responded reported that they expected to gradu­
ate nearly 15,000 students that year as shown in 
Table V. 

Using the sample data, Gilchrist then extrapolated 
linearly to the total population of private EDP schools 
which he estimated to be between 500 and 1,000. This 
resulted in the figures summarized in Table VI. 

TABLE VI-Estimated Numbers of Private EDP School 
Graduates for 1969 

Low High 
Sample Estimate Estimate 

Type of Course ( 41) (500) (1000) 

Programming 7,994 97,500 195,000 
Computer Operations 1,446 17,600 35,000 
Keypunching 4,359 53,200 106,000 
Other 1,200 14,600 29,000 

Totals 14,999 182,900 365,000 

Belitsky, using 1966 data, found that there were then 
3,000 private trade and technical schools with an aver­
age enrollment of 280 students and that data processing 
courses represented 22 percent of all vocational courses.8 

He also found that there were over 500 correspondence 
schools for vocational training .. These results indicate 
that the correct number of graduates probably does lie 
between Gilchrist's high and low estimates. 

Since 1969 private EDP schools appear to have con­
tracted both in number of schools and in number of 
students per school. This is due to the slowing of the 
economy, the difficulties their graduates, especially in 
programming, are encountering finding jobs and the 
public disclosure of poor practices in some of these 
schools. While no survey results are available, limited 
data from New Jersey indicate that there could have 
been a 50 percent contraction since 1969. In New Jersey 
the number of private data processing schools for the 
years 1968 through 1971 were 52, 52, 40 and 28, re­
spectively.3 Allowing for some contraction Table VII 

TABLE VII-Estimated Numbers of Private EDP School 
Graduates for 1971 

Type of Course 

Programming 
Computer Operations 
Keypunching 
Others 

Total 

Estimated Number of 
1971 Graduates 

43,000 
7,400 

22,000 
6,600 

79,000 

uses 350 schools each having 225 graduates to estimate 
the 1971 output of the private EDP schools. 

The nature of the courses given in private EDP 
schools and the whole flavor of their promotional adver­
tising indicates that all their graduates enter the labor 
market rather than going on to higher education. 

Higher education 

In the area of higher education the U.S. Office of 
Education publishes annual reports on the number of 
graduates by discipline and by degree level.9- lo These 
reports include a number of classifications relating to 
the computer field. In addition, the National Science 
Foundation has sponsored an information gathering 
project at the Southern Regional Education Board. 
This project has included surveys of the uses of com­
puters in higher education during the school years 
1964-65, 1966-67 and 1969-70. Full reports are available 



TABLE VIII-Comparison between U.S. Office of Education 
and Southern Regional Education Board Classifications for 

Computer Related College Programs 

Office of Education 
Classification 

Systems Analysis 

Computer Science 

Data Processing 

Other 

SREB Classification 

Systems Analysis 
Information 'Systems 
Information Processing 
Systems Engineering 

Computer Science 
Information Science 
Management Science 
Option in Electrical Engineering 
Option in Mathematics 
Option in Engineering 
Option in Industrial Engineering 

Data Processing 
Computer Technology 
Computer Programming 
Option in Business Administration 

Classifications not listed above 

for the first two surveysll,12 and a preliminary report on 
the most recent one is included in these proceedings.13 

Unfortunately, the Office of Education reports and 
the Southern Regional Education Board reports of 
1966-67 and 1969-70 use somewhat different classifica­
tions. In' order to compare data from the three sources 
we have grouped the various SREB classifications into 
four major groups which we believe to be sufficiently 
comparable to the Office of Education classifications. 
This grouping is shown in Table VIII. 

Table IX was prepared by grouping the SREB re­
sults according to Table VIII and extrapolating to the 
total population of institutions for each year surveyed. 
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The very low ratio of graduates to majors for 1966-67 
shown in Table IX indicates that in that year many 
programs were still in their early stages of operation. 
By 1970-71 this ratio had become more normal indicat­
ing that most programs were then in full operation. 
Even so, without an increase in enrollments, the num­
ber of graduates can still be expected to increase some­
what for the early 1970's. The increasing number of 
degrees awarded in computer related courses is con­
firmed by the U.S. Office of Education reports which 
are summarized in Table X. 

The U.S. Office of Education also publishes data on 
the number of students enrolled for advanced degrees.14 

For the computer related disciplines, these data are 
summarized in Table XI. The 1967 numbers for "Sys­
temsAnalysis" and "Other" categories look strange 
and suggest that definitional problems resulted in 
"Systems Analysis" students being put into the "Other" 
category. 

The growth rates are remarkably consistent. They 
also indicate that the level of graduations at the bache­
lors and masters levels appear sufficient to continue the 
respective master and doctoral enroJlments growing at 
substantial rates. 

As a result of the aforementioned classification differ­
ences, comparisons from Tables IX, X, and XI leave 
something to be desired. However, considerable growth 
is implicit in Table IX and quite obvious in Tables X 
and XI. Regression analysis of the data from Tables X 
and XI reveals that the growth rates for nearly all 
categories were approximately constant. The mean 
growth rates are given in in Table XII. 

The question now arises as to how many of these 
1971 graduates entered the labor force in contrast to 
continuing their education. There appear to be no 
data upon which to base an' answer to this question. 
A very rough approximation might be that a third of 
those receiving lower degrees continued their education 

TABLE IX-Summary Results Derived from 1966-67 and 1969-70 Southern Regional Education Board Surveys 

Undergraduates Graduates 

Majors Associate BAIBS Majors MAIMS PhD 
------

Major Field 66-67 69-70 66-67 70-71 66-67 70-71 66-67 69-70 66-67 70-71 66-67 70-71 

Systems Analysis 1060 2800 - 125 30 340 100 850 25 185 3 25 
Computer Science 4150 15350 80 570 450 2170 4445 6650 635 1770 170 280 
Data Processing 16950 47200 1200 6800 110 700 395 370 80 40 1 5 
Other - 475 140 1250 75 25 

Total 22160 65925 1280 7495 590 3350 4940 9120 740 2070 174 335 



638 Spring Joint Computer Conference, 1972 

TABLE X-:-Number of Graduates of Computer Related Programs from 1965 to 1970 as Reported by the U.S. Office of Education 

Degrees Conferred for Years 1965-70 

Field and Level 

Year Data Processing Computer Science Systems Analysis Other Total 

BAI MAl BAI MAl BAI 
Associates BS MS BS MS PhD BS 

Scien- Busi-
tific ness 

1964-65 - - 25 5 6 57 5 -

-66 - - 37 19 22 157 14 30 

-67 - - 48 24 71 239 20 48 

-68 503 2405 155 47 166 317 20 92 

-69 1222 3351 239 73 463 622 44 179 

-70 1627 4860 336 43 825 689 79 195 

and that two thirds of those receiving PhD's have gone 
into teaching. Applying these approximations to Table . 
IX we get the estimate of the numbers entering the 
labor force in June 1971. These are given in Table XIII. 

Summary of formal education programs 

The data from the previous four sections are sum­
marized in Table XIV. 

With the exception of the Private Vocational Schools 
each program is producing a steadily increasing number 
of graduates and entrants to the labor force. There is, 
unfortunately, insufficient data to break down the 1971 
entrants to the labor force into job skills. However, 
one can roughly say that the first three categories in 

TABLE XI-Number of Students Enrolled for Advanced Degree 
in Computer Related Programs, 1965-1970 

Data Computer Systems 
Year Processing Science Analysis Other Total 

Fall 1965 37 323 185 271 816 
Fall 1966 55 587 517 873 2,032 
Fall 1967 51 962 84 1,625 2,722 
Fall 1968 159 1,888 627 1,217 3,893 
Fall 1969 290 3,906 601 1,404 6,201 
Fall 1970 224 4,804 1,213 1,695 7,936 

MAl BAI MAl BAI MAl 
MS PhD BS MS PhD Assoc BS MS PhD 

34 - 36 50 1 - 67 112 6 

26 - - 36 5 556 89 248 19 

101 12 15 85 6 1009 232 449 38 

50 5 46 134 11 2908 459 548 36 

103 5 52 214 15 4633 933 1012 64 

226 2 188 501 25 6487 1544 1459 106 

Table XIV will primarily enter data-entry, electrical 
accounting machine and computer operations while the 
last three categories will primarily enter programming 
and systems analysis. The holders of Associate degrees 
will divide-the top students going into programming 
and the others into machine operations. 

Other sources 

In addition to the estimated 122,000 entrants to the 
labor force from the formal computer related programs 
discussed above, a significant number of people are 
trained by other sources. These include manufacturers 
of computing equipment and software as well as large 

TABLE XII-Mean Annual Percentage Growth Rates for 
Number d Degrees Awarded in Computer Related Programs and 

for Enrollments for Advanced Degrees in Such Programs 

Data Computer Systems 
Level Processing Science Analysis Total 

Associate 64 64 
BA/BS 56 99 45 67 
MAIMS 44 48 37 49 
PhD 49 51 
Enrolled for 52 62 47 

Advanced Degree 



TABLE XIII-Approximate Numbers of 
College Graduates Entering the Labor Force, 
Excluding Academic Personnel in June 1971 

Degree Number Entering Labor Force 

Associate 
BA/BS 
MAIMS 
PhD 

5,000 
2,300 
1,400 

110 

users. For example, in 1970 the U.S. Defense Depart­
ment trained about 2,000 of their own personnel. Also, 
several insurance companies are known to have ob­
tained state licenses to give courses for computer user 
personnel. 

Little information exists· with regard to the output of 
such sources of trained pesonnel. The importance of 
these training programs is illustrated by Table XV 
which is derived from the 1971 AFIPS Personnel 
Survey which sampled the members of the AFIPS con­
stituent societies.15 

Most of the people trained by these other sources 
have probably had some prior training, perhaps in the 
secondary or vocational schools or Associate degree 
programs. Since we are here concerned mainly with 
primary sources, it is unclear just how to treat these 
other training sources. Our investigations suggest that 
in past years between 20,000 and 30,000 people .were 
trained in this way, but that the figure for 1971 wIll be 
from 10,000 to 20,000. It is to be expected that as the 
level of training offered by the public schools and two 
year colleges is increased, training by manufacturers 
and users will become numerically less important inso­
far as primary sources are concerned. 

The computer manufacturers' courses and in-house 
use· training courses are also very important from the 

TABLE XIV-Estimates of Number of Entrants into the Labor 
Force from Various Formal Computer Educational Programs 

in 1971 

Educational Program 

High School 
Public Vocational School 
Private Vocational School . 
Associate 
BA/BS 
MAIMS 
PhD 

Totals 

Entering Labor 
1971 Graduates Force 

33,000 7,600 
45,400 27,000 
79,000 79,000 

7,495 5,000 
3,350 2,300 
2,070 1,400 

335 110 

170,650 122,410 
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viewpoint of continuing education. In a rapidly· de­
veloping field such as computing there will continue to 
be a great heed for short refresher courses and courses 
on new developments. Some of these will be given by 
colleges, universities and companies devoted to training, 
but we suspect that the majority will continue to be 
provided by manufacturers and users. 

TABLE XV-Sources of Information Processing Training 
Reported by Respondents to the 1971 AFIPS Personnel Survey 

Source 

Computer Manufacturers 
In-House 
Part of Formal Education 
University ICollege 
Software Consulting Co. 
EDP School 
Correspondence School 
High School/Vocational School 
Other 

Percentage* 

47.1 
44.5 
37.5 
31.4 
8.5 
6.0 
4.5 
1.5 
9.2 

* Percentages add up to more than 100 due to multiple responses. 

SUMMARY 

The available data, supplemented by personal inter­
views, indicate that at least 170,000 people were trained 
by primary sources for the computer user labor market 
in 1971. The level of training is clearly heavily weighted 
toward the low end. It also appears that there is a 
trend toward higher level education together with a 
move toward general rather than specific training. It is 
further noted that there is a decided shift toward 
education in publicly supported institutions as op­
posed to private vocational and manufacturer's schools. 

The estimated number of trained people entering the 
labor force does not appear proportionate to the re­
quirements suggested by an employment figure for 
their occupational categories of the order of slightly 
over a half million. With the reduced growth rate being 
experienced by the computer industry an implied new 
hire ratio of nearly 30 percent seems entirely unlikely. 
Furthermore, preliminary indications are that the 
numbers of people trained for various levels are not 
commensurate with the needs of the industry at the 
respective levels. 

In view of these conclusions, it is clear that a strong 
need exists for improved data collection followed by 
public release of accurate findings as to potential train­
ing outputs and job requirements at the various skill 
and educational levels. To this end measures should be 
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taken by all concerned parties to initiate such projects. 
Thereby we may eliminate future imbalances and thus 
improve labor conditions in the computer field. 
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Employment of trained computer personnel­
A quantitative survey* 

by BRUCE GILCHRIST and RICHARD E. WEBER 

American Federation of Information Processing Societies, Inc. 
Montvale, New Jersey 

INTRODUCTION 

After several years of chronic shortages of trained per­
sonnel, the economic recession of the past two years has 
resulted in some unemployment within the computer 
field. This unemployment has emphasized the long exist­
ing need for better overall manpower planning. Such 
pJanning can only be carried on successfully if reason­
ably reliable data and projections are available. The 
information collected and the resulting projections must 
include both the employment needs and the sources of 
trained personnel. The purpose of this paper is to sum­
marize the current employment picture especially as it 
relates to the users of computers. A companion paper 
in these proceedings discusses the primary sources of 
such trained personnel.1 

In the past, a number of general statements have 
been made about the employment of computer per­
sonnel. For example, the Bureau of Labor Statistics 
regularly publishes occupational outlook data for sev­
eral computer related occupations,2 and industry leaders 
are prone to making generalized comments. However, 
as was pointed out by Gilchrist in 1969, these numbers 
appear, upon inspection, to be based on relatively little 
firm data.3 

AVAILABLE DATA SOURCES 

The 1970 decennial census included, for a 20 percent 
sample of the population, a question on occupation. The 
encoders of these responses had available to them a 
number of classifications relating to computing. The 

* This paper was prepared as part of the AFIPS Statistical 
Research Program which is partially funded by the National 
Science Foundation under Study Grant GJ 996. 
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summarized results should give an interesting picture 
of employment in the computer field. Unfortunately, 
the summaries will not be current when published since 
they will not be available until late 1972 at the earliest. 

In the meantime, a number of groups have ongoing 
activities or are commencing new ones which should 
improve our knowledge of the employment picture. 

AFIPS with partial support from the National 
Science Foundation is assembling available data and 
encouraging trade associations to obtain additional data 
from their individual member firms. 

The Federal Government has for a number of years 
reported their EDP related employment figures. Now 
various states and cities are beginning to produce simi­
lar reports on their own or in conjunction with the 
Bureau of Labor Statistics (BLS) of . the U.S. Depart­
ment of Labor. 

The BLS has recently included several computer re­
lated occupations in its regular Area Wage Surveys.4 
Although these data are collected primarily to deter­
mine wage patterns, they do provide estimates of em­
ployment in each occupation. With financial support 
from the N ationalScience Foundation, BLS has re­
cently commenced a major study of computer reJated 
employment. In addition, it has made a number of rele­
vant studies of employment in individual cities and in­
dustries. 

On a monthly basis, BLS publishes employment and 
earnings data covering every industry in the country. 
The difficulty in using this data to learn about computer 
related occupations is that the SIC classifications 
reflect the products of a company and not the type of 
employees. For example, programmers employed by a 
chemical company will be reported under the SI C code 
for the particular chemical products. Plants whose 
prime output is computer equipment are identified 
separately and employment data on these are available. 
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TABLE I-Man-years Utilized in 
Federal Government ADP Operations 

Fiscal Year 

1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 

SUMMARY OF DATA 

ADP Man-years 

48,700 
54,400 
58,800 
67,400 
72,300 
76,200 
89,600 

105,900 
118,800 
118,900 
127,500 

Despite these varied activities, we can still paint 
only a hazy and incomplete picture of the employment 
situation in computer related occupations. In the 
following sections we summarize, source by source, the 
currently available data. It must be recognized through­
out that there are problems arising from the lack of 
widely accepted standard definitions for occupations 
such as programmer, systems analyst, computer opera­
tor, etc. This makes exact comparisons between data 
from different sources very difficult. In addition, there 
are a growing number of individuals who spend part 
of their time programming and part of their time per­
forming other tasks such as engineering or accounting. 
How these people are classified in the various surveys is 
unknown. This problem will undoubtedly get worse 
with the increasing use of terminals which make com­
puters available to many more people who would not 

TABLE II-Distribution of Man-years Utilized in Federal 
Government ADP Operations 

Occupation 1967 1968 1969 1970 

Systems Analysis and 8,027 10,533 12,006 12,921 
Design 

Programming 15,492 16,752 17,086 18,552 
Operations 33,665 35,585 34,591 36,769 
Keypunching 23,536 25,062 22,826 23,126 
ADP Equipment 696 1,003 843 742 

Selection 
In-House Maintenance 1,043 1,292 1,774 2,152 
Services and Support* 23,475 28,573 29,743 33,229 

Total 105,934 118,813 118,869 127,491 

* In a few agencies a large number of people are engaged in the 
handling of source documents. 

normally regard themselves as computer programmers 
or computer operators. 

Federal government 

As the result of a directive from the Office of ::'\lanage­
ment and Budget, the federal agencies are required to 
make annual reports on their use of automatic data 
processing (ADP) equipment.5 These reports include 
cost, manpower and utilization data for all computers 
except those used for control purposes or installed in 
classified locations. A summary of all the agency reports 
is published annually. Tables I and II are taken from 
the report for fiscal year 1970.6 

Although the numbers are subject to some uncer­
tainty because of a lack of complete conformity in job 
descriptions the two tables present an interesting and 
quite detailed picture of Federal Government employ­
ment. 

State governments 

The most comprehensive source of data on employ­
ment in state governments is a survey made in 1970 
by The Research and Education Committee of the 
National Association for State Information Systems 
(NASIS).7 While the data is by no means complete the 
majority of the states, including the larger ones, did 
report computer related personnel figures. These are 
summarized in Table III which covers employment by 
36 states and includes an extrapolation to the complete 
50 states. This extrapolation is based on a report that 
the 36-included states account for 83.8 percent of all 
full-time equivalent employment by all 50 states.8 

TABLE III-Employment of Computer Personnel by State 
Governments for FY 1970 

Occupation 

Systems Analysis & Design 
Programming 
Computer Operations (incl. EAM) 
Data Entry (Keypunching) 
Supervision and Administration 

Total 

36 States* 

2,100 
4,199 
5,832 
9,565 
1,633 

23,329 

50 State 
Extrapolation 

2,506 
5,011 
6,959 

11,414 
1,949 

27,839 

* In a few cases totals were prorated among the various job 
categories on the basis of overall percentages. 



Local governments 

A representative picture of computer related employ­
ment in city governments can be obtained from studies 
made between May and October of 1970 by BLS in 
cooperation with several cities.9- 15 The eight cities 
covered by these reports account for approximately 
9 percent of all local government employees. Table IV 
summarizes these data and extrapolates them to all 
local governments. 

In addition, New York City has prepared a detailed 
report on their EDP operations.16 Table V, which gives 
the 1969 employment situation in more detail for New 
York City, is taken from this report and illustrates the 
importance of their computer operations. (This is far 
more comprehensive than a recent BLS survey of 
municipal government workers in New York City.17) 

TABLE IV-Employment of Computer Personnel by Cities 
for 1970 

8 All Local 
Occupation Cities Governments 

Systems Analyst 123 1,353 
Programmer 276 3,036 
Machine Operator (incl. EAM) 359 3,949 
Keypunch Operator 846 9,306 

Establishments in metropolitan areas 

Data from the individual Area Wage Surveys4 for the 
90 Standard Metropolitan Statistical Areas (SMSA) 
have been consolidated and are presented in Table VI. 
The surveys were conducted at various times from late 
1969 through early 1971 and cover about 24,000,000 
employees in manufacturing and non-manufacturing. 
The latter group includes the transportation, com­
munications, public utilities, wholesale and retail trade, 
finance, insurance, real estate and service industries. 
Data by industry group is summarized in Table VII. 
There is a great deal of additional detail in these 
surveys. For example, employment is broken down by 
level and by sex. 

The twenty-four million employees covered by 
the surveys are about 42 percent of those on non­
agricultural/non-government payrolls.19 Using this per­
centage as a basis for extrapolation we obtain Table 
VIII which gives an estimate of employment in all 
non-agricultural/non-government establishments. 

Definitional problems preclude direct comparison of 
data in Tables VI and VII with that in the earlier 
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TABLE V-City of New York Employees Performing DP 
Functions in 1969 

Function 

DP Management 
Systems Analysis 
Programming Management 
Programming 
Operations Management 
Computer Operations 
Data Control 
EAM Operations 
Keystroke 
Miscellaneous 

Total 

Number of 
Employees 

31 
42 
19 

176 
52 
61 

160 
147 
436 
68 

1,192 

tables. A major problem is that the Area Wage Surveys 
clearly do not include scientific and engineering pro­
grammers and systems analysts whereas these cate­
gories are included in the various government figures. 

Manufacturers of electronic computing equipment 

There are two sources of data on total employment 
by the manufacturers of computing equipment. The 
first is the Bureau of the Census' Annual Survey of 
Manufacturers which surveys one out of every five 
known computer firms. Results from this survey are 
included in Department of Commerce reports on the 
economy.18 The second is the Bureau of Labor Statistics' 
monthly publication Employment and Earnings19 which 
is based on a sample survey of firms derived from the 
Social Security Administration's corporate returns. 
Unfortunately the two sources do not agree, the Census 
estimates being lower than those of the Department of 

TABLE VI-Employment of Computer Personnel in Covered 
SMSA by Size of Establishment 

Establishment 

Occupation Large Small All 

Business Systems 13,078 20,606 33,684 
Analyst 

Business Programmer 14,783 31,179 45,962 
Computer Operator 17,451 34,623 52,074 
Keypunch Operator 43,750 99,038 142,788 

Number of covered 
employees 6,735,003 17,379,049 24,114,052 
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TABLE VII-Employment of Computer Personnel in Covered SMSA by Industry 

Non-Manufacturing 
Manu-

Occupation facturing Total* T.C.P.** Wholesale Retail R.I.F.** Service 

Business Systems Analyst 13,560 17,824 1,759 328 232 5,626 780 
Business Programmer 15,467 28,562 3,254 786 222 9,639 1,539 
Computer Operator 18,346 32,977 3,117 1,770 1,138 10,411 1,975 
Keypunch Operator 47,870 94,736 13,688 8,752 10,007 17,650 3,874 

Number of Covered Employees 11,398,143 12,715,909 - - - - -

. * The sum of the subdivisions do not equal these figures. In many cases the BLS criteria for publication do not permit full subdivision of 
totals within an SMSA. Clearly, the total figure is the most accurate. Likewise, manufacturing and non-manufacturing do not total to 
the "all establishment" figure on Table VI and in this case the "all establishment" figure is the more accurate. 
** T.C.P.-Transportation, Communications and Public Utilities 

R.I.F.-Real Estate, Insurance and Finance 

Labor. A further difficulty arises from the fact that 
data from prior years is frequently corrected by both 
agencies and these corrections are only reported when 
new summaries covering past years are published. 
Moreover, neither of these surveys gives the data 
broken down by occupational specialty. 

Local offices of the Bureau of Labor Statistics will, 
upon request, give out their latest figures. The figures 
given in Table IX were obtained from theN ew York 
office of the Bureau of Labor Statistics in December 
1971. 

In late 1970 AFIPS made a survey of the p~incipal 
manufacturers of CPU's to determine the number of 
programmers and systems analysts employed by such 
firms. Data was obtained from five of the manufacturers 
including the three companies reputed to have the 
largest share of the CPU market. These companies 
reported a total of 14,800 programmers and systems 
analysts as of mid-1970 with academic training as given 
in Table X. 

TABLE VIII-Estimated 1970 Employment 
of Computer Personnel by Private 

N on-agricultural/N on-government 
Establishments 

Occupation 

Business Systems Analyst 
Business Programmer 
Computer Operator 
Keypunch Operator 

Total 

Employment 

80,000 
110,000 
125,000 
340,000 

655,000 

COMPARISON OF THE DATA 

Before trying to make estimates of total employment 
in the various categories we first look at some averages 
derived from the foregoing tables. In Table XI we give 
the average number of employees in each occupation 
per one thousand employees in the group specified. It 
should be noted that federal, state and local figures 
include both scientific and business systems analysts 
and programmers while the other groups do not. 

Examination of this table reveals both similarities 
and differences. For example, the total per thousand 
employment by Federal Government (15.9) is nearly 
equal to that of the large establishments (13.2). Like­
wise, the systems analyst and programmer. figures for 
these two groups are nearly equal. Any differences can 
be rationalized by recalling the omission of scientific 
personnel from the establishment counts. The large 
establishment figures need only to be inflated by 33 
percent to obtain the federal total for these two occupa-

TABLE IX-Total Employment by Companies 
in SIC 3573 (Electronic Computing Equipment) 

as Reported byBLS 

Date 

1967 Average 
1968 Average 
1969 Average 
1970 Average 
Jan 1971 
April 1971 
July 1971 
Sept. 1971 

Employment 

145,100 
160,600 
182,700 
190,300 
175,800 
172,800 
171,500 
169,500 



TABLE X-Educational Background of Programmers and 
System Analysts Employed by Five Manufacturers of CPU's 

as of Mid-1970 

Level 

PhD 
MAIMS 
BSIBA 
Less than BSIBA 

Total 

Percent of programmers 
and system analysts 

0.5 
10.8 
58.3 
30.4 

100.0 

tions (i.e., add 1.4 scientific programmers and analysts 
to the present 4.1 business programmers and analysts). 
One striking difference to be noted is the high figure for 
computer operators in the federal as compared to other 
groups. This maybe the result of the job definition 
problem mentioned earlier. Another difference is that 
non-manufacturing industries employ more computer 
personnel on the average than manufacturing industries. 
We suspect that the finance and insurance segments 
account for much of this difference. Also to be noted, 
is that federal, state and local ratios for all occupations 
are in descending order of magnitude from federal 
through local with the latter two considerably below 
the federal levels. This last comparison also holds in 
absolute numbers as is evident from Tables II, III 
and IV. 

We next examine the ratios of the various occupations 
to the number of systems analysts. Table XII presents 
these ratios. 

There is a similarity between state and local govern­
ment in their relative usage of all occupational cate­
gories with the possible exception of keypunch opera­
tors. One noticeable difference is that small establish­
ments use relatively fewer systems analysts and con-
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siderably more keypunch operators than do large 
establishments. Another is that the Federal Govern­
ment uses considerably fewer keypunch operators per 
systems analyst than any other employing group. In 
this connection it is interesting to note that Table II 
indicates that the Federal Government is employing a 
smaller percentage of keypunch operators each year. 
Table XII further shows that the use of computer 
personnel by wholesale and retail industries is weighted 
considerably more toward keypunch operators than 
other groups; the wholesale industry uses propor­
tionately fewer systems analysts; and the retail group is 
the only one which employs more systems analysts than 
programmers. 

A final useful comparison can be made between these 
staffing ratios and similar ratios based on staffing needs 
per computer. Table XIII presents two such sets of 
ratios. One is adapted from a British report20 and a 
second from information provided in an interview with 
personnel of a large computer manufacturer. 

As can be noted, with the possible exception of 
computer operators for large CPU's, these ratios are 
similar to those presented in Table XII. There is also 
considerable similarity with ratios derived from the 
1971 Business Automation "EDP Salary Survey."21 
This survey reports on the three categories "Systems 
Analy st," "Analyst jProgrammer" and "Programmer." 
Ignoring the middle category (or alternatively, as­
suming that it divides in the same ratio), the ratio of 
programmers to systems analysts is 1.66. In the 1970 
reports this ratio was 1.5. 

FINAL ESTIMATE 

In order to estimate total U.S. employment in the 
four occupations, we first accumulate in Table XIV the 
data for federal, state, local and non-agricultural 
establishment groups from the preceding sections. 

TABLE XI-Average Computer Personnel Per Thousand Covered Employees in SMSA Surveys 

Government * Establishment Industry 

Non-
Manu- Manu-

Occupation Federal State Local Large Small All facturing facturing 

Business Systems Analyst 2.3 0.9 0.2 1.9 1.2 1.4 1.2 1.4 
Business Programmer 3.2 1.8 0.5 2.2 1.8 1.9 1.4 2.3 
Computer Operator 6.4 2.5 0.6 2.6 2.0 2.2 1.6 2.6 
Keypunch Operator 4.0 4.2 1.5 6.5 5.7 5.9 4.2 7.5 

Total 15.9 9.4 2.8 13.2 10.7 11.4 8.4 13.7 

* Government figures also include scientific and engineering systems analysts and programmers 
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TABLE XII-Ratio of Computer Personnel in Various Occupations to Those in Systems Analysis as Shown in Table XI 

C
C
) 

Government* Establishment Industry 

Manu-
Occupation Federal State Local Large Small All facturing Non-Manufacturing 

Whole- Ser-
Total T.C.P. ** sale Retail R.I.F. ** VIce 

Business Systems 
Analyst 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Business 
Programmer 1.4 2.0 2.2 1.1 1.5 1.4 1.1 1.6 1.9 2.4 .96 1.7 2.0 

Computer 
Operator 2.8 2.8 2.9 1.3 1.7 1.6 1.4 1.7 1.8 5.4 3.9 1.9 2.5 

Keypunch 
Operator 1.8 4.6 6.9 3.3 4.8 4.2 3.5 5.3 7.8 26.7 43.1 3.1 5.0 

* Government figures also include scientific and engineering systems analysts and programmers 
** T.C.P.-Transportation, Communications and Public Utilities 

R.I.F.-Real Estate, Insurance and Finance 

The numbers in this table are undoubtedly low due to 
the failure to include at least four major groups. These 
are the employees of educational institutions which 
were only partially included in the state government 
data as well as scientific systems analysts and pro­
grammers, agricultural employees and the self­
employed, all of which are excluded from the Area 
Wage Surveys. 

A crude correction for the non-inclusion of some of 
the scientific and engineering related personnel might 
be to increase the systems analyst and programmer 
categories by 33 percent. This adjustment is based on 
our earlier discussion of the difference between the 
"Federal Government" and the "Large Establishment" 
group on Table XI. In addition, we might, somewhat 
arbitrarily, increase all occupations by 15 percent to 
correct for the other omissions. Our justifications for 
this last correction are that at least 10 percent of the 

TABLE XIII-Estimated Staffing Ratios by CPU Size 

Manufacturer I 
Small Medium Large 

Occupation British CPU CPU CPU 

System Analyst 1.0 1.0 1.0 1.0 
Programmer 1.5 2.0 1.3 1.6 
Computer Operator 1.3 3.0 1.3 .5 

labor force is self-employed or engaged in agriculture 
and that the universities and colleges are known to 
employ many computer people. Using these corrections 
we obtain Table XV which represents our best estimate 
of total U.S. employment in the four categories. 

A comparison for this estimate can be derived from 
the 1971 EDP salary survey of Business Automation 
which reports that there are 13.4 systems analysts and 
programmers per installation in the U.S. Combining 
this with an International Data Corporation report 
that there are 34,700 installations in the U.S.22 yields an 
estimate that there are 465,000 systems analysts and 
programmers as compared with our estimate of 360,000. 

TABLE XIV-Estimate of Total Computer Personnel Employed 
by Federal, State and Local Governments and 

N on-agricultural Establishments 

Per 1000 Ratio to 
covered systems 

Occupation Employed * employees analyst 

Business Systems Analyst 97,000 1.4 1.0 
Business Programmer 137,000 1.9 1.4 
Computer Operator 173,000 2.5 1.8 
Keypunch Operator 384,000 5.4 4.0 

Total of Above 791,000 11.2 8.0 

* Includes scientific and engineering personnel employed by 
government. 



TABLE XV-Final Estimate of Total U.S. Employment of Four 
Categories of Computer Personnel for 1970 

Occupation 

Systems Analyst 
Programmer 
Computer Operator 
Keypunch Operator 

Grand Total 

Employed 

150,000 
210,000 
200,000 
440,000 

1,000,000 

Since criticisms can be levelled against both estimating 
procedures, the discrepancy is probably not surprising. 

Our estimates are remarkably close to those made by 
the BLS in their Occupational Outlook Handbook. 
Their estimates are based on the average staffing per 
particular size of CPU, the numbers of the various size 
CPU's in use, and correction factors for productivity 
changes. This approach which is entirely different from 
ours yielded estimates of 150,000 systems analysts, 
175,000 programmers and 175,000 computer operators 
for 1968. 

CONCLUSION 

Despite the collection and publication of much in­
formation by various private and governmental 
agencies, it is still impossible to make an accurate 
estimate of the number of computer personnel as 
defined in this paper (or by any other definition for that 
matter). Certainly, it is in excess of the 800,000 indi­
cated on Table XIV. Most likely it exceeds one million. 
Due to the lack of use of standard occupational classi­
fications, any attempt at disagregation into occupa­
tional specialities may really be more a matter of 
speculation than enumeration. 

Since the major objective of collection and publication 
of these data is to provide information for manpower 
planning (i.e., the matching of the numbers of persons 
trained to those needed for a particular occupation), 
the lack of detailed estimates is a serious problem. The 
result so far has been a period of serious manpower 
shortages from about 1960 to 1969 followed by the 
present condition of moderate oversupply. Further, 
present and future prospects are for large oversupplies 
in some occupational specialties while at the same time 
there are critical shortages in others. 

It is clear that total employment of computer opera­
tors, programmers and systems analysts is not signifi­
cant~y greater than 560,000. In our companion paper we 
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found that the current annual production of people 
trained for these jobs is over 170,000. To employ these 
would require a new entry rate of about 30 percent 
which is much higher than the estimates of relative 
openings given by BLS of about 11 percent for com­
puter operators, 13 percent for programmers, and 
18 percent for systems analysts.23 Thus, current produc­
tion trends are not commensurate with current employ­
ment needs. 

Our major conclusion is that a serious potential 
imbalance exists and that much additional effort is 
needed in gathering and publishing reliable statistics in 
order to prevent future such imbalances. 

/ 
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Sociological analysis of public 
attitudes toward computers 
and information files* 

by RONALD E. ANDERSON 

University of Minnesota 
Minneapolis, Minnesota 

As individuals increasingly experience a variety of 
contacts with computers, it becomes important to 
know something about the impact of these contacts 
and how different sectors of society feel about com­
puterization. Such knowledge would (not only) give us 
insight into the source of public attitudes toward com­
puters but would provide some basis upon which to 
anticipate public acceptance or rejection of com­
puterization. These considerations should be taken into 
account in planning future computer applications, 
particularly social information systems. 

Data on public perceptions of computers has been 
surprisingly slow in appearing. Our knowledge of such 
perceptions is sketchy and incomplete and measure­
ment techniques need evaluation and refinement. The 
pioneering work on public attitudes toward computers 
was done in 1963 by Robert S. Lee with a national 
survey supported by IBM. The results of this study 
were not reported for several years. Yet until this year 
no one attempted another large survey devoted to 
public opinion and computerization. 

V~e reported that the public in 1963 viewed com­
puters from two distinct perspectives; (1) beneficial 
tools providing a better life for man, and (2) awesome 
thinking machines that threaten individuality. Lee 
suggests that the lack of correlation between these two 
views of the computer implies that a simple pro-con 
opinion assessment strategy would be misleading.5 ,p.59 

Several small scale, exploratory research efforts have 

* The research reported herein is based in part upon survey data 
gathered by the Minnesota poll of the Minneapolis Tribune. 
I which especially to thank Mr. Robert Coursen, manager of the 
News Research Department, for his assistance in providing data 
and information. 
This paper was prepared prior to the release of the AFIPS /Time 
Inc. Report on a national survey of attitudes towards computeri­
zation. Their findings are impressively consistent with the 
conclusions reported here. 
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been reported during the last few years. Armor and 
Feinhandler conducted a study for the Harvard Pro­
gram on Technology and Society investigating public 
perceptions of technology. Included in their survey of 
several communities in the Boston area were a number 
of questions specifically on the topic of computers. 
They found a pronounced social view of computers as 
beneficial and useful tools; yet persons simultaneously 
expressed fear and reservations concerning some 
aspects of computerization, such as data banks. This 
study is likely to provide important information con­
cerning the social significance of the distinction be­
tween technology and computers. 

Other miscellaneous studies have focused upon 
differences in belief structures among different social 
groups. Rosenberg and his associates at a psychiatric 
hospital compared attitudes of patients and hospital 
staff toward computers. Certain differences were found 
but their significance is difficult to assess because con­
trols were lacking on crucial variables. 

The scant literature on public opinion toward com­
puterization suggests that public reaction to computer 
technology is best characterized as diverse, complex, 
and indicative of individuals' prior experiences, as well 
as their general orientations toward life. Public percep­
tions of computers are probably more analogous to 
attitudes on public affairs issues rather than attitudes 
toward specific objects like typewriters. Thus it seems 
particularly important to explore the interrelationship 
of computer conceptions with numerous other variables 
representing various social processes and social char­
acteristics. To pursue this end it would be useful to 
begin by outlining a framework for analysis. 

CONCEPTUAL FRAMEWORK 

The goal of this analysis is to arrive at an improved 
understanding of the process of the emergence of 



650 Spring Joint Computer Conference, 1972 

Figure 1-Conceptual scheme 

Attitudes 

at.titude on 
government 
information files 

particular conceptions of computer-relevant objects. 
Such understanding will make it possible to account for 
individual variation on feelings about computers and 
computer information files. 

The orientation of our conceptual scheme is more 
sociological than psychological in that value orientation 
and experiences are stressed rather than personality 
factors. Furthermore, ecological-demographic char­
acteristics are integrated with experiences and values 
to account for differences occurring in attitude toward 
computerization. Figure 1 outlines the general flow of 
effects generated by the combination of numerous, 
complexly organized variables. Demographic categories 
are seen to significantly determine chances of obtaining 
various experiences and values that in turn are crucial 
to an individual's cognitive process by which he arrives 
at particular beliefs and feelings about computerization. 

Working in reverse order across the chart, each of the 
four sets of variables will be considered individually~ 

Attitudes 

Two areas of affective orientation receive the focus / 
of this investigation: attitudes about computers and 
attitudes about government information files. These 
two phenomena embody the processes defined by the 
other variables in the conceptual scheme. Attitude 
toward computers and attitude toward government 
information files are not entirely independent. If one 
has negative feelings about computers, then one is also 
likely to have negative feelings about government 
information files; these files are generally thought to be 
computer-based. Access to government information 
files typically requires computers, so if computers do 
not elicit good feelings, neither should the files 
"guarded" by them. On the other hand, computers 

may be negatively evaluated in part because they 
allow large, threatening files to survive. 

While there may be a reciprocal causal relationship 
between attitudes toward computers and attitudes 
toward information files, computers chronologically 
preceded, computer-based information systems. Thus 
we \vill assume a causal direction of computer attitude 
to information file attitude. Large government files 
existed long before computers were invented; never­
the-less, widespread concern is a rrcent trend resulting 
primarily from the computer's potential for centralizing 
information. Attitudes toward both computers and 
government information files are assumed to result 
from a combination of (1) value orientations, (2) 
previous events and experiences, and (3) other attitudes. 

Values 

Although the conventional distinction bet\veen 
attitudes and values is not entirely precise, general 
usage restricts values to mental constructs with 
terminal (end-state) attributes and moral (highly 
desirable or ethical) implications. Attitudes are 
typically dirpcted toward specific obj('cts which are 
historically dependent. Givpn these definitions, cogni­
tive orientations directed toward computers will be 
termed attitudes whereas orientations toward tech­
nological progress will bp considered valups. Likewise 
feelings about man-computpr rplationships arp termed 
attitudes but feelings and beliefs onSriendship, sharing, 
love, respect, harmony, expressiveness, and com­
munication are thought of as values. 

Not only has the values concept persisted through 
the history of social thought, but discussions of tech­
nology have generally been preoccupied with value 
issues. Recent protest movements and numerous writers 
have expounded anti-technological points of view. Their 
statements inevitably are based upon value preferences 
such as personal expressiveness, creativity, spontaneity, 
friendship, etc. On the other hand pro-technological 
statements are based upon value preferences such as 
economic prosperity, orderliness, control, etc. 

The level and structure of one's values largely deter­
mines how one views the significance of technology. 
But technology in general is not typically an issue with 
which individuals are personally involved. Individuals 
are involved with specific technologies, specific ma­
chines. Complex value structures may not be as closely 
tied to specific objects as to technology in general; 
however, there is evidence that computers and tech­
nology are closely associated in most persons' con­
ceptualizations. Because of its tremendous power and 



awesomeness, the computer has become a symbol of 
super-technology. The folklore, as illustrated in car­
toons, science fiction, and popular science, presents this 
image. Computers simultaneously represent the best 
and the worst in technology. 

Value systems other than technology-oriented value 
structures are likely to determine attitudes relevant to 
computers. The importance one places upon privacy 
relative to governmental or organizational needs will 
automatically affect one's feelings about whether or not 
databanks are threatening. Valuing privacy might 
result in the opinion that computers should not be used 
in an information system because computers would 
allow for cross-referencing of information. Political 
ideology also affects attitudes toward databanks. An 
ideology directed against strong governmental control 
would be wary of databank systems because of their 
implications for increased centralized control. 

Events 

The emergence of personal values and value systems 
is based upon a sequence of events which provide 
knowledge and experience to the social actor. This 
event series is commonly called socialization or cultural 
learning. It is this process that allows group norms and 
other social conditions to generate an impact upon 
individuals. Some events, tremendously more significant 
than others, cause immediate impact upon attitu<:ies 
and values. It is this possibility that accounts for the 
arrows in Figure 1 going directly from "events" to 
"attitudes" bypassing "values." A single traumatic 
encounter such as a major foulup in computer dating 
or a computerized billing hangup might be sufficient 
to cause change in feelings about the desirability of 
computerization. 

Demographics 

Demographic variables such as occupation, sex, and 
age serve as gates opening or closing certain event 
sequences. The end result is a variety of life styles, role 
patterns and values. Lee reports a regression analysis 
using demographic and personality variables to predict 
position on his "awesome machine" attitude factor. He 
found that although there were correlations between 
education, sex, and the attitude factor, their con­
tribution was negligible in predicting attitude on the 
"awesome machine" dimension. While this is super­
ficially consistent with our conceptual scheme, ignoring 
the indirect effects of demographic variables is mis­
leading. Demographic-ecological factors provide the 
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foundation for crucial experiences which in turn create 
different attitudes and values. Neglecting the relation­
ships between demographic variables and attitudes 
toward computers because such variables are, on the 
surface, weak is conceptually misguided and ignores 
interesting relationships that will be investigated in the 
following sections. 

DATA COLLECTION 

The Minnesota Poll interviewed a randomly selected 
cross-section of Minnesotans age eighteen and older 
during July 1971. This was one of Minneapolis Tribune's 
periodic surveys of 600 persons; included in the July 
1971 survey were several questions pertaining to com­
puterization. One of the first questions relevant to 
computers was the following: 

Question 1. Some people say that the relationship 
between businesses and their customers has become 
too impersonal because of the computer. Are you 
inclined to agree or disagree? 

Two-thirds (66 percent) of the interviewees agreed 
with this statement linking impersonal business with 
the computer; 28 percent di&agreed; and 6 percent gave 
no opinion. Respondents were next asked the following 
question: 

Question 2. Have you ever had a mistake made in a 
transaction that was hard to get cleared up because 
billing was handled by a computer? 

Only about one-third answered this question affirma­
tively. In actuality some persons who said they had 
the computer-based problem may not have known for 
certain that a computer was involved, but the key point 
is that these persons perceived the computer responsible 
for the difficulty. 

Whenever a respondent admitted they had experi­
enced computer billing problems, interviewers probed 
into the details of the dispute. Later on the interviewers 
launched into questions pertaining to databanks and 
privacy. The first question in this series was: 

Question 3. Some people say that American society 
is threatened by the increase in information that the 
government collects about individuals from the census, 
tax returns, social security, and so on. Are you inclined 
to agree or dj.sagree? 

The key element of this question is the notion of 
increased collection of information by the government. 
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Centralization of information and links between 
information files are implicit but not explicit; the 
question suggests an environment that lacks controls 
over access to and centralization of information. With 
the term "threat" the statement expresses a rather 
strong statement against government information 
collection, so it is startling that 41 percent of all 
respondents agreed with this statement; 53 percent 
disagreed; and 5 percent gave no opinion. The next 
question asked was: 

Question 4. Which do you think is more important 
for society to function properly-the government's 
right to know about its citizens, or the individual's 
right to privacy? 

An overwhelming two-thirds (66 percent) indicated 
that privacy was more important for society; 28 percent 
selected the government's "right to know" over privacy; 
and 6 percent did not choose one or the other. 

In addition to these data collected from a representa­
tive sample of voting-age residents of Minnesota (the 
state of Minnesota is in many ways typical of the 
United States population as a whole [although certain 
minority groups such as blacks and chicanoes are not 
well represented)], a questionnaire survey was carried 
out on a convenience sample of students at the Uni­
versity of Minnesota. Students in several under.;. 
graduate sociology classes were asked to fill out a 
questionnaire which included questions mostly con­
cerning attitudes toward computers. A total of 100 
questionnaires were received and processed during the 
early Fall of 1971. Included among the many questions 
on attitudes toward computerization were the above 
four Minnesota Poll questions mentioned above with 
identical wording in identical order. The distribution 
of responses from the student sample are remarkably 
similar to the Minnesota Poll results. Of the students, 
64 percent agreed with the first question (impersonal 
business and computers), compared with the statewide 
results of 66 percent. Forty-two percent of the students 
had encountered a computer billing problem, compared 
with 35 percent statewide. On the statement con­
cerning threat from government information collection, 
50 percent of the student sample agreed, contrasted 
with only 41 percent agreement statewide. And 83 
percent of the students chose privacy over the govern­
ment's right to know; 66 percent made the same choice 
statewide. This difference between the results of these 
two studies concerning this privacy issue is not as 
significant as might be expected; in the statewide 
Minnesota Poll, 72 percent in the 18-29 age bracket 
and 75 percent with some college experience selected 

privacy over the government's right to know. In sum­
mary the response distributions from the two studies 
are very similar on the questions pertaining to com­
puterization and information privacy. 

CONTRASTS AMONG DEMOGRAPHIC 
GROUPINGS 

The previously mentioned four questions dip into an 
important array of issues: the link between computers 
and impersonal business, the discomforting experiences 
of computer consumers, the perceived threat of govern­
mentinformation collection and the value of privacy. 
Each of the questions is presented in Table A with 
breakdowns contrasting groupings on sex, age, location 
(urban/rural), and education. Income is not included 
because in most cases income trends were nearly 
identical to differences in education levels. 

Question 1-1 mpersonal business because of computers 

Looking first at question #1, by reading down the 
column of Table A it is possible to readily note that 
differences exist between men and women and also 

TABLE A-Computerization Responses With Demographic 
Breakdowns-Minnesota Poll Statewide Sample, July 1971 

Quest 1 Quest 2 Quest 3 Quest 4 
No. of Imper- Gov't 

Persons sonal Billing Threat Privacy 

Total 600 66* 35 41 66 

Sex 
Male 292 60 37 47 70 
Female 308 70 33 36 63 

Age 
18-29 153 59 34 41 72 
30-59 293 71 42 42 65 
60+ 154 64 27 38 61 

Location 
Urban 425 66 40 42 67 
Rural 175 63 25 42 66 

Education 
(highest level) 
Grade (some) 119 61 19 43 64 
High School 297 68 33 37 62 

(some) 
College (some) 184 65 50 47 75 

* All numbers in columns under question numbers 1, 2, 3, 4 are 
percentages answering the question in the indicated way. 



between the younger (18-29) age group and the middle 
(30-59) age group. Sixty percent of the men and 60 
percent of those individuals aged 18-29 agreed with the 
statement that linked computers with impersonal 
business: a greater. percentage ( 70 percent) of the 
women and those respondents in the middle age group 
agreed with that statement. Very slight differences are 
found in other areas: the urban percentage exceeds the 
rural figure, and the high school and college educated 
are slightly more likely to agree with the statement 
than those with only a grade school education. These 
contrasts are based upon such small differences that 
they are unreliable; that is,the differences may be due 
to sampling variation alone. Furthermore, the differ­
ence among education levels are largely artifactual. 
There are many more persons in the lower education 
levels that did not answer the question; both agreement 
and disagreement are less frequent at the lowest (some 
grade school) education level. (This same pattern of 
response occurs for the income groupings as well, 
although the income group percentages are not included 
in the Table.) 

To interpret the significance of these response patterns 
we should explore the· meaning of the question. One 
might guess that the notion of impersonal businesses 
predominates and "computer" is a trivial element in the 
statement. This, of course, might be true with some 
respondents, but there is clear evidence from the 
student sample that the interviewees are reacting 
primarily to the idea of computers causing imper­
sonality. Responses to this question were correlated 
with many other variables the highest correlation was 
found to occur with agreement to the statement, 
"Computerization tends to .dehumanize people." In 
the various factor analytic investigations that we have 
performed on items concerned with attitudes toward 
computers, the negative idea of dehumanization and 
over-dependency have consistently turned up together 
in a dominant pattern. These findings suggest that 
agreement with the statement on impersonal business 
caused by computers is a fairly adequate indicator of 
negative feelings toward computers. 

Given that question #1 is an adequate device to 
assess negative attitude toward computers, we can 
expand our interpretation of the data. Women are 
substantially more likely to have negative attitudes 
toward computers as are those in the middle-range 
(age 30-59) age groups. It would' seem that in our 
society the different age and sex roles result in different 
experiences or lack of experiences such that different 
views of computers are acquired. Perhaps one of these 
experiences is frustrating encounters with computerized 
bills. 

Sociological Analysis of Public Attitudes 6,1)3 

TABLE B 

Question 1. (Impersonal ... computer) by question 2 (billing 
problem) for statewide sample 

Question 2. Computer billing problem ever encountered? 

Question 1 
Impersonal 
because of 
computer 

Agree 
Disagree 
NA 

Yes 

83 
16 

1 

100 
(212) 

No 

56 
35 

9 

100 
(388) 

Total 

66 
27 

7 

100 
(600)* 

* Total number of respondents are given in parentheses. All other 
numbers are percentages. 

Question 2-Computer billing problem ever encountered? 

Returning again to Table A, the 2nd column reveals 
substantial differences in susceptibility to billing 
problems due to computers. One is much more likely to 
experience a computer-based billing difficulty if one is 
in the 30-59 age bracket, if one lives in an urban loca­
tion, and if one has a relatively high education and 
income level. All of these factors appear to be economic 
or social structural in character. That is, persons falling 
into the middle age, urban, and high socio-economic 
levels are the most likely to have money to spend; they 
also have greater preferences for credit systems, which 
automatically involve credit-users in additional billing 
systems. It is to be expected then that high money/credit 
users have an unusually high chance of encountering 
billing problems, especially problems due to computers. 

ANALYSIS OF RELATIONSHIPS 

It might be expected that persons facing frustrating 
experiences in clearing up computer-based bills come to 
view computer systems as unresponsive and rigid. This 
conception of unresponsive computer systems in busi­
nesses might actually grow into a long-term negative 
feeling about computers. To explore this possibility we 
examine the relationship between question #1 and 
question #2 (see Tables B and C). These tables show a 
strikingly strong association or correlation between 
computer-based billing difficulty experiences and ten­
dency to agree with the notion of impersonal business 
resulting from computers. 
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TABLE C 

Question 1. (Impersonal ... computer) by question 2 (billing 
problem) for student sample 

Question 2. Computer billing problem ever encountered? 

Question 1 
Impersonal 
because of 
computer 

Agree 

Disagree 

NA 

Yes 

74 

26 

100 
(42) 

No 

57 

43 

100 
(58) 

Total 

64 

36 

100 
(101) 

In both the statewide and the student samples there 
exists a strong tendency for those individuals who have 
faced a computer-based billing problem to express 
negative feelings toward computers. Those who have 
not experienced the frustration of a computer billing 
difficulty are much less likely to express negative feelings 
toward computers. 

If negative experiences result in negative feelings, 
positive experiences may result in positive feelings. To 
explore this question as regards computer attitudes 
there must be a clarification of the kind of experiences 
involving exposure to computers which suggest that 
computers are important in creating a better life, what 
kind of experiences show computers as useful tools 
generally provide desired benefits. As yet there is 
insufficient data to determine whether or not class 
experience or job experience in computing is associated 
with a change in the level of negative attitude toward 
computers. The evidence thus far is ambiguous, which 
could mean that in many instances actual class or job 
exposure to computers is quite frustrating. There is 
evidence, however, that anticipated exposure to com­
puters as a useful tool is correlated with a more positive 
attitude toward computers. 

The following question was included in the student 
questionnaire: Do you expect to use computers in your 
future occupation? There were three alternatives: yes, 
maybe, and no. The responses, when crosstabulated 
with question 1 (indicating negative feeling toward 
computers) appear in Table D. 

Although the association indicated in Table D is not 
unusually strong, students expecting to make occupa­
tional use of computers were less likely to agree with 

QuC'stion 1, thC'n wC'rC' thosC' that did not for('s('e using 
computC'rs in thC'ir future occupations. 

Occupational usc of computC'rs is most likdy to occur 
in the profC'ssions or highly skilkd tcchnical jobs. Th('se 
occupational groups arC' mor(' likPly to occur in urban 
than in rural ar('as, and th('y ar(' also aSf'ociatpd with 
persons of highpr C'ducation and incom('. Assuming that 
occupational pxpC'riencps with computC'rs are more 
favorable than unfavorable, we conclud(' that being 
urban, aged 30-59, having a coll('ge education, and 
having a high income predisposc on(' to hav(' positive 
computer experiences. This conncction is graphically 
illustrated in Figure 2. This diagram vividly portrays 
the ironical fact that the same demographic charactC'ris­
tics pointing to positive experiences with computers 
al::;o incrrasrs the chances of ncgativp computer expcri­
ences, e.g., computer billing problcms. The total ('ffect 
of these opposite forces is to ,,,ash out thC' effects of 
certain demographic factors upon negative attitudes 
toward computers. 

Those demographic variables whose pffC'ct is not 
largely cancellcd are sex and age catcgorics. ::\Icn and 
the younger age group both tend toward morc positive 
attitudes; this is probably due to a link between these 
characteristics and positivc occupational or pducational 
rxppriences with computcrs. B('ing a woman or bring 
over age 60 increasps om"s chancps of having negativp 
computer attitud('s, but not having computpr billing 
problpms. In Figure 2 thC'sp two d('mographic group::; 
are routpd separately becausp th('sC' groups ar(' probably 
charactprizpd by lack of contact with comput('rs. Since 
computers are culturally drfinpd as "awesome thinking 
machinC's", it would not bp surprising to discovC'r that 
lack of contact and knowledgC' genrratC's fear and dis­
trust of computers, which in· turn tends to lead onp. 
toward negative attitudes. 

TABLE D 

Question 1 (impersonal ... computer) by Anticipated 
occupational use of computers. 

Do you expect to use computers in your future occupation? 

Question 1. 

AGREE 

DISAGREE 

YES 

61 

39 

100 
(18) 

MAYBE 

57 

43 

100 
(47) 

NO 

75 

25 

100 
(34) 

TOTAL 

64 

36 

100 
(100) 



Question 3-Governmental information files and privacy 

The question of whether or not a threat exists from 
governmental collection of information from "the 
census, tax returns, social security, and so on," follows 
the demographic patterns of Question 4 (privacy) 
more closely than Question 1 (negative attitude about 
computer). Contrasts between demographic categories 
are interesting only for the sex and socio-economic 
status (education and income) variables. Men are 
substantially more likely to perceive a threat from 
governmental information systems than are women. 
This difference parallels the differences between the 
sexes on Question 4 (privacy), while it reverses the 
direction of contrast on Question 1. There appears to 
be a distinct aspect of the female sex role that results in 
more negative feelings about computers; but males are 
more negative about information files and more likely 
to value privacy. 

One possible interpretation of emphasis upon privacy 
among men is their wider variety of interpersonal and 
instrumental activities. The complexity and conflict 
of these varied activities can sometimes be reduced by 
isolation and privacy. Women in our culture are not 
generally allowed as much privacy as men. The sex 
role differences on attitude toward computers may be 
largely a result of early socialization patterns which 
direct girls to dolls and boys to mechanical toys. Girls 
are also discouraged from pursuing mathematical and 
technical skills and thus have more justification for 
viewing the computer as an "awesome thinking 
machine." 

Demographics 

subsets: 
all women, 
all age 60 ___ ". lack of 

contact 

~ means lIincreases chance of" 

_ .. -.., means "decreases chance of" 

fear, distrust 

Figure 2-Interrelationships among variables pertaining to 
attitudes toward computers 
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Demographics Events 

negative attitude ______________ .... ~ toward computers 

"::;~ ~ ".,~ =,oti_ t 
all high income lit pr~vacy --~.~ of government 

information files 

f 

.. ~~:~~~!~n t~:a~~gative 
computers 

----- means "increases chance of" 

means "decreases chance of" 

Figure 3-Interrelationships among variables pertaining to 
attitude toward government information files 

Question 4-Value privacy or government? 

The tendency to value privacy is greater among men, 
the 18-29 age group, the college educated, the high 
income groups, and the political independents. Except 
for the age trend, all these demographic patterns are 
identical to responses to Question 3. 

In regard to socio-economic status, those with at 
least some college education and those with higher 
incomes are more likely to view government information 
collection as threatening and to value privacy. 

Looking at the question from an alternative perspec­
tive, the contrast can be interpreted to result from 
political ideology differences or other value system 
differences. In this instance negative attitudes do not 
seem to res~lt from events so much as values. Actually 
the lower income and education classes are more likely 
to experience negative events in connection with govern­
ment information files. Databanks, especially at the 
local level, increasingly incorporate welfare records, 
arrest records, and other information more likely to 
involve persons of low social class. Ironically, persons in 
these lower socio-economic levels are the least likely to 
value privacy, yet they are the most likely victims of 
privacy invasions. 

A nalysis of relationships 

Figure 3 presents the proposed causal relationships 
given the demographic findings. Again demographics 
are viewed as shaping the nature of values (privacy in 
particular) which in turn determine the nature of the 
attitudes toward government information files. Com-
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TABLE E-Negative Attitude Toward Computer By Perceived 
Government Information Threat For Student Sample 

Question 3. Government Information Threat 

Question 1 

Impersonal 
Computer 

Yes 

No 

Total 

Yes 

74 

26 

100 
(50) 

No 

54 

46 

100 
(50) 

Total 

65 

35 

100 
(100) 

plexity in these relationships is seen to arise from the 
inter-relationship between attitude toward computers 
and attitude toward government information files. 
Tables E and F present the data from the l\1:innesota 
student sample for the correlation of Question 1 with 
Questions 3 and 4. These findings show a sizable asso­
ciation between responses to these questions. As Figure 
3 illustrates, age and sex may indirectly affect attitude 
toward government information files: the 18-29 age 
group tends to lead into reduced negative attitudes 
toward computers, and men are more likely to have 
negative attitudes toward computers. The resulting 
effect of these two conditions may be to cancel out 
some of the variation in attitude toward information 
files that is due to attitudes toward computers. 

IMPLICATIONS FOR CHANGE AND THE 
FUTURE 

Cross-sectional survey data gathered at one point in 
time provides very little basis for generalizing to trends 
occurring over time. In addition, the survey approach 

TABLE F-Attitude on Computer by Value-Privacy of the 
Government (Question 4) for Student Sample 

Question 4. 

Privacy Gov. Total 

Question 1 Yes 63 56 63 
Impersonal No 36 44 37 

Computer 

100 100 100 
(80) (16) (96) 

provides little understanding of processes involving 
event sequences. Consequently it is imperative for 
future research to move toward approaches with 
greater control such as laboratory experiments. In 
addition, planning should begin toward establishing 
periodic assessments of public opinion using socio­
computer indicators so that changes can be examined 
across time. Without such data there will be no way to 
systematically assess the impact of innovations in 
computer technology upon society. 

On the basis of age breakdowns from currently 
available data, it is possible to speculate about future 
trends assuming that the young and middle aged ,vill 
simply move along into the future largely unchanged. 
For instance, as already noted, a larger share of those 
aged 18-29 value privacy over government's right to 
know. This trend seems to arise from developments in 
the youth culture and the various movements that the 
youth have spawned in recent years. It would appear 
that this emphasis upon privacy will persist and that 
privacy will have greater importance as a value in the 
population as a whole. 

Establishing governmental databanks will be even 
more difficult in the future unless extremely secure 
safeguards are established to preserve individual 
privacy. While the young (18-29) tend to value privacy, 
they are not unusually concerned about the "threat" of 
government information collection. ::\lembers of this 
young group are even slightly less likely to have nega­
tive attitudes about computers. 

The profile for the future suggested by these data is a 
populace more concerned for rigorous privacy related 
guarantees but simultaneously approving computer 
technology and related developments. 

In projecting into the future, events and their impacts 
are the crucial uncertainty. The significance of frustrat­
ing events involving computer billing problems 
became evident in the earlier discussion. If the public 
were bombarded by a wave of frustrating computer 
experiences, a tremendous protest movement could 
easily ensue against computerization. On the other 
hand, if great care is taken in packaging computer­
based products for the consumer, the public will gladly 
put up with "awesome thinking machines." The 
computer world still has its chance. 
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Microprogrammed significance arithmetic: A perspective 
and feasibility study* 

by C. V. RAMAMOORTHY and M. TSUCHIYA 

The University of Texas at Austin 
Austin, Texas 

INTRODUCTION 

This study is an attempt to evaluate the feasibility of 
microprogrammed routines for monitoring significant 
digits in the numerical result of digital computers in 
real time. The first part is tutorial and, in the second 
part, microprograms for two methods of significance 
arithmetic are designed and evaluated. 

The digital computer is a finite device that has a 
limit in representing numerical values; thus, in general, 
it maintains the most significant part of true values 
for computation. Therefore, errors are nearly always 
involved in numerical computations on a digital 
computer due to the finiteness of representation, 
truncation and round-off. Unfortunately, whether 
they are in the original data or generated during com­
putation process, errors are "hidden" in the computed 
results. One cannot readily determine how many digits 
of the computed result represents the true value unless 
rigorous error analyses such as those by Wilkinson1 are 
performed. 

Significance arithmetic was suggested as a means 
for monitoring the significant digits in the numerical 
result of digital computers. If an algorithm for signif­
icance arithmetic is effectively implemented, it will 
provide an indication of the number of significant 
digits that the result retains. It will also be a powerful 
tool for debugging and testing numerical method for 
computers by tracing numerical significance at every 
stage of computation. Thus a study of error propaga­
tion of computational methods will be made easier. It 
will also pinpoint the computational stage where a 
large loss of significance occurs so that the computa­
tional method could be modified analytically to prevent 
the loss of significance and to improve the accuracy of 
the computed result. 

* This work was supported by National Science Foundation 
Grant GJ-492 and in part by the Joint Services Electronics 
Program under contract AF-44620-71-C-0091. 
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SIGNIFICANCE ARITHYIETICS 

A number of studies have been made in the area of 
significance arithmetic in an effort to trace the signif­
icant digits accurately and to preserve the given number 
of significant digits of operands. Gray and Harrison2 

used a normalized arithmetic with an index of signif­
icance in which part of a word is used as an index to 
indicate explicitly the number of significant digits of 
the numerical value. In this method, arithmetic opera­
tions are performed in the same manner as any nor­
malized arithmetic except an extra computation, al­
though simple, is necessary. :;'\letropolis and Ashenhurst3 

used unnormalized arithmetic in which numerical 
values are stored in an unnormalized form preserving 
only the significant digits. Unnormalized arithmetic 
is relatively simpler than other methods, but since 
operands in this method are not normalized, their 
leading zeros* must be compared with each other as 
well as with those of the result to adjust and preserve 
significance. ::\100re4 proposed interval arithmetic that 
used two values, upper and lower bounds, to indicate 
the range of true value. Error bounds are computed 
in this method to indicate significance instead of the 
number of significant digits. The range for true value, 
i.e., the difference of the two bounds, tends to become 
large with a loss of significance as the number of arith­
metic operations increases. Wilkinson 1 provides ex­
cellent error analyses for digital computation. His 
analyses, however, take a "pessimistic" approach and 
do not offer sharp bounds. 

In this study, the first two methods are considered: 
namely, the normalized arithmetic with an index of 
significance and the unnormalized arithmetic. They 
are provided with simple algorithms for determining 

* In Reference 3, the term "leading digits" is used since, in 
negative numbers, leading zeros may be represented by leading 
ones. In this paper, the term "leading zeros" is used because 
leading ones in negative number, in fact, represent "leading 
zeros." 
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the number of significant digits explicitly at each stage 
of computation. 

The microprogrammed implementation of these 
algorithms are shown to be quite simple. Most impor­
tantly the computational overhead is also proved to 
be quite small. 

DESCRIPTION OF METHODS 

When the floating-point arithmetic is implemented in 
a computer, a normalized method is generally em­
ployed. The normalized floating-point arithmetic, how­
ever, does not provide a facility to indicate explicitly 
the number of significant digits in the result. It gen­
erates results with no indication as to how many of 
their digits might represent the true value. Since the 
error analysis in general is not easy, the significant 
digits in the result are not easily determined. Thus the 
idea of significant digit arithmetic or significance 
arithmetic is introduced. 

In the significance arithmetic, the number of signifi­
cant digits in the results is computed at every stage of 
computation and, in some cases, an adjustment is made 
to preserve the original significance. To realize the 
significance arithmetic, a number of unorthodox arith­
metic methods have been proposed and experimented. 
Among these two methods, namely the unnormalized 
arithmetic by Ashenhurst3 and the normalized arithme­
tic with an index of significance by Gray and Harrison,2 

were chosen for this study. In this section, the schemes 
used in the two methods are briefly described and 
illustrated with examples. The numbers in the example 
are represented as follows: 

(exponent, mantissa) for un normalized 
number; 

(exponent, index, mantissa) for normalized 
number with index. 

Significant digits of the operands are indicated by 
boldface types so that if an operand is 1.732051, for 
example, the first five digits 1.7320 are significant. In 
the example a double-length arithmetic register is 
assumed. 

Addition 

193.764 + 8453.12 = 8472.50 
(a) Index method 

(3,4, 0.193764) + (5,5, 0.845312) = (5,5, 0.847250) 

5,6, 0.00193764 

+5,5, 0.84.5312 

5,5, 0.84724964 

(5, 5, 0.847250) 

rExponent and index are 
~ adjusted for decimal point 
laligned 

rResult in double-length 
~register (trailing zeros not 
lshown) 
Rounded and smaller index is 
used 

(b) Unnormalized method 
(5,0.001937) + (6, 0.084531) = (6, 0.084725) 

6, 0.0001937 

+6, 0.084531 

0.0847247 

(6, 0.084725) 

Subtraction 

193.764 + 98.123 = 95.641 

(a) Index method 

{DeCimal point alignment and 
exponent adjustment 

Result in double-length 
register 
Result rounded. 

(3,4, 0.193764) - (2,5, 0.981230) = (2,3, 0.956410) 

3,4, 0.193764 
-3,6, 0.098123 

3,4, 0.095641 

(2,3, 0.956410) 

(b) Unnormalized method 

J Exponent, index adjusted for 
l decimal point alignment. 

Smaller index is used for result. 
fResult normalized, exponent 
land index adjusted. 

(5, 0.001937) - (3, 0.098123) = (5, 0.000956) 

5, 0.001937 
- 5, 0.00098123 

0.00095577 

(5, 0.000956) 

Multiplication 

193.764 + 34.1526 = 6617.54 

(a) Index method 

{
Decimal point aligned; 
exponent adjusted. 

Result in double-length 
register 
Unnormalized result rounded. 

(3,4, 0.193764) X (2,5, 0.341526) = (4,4, 0.661754) 

3,4, 0.193764 
X2,5, 0.341526 

5,4, 0.066175443864 Product in double-length 
register; exponents added; 
smaller index used. 

(4,4, 0.661754) Product normalized and 
rounded. Digit shifted into the 
significant range (namely "4") 
is assumed to be significant. 
(Optimistic Approach) 

(b) Unnormalized method 
(5, 0.001938) X (3, 0.034153) = (6, 0.006619) 

5, 0.001938 
X3, 0.034153 

8, 0.000066188514 Product in double-length 
register; exponents added. 

(6, 0.006619) Significance of product is 
adjusted to be the same as the 
first operand that contains less 
significant digits. 



Division 

8453.12 + 350.916 = 24.0887 
(a) Index method 

(4,5, 0.845312) + (3,4, 0.350916) = (2,4, 0.240887) 

4,5, 0.845312 
+3,4, 0.350916 

1,4, 2.408872 

(2,4, 0.240887) 

(b) Unnormalized method 

Smaller index is used for 
quotient. 
Quotient normalized and 
rounded, exponent adjusted, 
index unchanged assuming an 
extra digit is not good. 
(Pessimistic Approach) 

(5, 0.084531)-+ (5, 0.003509) = (4, 0.002409) 

5, 0.084531 
+5, 0.003509 

0, 24.089769 

(4, 0.002409) 

Difference of exponents and 
quotient. 
Significance of quotient is 
adjust4:ld to be the same as that 
of the divisor (that contains 
less significant digits). 

As intuitively seen in the examples, both methods 
preserve and indicate the same amount of significance. 
It can be shown that both methods are in fact 
equivalent methods that use different number repre­
sentations. Both methods use a carry out of the highest 
digit and a number of normalizing shifts (or equiva­
lently a number of leading zeros in case of unnor­
malized arithmetic) as criteria for determining the 
number of significant digits for the result. Since they 
use the same criteria for determining an amount of 
significance, it may be concluded that they yield the 
same result. 

A case for fully significant operands 

A special case is where both operands have full 
significance, i.e., the value of operands happens to be 
precisely representable within the limit of the exponent­
and-mantissa representation. If this is the case, the 
significance computation changes. Under the signif­
icance computation rule, a large gain in the number 
of significance is possible. Given two operands A = 
(eA, SA, mA) and B = (eB, SB, mB) where eA and eB are 
exponents, SA and SB significance, mA and mB mantissas 
of A and B, respectively, the modified rule is as follows: 

addition/ subtraction 
multiplication/ division 

sA+leA-eBI; 
SA+SB. 

Clearly, in order to keep the result with increased 
significance a double-length mantissa is necessary. If 
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it is not available, the result is rounded and its signif­
icance is reduced. 

Unfortunately the increased significance in a double­
length mantissa is possibly reduced to single-length 
significance by rounding, etc., in a subsequent compu­
tation. If a result with increased significance repre­
sented by a double-length mantissa is used for a compu­
tation with an operand with a single-length mantissa, 
the result will have the significance at most that of 
the latter operand, i.e., the significance is reduced to 
the single-length. Thus the implementation of the rule 
does not necessarily guarantee a result with higher 
significance. 

Another problem associated with the special case 
is the detection of operands that represent a value 
exactly. Since the rule applies only when both operands 
have full significance, i.e., when they represent exact 
values, operands must be checked for their full sig­
nificance at every arithmetic operation if the rule is 
to be applied. The test for full significance can cost a 
few steps and, if the test is performed on every operand 
used in arithmetic operations, it can be expensive in 
terms of computation time. Moreover, the probability 
of computing two operands with full significance is 
conceivably very low mainly due to rounding and 
truncation operated on intermediate results. The 
inclusion of the algorithm for the special case, therefore, 
will reduce computational efficiency of significance 
arithmetic and may not be practical unless a larger 
number of significance is highly desirable. 

MICROPROGRAl\E\1ED SIGNIFICANCE 
ARITHMETIC: AN I::VIPLEMENTATION 

The following is a brief description of microprograms 
for arithmetics in the unnormalized method and the 
normalized method with an index of significance. In 
this paper microprograms for addition and multiplica­
tions are considered and described. Division may be 
considered a multiplication in "reversed" order; its 
flow diagrams are presented. Many results observed 
in multiplication also apply to division. 

The following assumptions are made in designing 
microprograms for significance arithmetic: 

(1) A double-length arithmetic register that performs 
addition/subtraction in two clock cycles (the 
register for higher order part of operand will be 
called the upper accumulator, and the other, the 
lower accumulator); 

(2) One's complement addition; 
(3) One's complement representation for negative 

numbers. 
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Figure 1-Normalized addition/subtraction with an index 
of significance 

In the subsequent discussion, numbers in parentheses 
refer to the box bearing the same number in the flow 
diagram. Two operands are referred to variables "A" 
and "B" for convenience. The mantissas of the two 
operands are denoted by mA and mB, and the exponents 
eA and eB, respectively. 

Normalized addition/subtraction with an index of 
significance 

Addition and subtraction are carried out in a con­
ventional manner using ones complement (Figure 1). 
The exponents of the two operands are compared first 
(1). If the difference of the two exponents is too large, 
i.e., if it is greater than the number of bits in mantissa, 
then the smaller operand is too small to have any 
effect as far as the mantissa and significance of the 
sum are concerned (2). Otherwise addition/subtraction 
with an index of significance commences. 

Addition/subtraction starts with binary-point align­
ment. For binary-point alignment, the exponents of 
the two operands are compared (3). To compare the 
two exponents, their difference is computed and the 
sign of the difference is checked. As the mantissa of 
the smaller operand is shifted by the value of the dif­
ference, its lower-order bits are shifted out of the upper 
accumulator into the higher-order part of the lower 
accumulator. (A double-length arithmetic register is 
assumed.) For every right shift effected in binary-point 
alignment, the index for the smaller operand is increased 

Figure 2-Parallel task graph for normalized addition/subtraction 
with an index of significance 



by one (4). After binary-point alignment, the indicies of 
the two operands are compared and the smaller is kept 
as the basic index for the result (5). The larger of the two 
exponents is preserved as the basic exponent for the 
result (6). After the adder is cleared, the two operands 
are transferred to the adder for addition (7), and an 
overflow condition is checked (8). If there has been 
an overflow, the result is shifted one bit to the right 
while increasing the index of significance and exponent 
by one (9, 10, 11). If there has been no overflow, the 
result is normalized. To normalize, the highest mantissa 
bit is tested against the sign bit (12); if they are equal, 
the mantissa is shifted one bit to the left (13) ; if they are 
not equal, the result has been normalized. For every 
normalizing shift, both the index of significance and 
exponent are decreased by one (14, 15). The normalized 
result is rounded for the final result (16). The rounding 
is accomplished by adding one to the highest-order bit 
of the lower accumulator. 

Where appropriate registers and data buses among 
them are provided in the computer architecture, more 
concurrency in microprogram execution is realized. If 
micro-operations can be executed simultaneously with­
out conflict, they can be coded into a microinstruction 
for concurrent executions (Figure 2). With an adequate 
computer organization, the microprogram in Figure 1 
can be reorganized to take advantage of parallel data 
paths for a faster execution. Figure 2 shows the micro­
program for normalized addition with an index of 
significance in parallel execution. Numbers in the node 
of Figure 2 refer to the micro-operations bearing the 
same number in Figure 1. Nodes la, 8a, and 12a are 
pseudo-nodes used as a convention for the parallel task 
graph representation of microprograms and cost no time 
in execution. The "exclusive-OR" sign EB between two 
edges out of a node indicates that either one of the edges 
is traversed exclusively of the other. Note that steps 3 
and 4 of the microprogram in Figure 2 do not interfere 
with each other and can be executed concurrently rather 
than sequentially. Similarly steps 9, 10, and 11 as well as 
steps 13 and 14 can be executed in parallel. 

U nnormalized addition/subtraction 

The un normalized addition procedure, nearly identi­
cal to the normalized addition, does not require 
normalizing the final result. Note that the normalizing 
loop consisting of steps 12, 13, and 14 in Figure 2 is 
deleted in Figure 3 for unnormalized addition. 

A major difference is that unnormalized addition does 
not require computation of significance indicies since the 
unnormalized mantissa represents only significant digits. 
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A~B 

Difference of 
two exponents 
too large 

A<B 

3 
Shift rnA 

Preserve the larger 
exponent for the 
result. 

8~ ____ ~~ ____ ~ 

Figure 3-Unnormalized addition/subtraction 

Another difference is the test for an insignificant 
operand (2). The number of mantissa bits is compared 
with the difference of two exponents in the normalized 
method; in the unnormalized method, it is compared 
with the sum of the difference of two exponents and the 
number of leading digits of the smaller operand. If the 
sum exceeds the number of bits in mantissa, the smaller 
operand is too small to have any effect on the result. 

Possible parallelism in the unnorma.lized procedure is 
limited to steps 7 and 8 for adjustment of overflow 
(Figure 4). These steps are executed infrequently 
because unnormalized operands usually do not cause 
overflow. Although the unnormalized method lacks 
concurrent micro-operations, its microprogram is sim­
pler and faster than the normalized method which 
requires the normalizing procedure. 
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Figure 4-Parallel task graph for unnormalized 
addition/subtraction 

Normalized multiplication with an index of significance 

Normalized multiplication with an index of signifi­
cance uses a conventional method: the lowest multiplier 
bit is examined as the multiplier is right shifted and the 

multiplicand is accumulated to form the product 
(Figure 5). The index of significance is set to the smaller 
of the two indicies. 

The exponent of two operands are added first to form 
the basic exponent for the product (1). The index of 

6 
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9 

No Is counter 
full ? 

11 

12 

13 

Figure 5-N ormalized multiplication with an index 
of significance 



Figure 6-Parallel task graph for normalized multiprcation with 
an index of significance 
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significance for the product is the smaller of the two (2). 
(See algorithm in the previous section.) The adder is 
cleared before the multiplication procedure commences. 

The multiplier is scanned bit by bit from right to left 
for multiplication. If the lowest-order bit of multiplier is 
one, the multiplicand is added to the partial product 
formed in the adder; if zero, no action takes place (4, 5). 
The multiplier and the partial product are shifted one 
bit to the right for a multiplication at the next higher 
magnitude (6, 7). A counter counts the number of 
multiplier bits that have been scanned (8, 9). The result 
is checked for normalization (10). If a normalizing shift 
(at most one left shift) is necessary (11), the exponent 
and index are both decreased by one (12, 13). The result 
is rounded (14). 

Clearly; steps 1, 2, and 3 are potentially parallel in 
the microprogram (Figure 6). Among these operations, 
the second that determines the smaller index requires 
the longest time. Similarly steps 6, 7, and 8 can be 
executed simultaneously. This saving is significant 
because these steps are loop embedded; a reduction of 
one step can save many cycles. For a parallel execution 
of steps 11, 12, and 13, at least two decrementing 
counters are necessary for decreasing exponent and 
index of significance by one. 

U nnormalized. multiplication 

The procedure used for unnormalized multiplication is 
essentially the conventional multiplication procedure 
except the magnitude of mantissa is compared and 
leading zeros of the larger mantissa are counted to 
initialize multiplication. It takes m steps to multiply 
two m-bit operands. An improvement to the method 
suggested by Metropolis and Ashenhurst3 by "auto­
matically" adjusting the leading zeros in the result to 
that of the smaller mantissa after the multiplication 
procedure is completed. Where there is a carry out of the 
highest order significant bit (not necessarily the highest­
order bit of register because of the unnormalized 
representation) significance is gained by one bit. 

The leading zeros of the larger mantissa are counted 
and saved in a counter which is used later as a procedure 
counter for counting the number of loops executed for 
the multiplication proper (1). The sum of exponents is 
reduced by the number of leading zeros of the larger 
mantissa plus one (2). This subtraction enables the 
"automatic" adjustment of leading zeros. The subtrac­
tion by one from the sum of exponents compensates the 
result that is not shifted one bit to the right at the last 
multiplication proper loop. 

J\1ultiplication is performed in a conventional manner 
using shift and add operations (4-9). Note that since 
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Figure 7-Unnormalized multiplication 

the procedure counter initially contains the number of 
leading zeros the multiplication loop is executed for 
the number of bits that represent a value in mantissa 
(6, 7), After the last multiplication loop is executed, 
the result contains either the same number of bits or one 
bit more to represent a value than the operand with the 
smaller mantissa. This is a major improvement over 
the original method in which a significance gain in 
multiplication is suppressed to preserve the number 
of leading zeros. 

An overflow condition is checked after completing 
multiplication in case both operands happen to be 
normalized and a carry out of the highest order bit 
has occurred (10). If there is an overflow, the result is 
shifted one bit to the right and the corresponding ex­
ponent is increased by one (11, 12). A probability of 
the occurrence of overflow is presumably quite low, 
however, and these steps will be seldom executed. After 
an overflow condition is checked, the result is rounded 
to form the unnormalized product (15). 

Parallelism in unnormalized muJtiplication may be 
realized in several ways (Figure 8). Steps 4 and 5 in 
Figure 7 are executed concurrently, or more specifically, 
they are constrained by step 4 execution time, and 
step 5 is performed at a last phase before step 4 is 
completed without incurring extra time. Steps 7 and 8 
can be also executed concurrently when step 7 is 

necessary. Steps 10 and 11 can be performed concur­
rently if two shift registers are provided. Similarly, 
steps 13 and 14 can be concurrently executed. The 
execution time reduction by concurrency in steps 7 and 
8 and steps 10 and 11 is significant because these loop 
steps are executed as many times as there are significant 
digits. A small reduction of micro-operation steps in the 
loop, therefore, can be a large saving in overall execution 
time. 

EVALUATION AND COMPARISON OF 
METHODS 

The microprogrammed algorithms for significance 
arithmetic are simulated on a step-by-step basis. They 
are compared and evaluated with regard to speed, 

Figure 8-Parallel task graph for unnormalized multiplication 



simplicity of microprogram implementation, and parallel 
processability. The speed of microprogram is measured 
in terms of the number of steps required to complete 
the task. The simplicity of microprogram is a capability 
of being represented compactly in a microprogram 
memory. The parallel processability is a feature that 
takes advantage of parallel computer structure for 
faster computation. The mathematical aspect of the 
algorithms is discussed elsewhere.2 ,6 

Addition/subtraction 

The procedure for addition/subtraction is similar in 
both methods. This is readily observed in the micro­
program in Figures 1 and 3. The microprogram for the 

of exponent 

No 

Figure 9-Normalized division with an index of significance 
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Figure lO-Unnormalized division 

unnormalized arithmetic, however, is simpler because 
it does not handle the index of significance. It is also 
faster especially when the microprograms are executed 
sequentially one micro-operation at a time for the same 
operands. This is mainly because the unnormalized 
arithmetic algorithm does not require the final normali­
zation procedure. Normalization which involves shifting 
of mantissa and adjusting exponent (and index, in case 
of the index method) can slow down the procedure if 
there are many digits to be normalized. 

Another reason that the unnormalized method is 
faster is that it seldom generates mantissa overflow 
because of the unnormalized representation. A carry out 
of the highest bit of the larger operand (not necessarily 
the highest bit of mantissa) is accomodated in the 
leading zero space. This implies that the steps 7 and 8 
of Figure 3 for a corrective shift and adjustment of 
exponent for overflow will be rarely executed. The 
occurrence of mantissa overflow depends on the 
operands: more specifically, it depends on the number of 
significant digits kept and the sign of operands. Hence in 
general the frequency of the occurrence of mantissa 
overflow is unpredictable. The comparative advantage 
of the unnormalized method over the index method 
for mantissa overflow, therefore, cannot be easily 
measured or determined. 
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The normalized arithmetic with an index of signif­
icance is relatively slower than the unnormalized 
method when the addition/subtraction microprograms 
are executed sequentially because it must compute 
the index of significance. The additional steps for index 
computation can be costly especially when there is a 
large amount of change in significance as a result of the 
computation. Consider a subtraction of two close values, 
for instance, where a loss of a large number of significant 
digits occurs. Clearly the mantissa of the computed 
result needs a large number of shifts for normalization, 
and for every normalizing step, the index of significance 
must be reduced by one to account for the loss of 
significant bit before it is readjusted by a number of 
significant bits recovered by the normalization. 

The same argument holds for parallel execution of 
microprograms except for the last instance. If micro­
operations of a microprogram are arranged and exe­
cuted to take full advantage of multiple data paths 
for the maximum concurrency of micro-operations, the 
index and exponent adjustments can be performed 
concurrently provided that two additional arithmetic 
registers that accommodate the index and the exponent 
are available. The parallelism in microprogram will, 
therefore, reduce the disadvantage of the index method 
over the unnormalized method by eliminating the 
sequential execution of index and exponent adjust­
ments to improve execution speed. 

Multiplication 

Assuming that the multiplication procedure is carried 
out sequentially in the Interdata 4 on two 60-bit 
operands, the microprogram for the index method takes 
about 467 cycles while that for the unnormalized method 
requires about 491 cycles. The multiplication procedure 
used, in both microprograms is essentially the same: 
register shift and addition of multiplicand as required. 
It takes m steps for the m-bit mantissa and each of m 
steps in turn consists of several micro-operations: a test 
of bits in mantissa against the sign bit, an addition of 
multiplicand into a partial product in the adder, a right 
shift of the partial product and of the multiplier, and an 
increment of the procedure counter by one. An obvious 
reason that the unnormalized method requires more 
time is that the unnormalized mantissa representation 
has more bits than the normalized number representa­
tion with an index. If the mantissa of the unnormalized 
representation is the same size as the normalized 
representation with an index, the multiplication pro­
cedure will take about 453 cycles. This reduction of 
cycles is due to. fewer micro-operations executed for 
scaling leading digits of the two mantissas. 

While both methods appear to take approximately 
the same number of steps and hence the same amount 
of time, the unnormalized method can be faster if the 
number of significant bits of one of the operands is 
small. If the number of significant bits for one of the 
operands is 34 instead of 44, for instance, then the 
total number of cycles required for the unnormalized 
method is 441 compared to 491. This reduction results 
from an increase in the number of leading bits which is 
due to the decrease in the number of significant bits. 
The number of leading zeros is counted and used as the 
procedure counter so that the multiplication proper is 
performed only on the significant bits. In other words, 
if k is the number of significant bits then only k multi­
plication steps are necessary. It is evident from the 
microprogram of Figure 5 that the larger is the number 
of leading bits (or the smaller is the number of significant 
bits), the smaller becomes the number of cycles required 
because the leading-zero scaling requires fewer cycles 
than a multiplication step. 

The· discussion so far is based on the sequential 
execution of microprograms. What would happen, then, 
if the microprogram can be executed in parallel or, 
more specifically, if the horizontal microinstruction 
format is available so that more than one micro-opera­
tion can be initiated at the same time? Assuming that 
a sufficient number of micro-operations (in our case, 
four or five would be sufficient) can be specified in a 
microinstruction, the microprograms can possibly be 
rearranged to take advantage of parallelism in execu­
tion. The index method in the rearranged microprogram 
takes 316 cycles which is the reduction of cycles by 32 
percent over the sequential microprogram. The un­
normalized method in the rearranged microprogram 
requires 326 cycles which is a reduction of 34 percent 
over the sequential microprogram. The reduction rate 
by the parallel microprogram for both methods is 
nearly the same. Speed up in the method originally 
suggested by Ashenhurst is hindered by the extra steps 
for leading digits adjustment of the final result. The 
improved method that adjusts leading digits "auto­
matically" eliminated the extra steps providing more 
reduction and better execution time. 

In summary, both normalized multiplication with an 
index of significance and unnormalized multiplication 
equally benefit from parallel data paths in a computer 
architecture. The former can perform separate compu­
tations on exponent, index, and mantissa concurrently, 
and the latter can perform computations on exponent 
and mantissa. 

When sequentially executed, unnormalized multipli­
cation can be executed faster, especially where the 
number of significant digits is small since leading-zero 
counting requires less time than multiplying significant 



digits. This peculiarity is nullified by the parallel 
execution of multiplication loop, however, so that the 
significance of operands does not affect execution time. 

SOFTWARE VS. MICROPROGRAM 

A Fortran program for a significance arithmetic 
algorithm has been implemented by Bright, Colhoun, 
and Mallory.5 It monitors computer arithmetic upon 
request by a program in execution and provides a 
number of significant digits retained in the computed 
result at every stage of computation. The initial sig­
nificance value may be either specified by the user or 
determined by the program at compilation or execution 
time. Their program is sizable (approximately 1400 
Fortran statements). Being a large interpretive pro­
gram, it also takes considerable computing time. A 
computation that requires a few seconds in normal mode 
would take several minutes for completion in significance 
mode. They concede that, for a very large computation, 
the use of the program would be "inordinately costly." 

Microprogramming appears to be a solution to the 
problems associated with the software implementation 
of significance arithmetic algorithms. It offers a compact 
representation of algorithms for a smaller memory 
space requirement. It controls internal data flow at 
gate-level so that redundant micro-operations for 
machine code execution may be eliminated for a higher 
performance of algorithms. 

Compactness of microprogram also implies enhanced 
speed in execution. Micro-level redundancy that exists 
in machine code program is eliminated to reduce the 
number of micro-level steps. An elimination of one 
redundant microinstruction can be a saving of many 
clock cycles in program execution if the microinstruc­
tion is in a loop, and can yield a significant saving in 
overall computation cost. 

Microprogramming enables fineness of control of 
internal data flows. In particular, where the horizontal 
microinstruction and appropriate data paths are 
available, algorithms may be implemented to take full 
advantage of existing parallel data paths, which is not 
possible in software. Although the microprogram may 
become somewhat complex in this case, drastic reduction 
in execution times accrue for frequently used routines.6 

To prove these points, algorithms for normalized 
arithmetic with an index of significance and unnor­
malized arithmetic were programmed both in the 
COMPASS assembly language for the CDC 6600 
computer and the microprogramming language for 
the Interdata 4 computer. Although the assembly 
language provided relatively sophisitcated operations 
such as floating-point arithmetic, floating-point to 
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fixed point format conversion, and various conditional 
operations on many registers, the program for addition 
with an index of significance required more than 50 
instructions and unnormalized addition approximately 
30 instructions. In order for the fairness of evaluations 
the following modifications were assumed for the 
Interdata4 computer: 

1. the machine operates on 60-bit operands; 
2. eight arithmetic registers; 
3. eight index registers; 
4. multiple-bit shift available so that any number 

of bits may be shifted in three cycles. 

A microprogrammed emulator is defined for each 
machine code operation using the microprogramming 
language of the Interdata 4 computer. The microin­
struction of Interdata 4 uses a vertical instruction for­
mat similar to a machine code and consists of primitive 
and simple operations such as register-to-register 
transfers, simple tests for a register condition, one-bit 
shift, etc. lVIost instructions are executed in one clock 
cycle of 400 nanoseconds; some in two clock cycles. 

The assembly language programs for the two al­
gorithms were translated into equivalent microprograms 
via a set of microprogrammed emulators. The emulator­
translated microprogram for addition with an index of 
significance consisted of 113 microinstructions, and 
unnormalized addition 70 microinstructions. They 
were simulated on two operands A and B with the 
following characteristics: 

1. IAI> IBI; 
2. index of significance of A is greater than that 

ofB; 
3. difference of the exponents of A and B is five; 
4. result requires one-bit left shift for normaliza­

tion. 

The execution times of the addition with an index of 
significance and unnormalized addition on these 
operands are 119 and 69 cycles, respectively. The index 
method requires nearly twice as much time as the 
unnormalized method for bookkeeping operations such 
as extracting exponent, index and mantissa to perform 
computation, shifting, testing, etc., separately on each 
part. 

The same algorithms were hand-coded directly in the 
Interdata 4 microprogramming code for a comparison 
with the software programs. In these directly-coded 
microprograms, much redundancy introduced in the 
emulator-translated microprograms was eliminated. The 
index method was coded in 78 microinstructions and the 
unnormalized method in 51 microinstructions. For the 
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TABLE I-Estimated Execution Time 
(in Interdata 4 clock cycles) 

Normalized Arithmetic Unnormalized 
with an Index of arithmetic 

Significance 

Addi- Multi- Divi- Addi- Multi- Divi-
tion plication sion tion . plication sion 

Software 119 633 1210 69 655 1350 
Sequential 
Microprogram 68 467 780 43 491 810 
Parallel 35 316 510 27 326 540 
Microprogram 

same operands, the microprogram for addition with an 
index of significance takes 68 cycles whereas that for 
unnormalized addition uses 43 cycles. Comparing execu­
tion times of microprogrammed algorithm with that of 
software programmed algorithm, reduction realized by 
hand-coded microprograms is remarkable. Micropro­
gramming the algorithms, about 43 percent of execution 
time is saved for the index method and about 37 percent 
is saved for the unnormalized method. In other words, 
the speed of performing significance arithmetic can be 
increased by approximately 40 percent by directly 
microprogramming. 

Note that the execution of the Interdata micropro­
grams is strictly sequential. If parallel data paths at 
gate-level are available, a better execution time reduc­
tion rate may be expected. Assuming that the micro­
programs coded for the Interdata 4 can be executed in 
"ideal" parallel, i.e., any possible parallelism in the 
microprograms may be realized, the index method for 
the two operands would take 35 cycles and the un­
normalized method 27 cycles. Reductions realized in 
this case are nearly 70 percent and 61 percent, re­
spectively, over software programmed algorithms, and 
approximately 49 percent and 37 percent over sequen­
tial microprograms. It may be anticipated that a 
further comparison of the parallel microprogram with a 
higher level language program for these algorithms 
would yield more than 80 percent reduction in execution 
time. 

The estimated execution times of the other arith­
metics is shown in Table 1. Since execution time varies 
depending upon particular operands, an amount of 
significance, etc., times shown are approximate. The 
estimated execution times of normalized arithmetic 
with an index of significance are based on 44-bit man­
tissas and those of unnormalized arithmetic are based 
on 48-bit mantissas. 

To illustrate the consequence of execution time 

reduction in significance arithmetic realizable by micro­
programming, the overhead execution times for n Xn 
matrix computation are estimated. Although the exe­
cution time for arithmetic operations varies according 
to the value of operands, an assumption is made that 
the execution times computed in the simulation and 
shown in Table 1 are about an average. 

For an n Xn matrix addition, n2 additions are neces­
sary. When normalized addition with an index of 
significance is used it would take 119 Xn2 cycles for a 
software program and 68 Xn2 cycles for a sequential 
microprogram. For n= 10, this would mean 11,700 
cycles for a software program and 6,800 cycles for a 
microprogram. Furthermore, it is conceivable that the 
difference becomes much larger if a large number of 
bits must be shifted for normalizing. Unnormalized 
addition would take approximately 69 Xn2 cycles in 
a software program and 43 Xn2 cycles in a micropro­
gram. For n = 10, the software program for unnor­
malized matrix addition takes approximately 6,900 
cycles and the microprogram 4,300 cycles. 

An n Xn matrix multiplication requires n3 multipli­
cations and n2(n -1) additions. This would mean that 
multiplying two nXn matrices using normalized 
arithmetic with an index of significance takes 

633 Xn3+ 119 Xn2(n -1) cycles in software 

and 

467 Xn3+68 Xn2(n -1) cycles in microprogram. 

Using unnormalized arithmetic, the same matrix mul­
tiplication would take 

655 Xn3+69 Xn2(n -1) cycles in software 

and 

491 Xn3+43 Xn2(n -1) cycles in microprogram. 

From these execution time estimates, it is readily 
observed that a small amount of reduction at micro­
program level may be significant in the overall ef­
ficiency of computation. 

REQUIREMENTS FOR COMPUTER 
ORGANIZATION 

There are a number of desirable features in computer 
organization for an effective significance arithmetic. 
Some of them may coincide with the numerical ana­
lysts' wishes in the design of computers for numerical 
computations such as a large word-size, multiple­
length arithmetic registers, etc. The requirements for 
computer organization here, however, are considered 
from the standpoint of microprogramming. 



The first requirement in computer organization for 
significance arithmetic is a double-length register to 
preserve significance. Wilkinson shows that if only a 
single-length arithmetic register is available rounding 
errors propagates to widen error bounds and to reduce 
significance. 1 Besides ,preserving significance, a double­
length register may be used for double-precision arith­
metic for greater accuracy. 

A small arithmetic register large enough for com­
puting exponent and index of significance is desirable 
for parallel execution of microprograms. With this 
register available, mantissa and exponent (and index 
of significance) can be computed simultaneously. For 
a faster normalized arithmetic with an index of signif­
icance, two such arithmetic registers may be necessary: 
one for exponent computation, the other for index 
computation. They are particularly useful in normali­
zation in the index method. Normalization calls for left 
shifts of mantissa and, for every shift, reduction of 
exponent and index values. The two registers are used 
for the exponent and index computations concurrently 
with the mantissa shift operation to reduce overall 
execution time. 

Two or more registers capable of shifting one bit at 
a time are necessary. They have many, uses in both 
normalized and unnormalized arithmetics. They may 
be used in multiplication for a multiplier and partial 
product, in division for a dividend (and partial re­
mainder) and a partial quotient, and in normalization. 
At least one of them should be able to shift its content 
in a group of bits at a time. Such register would reduce 
a time requirement in binary-point alignment for 
addition/ subtraction in which a shift of many bits is 
often necessary. 

Three or more mask registers for extracting any part 
of the register content are desirable. If they can be set 
to extract any part of the register content, the separa­
tion of exponent, index, and mantissa for separate 
computation is done faster. 

A high-speed, alterable microprogram memory is 
desirable. It permits flexible specifications of controL 
When a new algorithm for significance arithmetic be­
comes available, it may be microprogrammed to replace 
the old microprogrammed algorithm without hardware 
rewiring. Thus, the alterable microprogram memory 
will prevent obsolescence of a machine with a small cost 
for remicroprogramming control specifications. 

The microinstruction format should be horizontal. 
The horizontal microinstruction format permits 
specifying simultaneous activities of multiple data 
paths; it permits elemental control for efficient execu­
tions. Microprogram coding scheme must be simple, 
however, so that basic controls can be specified easily. 
If the microprogram operation code is encoded as 
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Sign bit for mantissa 

Irgn bit foe exponent 

mantissa 

Figure lIa-Format for normalized arithmetic with an 
index of significance 

in the case of Honeywell H4200, microprogramming 
becomes, somewhat restricted in terms of specifying 
data paths. Therefore, a more general microprogram­
ming method and supporting tools such as micropro­
gram interpreter, simulator, etc., are desirable for easier 
microprogramming. 

The machine code instruction format should have a 
provision for specifying the number of significant digits. 
Basically the following machine code instructions are 
desirable for significance arithmetic: the input instruc­
tion for specifying a number of significant digits of input 
data; the significance arithmetic operation code sepa­
rate from the regular arithmetic instruction; the output 
instruction to output the number of significant digits. 
The input instruction is a pseudo code that simply de­
fines a constant and its significant digits. The signifi­
cance arithmetic operation code may be the regular 
arithmetic instruction with its tag field set to indicate 
the significant arithmetic mode. The output instruction 
to extract and output the number of significant digits 
may be used to print out the number of significant 
digits. It may be also used to pass the number of 
significant digits to a routine that monitors significance 
and determines the next action such as a use of mul­
tiple-precision arithmetic, etc. 

A possible format for a number representation in a 
60-bit word for significance arithmetic with an index is 
shown in Figure Ila. It consists of two sign bits, one for 
exponent, the other for mantissa, eight bits for exponent, 
six bits for an index of significance, and 44 bits for 
mantissa. A format for the unnormalized number 
representation in a 60-bit word is shown in Figure lIb. 
It consists of a sign bit for exponent, a sign bit for 

Sign bit for mantissa 

lrgn bit foe exponent 

mantissa 

Figure lIb -Format for unnormalized arithmetic 
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TABLE II-Comparisons of the Two Significance Arithmetic Methods 

memory requirement execution speed 

Index method larger nearly the same 

U nnormalized 
method smaller faster add/sub 

mantissa, ten bits for exponent, and 48 bits for mantissa. 
Clearly, for the same word size, the unnormalized format 
has a potential capacity for maintaining a larger num­
ber of significant digit (because of a larger mantissa) and 
representing a wider range of numbers (because of a 
larger field for exponent). 

None of the requirements discussed so far is extreme 
or special-purpose oriented. Most of the desirable 
features are in fact provided by the existing, general­
purpose computer except the alterable microprogram 
memory. A general speculation, however, is that the 
alterable, high-speed microprogram memory will be 
available at a reasonable cost in the near future with the 
advancement of memory technology. It will be used 
more widely as better microprogramming techniques are 
developed. In conclusion, the results suggest that the 
existing microprogrammable computers are reasonably 
well suited for microprogram implementing significance 
arithmetic. 

CONCLUSION 

JVIicroprograms have been designed and shown in flow 
diagrams for the two significance arithmetic methods: 
normalized arithmetic with an index of significance and 
unnormalized arithmetic. The two methods are com­
pared in terms of speed, simplicity in microprograms, 
and effects in computer organization. 

Software implementation and microprogram imple­
mentation of significance arithmetic are also compared 
to justify the microprogrammed implementation. A 
software implementation of significance arithmetic 
appears to require a formidable amount of overhead 
computation. 

The results of this study suggest many advantages 
for the microprogrammed implementation of sig­
nificance arithmetic. Whereas the unnormalized method 
is considerably faster in addition than the index method, 
the index method is more suitable to a computer with 
parallel processable characteristics. The microprogram 
using computational parallelism for the index method 
is slightly simpler than that of the unnormalized 
method. Although the difference in execution time 

microprogram parallelism in range of 
simplicity procedure representable numbers 

slightly complex more parallelism smaller 

simpler less parallelism larger 

between the two methods is small, it can be significant 
over a long period of time especially when arithmetic 
functions are used more frequently in the computation. 

Where memory requirements are of concern, the 
choice seems apparent. If the sizes of exponent and 
mantissa are fixed, the index method requires additional 
bits for the index of significance. If the mantissa con­
sists of m bits, it requires rIog2 m l* additional bits for 
the index of every operand. For an nXn matrix, this 
would mean that at least rIog2 m l Xn2 additional bits 
are necessary. 

If on the other hand the exponent, index, and man­
tissa are packed into a fixed word size, the size of ex­
ponent and/or mantissa fields becomes smaller for 
the index number representation. The index method 
in this case would suffer in the range of representable 
numbers due to smaller exponent and mantissa fields. 
A smaller size for mantissa would also mean less ac­
curacy in representing numbers. 

The observations and comparisons discussed above 
are summarized in Table II. The entry comments in 
the table are for the two methods relative to each other. 

In conclusion, our studies have shown beyond doubt 
that significance arithmetic can be implemented in 
microprograms for a performance that costs little over­
head ovel comparable regular floating-point arith­
metic. 
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under nlicroprogram control 
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INTRODUCTION 

The application of microprogramming to seismic, 
acoustic and radar processing is well-known.1,2,3,4 The 
system architecture required to address wide band­
width signal processing problems is of a general form 
shown in Figure 1. In order to provide the high through­
put which is required by digital signal processing, 
parallelif>m is generally accepted as the proper design 
concept for the signal processing arithmetic element. A 
microprogram processor (or a hm,t processor) could be 
used to control the arithmetic element which can be 
either an associative processor,5 functional memory,6 
parallel ensemble,7 matrix array processors or a vector 
processor.9 The efficient design of the microprogram 
processor is the key to insure the high duty cycle 
utilization of the expensive arithmetic element hard­
ware. Parallel architectures fall far short of their ex­
pectations because of the control problem associated 
with keeping all the hardware usefully occupied all the 
time.10 

This paper surveys basic digital signal processing 
algorithms. It proposes a signal processing architecture 
consisting of a microprogrammed control processor 
(l\1CP), a highly efficient sequential ~ignal processing 
arithmetic unit (SPAU) and necessary buffer mem­
ories. Emphasis is placed on the MCP architecture be­
cause of its importance in enhancing the system per­
formance. An application example, optimum process­
ingll in frequency domain, is given to verify the ap­
plicability of the architecture. 

Hardware technology surveys, and fabrication and 
packaging considerations are beyond the scope of this 
paper. The firmware and microprogramming support 
software discussions are also omitted. 

* Presently employed at Naval Research Laboratory, Washing­
ton, D.C. 

675 

BASIC DIGITAL SIGNAL PROCESSING 
ALGORITHMS 

A wealth of literature, including several very good 
text books is available in signal processing and digital 
signal processing.12 ,13,14 A brief description of some of 
the processing algorithms is included here. In general, 
linear filter theory and spectrum analysis techniques 
form the baEis of digital signal processing. Time-domain 
and frequency domain equivalence of processing is 
widely assumed. In practice, time-domain digital 
processing is only used in real time applications with 
relatively short sample data block. The fast Fourier 
transform (fFt) algorithm15 ,16 provides the efficient 
digital processing link between time and frequency 
domains, and frequency domain processing is preferred 
for narrow-band analysis with fine resolution and large 
quantities of input data. 

Time-domain processing 

Consider a sampled signal {x(tn)}, where tn=nT, 
n=O, 1, ... nand T is the sample period. A linear 
digital filter is written as: 

N 

y(tn ) = L: h(tm ) X (tn- m ) (1) 
m=O 

where {y(tn )} are filtered outputs of {x(tn )} and 
{h(tn) } are sampled impulse responses of the filter. 

Similarly, the correlation function of {f(tn )} and 
{g(tn) } can be written as: 

N 

Z(tn) = L f(tm+n)g(tm) (2) 
m=~N 

Another type of time-domain processing, which is 
known as recursive filter, is commonly used for limited 
number of samples to compute successive value of out-
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puts. Let {x(tn )} be the input signal samples, then the 
filtered outputs {y(tn )} are expressed by the linear 
difference equation: 

N r 

y(tn) = L Wky(tn- k) + L Akx(tn-k) (3) 
k=l k=O 

where {wd and {Ad are weighting or filter coefficients 
of the recursive filter. 

For N sample points, time-domain processing requires 
N2 multiply ... sum operations. Therefore, real time appli­
cation of time-domain processing is limited to short 
sample data blocks only. Typically, N equals 64 or less. 

Frequency domain processing 

Let {X (fi)} be the discrete Fourier transform of a 
signal {x(tn ) } that 

N-l 

X C!j) = L X(tn) exp ( -i21rfj tn) (4) 
n=O 

wherei=y-1, j=O, 1,2, ... N-1 andfj=j(1/NT). 
This discrete transform involves a couple of assump­

tions. Equally spaced time samples are assumed. Also 
the sampling rate must be above the Nyquist rate, 
twice the frequency of the highest frequency in the 
waveform being sampled. When these criteria are met, 
the discrete Fourier transform has parallel properties to 
the continuous transform. The original waveform can 
be completely recreated from the samples. Transforma­
tions between the time and frequency domains are per­
formed by using the discrete transform and its inverse. 
It can be shown that the equivalent frequency domain 
digital filter in equation (1) can be written as: 

Y(li) = X (fi)H (li) (5) 

where {Y ( fj)} and {H ( fj)} are discrete Fourier trans­
forms of {y(tn)} and {h(tn)} respectively. 

Similarly, the equivalent correlation function in fre­
quency domain can be shown as: 

(6) 

where {F(fj)} is the complex conjugate of the discrete 
Fourier transform of {f(tn) }. 

As a special case, the pmver spectrum density func­
tion is: 

(7) 

It is seen that for N frequency domain samples, the 
equivalent digital filtering or correlation function re­
quires N complex multiplications instead of N2 product­
sum operations in the time-domain. Tremendous com­
putational savings for large N can be achieved if an 
efficient processing link between time domain and 
frequency domain is pstablished. The fast Fourier 
transform algorithm is this missing link. 

Fast fourier transform 

Since 1965, a great deal of attention has been given 
to the fFt algorithm by the digital signal processing 
community. Interested readers can find detailed deriva­
tions and variations of the algorithm in references 
listed in the Bibliography.13.15.16.17 A simple derivation 
is included below. 

Let's rewrite the discrete Fourier transform expres­
sion shown in equation (4). 

N-l N-l 

Ar= L Xk exp(21rirk/N) = L xkWrk (8) 
k=O k=O 

where: i= Y -1 

W =exp(21ri/N) 

N = number of samples 

r = harmonic number = 0, 1, ... , N -1 

k = time-sample number = 0, 1, ... , N - 1 

Thus Ar is the rth coefficient of the Fourier transform 
and Xk is the kth sample of the time series. 

The samples, Xk, may be complex, and the coeffi­
cients, A r , are almost always complex. 

Working through an example in which N = 8 will 
illustrate some of the calculation short cuts. 

In this case: j = 0, 1, ... , 7 

k=0,1, ... ,7 



To put these into binary form: 

Thus: 

I I I 

j=j2(22) +jl(2I) +jo 

k=k2(22) +kl (21) +ko 

= L: L: L: X (k2' kI' ko) [WCj24+i12+jo)(k24+kl2+ko)J (10) 
ko=O kl=O k2=O 

N ow the W can be broken down further: 

(11) 

Since W8= [exp (27ri/8) J8= exp (27ri) = 1, the bracketed 
terms equal one, and can be dropped from the computa­
tion. (Note that [exp(27ri) J2= 12= 1.) This saves 
many calculations. 

Then A (j2, jl, jo) can be obtained by sequentially 
calculating the xs as follows: 

I 

Xl (jo, kl' ko) = L: (k2, kl' ko) Wjok2
4 

k2=O 

I 

X2 (jo, jl, ko) = L: 1 (jo, ki' ko) WCi12+Jo)k12 
kl=O 

I 

X3 (jo, jI, j2) = L: = X2 (jo, jI, ko) WCi24+i12+Jo)ko 

ko=O 

Once these computation savings were found, one 
may generalize that for N point fast Fourier transform 
"72N log2N complex multiplications and summations 
are required. For the equivalent digital filter operation 
in equation (1), N (1+ log2N) complex multiplications 
are performed including the 1Ft on input samples and 
the inverse transform to obtain time domain filtered 
outputs. Comparing with N2 operations required for 
(1), this is a worthwhile saving in processing load, 
when N is large. 

What are the basic operations? 

Product-sum and complex multiplications! 
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A PROPOSED SIGNAL PROCESSOR 

ORGANIZATION 

The basic arithmetic operation performed by a signal 
processor is the high speed multiplication in the form 
of product-sum for time-domain processing and com­
plex multiply for the frequency-domain computations 
and the 1Ft algorithm. These operations are always 
performed on arrays or blocks of sensor data. In other 
words, signal processing deals exclusively with 'struc­
tured' data. A system architect faces: 

1. The design of a high speed Signal Processing 
Arithmetic Unit (SPAU). 

2. The problem of how to keep this arithmetic unit 
efficiently and usefully busy. 

The latter poses a bigger challenge because it dictates 
the system through-put by collecting and controlling 
sensor inputs, and structuring the input data in a man­
ner that can be most efficiently accepted by the SP AU. 
Typical functions are: 

• 110 control 

• Multiplexing or Decommutation 

• Data conditioning 

• Scaling 

• Orthogonal addressing 

• Format conversion 

• Data buffering, blocking and packing. 

The above listed preprocessing requirements for a 
SP A U are characterized by: 

• Relatively simple algorithms 

• Highly iterative operations 

• Low precision 

The advantages of using a Microprogrammed Control 
Processor (MCP) rather than special purpose hard­
ware for these interface functions are the lower cost of 
such a general purpose architecture and the flexibility 
provided· by the ability to change the microprogram. 
Furthermore, microprogramming implementation of 
these functions offers 5-10 times performance gain over 
a conventional general purpose computer of comparable 
technology.I,2,3 In addition, macro signal processing 
functions can be provided by properly sequencing the 
SP A U under microprogram control. Some of these 
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Figure 2-Functional diagram of a microprogrammed 
signal processor 

macros could be: 

• Convolution Filter 
• Recursive Filter 
• Beam Forming 
• FFT 
• Inverse FFT 
• Correlations 
• Power Spectrum 
• Filter 
• Unpack 
• Matrix Operations 

By requiring the system to be under microprogrammed 
control, the designer is permitting a single piece of 
hardware to be specialized to a particular type of signal 
processing calculation by allowing for the design of an 
optimum 'instruction set' for that calculation to be 
loaded into the control store of the MCP. 

Figure 2 depicts the functional diagram of a signal 
processor under microprogram control. The major com­
ponents are System Storage, MCP, and SPAU. 

System storage hierarchy 

The structured nature of signal processing requires a 
block (or page) of data to be operated upon by the 
SP AU. Therefore, SP AU performance specifications 
define the buffer speed requirements for each 'page' and 
the system through-put requirement determines the 
transfer rate between the system bulk store and the 
buffer memories. A system storage hierarchy is implied. 
As to the microprogrammed Control Store (CS), one 
may consider each signal processing kernel as a module 
(or page) with highly repetitive execution duty cycle. 

If Writable Control Store (WCS) is considered, a dy­
namic paging hierarchy can again be established for the 
microprogram execution.18 •19 Since both data and the 
programs are sequential and block in nature for signal 
processing, no c'ache requirement is foreseen. For rela­
tively long data blocks, buffer paging with respect to 
the system bulk storage can be accomplished through 
the MCP I/O control unit. No additional paging hard­
ware will be required. 

Buffer lllelllories 

At least two independent buffer memories will be re­
quired because of the over taxing demands on buffer 
memory cycles by the pipe-lined SP AU operations 
while MCP ALU and IOCU are preparing the next 
block of data for SP AU consumption. Two buffer 
memories in conjunction with MCP can only support 
a SPAU with a 4-cycle basic operation. If a 2-cycle 
SPAU is required, four independent buffer memories 
will be needed to achieve the desired performance. 

A 64-bit buffer memory interface is proposed for the 
purpose of increasing real time instantaneous signal 
input bandwidth as well as enhancing the paging inter­
face efficiency with the bulk system storage. Experi­
ence indicated that each buffer memory should be ex­
pandable vertically in 256 by 64-bit words increments 
up to 4K words. lK to 2K 64-bit words buffer size is 
commonly seen. It is intended that the buffer memory 
is the same monolithic storage used for the micropro­
gram control store for commonality and logistic sim­
plicity. The speed of the buffer memory is defined by 
the operational requirement of SP AU. 

Control store 

A 64-bit wide control store compatible with the 
buffer memory is used for the microprogram storage. 
Each micro-instruction is capable of executing the fol­
lowing operations in parallel: 

• Access the Buffer Memories for One or More 
Operands 

• Manipulate Local Registers and Arithmetic 
Registers 

• Perform Arithmetic and Logic Functions 
• Decode and Status Sensing 

• Decision Making 
• Form Next l\1icro-Instruction Address 

• Other Special Controls 



Allowing multiple micro-instruction formats, one can 
easily reduce the micro-instruction width to 32-bit 
with a degradation of l\1CP performance by less than 
15 percent. Double fetch of micro-instructions can be 
co.Il-sidered; however, microprogramming will be more 
difficult in this case. 

Since writable control store is used in the system, 
dynamic paging of microprograms will be considered. 
Tight kernels are characteristic for MCP micropro­
grams in the signal processing environment. Small 
page size (i.e., 64 micro-instructions) may be adequate 
for a dynamic control store size of not exceeding lK 
64-bit words. 

Bulk system storage 

Bulk System Storage can be provided as an I/O 
attachment to the MCP-SP AU signal processing system 
in the stand alone case. Or, the signal processing sub­
system can be considered as interfacing through the 
bulk system storage with the central computer complex. 
In this case, bulk system storage can be a part of the 
shared CPU main memory or auxiliary large core 
storage (LCS). 

The speed requirement of the bulk system storage is 
dictated by the type of processing performed in the 
l\1CP-SPAU. Assume a block of data with N points are 
first transformed into N spectral elements in the fre­
quency domain and then filtered by N corresponding 
filter coefficients; the following are observed: 

Data Transfers-

Bulk System Storage to MCP-SPAU 
N Input Data Points 
N Filter Coefficients 

MCP-SPAUto Bulk System Storage 
N Filtered Outputs 

Computations-
N + Y2N log2N Complex Multiplications 

If single cycle data transfer and 2-cycle complex 
multiply are assumed, the speed ratio between the bulk 
system storage and the buffer memories is obtained as 
(2+ log2N) /3. When N = 1024, the speed ratio equals 
4. This allows bulk system storage bandwidth to be 4 
times slower than the buffer memory speed. 

Local stores 

Local storages will be provided in MCP and SPAU 
data flows for internal arithmetic operations. Further 
discussions are deferred untillatBr sections. 
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Figure 3-Microprogrammed control processor data flow (MCP) 

Microprogrammed control processor (MCP) architecture 

The architecture of the MCP is oriented toward its 
signal processing application as an interface and control 
processor. The salient features of the MCP required by 
this application are: 

a. High-speed buffer and channels 

b. Efficient interrupt scheme 
c. Simple external interfaces 
d. Ease of microprogramming 

These design goals were achieved by: 

a. Using two independent monolithic storage units 
as buffer memories and linking them with a 
wide 64-bit channel interface. 

b. Using only three registers in the data flow and 
matching the storage cycle time with the inter­
nal processing time in order to permit the inter­
rupt overhead operation (save and restore) to be 
performed in three micro-instructions. 

c.Using a monolithic read-write storage as a micro­
program control store. A 64-bit microprogram 
instruction provides a control format that is 5 to 
10 times more powerful than typical 16-bit in­
structions found in minicomputers and provides 
the computing power necessary to perform the 
interface tasks. A read-write control store pro­
vides the ease of program modification required 
to efficiently debug the operational micropro­
grams. It also offers dynamic paging of micro­
programs through the system storage hierarchy. 

The basic data flow is shown in Figure 3. The func-



680 Spring Joint Computer Conference, 1972 

tional units include: 

a. Sequence Unit. The sequence unit is that portion 
of the machine which controls the sequence of 
logical operations by determining the order in 
which control words are addressed from the con­
trol store. The sequence unit operations are 
controlled by the control store word, storage bus 
condition, data flow conditions, machine status, 
and channel conditions. The address for each 
control store word access is assembled by the 
sequence unit from the above controlling sources 
in the next address assembly register (NAAR). 
The save address latch (SAL) holds assembled 
addresses for storage during interrupt process­
ing. The last address register (LAR) holds the 
previous cycle control store address register 
(CSAR) when a machine stop occurs. 

b. Buffer Memory Control and Bussing. Each of 
the basic buffer memories has a word width of 
64 bits, used as four 16-bit words in the data 
flow. The buffer control unit (BCU) serves as 
an interface between the buffer memory and the 
various devices that use storage, such as I/O 
channels, the MCP data flow, and any other 
direct access devices such as SPAU that may be 
connected to it. The BCU includes a priority 
determination unit, an addressing unit, a storage 
bus, and fetch busses. 

c. Data Flow. The dat& flow includes three 16-bit 
registers that provide the necessary buffering 
between the storage bus and the arithmetic and 
logic unit (ALU). They are destination registers 
for data fetch and ALU operations. Input selec­
tion is under direct control of the control store. 
All three registers have connections to the stor­
age bus to allow them to be saved following an 
interrupt. Selection of operands to the ALU is 
controlled by a control store field. The ALU is a 
conventional 16-bit parallel adder and logic unit 
that performs a function on the selected left (L) 
and right (R) operands. 16-bits represents a 96 
db dynamic range. Physical measurements or 
control signals seldom require more than 16-bit 
precision. Microprogrammed double-precision 
can be used for rare exceptions. The ALU output 
(Z) is latched when the function is completed and 
held through the late part of the control cycle, 
when the result is transferred to the destination 
register. The registers are set late in the control 
cycle and are held for an ALU operation in the 
next cycle. The ALU functions include adding, 
shifting, and logical operations. 

d. Local Storage. A 16 word Local Storage is con­
tained in the data flow. The local store provides 
16 bit inputs to the ALU. The local store write 
rpgister has an input from the ALU latch. Local 
store is addressed from thr Local Store Address 
Register (LSAR). The LSAR has inputs from 
the X register, the CD fipld, and thp LSAR 
decrementer. The Local Store can be accesspd and 
written in one ::\lCP cycle. It can be pxpanded to 
32 words. Or, a second local store can be added 
to achieve the operations of two independent 
register stacks within one ~lCP ALU cycle. 

e. Literals. Two 16-bit literals are available to the 
ALU for generation of constants and buffer 
memory addresses. . 

f. Interrupt Processing. Interrupt processing con­
sists of saving program status data that \vould 
be destroyed in processing the interrupt, and re­
storing conditions so that the interrupted pro­
gram may be continued after the interrupt has 
been processed. The save operation is performed 
in one micro-instruction: 

SCXYS(O) 

This micro-instruction stores the CSAR, X 
register,Y register, S register, stats, and masks 
in four consecutive locations in both buffer me­
mories beginning at address 00016• The restore 
operation requires two micro-instructions: 

1. A(O) =X, B(l) = Y 
This loads the Y register with the vaule to be 
restored into S and places the CSAR value to 
be restored into the X register. 

2. A(2) =X, B(3) = Y, Y =S, RTN 
This restores X, Y, and S registers; RTN 
forces CSAR to be loaded from prior X 
register value returning to the next address of 
the routine that was interrupted and also 
restores stats and masks. 

The restore operation is . interruptable. Inter­
rupts of MCP can be generated by I/O channels, 
program stats and SP AU completion. There are 
four programmable interrupt priority levels. 

Signal processing arithmetic unit (SP A U) 

In preprocessing, it is observed that there is no re­
quirement for a hardware multiplier in interface or con­
trol functions. However, an extremely high duty cycle 
multiplier is necessary to satisfy signal processing re-



quirements. Furthermore, a 'structured' multiplier will 
be needed in this case. 

In ord-er to accommodate both time domain and fre­
quency domain operations, the SP AU is designed to 
execute the following basic operation with implicit 
addressing: 

where i= 1, 2, 3, ... 4096 and A, B, and C are all 
complex numbers 

Although the SPAU provides a basic 16X16 complex 
multiplier, it is hardware equivalent to four 16X 16 real 
multiplier or one 32X32 fixed point multiplier. Under 
the M CP microprogram control, the SP AU can func­
tion as desired in various configurations when applica­
tion arises. For special case!Ft operations, block floating 
point format may be assumed with 12-bit mantissa and 
4-bit scaling. 

The SP AU buffered operations can be interrupted by 
the MCP when MCP ALU registers require a single 
multiply operation, i.e., MCP register mode has priority 
over the normal buffered mode of SPAU. The SPAU 
buffered operations are initiated by MCP micropro­
grams and SPAU interrupts the MCP on completion. 

The SP A U design includes the necessary pipeline to 
assume an asynchronous operational speed. The basic 
SP AU operation requires two to four buffer memory 
cycles dependent upon number of independent buffer 
memories used in the system. Some special functions 
are included in the SP A U design such as ! Ft address 
generation and conjugate multiply. 

The parallel matrix multiplier logic of SPAU is very 
straightforward. However, the amount of hardware 
in terms of logic gate counts is probably twice the MCP 
ALU IIOCU combined. It is almost anti-climactic to 
state again the importance of the 'lean' MCP design in 
order to keep the 'fat' SP AU usefully busy. 

AN APPLICATION EXAMPLE-ADAPTIVE 
SPATIAL PROCESSING 

The function flow of the application example is 
shown in Figure 4. The mathematical computations re­
quired to achieve the 'optimum' processing are de­
scribed below. 

The sensor input signals XK (t) are first transformed 
into spectral elements in frequency domain that 

(13) 

Then the frequency domain inputs are filtered to ob-
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Xk(j) Xk(fi) Filter Y lfi ) - FFT ----<~ 9 kj(fi) 

9 kj(fi) 

Iterative -- Filter 
Calculation 

Figure 4-Adaptive spatial processing 

tain the desired beam outputs 

k 

Yj(!i) = L20kj(!i)Xk(!i) (14) 
k=l 

Where Y j( Ii) is the jth beam output and OKj( Ii) are 
optimum filter coefficients including spatial processing 
in the frequency domain. These filter coefficients are 
updated through iterative gradient search process to 
minimize the output noise power. The output power 
spectrum is then computed 

(15) 

Notice the block array forms of data which are effi­
ciently processed by the SPAU. The MCP will control 
the paging and 110 for the system. 

The optimum gradient search algorithm first com­
putes the gradient for minimization as an input-output 
cross correlation function ZKj( Ii) that 

Zkj(h) = Yj(!iom) {exp(j27r!iTjk)Xk(!N_i) 

-Xj(!N-i) } (16) 

where Xj( !N-i) are average beam outputs computed 
much less frequency. Notice the spatial term 
exp (j27r!iTjk) in the equation and j = vi -1 in the ex­
ponent instead of subscripted j. In order to maximize 
the output noise power change between mth and 
(m-l)th iteration, an iteration step size aj(m) is 
chosen that 

N 

L: Y j( !N-i;m)Qj( !i;m) 
i=l 

aj(m) = --------,------ (17) 
N 

L: 1 Qj( !i;m) 12 
i=l 

where 
k 

Qj( !i;m) = L: X k ( Ii) exp (j27r!iTjk) Zkj( Ii) (18) 
k=l 
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then the iterative processing is completed by 

(Jkj( h;m) = (Jkj( h;m-1) -aj(m)Qj( h;m) 

and 

(19) 

Yj(h;m) = Yj(fi;m-1) -aj(m)Qj(h;m) 

In addition to loop controls for the gradient search 
algorithm, the MCP will handle orthogonal addressing 
and organize the optimum filter coefficients in such a 
manner which can be efficiently retrieved from the 
bulk system storage. 

The distributed processing load of this application 
to M CP and SP AU is normalized to M CP total process­
ing load and tabulated below: 

Percent 

4-cycle 2-cycle 
MCP SPAU SPAU 
Load Load Load 

FFT 9.7 4.9 
Filter 9.8 69.7 35.0 
Iterative Search 86.0 17.0 8.6 
Power Spectrum 4.2 0.4 0.2 

Total 100 96.8 48.7 

It is noted that for the adaptive spatial processing 
2-cycle SP AU will not be needed unless an additional 
MCP unit is included in the system. The 2-buffer 
memory configuration as indicated in Figure 2 will be 
applicable to this problem. The load balancing between 
MCP and SPAU is accomplished by the heavy involve­
ment of MCP microprograms in the various processing 
loop controls of the gradient search algorithm to com­
pute the optimum filter coefficients. For less demanding 
MCP control role in other signal processing applica­
tions, the 2-cycle SPAU with four buffer memories can 
handle higher through-put when needed. Additional 
MCP processing can also be applied to post detection 
computations which are not described in this example. 

CONCLUSION 

The Microprogrammed Control Processor and the 
Signal Processing Arithmetic Unit architecture pre­
sented in this paper blends economy, flexibility and 
performance in one design. It can truly be a general 
purpose signal processor. If ECL and bi-polar memories 
are used for implementation, 50 nanoseconds micro­
instruction time and 100 nanoseconds complex multi­
plication speed can be achieved for ground based appli­
cations. The hardware size in terms of logic gate counts 

is approximately one tenth of that of a commercially 
available general purpose computer with equivalent 
performance. 
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A building block approach to multiprocessing 

by R. L. DAVIS, S. ZUCKER and C. M. CAMPBELL 

Burroughs Corporation 
Paoli, Pennsylvania 

INTRODUCTION 

Today most computing systems have dedicated, self­
contained, single processors. When the load on the sys­
tem exceeds its processing capabilities, it is necessary to 
replace the original system with one of greater capacity. 
It would be far better if the original system had been 
modular in nature, so that additional processing mod­
ules could be added in a multiprocessing configuration 
with the growth in processing requirements, just as 
memory modules or I/O devices are added with the 
growth in storage or peripheral requirements. lVIulti­
processing systems are not new, but they have been 
previously limited by the processing time consumed in 
controlling the processor modules. With the advent of 
microprogrammed computers, however, control func­
tions can now be implemented in microcode, and exe­
cuted at a much faster rate than has been previously 
possible. In addition, microprogrammed computers are 
simpler and therefore more reliable than conventional 
computers. 

This paper describes a structure for connecting and 
controlling a multiprocessor system using a building 
block technique. The hardware is modular and includes 
microprogrammable processors called "Interpreters", 
memory modules, and devices. Each Interpreter is 
interconnected with every memory module and every 
device via a data exchange network called a "Switch 
Interlock" . 

The current operating system is a simple but compre­
hensive control program \V hich allows for all the basic cap­
abilities of operating systems emphasizing multiprocess­
ing, multiprogramming and error recovery. Plans are 
being developed for an extended operating system which 
would be a set of independent units of microcode se­
lected from a library of such units for each individual 
system. The building block approach has been used by 
both the hardware and software implementors of the 
system. 

685 

MULTIPROCESSOR INTERCONNECTION 

A major goal in multiprocessor system design is to 
increase system efficiency by the sharing of available 
resources in some optimal manner. The primary re­
source, main memory, may be more effectively shared 
when split into several memory "modules". A technique 
for reducing delays in accessing data in main memory is 
allowing concurrent access to different memory 
modules. With this concurrent access capability present, 
an attempt is made to assign tasks and data to memory 
modules so as to reduce conflicts between processors 
attempting to access the same memory module. N ever­
theless, since some conflicts are unavoidable, a second 
technique (reduction of conflict resolution time) is re­
quired. These two techniques are largely a function of 
the multiprocessor interconnection scheme which 
has been discussed by Curtin3 and others.4

,5 

Figure 1 shows three basic functional interconnection 
schemes. These are described in more detail in Curtin.3 

The disadvantages of the single bus approach (Figure 
1) for many processors are: 

(1) the obvious bottleneck in information transfer 
between processors and memory modules due to 
both bus contention and memory contention 

(2) the catastrophic failure mode due to a single 
component failure in the bus. 

A solution to the first problem has been to increase 
the frequency of operation of the bus.3,6 

The multiple bus approach is merely an extension of 
the single bus approach where all processors contend for 
use of any available (non-busy) bus. The advantages 
are redundancy and allowing an appropriate number of 
buses (less than the number of processors) to handle the 
traffic between processors and memory modules. 

The third approach utilizes a dedicated bus structure 
(one per processor). Although this approach requires 
more buses, it requires neither the logic nor, more im-



686 Spring Joint Computer Conference, 1972 

PRoe • • • PRoe MEM ••• MEM 

I 
(a) Single Bus IntercoAnection 

• • • • • • 

• 
• • 

(b) Multiple Bus Interconnection 

• • • • • • 

(c) Dedicated Bus Interconnection 

Figure l-Functional multiprocessor interconnection schemes 

portantly, the time for resolving priority between pro­
cessors requesting the use of a bus. Proponents of this 
approach contend that the time penalty for resolving 
conflicts for access to a memory module is enough of a 
price to pay without having to wait for the availability 
of a bus. 

In a Hughes report,5 the authors distinguish the 
physical differences between two multiprocessor inter­
connection schemes. The two approaches (one called 
multiport and the other called matrix switch) are 
shpwn in Figure 2. 

The Hughes report characterizes the two connection 
approaches as follows: 

"In the multiport approach, the access control 
logic for each module is contained within that 
module, and intercabling is required between 
each processor and memory pair. Thus, the total 
number of interconnecting cables is the product 
of the number of processors and the number of 
memories. Each module must be designed to ac­
commodate the maximum computer configura­
tion. 
"In the matrix switch approach, the same inter­
connection capability is achieved by placing the 
access control logic for each module in a separate 
module. The addition of this module to the sys­
tem is compensated [for] by reducing the inter­
cables required to the sum of the processors and 
memories rather than the product and by not 
penalizing the other modules with maximum 
switching logic. 

"There generally is no speed differential between 
multiport and matrix arrangements. The major 
difference lies in the ability to grow in wiring 
complexity. Multiprocessors with multiport ar­
rangements are generally wired, at production 
time, to the maximum purchased configuration. 
Future subsystem expansion generally requires 
depot level rewiring. This problem generally does 
not exist with the matrix arrangement. The maxi­
mum capacity is wired in but the switching logic 
complement reflects the purchased system. Sub­
system expansion entails purchase of added pro­
cessor/memory modules (and necessary cabi­
netry if required) plus the required switch matrix 
logic cards." 

An important additional point is that even though all 
parts of the matrix switch are co-located, they must be 
designed such that the failure of one node is equivalent 

(a) Multiport 

MATRIX 
SWITCH 

(b) Matrix Switch 

Figure 2-Physical multiprocessor interconnection schemes 



to failure of only one element attached to the matrix 
switch. For example, failure of a processor-related node 
must not disable paths from any other processor to any 
memory module. 

Apparent from the arguments in the Hughes report 
is the desire to reduce the number of wires interconnect­
ing the processors and memory modules. A way to re­
duce the wiring (in addition to the use of the matrix 
switch) is by using serial transmission of partial words 
at a frequency several times that of the processors. This 
technique has been used by Meng6 and Curtin.3 The 
tradeoff here is between the cost of the transmitting 
and receiving shift registers and the extra logic neces­
sary for timing and control of the serial transmission 
versus the cost of the wiring and logic for the extra inter­
connection nodes for a fully parallel transmission path. 

Another factor adversely affecting efficiency in a 
multiprocessing system is a variation in the amount of 

M M ••• M 

I--~f----+----I C 

• PERIPHERAL SUBSYSTEM (Disk, Tape, Printer) 

I---I-----+-----l C • DISPLAY SUBSYSTEM 
• SENSOR SUBSYSTEM (Radar, Navigation) 
• COMMUNICATION SUBSYSTEM 

1--1-----1-----1 C 

t---t----t----;1/01------+--+----+----

t---t----t----; I/O 1------+--+----+----

'---'-----......... ----lI/OI------L---L---..I..----

Figure 3-Centralized multiprocessor system 

computation versus I/O processing that must be done. 
In previous multiprocessing systems I/O functions and 
data processing functions have been performed in 
physically different hardware modules with devices be­
ing attached only to the I/O controllers (Figure 3). (This 
technique is typical of Burroughs D825, B 5500, or 
B 6700.) In the Burroughs Multi-Interpreter system,I.2 
however, processing and I/O control functions are all 
performed by identical Interpreters whose writable 
microprogram memory can be reloaded to change their 
function. This technique allows a configuration (Figure 
4) in which the devices are attached t.o the same ex­
change as the memories and processors. 

Switch Interlock 

The Multi-Interpreter interconnection scheme for 
forming a multiprocessor is called a "Switch Interlock:" 
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SWITCH INTERLOCK 

Figure 4-Distributed multiprocessing interpreter system 

a dedicated bus, matrix switch with an optional amount 
of serial transmission. 

The Switch Interlock is a set of hardware building 
blocks for connecting many Interpreters to many 
devices and to many memory modules. Connection be­
tween Interpreters and devices is by reservation with the 
Interpreter having exclusive use of the (locked) device 
until specifically released. Connection with a memory 
module is for the duration of a single data word ex­
change, but is maintained until some other module is 
requested or some other Interpreter requests that 
module. 

In any such system it is important to keep the wires 
and logic in the crosspoints to a minimum, while still 
maintaining a specified transfer rate. This is achieved 
by serial transmission of several partial words in parallel 
through the crosspoints. 

Consistent with the building block philosophy of 
Interpreter-based systems, the Switch Interlock is par­
titioned to permit modular expansion for incremental 
numbers of Interpreters, memory modules or devices 
and modular selection of the amount of parallelism 
in the transfer of address and data through the 
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Figure 5-Implementation of switch interlock 
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Switch Interlock from fully parallel to fully serial. 
Functionally, the Switch Interlock consists of parallel­
serial conversion r~.gisters for each Interpreter, input 
and output selection gates, parallel-serial conversion 
registers for each memory module and each device, and 
associated control logic. Figure 5 outlines the imple­
mentation of the Switch Interlock and shows the func­
tionallogic units repeated for each Interpreter, memory 
module, and device. The bit expandability of the 
Switch Interlock is shown by dashed lines between the 
input/output switches and the shift registers associated 
with the memory module, devices, and Interpreters. 

The six basic Switch Interlock modules are described 
below: 

(1) l\1emory /Device Controls (MDC) 

The IHDC is an interface between the Interpreter and 
the controls described below (MC and DC), and the 
control for the high frequency clock used for the serial 
transmission of data. There is one l\1DC per Interpreter. 

(2) Memory Controls (Me) 

The MC resolves conflicts between Interpreters re­
questing the use of the same memory module and main­
tains an established connection after completion of the 
operation until some other module is requested or some 
other Interpreter requests that memory module. This 
unit handles up to four Interpreters and up to eight 
memory modules. System expansion using this module 
may be in number of Interpreters or in number of mem­
ory modules. 

(3) Device Controls (DC) 

The DC resolves conflicts between Interpreters trying 
to lock to a device and checks the lock status of any 
Interpreter attempting a device operation. This unit 
handles up to four Interpreters and up to eight devices. 
System expansion using this module may be in number 
of Interpreters or in number of devices. 

(4) Output Switch Network (OSN) 

The OSN sends data and control from Interpreters 
to addressed memory modules (i.e., the OSN is a 
"demUltiplexer"). This unit handles wires for up to four 
Interpreters and eight devices or memory modules. 
The number of wires for an OSN (and for an ISN) de-

pends upon both the packaging and the "serialization" 
selected for the application. 

(5) Input Switch Network (ISN) 

The ISN returns data from addressed devices or mem­
ory modules to the Interpreters (i.e., the ISN is a 
"multiplexer"). This unit also handles wires for up to 
four Interpreters and up to eight devices or memory 
modules. 

Shift Register (SR) 

These units are optional and are parallel-to-serial 
shift registers or serial-to-parallel shift registers using a 
high frequency clock. These are used for serial trans­
mission of data through the ISN's and OSN's. Their 
size, number and location are determined by system 
parameters. 

Switch Interlock Block Diagram 

Figure 6 is a block diagram of a Switch Interlock 
connecting up to four Interpreters to eight devices and 
eight memory modules. The shift registers shown are 
optional and may be eliminated with the resulting in­
crease in the width of the ISN and OSN transfer paths. 
Although it is not indicated by this figure, the Switch 
Interlock is expandable in terms of number of Inter­
preters, devices, memory modules, and path widths. 

Overall Switch Interlock Control 

In an Interpreter based system utilizing one or more 
Interpreters, only Interpreters can issue control signals 

NOTE:Th,widthiofttItISN/OSN',or.dependentupon 
the numblrof bih hingtronsmltt,d .. ,lolly. 

Figure 6-Switch interlock 



to access memories or devices. A memory module or 
device cannot initiate a path through the Switch Inter­
lock. It may, however, provide a signal to the Inter­
preter via a display register or other similar external 
request device. Transfers between devices and memories 
must be via and under the control of an Interpreter. 

Controls are routed from the Interpreters through 
the MDC to the MC and the DC which, in turn, check 
availability, determine priority and perform the other 
functions that are characteristic of the Switch Inter­
lock. Data and addresses do not pass through the MDC. 

Switch Interlock Timing 

Events are initiated by the Interpreter for access to 
memories or devices. The Interpreter awaits return sig­
nals from the MDC. Upon receipt of these signals, it 
proceeds with its program. Lacking such positive return 
signals, it will either wait, or retry continuously, de­
pending upon the Interpreter program (and not on the 
Switch Interlock). Any timeout waiting for a response 
may be performed by either the program or a device 
that will force a STEP in the micropogram after a preset 
length of time. 

Among the significant signals which are meaningful 
responses to an Interpreter and testable as conditions 
are the following: 

Switch Interlock has 
Accepted Information 

Read Complete 

The address and data out­
put registers of the In­
terpreter may be re­
loaded and a memory 
or device has been con­
nected. 

Data are available to be 
gated into the input 
data register of the In­
terpreter. 

The rationale for this "handshaking" approach is 
consistent with the overall Interpreter-based system de­
sign which permits the maximum latitude in the selec­
tion of memory and device speeds. Thus the micro­
programmer has the ability (as well as the responsibil­
ity) to provide the timing constraints for any system 
configuration. 

Device Operations 

The philosophy of device operations is based upon an 
Interpreter using a device for a "long" period of time 
without interruption. This is accomplished by "lock-
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ing" an Interpreter to a device. The ground-rules for 
device operations are listed below: 

(1) An Interpreter must be locked to a device to 
which a read or a write is issued. 

(2) An Interpreter may be locked to several devices 
at the same time. 

(3) A device can only be locked to one Interpreter at 
a time. 

(4) When an Interpreter is finished using a device, it 
should be unlocked so other Interpreters can use 
it. The exception is the case where devices locked 
to a failed Interpreter might be unlocked with a 
"privileged" instruction by another operative 
Interpreter. 

JVlemory Operations 

lVlemory modules normally cannot be locked and are 
assumed to require minimum access time and a short 
"hold" time by any single Interpreter. Conflicts in ac­
cess to the same module are resolved in favor of the 
Interpreter that last accessed the module, or otherwise 
in favor of the highest priority requesting Interpreter. 
Once access is granted, it continues until that memory 
operation is complete. When one access is complete, 
the highest priority request is honored from those In­
terpreters then in contention. The Interpreter complet­
ing access is not able to compete again for one clock. 
Thus the two highest priority Interpreters are assured 
of access. Lower priority Interpreters may have their 
access rate significantly curtailed. This problem is re­
solved through careful allocation of data to memory 
modules. 

Other Multi-Interpreter System Hardware 

The executive concept described in the latter part of 
this paper requires special hardware features. Although 
in a multiple Interpreter system more than one In­
terpreter can execute executive programs at one time, 
certain tables used by the executive must be locked for 
modification by only one Interpreter at a time. The 
Interpreter remains in this "table modifying" state for a 
short time, thus minimizing executive conflict delays. 
The locking capability is implemented with two "global 
condition bits" per Interpreter which are chained to 
other Interpreters in a priority scheme. These global 
condition bits are 2 of the 16 testable condition bits in 
each Interpreter. Each bit can be set in only one In­
terpreter at a time and must be programmatically reset 
(the other condition bits in each Interpreter are reset 
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when they are tested). An Interpreter instruction con­
taining the "Set Global Condition Bit" operation will 
set the specified global condition bit in that Interpreter 
only if that bit is not set in any Interpreter and no other 
higher (wired) priority Interpreter is requesting the 
same bit to be set in its own Interpreter. 

Figure 7 shows the method of resolving priorities for 
each of the global condition bits. The instruction to set a 
global condition bit is actually a request to set a global 
condition bit. This request is latched for one clock time 
during which time a decision is made to honor this re­
quest or not. The global condition bits are programmat­
ically reset independent of other Interpreters. 

The top string of horizontally connected gates (Fig­
ure 7) OR's is the corresponding global condition bit 
from all Interpreters together. The other string of hori­
zontally connected gates in the Interpreters is the wired 
global condition setting priority. This priority could be 
wired differently for the two global condition bits. It 
should be noted that in a system with many Interpret­
ers, these two "carry" chains could have a delay long 
enough to affect the Interpreter clock rate. In these 
cases, a carry-Iookahead scheme could be used to speed 
up this path. 

It shookl also be noted that such a scheme could be 
implemented alternately via programming using Dijk­
stra's semaphores,1 or using memories with a read­
modify-write cycle to insure one processor wasn't read­
ing a memory location in the interval between a read of 
that location by another processor and a subsequent 
write of a modified value. 

One more of the testable condition bits in each In­
terpreter is wired to provide an additional inter-In­
terpreter signal. This bit is called the Interrupt In­
terpreters bit and is simultaneously set in all Inter­
preters by an operation originating from any Inter­
preter. This bit is reset in an Interpreter when tested 
in that Interpreter. 

The global condition bits and the interrupt Inter­
preters bit are the only multiprocessing hardware 
features which are part of an Interpreter. Special pur­
pose logic in an Interpreter is thus minimized, making 
it inexpensive and flexible enough to be used across a 
wide spectrum of architectures from simple stand-alone 
device controllers through multiprocessors. This versa­
tility increases the quantity of Interpreters being pro­
duced, which in turn lowers the unit cost of an In­
terpreter. 

Special devices (connected through the Switch Inter­
lock) needed for multiprocessing are an interrupt dis­
play register and a real-time clock with time-out capa­
bility. The interrupt display register is needed due to 
the limited number of externally settable condition bits 
in each Interpreter. Such a display register is read as a 
device by any Interpreter. The response of the display 
register is a function of the interrupt handling philos­
ophy of the particular application and the design of such 
a device could be varied without affecting the basic de­
sign of the Interpreter or the Switch Interlock. 

The same philosophy is true of the real-time clock. 
Here, the intent of such a device is to provide an ex­
ternal counter for all Interpreters as well as a means of 



forcing a program STEP in an Interpreter if that In­
terpreter didn't periodically reset its real-time clock. 
This would prevent an Interpreter from waiting forever 
for a response from an inoperative memory or device. 

MULTI-INTERPRETER CONTROL PROGRAM 

The Multi-Interpreter Control Program is a simple, 
yet comprehensive, operating system characterized by 
the following capabilities: 

" (1) Multiprogramming and multiprocessing 

(2) Fully automatic operation with manual inter­
vention capability. 

(3) Error recovery with no loss of data. 

Multiprogramming and multiprocessing have char­
acterized Burroughs operating systems for many years. 
In previous systems, input/output functions and data 
processing functions have been performed in physically 
different hardware modules; I/O modules for the former 
and processor modules for the latter. In the lVlulti­
Interpreter System, however, I/O control and process­
ing functions are all performed by identical Interpreters, 
and any Interpreter can perform any function simply by 
a reloading of its microprogram memory. In the lVlulti­
Interpreter Control Program I/O operations simply be­
come tasks which are indistinguishable to the control 
program from data processing tasks except that they 
require the possession of one or two I/O devices before 
they can begin to run. (A task is defined as an indepen­
dent microprogram and its associated "S" level program 
and data, which performs explicit functions for the solu­
tion of user problems.) Whenever an Interpreter is 
available it queries the scheduling tables for the highest 
priority ready-to-run task, which may be an I/O task, a 
processing task, or a task which combines both process­
ing and I/O functions. 

The control program operates automatically, as well 
as under the control of the operator. The operator may 
enter new tasks, delete old ones, or change the priority 
of any task. He may add or delete hardware modules, 
and call for diagnostic programs to be run. The operator 
enters his commands through either the card reader or 
the alphanumeric display console. 

The Multi-Interpreter Control Program includes an 
automatic error detection and recovery capability. All 
data is stored redundantly to avoid loss of data should a 
failure occur. The control program maintains this re­
dundancy, in such a way that a restart point is main­
tained at all times for every task. 

Figure 8 defines the flow of tasks through an In­
terpreter. 
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Figure 8-Flow of tasks through an interpreter 

Task scheduling and initiation 

Every time an Interpreter has no task to perform it 
scans a Task Table and locates the highest priority 
ready-to-run task. If there is no ready-to-run task this 
Interpreter runs the diagnostic program, then (if the 
diagnostic program indicates no malfunction) again at­
tempts to schedule a task. When the Interpreter finds a 
task which can be run the appropriate table entries are 
updated. The Interpreter then loads its microprogram 
memory with the task's code and begins to execute this 
code. The task code must periodically cause the Inter­
preter to "report in" to a central "timeout" table. 

Task termination 

The task retains the Interpreter until the task is due 
to be suspended (assuming that a timeout does not oc­
cur). The task first stores its state, then causes the 
Interpreter to load its microprogram memory with a 
portion of the control program. This recopies changed 
memory areas to ensure the redundancy required for er­
ror recovery, deallocates resources which the suspended 
task had used, and updates system tables. Then the 
Interpreter looks for another task. 

Supervisory control 

The operator can add or delete tasks or resources as 
well as enter the data and code which individual tasks 
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require. Commands and data may be entered via either 
the card reader or an alphanumeric display. Each of 
these devices is "owned" by a system task which inputs 
data for the control program and for the other tasks in 
the system. Each entry via the card reader begins with 
a control card which specifies the nature of the entry. 
When the entry is data or program, the control card 
specifies the task and the area in that task where sub­
sequent cards are to be loaded. 

Commands and data are entered from the alpha­
numeric display in essentially the same manner as 
from the card reader, a line on the display correspond­
ing to a card. 

Error recovery 

The hardware of the l\'Iulti-Interpreter System de­
tects failures in memory modules and in I/O devices. 
When an I/O device fails, it is indicated as "not avail­
able" and a message to this effect is sent to the operator 
(via both printer and display). The device will remain 
"not available" until the operator enters a message to 
the contrary. The task whose running caused the mal­
function to be detected is immediately aborted, but it 
will again run when the needed I/O device or an al­
ternate is available. The redundant copies of storage 
areas serve as the restart point for this rerun. (The pri­
mary copies cannot be used as the task was aborted at 
other than a normal suspension point, hence not at a 
valid restart point.) 

When the core memory module fails while a task is 
using it, the Interpreter which was running this task 
marks the failed module "not available", and causes 
the initiation of an error message to the operator. The 
task which was being run is aborted. This task will be 
reinitiated from the redundant core memory areas. 
Interpreter failures are detected in either of two ways: 
by the diagnostic program or by a timeout method, in 
which every Interpreter "checks in" to a central tab1e 
at periodic intervals, and every Interpreter checks that 
every other Interpreter is checking in on schedule. 
When an Interpreter fails it halts (or is halted), and the 
task (if any) which it had been running is aborted, and 
will eventually be reinitiated at its restart point by an 
operative Interpreter. 

The system can thus recover from a failure with no 
loss of data, provided the primary and alternate storage 
areas of a task are not both lost. 

Tables 

The operation of the Multi-Interpreter Control Pro­
gram can be seen in more detail by examining the tables 

which it utilizes. These tables are divided into two 
classifications: system (global) tables, and task tables. 
The former are located in core memory in a segment 
called the "System Control Segment", and the latter 
for each task are located in a "Task Control Segment". 
for that task. 

For error-recovery purposes all of these tables are 
stored redundantly in two different memory modules. 
Therefore there are actually two "System Control Seg­
ments", a primary one and an alternate one. The two 
copies are identical at all times and whenever one is 
updated the other is also. In a system that includes 
bulk storage this redundancy would be maintained in 
the bulk storage, and only one copy of any segment 
would be in core memory when the task is running. 

The tables for each task are similarly stored redun­
dantly so that there are two copies of each Task Control 
Segment. Included in each Task Control Segment are 
pointers to allof the data and program areas which this 
task may use. These areas may comprise one segment or 
many contiguous segments, and may be used either 
solely by this task or shared with other tasks. Each such 
area is also stored redundantly. 

Figure 9 illustrates how the core memory is utilized, 
and shows the System Control Segment and its relation­
ship to the Task Control Segments. (The term "seg­
ment" refers to a 256 word area of core memory.) The 
System Control Segment includes a pointer to each 
Task Control Segment, which in turn includes the 
pointers to each area used by the task. 

l\1emory modules are presently paired, where both 
modules of the pair are allocated identically, so that the 
primary Task Control Segment and the redundant Task 
Control Segment for the same task have the same seg­
ment number. The same applies to data and program 
areas. 

System control segment 

The System Control Segment is illustrated in more 
detail in Figure 10. This segment is always located in 
segment zero (the first segment) of some memory mod­
ule. Its redundant copy is always located in segment 
zero of some other module. Segment zero in all modules 
is reserved for possible use as the System Control Seg­
ment or its alternate copy. If the module containing the 
prime or redundant copy of the control segment should 
fail, any remaining module is selected and its segment 
zero is overwritten with the contents of the System Con­
trol Segment so that redundancy is immediately re­
stored. Word zero in segment zero of every memory 
module contains pointers to both the prime and al-
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ternate System Control Segments, so that any Inter­
preter can "find its way back" to the System Control 
Segment should it become "lost" because of a memory 
module failure. Word zero of the System Control Seg­
ment itself is no exception, and includes these pointers. 

Resource Availability Table 

This table contains one entry for every hardware re­
source. The entry includes a flag-bit, which indicates 
whether this resource is available or in use, and a field 
which, when the resource is in use, gives the identity of 
the Interpreter which is using it. 

M emory Module Availability Table 

This one-word table consists of one bit for every mem­
ory module in the system. This bit indicates whether or 
not the module is "up" (available for use). 

Memory Map Table 

This table contains one bit for every usable segment 
in core memory. A "1" in the bit position corresponding 
to a particular segment means that the segment is un­
assigned. Since modules are paired, a single bit in this 
table actually represents two segments, the prime seg­
ment and the segment in the paired module which holds 
the redundant copy. 

Interpreter Table 

This table has one entry for every Interpreter, and is 
used primarily to implement the "reporting" scheme 
used to detect Interpreter malfunctions. Every task run 
on the system is written so that, if it must run for "N" 
or more seconds, the Interpreter will "report in" to its 
entry in the Interpreter Table at intervals of less than 
"N" seconds. This reporting consists of replacing the 
"Time Next Report Due" field with the present time 
plus "N" seconds. Every Interpreter, when it completes 
its present task and is ready to find a new one, scans the 
Interpreter Table (after first updating its own-entry in 
this table), looking for overdue entries. If any are found, 
they are reported to the supervisor. In addition, the 
most significant bit in the entry which was found over­
due is set, so that other Interpreters will not make this 
same report. 

Each entry in the Interpreter Table also includes two 
other fields. The first of these is a 1-bit field indicating 
that diagnostics are to be run on this Interpreter. This 
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bit becomes set from a command entered by the super­
visor. When set, the Interpreter will run diagnostics at 
the completion of the present task. Once diagnostics 
have been run the Interpreter causes a message to be 
sent to the supervisor indicating the test results, and 
then resets the "Run Diagnostics" bit. 

The final field in an Interpreter Table entry gives the 
identity of the task which that Interpreter is currently 
running. 

Error Flags Table 

This table indicates the error messages which are to 
be sent to the operator. Such messages are sent both via 
the line printer and via an alphanumeric CRT display 
which is only used by the operator. Each portion of the 
table consists of one word for every type of error. 
Within each such word, the individual bits form an in­
dexed vector which indicates more specific error infor­
mation, normally the unit number of the failed unit. 
When any type of error is detected, the appropriate bit 
is set in both the display and printer portions of the 
table. The actual printout is accomplished by a speci fic 
task, the Error-Print task. This task (tagged "to be 
run") runs as soon as the printer and an Interpreter are 
available. When this task runs it scans the entire printer 
portion of the Error Flags Table, and for each bit en­
countered formats and prints the appropriate message 
and then resets the bit. This process continues until all 
of the bits are reset. There is also an Error Display task 
which functions in this same way to display error mes­
sages on the CRT screen. 

Changing the System Control Segment 

Whenever any change to a table in the System Con­
trol Segment must be made, the segment is locked. 
(This locking is implemented using the "global condi­
tion" bits found in every ::\Iulti-Interpreter System.) 
The required writing then takes place, to both the prime 
and the redundant copy of the table, and the segment is 
then unlocked. 

The task table 

The Task Table contains information about every 
task in the system. Figure 11 indicates the contents of 
an entry in this table, which consists of two words. The 
first word contains the information which an Interpreter 
in the process of finding a new task must examine to 
determine whether this task is the one which should be 
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selected. The most significant bit in this first word is 
the "not-running" bit. This bit is reset whenever the 
task is running and set at all other times. Next are the 
"ready-to-run" bits. These bits must all be ones for the 
task to be scheduled. If one or more of its bits are zero, 

the task lacks something, other than an I/O device, 
which it requires for running. For example, if the task 
requires data to be supplied by some other task, one of 
its ready-to-run bits would remain reset until the com­
pletion of the other task. Similarly, if the task in ques-



tion is awaiting data from the card reader, a bit will be 
left reset and will be set by the Card Reader Task after 
the data has been loaded. These bits have no system­
wide assignments, but are assigned for each application. 
All unassigned bits remain set at all times. Any task can 
reset any of its own bits, and can, upon its suspension, 
set bits for other tasks. 

The next field in the Task Table Entry is the "pres­
ent-priority" field. Each task has a priority, and that 
ready-to-run task with the highest priority is the one 
which is selected. 

In order for a task to be "ready-to-run", not only 
must all of its ready-to-run bits be set, but also the core 
memory which it requires, and any I/O devices which 
it may need must be available. The remaining fields of 
the first Task Table Entry word deal with these items. 

(ONE PER TASK) 

POINTER TO 
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There is a field which specifies the memory which this 
task requires, and two fields which can specify up to 
two I/O devices which it also requires. Before the task 
can be considered "ready-to-run", the required areas of 
memory, and all required I/O devices must be available. 

The second word of the Task Table Entry contains 
additional information about the task. The first such 
field specifies the priority to which the task reverts 
after it has completed running. (A priority-at-comple­
tion of zero indicates that the task is to be dropped from 
the system at completion.) Next is the location of the 
Task Control Segment for this task, as discussed in con­
nection with Figure 9. Another field contains the 
identity of the Interpreter which is running this task. 

The final field in the Task Table Entry gives the 
status of the core memory areas used by this task. The 
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Task Control Segment and all program and data areas 
associated with task exist in two different memory 
modules. When the task runs, only one module is ac­
tually used, and the other holds the state of this task as 
it existed after it was last processed. This then serves 
as a "restart point" should the present processing be 
prematurely terminated by a failure. This alternate 
area is not changed until this present processing has 
been successfully terminated and the primary copy of 
the task's Task Control Segment updated to form a 
consistent whole which can itself be used as a restart 
point. Only then is the Task Control Segment and all 
data areas copied from the primary to the alternate 
module. 

Task control segment 

Figure 12 indicates the contents of the Task Control 
Segment. The first field points to the end of the Refer­
ence Area, since the size of the Reference Area may dif­
fer from task to task. (The otherwise unused end of 
the segment may be used as a work area by the task.) 
The second field gives the address of this module, so 
that, when the task is completed, word zero of segment 
zero can be found. (This word must be accessed in order 
to locate the System Control Segment.) The third field 
in this first word gives the identity of the present 
task, and enables the Task Table Entry for this task to 
be located once the System Control Segment has been 
found. 

The next section of the Task Control Segment holds 
the state of the task, and also task parameters. First is 
the address of the task code at which the task is to be 
restarted. This task code then interprets the remainder 
of the state information, if any. 

The next section of the Task Control Segment con­
tains a copy of the Task Table Entry (from the System 
Control Segment), put there by the control program 
when the task is initiated. The task may then conve­
niently modify its Task Table Entry. For example, the 
task may reset one or more of its "ready-to-run" bits, 
may indicate the identity of an I/O device which is re­
quired for further processing, or may even change its 
priority. When the task is suspended, and it runs until 
it suspends itself (unless it is suspended because of a 
time-out), the Task Table Entry in the System Control 
Segment will be updated by the control program to cor­
respond to the Task Table Entry as found in the Task 
Control Segment. 

In addition to modifying its own Task Table Entry, 
the task may, upon its suspension, cause Task Table 
Entries for other tasks to have one or more ready-to-run 

bits set. This is accomplished through the next word in 
the Task Control Area. This word· allows the task to 
specify up to four other tasks, and to supply a bit pat­
tern to be "ored" with the ready-to-run bits for each of 
these tasks. In this way the completion of one task can 
be used to initiate another. 

The final section in the Task Control Segment is the 
reference area, which points to data and program seg­
ments which this task may use. Each reference area, in 
addition to specifying the address of the segment(s) to 
which it refers, also contains a "read-only" bit, and the 
control program does not update the alternate copy of 
any entry so tagged. 

In summary, the Multi-Interpreter Control Program 
allows any number of Interpreters to operate concur­
rently in a multiprocessing and multiprogramming 
mode, allows tasks and hardware modules to be added 
and deleted by the operator, and provides error re­
covery capability. 

A BUILDING BLOCK APPROACH TO SOFTWARE 

There are two approaches that may be followed when 
developing an operating system for a multiprocessor 
with microprogrammable Interpreters. One is an ap­
proach taken in the paper by Davis and Zucker! as well 
as B. J. Huberman8 where a machine language is devel­
oped. This language includes instructions which aid in 
the development of an operating system. Since operat­
ing systems are organized about tables, lists, queues and 
stacks the machine language developed allows for easy 
handling of tables and other data structures. 

We have presently chosen to take a building block ap­
proach. The Multi-Interpreter Control Program which 
is our current system, presents the operating system as 
a set of modules which may be obtained and run by an 
Interpreter when needed. A new technique currently 
under development generates an operating system 
which is basically a set of independent "S" instructions 
which may be used by any task on a defined configura­
tion of firmware and hardware. 

The building block approach used in the hardware 
implementation of the multiprocessor is also being fol­
lowed for the software development. A simple flexible 
method of system configuration is defined. This system 
has the ability to automatically select the appropriate 
units, either system microcode or system tables, from a 
prestored library of such units. This technique permits 
using only those units necessary to perform all the de­
sired system functions for a particular set of tasks. Sys­
tem functions are requested as needed from a Parts 
List. The appropriate units are selected from the list to 



form a customized system from a set of standard build­
ing blocks. 

A primary design criteria of the operating system 
(l\lanager) are flexibility, simplicity and reliability. 
The operating system must be flexible enough for all 
classes of problems to fit within its structure. All tasks 
must be able to access all facilities provided by the sys­
tem with a given configuration of the hardware. Simplic­
ity is necessary to allow the system to be maintained, 
changed, tested and initially coded with relative ease. 
The system architecture must be sufficiently straight­
forward so that the users can easily comprehend its 
structure and operation. The manager must also be re­
liable and the recoding of a single unit should not affect 
the rest of the system. 

To achieve the above criteria a modular, distributed 
system manager has been defined. Each unit is a sepa­
rate group of microinstructions designed to run in a 
multiprogrammed mix and must be validated as a 
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standalone program. Extreme attention must be paid 
to modularity, allowing new units to be plugged in with­
out causing bugs in the rest of the system. Just as the 
multiprocessor's hardware flexibility lies in its easily 
changeable hardware configuration so should the multi­
processor's software flexibility lie in its easily change­
able software configuration. 

The system is composed of a single structure, and a set 
of conventions for using this structure. Although sys­
tems will differ, both in type of units and hardware, the 
set of conventions and the general structure will always 
be used in the same way. The specific units needed for 
the manager functions will be plugged into the structure 
as needed. 

The three segments defining the operating system are 
the Locator, the Parts List and the units. The units are 
the function modules of the system which do the desired 
operations for the users. This collection of modules is 
both programs and data (tables) normally thought of as 
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Figure 13-System manager 
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Figure I4-Program traffic in a processor 

the operating system. The tasks may select a unit 
through the Locator. The Locator is a part of all tasks 
and can access all units with a parameter called the 
unit number which locates the required unit using the 
Parts List. The Parts List is a table containing the loca­
tion of all units associated with a system. Each time a 
new system is required, a new Parts List and a new set 
of units are developed. However, the Locator remains 
the same for all systems independent of the kind of 
hardware or software in use (Figure 13). 

The traffic flow within a single processor is shown in 
Figure 14. Each task will require the use of the system 
units to perform some known utilities for them. This 
includes functions like memory allocation, I/O format­
ting, conversions, editing, debugging, resource alloca­
tion, channel checking, etc. The utility units perform a 
function and then return to the caller. 

Interrupts are soft in a Multi-Interpreter System. 
Testing for interrupts is processed by a standard inter­
rupt testing unit called by a task. The detection of an 
interrupt may suspend the caller task or it may call 
another unit to process the interrupt before returning to 
the caller. User tasks may suspend themselves or be 
completed by calling the Suspend Self or End units. 
When a program has been suspended or ended the next 
highest priority program ready to run is selected by the 
scheduler unit. 

When an Interpreter task is assembled, a Source 
Table is developed for all of the manager hardware de­
pendent subroutines it may use, as well as all of the 
functions needed by its Interpreter. This table becomes 
input information to the operating system Librarian 
(Figure 15). Each microprogrammed task has such a 
table developed before it can run. When the task must 

access the library units, it indexes into the Source 
Table. The Source Table defines the library unit needed. 
Source Tables for all tasks are used as inputs to the 
Operating System Librarian. This information is used 
with a catalog of units to develop the Parts List for the 
system. 

Each Source Table is modified to become a list of 
pointers to the Parts List (Figure 16) and to the alloca­
tion portion of the Locator in microprogram memory. 
As each unit is referenced during a task run, the Source 
Table addresses the allocation part of the Locator. 
Space is allocated in microprogram memory. The ad­
dress pointing to the allocation routine is changed to 
point to the desired unit now transferred into micro­
program memory. The unit can now be executed. Un­
less this unit is deallocated from microprogram memory, 
the Source Table now can point directly to the unit ad­
dress in this memory. 

To locate a unit for allocation in microprogram 
memory, the allocator uses the pointer in the Source 
Table to locate the pointer in the Parts List which points 
to the unit. When the unit is present in main memory it 
need only be copied into the required location in micro­
program memory. When the unit is not present it must 
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Figure 16-Single local manager 

be read into memory from a peripheral device as de­
fined in the Parts List. This device will be defined by the 
file directory (Figure 17) so that units may be accessed 
through a hierarchy of storage in a recursive manner. 

Since all units of code in the Parts List are reentrant, 
all processors may have the same code at the same time 
without interfering with one another (provided they use 
different work areas). The work area is unique for each 
task and within each work area is a unique Source 
Table. Figure 18 shows the distributed local operating 
system with many Interpreters. Each Interpre Ger is: 
executing a different task, working ju a unique work 
area, using a unique Source Table. .\.11 Interpreters 
share the same Parts List and have identical Locator 
sections. Anyone unit can be unique toa task or shared 
by many tasks. 

Since all system tasks are independent of each other, 
the parts that bind the system together are the system 
tables. These contain the important interfaces of the 
system and the means of communication between In-

terpreters and! or processes. The system tables define 
the three main attributes of the system: the tasks to run, 
the resources available, and the Interpreters running. 

A Task Table is used for scheduling and termination 
of tasks at the global level. All information pertaining 
to the state, selection criteria, needs, and scheduling 
of a task will be found in this table. Intertask com­
munication and task Interpreter communication is per­
formed in the Task Table. 

The Resource Table provides the information for al­
locating system resources among the different tasks by 
the various units. 

An Interpreter Table contains information pertaining 
to each individual Interpreter. The Interpreters check 
on each other for the detection of malfunctioning hard­
ware, as well as inter-Interpreter communication via 
this Table. An Interpreter may also use its table entry 
as temporary storage or for storing information about 
future tasks (e.g., an Interpreter may have to run rou­
tine diagnostics at the completion of its present task). 
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The building block approach assembles an operating 
system from a series of directly executable "S" instruc­
tions, called units, which can be executed by any task. 
These units may be different for different systems. A 
system which would want an I/O module could assign 
a high priority task the role of doing this job. Then all 
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Figure IS-Distributed local managers system 

I/O system units would become descriptor building 
units or communication units instead of direct execution 
I/O units. In some systems, tasks would do their own 
I/O by having direct execution Parts List units while 
other tasks in the same system might assume an I/O 
module and pass descriptors to an I/O Task using 
other units. 

Those tasks of an operating system which stand alone 
(e.g., I/O processor, system loaders, external communi­
cators, etc.) are called and entered in the task table as if 
they were an application task with a high priority. Their 
ready to run bits can be set and reset by the system 
units. 

The structure of the building block type operating 
system is a systematic way of constructing a manager 

LEVEL 3 

LEVEL 2 

LEVEL , 

MUL TI PROGRAMMING 

B 3500 USER TASKS 

TASK TASK TASK 

1 2 3 

INTERPRETER , 

B 3500 
EMULATION 

MCP SCHEDULER 

INTERPRETER , 

TASK 

1 

MULTIPROCESSING 

B 5500 USER TASKS 

TASK TASK 

2 3 

TASK 

4 

INTERPRETER INTERPRETER 
3 2 

B5500 
EMULATION 

MCP SCHEDULER 

INTERPRETER INTERPRETER 
2 3 

TASK TABLE SCHEDULER 

Figure I9-Interpreter control level 

SINGLE TASK 
ORIENTATION 

INDEPENDENT 

TASK 

INTERP 
4 

so that its functions can be applied with identical units 
at all levels in a hierarchy of operating systems (e.g., 
course scheduling can be done at a global level while 
finer scheduling can be used at the next level). An In­
terpreter may use a unit to select a system for emulation, 
the task being that system's Operating System. Using 
the resources assigned to it at the global level, this 
Interpreter may choose to run its own set of tasks (which 
look like data to the global system). The Operating Sys­
tem of an emulation may be totally in the "S" language 
being interpreted or it may be running global units from 
the Parts List on its own resources assigned to it at the 
global level. 

Figure 19 shows the control levels an Interpreter goes 
through to execute a user task. Interpreter 1 has been 

RETER 



given resources and is scheduled at level 1 to run a B 
3500 emulation. The initial task to be run is the operat­
ing system for the B 3500 called the lVICP. It in turn 
receives data about the tasks to be run on a B 3500. 
The lVICP sets up the tasks and executes them in a 
multiprogramming environment. Figure 19 shows task 
2 as running. Interpreter 1 is now running a B 3500 
program and is a B 3500 system which is totally inde­
pendent of the rest of the system except for reporting 
status or requesting more resources. 

Interpreters 2 and 3 have both been scheduled to be­
come a B 5500 system. These Interpreters now have 
become a multiprocessing B 5500 system running the 
lVICP and the B 5500 tasks. Interpreter 3 is running 
task 1 and Interpreter 2 is running task 3 of the B 5500 
system's tasks in the B 5500 schedule. 

Interpreter 4 has selected a task oriented emulation. 
This is a microprogram specifically oriented to doing a 
specific job. It needs no operating system but uses the 
units available to it in the Parts List for executing com­
mon functions or manager type functions. 

A task must decide how critical its need is for quick 
access to a system unit. It may decide a unit is impor­
tant and once it is located and stored in microprogram 
memory it is left there for the duration of the task. A 
task which is required to process real time interrupts 
may want the interrupt testing unit to be a part of its 
code and not have to indirectly address the unit via its 
Source Table. Such a task may directly assemble the 
interrupt unit from the library into its microprogram 
memory. Other units which are less critical will be 
brought from main memory each time they are accessed. 

CONCLUSIONS 

Microprogrammed systems in the past have been rela­
tively simple and primarily suitable for small, dedicated 
tasks. A technique has been needed to interconnect 
many small microprogrammed processors into one 
system, and to control this array of processors so that it 
can dynamically and efficiently share a large load. This 
paper has presented such a technique. The Switch Inter­
lock allows an array of Interpreters to be integrated 
into a unified system with many memories and periph-
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eral devices. The type of software described here pro­
vides a means for controlling this unified system, and 
allows control programs to be "custom-tailored" to each 
application, providing maximum efficiency. Thus the 
flexibility of microprogramming can now be applied to 
large scale systems, and virtually any size system may 
be constructed with a smooth evolution from a small 
system to a large one. A degree of reliability and of sim­
plicity in logistics and maintenance not previously pos­
sible in medium or large scale systems is provided due to 
repeated use of a small number of relatively simple 
module types. 

Microprogrammed multiprocessing systems thus ap­
pear well suited for a wide variety of data processing 
applications. 
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The interpreter-A microprogrammable building 
block system 

by E. W. REIGEL, U. FABER, and D. A. FISHER 

Burroughs Corporation 
Paoli, Pa. 

INTRODUCTION 

What is microprogramming? 

Digital computing systems have traditionally been 
described as being composed of the five basic units: in­
put, output, memory, arithmetic/logic, and control (see 
Figure 1). 2\lachine instructions and data communi­
cated among these units (as indicated by the solid lines 
in the figure) are generally well-known and understood. 
The control signals (as indicated by dashed lines in the 
figure), are generally less well-known and understood 
except by the system designer. These control signals 
generated in the control unit determine the information 
flow and timing of the system. 

l\1icroprogramming is a term associated with the 
orderly and systematic approach to the design of the 
control unit. The functions of the control unit include: 

1. Fetching the next machine instruction to be 
executed from memory 

2. Decoding the machine instruction and providing 
each microstep control 

3. Controlling the gating of data paths to perform 
the specified operation 

4. Changing the machine state to allow fetching of 
the next instruction. 

The conventional control unit is designed uS:.I.lg flip-flops 
(e.g., registers and counters) and gating in a relatively 
irregular ad hoc manner. By contrast the control unit 
of a microprogrammable computer is implemented us­
ing well structured memory elements; thus providing a 
means for well organized and flexible control. 

Microprogramming is therefore a technique for im­
plementing the control function of a digital computing 
system as sequences of control signals that are organ­
ized on a word basis and stored in a memory unit. 

It should be noted that if this memory is alterable, 
then microprogramming allows the modification of the 
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system architecture as observed at the machine lan­
guage level. Thus, the same hard ware may be made to 
appear as a variety of system structures; thereby 
achieving optimum processing capability for each task 
to be performed. The ability to alter the microprogram 
memory is called dynamic microprogramming as com­
pared to static microprogramming which uses read only 
memories. 

As can be seen in the following brief historical review, 
the concept of microprogramming was not widely ac­
cepted except academically during the 1950s. The 
primary reason for this was its high cost of implementa­
tion, especially the cost of control memories. From the 
mid-1960s to the present there has been a definite 
trend toward microprogrammable processors and more 
recently to dynamic microprogramming. This effort has 
been inspired by rapid advances in technology, espe­
cially control memories. 

Brief historical teview of microprogramming 

1951 Wilkes! objective was "to provide a sys­
tematic approach and an orderly ap­
proach to designing the control section of 
any computing system." He likened the 
execution of the individual steps within 
a machine instruction to the execution of 
the individual instructions in a program; 
hence the term microprogramming. This 
view is hardware design oriented. 

Lincoln Lab (see Van der PoeP) with 
different emphasis used the term micro­
programming to describe a system in 
which the individual bits in an instruc­
tion directly control certain gates in the 
processor. The objective here was to 
provide the programmer with a larger 
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Figure 1-Five basic functional units of digital computing system 
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instruction repertoire. This view is soft­
ware design oriented. 
Glantz3 and Mercer4 pointed out that 
through microprogram modifications the 
processor instruction set may be varied. 
Blankenbaker,5 Dinneen,6 and Kampe7 

described simple computers based on 
Wilkes' model. 
Great international interest was shown 
from U.S., U.K., Italy, Japan, Russia, 
Australia and France. 
In Datamation8- 12 five articles appeared 
on microprogramming with emphasis on 
how it might extend the computing ca­
pacity of small machines. 
IBM System 360 (Stevens13) demon­
strated that through microprogramming, 
computers of different power with com­
patible instruction sets could be provided 
(used read only storage). 
lVlelbourne and Pugmire14 described mi­
croprogramming support for compiling 
and interpreting higher level program­
ming languages. 
McGee and Peterson15 pointed out the 
advantage of using an elementary micro­
programmed computer as a peripheral 
controller, i.e., as an interface between 
computers and peripheral devices. 
Green16 and Tucker17 described emula­
tion of one machine on another through 
microprogramming. 
Opler18 coined the term "firmware" for 
microprograms designed to support soft­
ware and suggests the increased usage of 
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1967 

1968 
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microprogramming and describes its 
advantages. 
Hawryszkiewycz19 discussed micropro­
gram support through special instruc­
tions for problem oriented languages. 
Rose20 described a microprogrammed 
graphical interface computer. 
Lawson21 discussed program language 
oriented instruction streams. 
Wilkes22 and Rosin23 provided surveys of 
the microprogramming advances. 

There were also announcements of many 
new microprogrammed computers (e.g., 
Standard Computer-Rakoczi24). 
Husson25 provided the first textbook on 
microprogramming. 
Tucker and Flynn26 pointed out ad­
vantages of adapting the machine to the 
task through microprogramming. 
The IEEE Transactions on Computers 
offered a special issue on micropro­
gramming. 

Interpreter design philosophy 

The main objectives in the design of Burroughs' 
Interpreter were simplicity, versatility, technology in­
dependence, and modularity. The reasons for these 
objectives and their realization in the resulting machine 
are stated in Table 1. 

The basic concepts that characterize the Interpreter 
are its modular structure using simple building blocks 
and its application to a wide range of tasks through its 
dynamic microprogramming. 

A system is composed of a number of Interpreters, 
main memories, input/output devices, and a data ex­
change called the switch interlock. The switch interlock 
allows each Interpreter to communicate with all mem­
ories and devices and consists of controllable data paths 
and conflict resolution logic for access to these paths. 
The switch interlock (described in a companion paper) 
is an extension of the designs that have been used suc­
cessfully for many years in Burroughs' multiprocessing 
systems (e.g., B 5500 and D 825). 

INTERPRETER HARDWARE BUILDING 
BLOCKS 

The Interpreter is composed of three logic package 
types; namely, the Logic Unit (LU), the Control Unit 
(CU), and the Memory Control Unit (iVICU). The 
microprograms which provide the control functions are 
contained in two conventional memories; namely, the 
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TABLE I 

Desired 
Characteristic Reasons for Objectives Resulting Characteristics 

Simplicity Omission of special functions not applicable 

over a wide range of applications 
Each Interpreter consists of: 

a. Three logic package types (each 

Versatility 

Ease of maintainability: 

Training 

Documentation 

Spare parts 

Increase volume of production 

resulting in reduction of cost 

less than 1000 gates) 

Logic Unit (LU) -

Control Unit (CU) -

Memory Control Unit (MCU)-

b. Standard memories for microprogram 

storage 

(e.g. Read/Write or Read Only) 

Peripheral controller 

I/O controller 

Central processor 

Decrease design time and effort by 

eliminating the need for new hardware 

developments for each new product 

Special fu nction processor 

Emulator of existing systems 

Direct execution of languages 

Technology 

Independence 

To provide smooth transition to LSI 

when economically justified 

To meet variety of system costl 

performance requirements with 

optimum circuitry 

Partitioning allows implementation in variety 

of packaging schemes 
(e.g., SSI, MSI, lSI) 

Performance may be varied by simply imple­

menting in different circuit family 

(e.g. MOS, TTL, ECl) 

'Modularity System to provide smooth and unlimited System modularity provided by modular 

Switch I nterlock system growth 

Internal - to provide a variety of 

machine word sizes as needed by the 

application 

Internal modularity provided by use of 

multiple logic units (LU). 

Microprogram Memory (MPM) and the Nano program 
Memory (N ano or NM). These units and their inter­
connections are shown in Figure 2. 

The unique split memory scheme for microprogram 
memories allows a significant reduction in the number 
of bits for the microinstruction storage. It should be 
noted, however, that a single microprogram memory 
scheme (MP1V[ and N ano combined) may also be used 
potentially increasing the clock rate of the system. In 
addition, the cycle rates of the memories may also be 
altered, to gain speed or reduce cost, without any re­
design of the logic packages. In fact, a variety of mem­
ory organizations (single memory and different split 
memory configurations) and memory speeds have been 
implemented thus providing a range of cost/speed 
trade-offs. 

The LU performs the shifting and the arithmetic and 
logic functions required, as well as providing a set of 
scratch pad registers and the data interfaces to and 
from the Switch Interlock (SWI). Of primary impor­
tance is the modularity of the L U, providing expansion 
of the word length in 8-bit increments from 8 bits 
through 64 bits using the same functional unit. The 
CU contains a condition register, logic for testing the 
conditions, a shift amount register for controlling shift 
operations in the LU, and part of the control register 
used for storage of some of the control signals to be 
sent to the L U. The M CU provides addressing logic to 
the Switch Interlock for data accesses, controls for the 
selection of microinstructions, literal storage, and coun­
ter operation. This unit is also expandable when larger 
addressing capability is required. 
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Main Memory/Peripheral Address Main Memory/Peripheral Data 

Each Interpreter consists of: 

• Three types of logic packages 

... Logic Unit (LU) 

- Registers A1/A2/A3/B/MIR 

... Control Unit (CU) 

- Registers SAR/Command/Condition 

... Memory Control Unit (MCU) 

-- Registers MPCR/AMPCR; BR1/BR2/MAR; LlT/CTR 

• Two memory packages (standard available units - R/W or R/O) 

... Microprogram Memory (MPM) 

... Nanoinstruction Memory (Nano) 

Figure 2-Interpreter building blocks 

Logic unit (LU) 

A functional block diagram emphasizing the LUis 
shown in Figure 3. Registers AI, A2, and A3 are func­
tionally identical. They temporarily store data within 
the Interpreter and serve as a primary input to the 
adder. Selection gates permit the contents of any A 
registers to be used as one of the inputs to the adder. 
Any of the A registers can be loaded from the output 
of the barrel switch. 

The B register is the primary external input inter­
face (from the Switch Interlock). It also serves as the 
second input to the adder, and can collect certain side 
effects of arithmetic operations. The B register may be 
loaded with any of the following (one per instruction) : 

1. The barrel switch output 
2. The adder output 
3. The external data from the Switch Interlock (or 

control panel switches) 
4. The MIR output (the lVIIR is the output data 

register to the Switch Interlock) 
5. The carry complements of four- or eight-bit 

groups (with selected zeros for use in decimal 
arithmetic or character processing) 

6. The barrel switch output ORed with two, three, 
or four above. 

The output of the B register has true/complement 
selection gates which are controlled in three separate 
sections: the most significant bit, the least significant 
bit, and all the remaining central bits. Each of these 
parts is controlled independently, and may be either all 
ZEROs, all ONEs, the true contents or the comple­
ment (ONEs complement) of the contents of the re­
spective bits of the B register. 

The MIR buffers information being written to main 
system memory or a peripheral device. It is loaded from 
the barrel switch output and its output is sent to the 
Switch Interlock, or to the B register. 

The adder in the LUis a modified version of a 
straightforward carry look-ahead adder. Inputs to the 
adder are from selection gates which allow various 
combinations of the A, Band Z inputs. The A input is 
from the A register output selection gates and the B 
input is from the B register true complement selection 
gates. The Z input is an external input to the L U and 
can be: 

1. The output of the counter in the MCU into the 
most significant eight bits with all other bits 
being ZEROs. 

2. The output of the literal register in the lVI CU 
into the least significant eight bits with all other 
bits being ZEROs. 

3. An optional input (depending upon the word 
length) into the middle bytes (which only exists 
in Interpreters that have word lengths greater 
than 16 bits) with the most and least significant 
bytes being ZEROs. 

4. The output of the A~lPCR in the lVICU into the 
least significant 12 bits with all other bits being 
ZEROs. 

5. ALL ZEROs. 

Using various combinations of inputs to the selection 
gates, any two of the three inputs can be added to­
gether, or can be added together with an additional 
ONE added to the least significant bit. Also" all binary 
Boolean operations between any two adder inputs can 
be performed. 

The barrel switch is a matrix of gates that shifts a 
parallel input data word any number of places to the 
left or right, either end-off or end-around. 

The output of the barrel switch is connected to: 

1. The A registers (AI, A2, A3) 
2. The B register 
3. Memory Information Register (lVIIR) 
4. Least significant 16 bits of :.V[CU (registers 

BR1, BR2, :MAR, Al\,lPCR, CTR) 
5. Least significant three to six bits to CU (depend­

ing on word length) for the shift amount register 
(SAR). 
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Figure 3-Interpreter block diagram 

··Control unit (CU) 

This unit has five major sections (shown in Figure 4): 
the shift amount register (SAR), the condition register 
(COND), part of the control register (CR), the MP1\1 
content decoding and the clock control. 

The functions of the SAR and its associated logic 
are: 

1. To load shift amounts into the SAR to be used 
in the shifting operations. 

2. To generate the required controls for the barrel 
switch to perform the shift operation indicated 
by the controls from the Nanomemory. 

3. To generate the "word length complement" of 
the SAR contents, where the "complement" is 
defined as the amount that will restore the bits 
of a word to their original position after an end­
around shift of N followed by an end-around of 
the "complement" of N. 

The condition register (CON D) section of the CU 
performs four major functions: 

1. Stores 12 resettable condition bits in the condi­
tion register. The 12 bits of the condition register 
are used as error indicators, interrupts, status 
indicators, and lockout indicators. 

2. Selects 1 of 16 condition bits; 12 from the condi­
tion register and 4 dynamically generated during 
the present clock time (by the previous instruc­
tion being completed) in the Logic Unit for use 
in performing conditional operations. 

3. Decodes bits from the memory for resetting, 
setting or requesting the setting of certain bits 
in the condition register. 

4. Resolves priority among Interpreters in the 
setting of global condition (GC) bits which pro­
vides a facility for inter-Interpreter lock-out 
control. 

The control register is a 36-bit register that stores the 
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!l Memory/Peripheral Control. 
MPAD Contrl. 

Figure 4-MCU JCU block diagram 

subset of the control signals from the memory that are 
used in the LU, CU and MCU for controlling the execu­
tion phase of a microinstruction. 

The 1VIPM content decoding determines the use of 
the 1VIPM as a Type I instruction (address) or as a 
Type II instruction (literal) based upon the first four 
bits of the MP1V1. Several decoding options are 
available. 

Memory control unit (MeU) 

One MCU is required for an Interpreter (providing 
access to 216 words maximum) but a second MCU may 
be added to provide additional memory addressing 
capability (232 words' maximum). This unit has three 
major sections (shown in Figure 4): 

1. The microprogram address section contains a 
microprogram count register (MPCR), the alter­
nate microprogram count register (AMPCR), 
the incrementer, the microprogram address con­
trols register, and their associated control logic. 
This section is used to address the MPM for the 
sequencing of the microinstructions. The 

AMPCR content may be used as input to the 
adder. 

2. The memory/device address section contains 
the memory address register CVIAR), base regis­
ters one and two (BR1, BR2), the output selec­
tion gates, and the associated control logic. 

3. The Z register section contains registers which 
are the Z inputs to the LU adder: a load able 
counter (CTR), the literal register (LIT), selec­
tion gates for the loadable counter and their 
associated control logic. 

I nterpreter operation 

The operation of the Interpreter is described assum­
ing a split MPM (16 bits)/Nano (54 bits) memory 
scheme (see Figure 5). During each clock, a micro­
instruction is read from the MP::Vr. The first few bits 
of this microinstruction indicate which of two types of 
instruction it is. If it is a Type I instruction, the remain­
ing bits of the lVIPM: word specify a N anomemory ad­
dress to be accessed. The Nanomemory is then initiated 
and its output, a set of 54 bits, provides the control 
functions as indicated in Table II. 



If the microinstruction is Type II (again specified by 
the first few bits of the MPM word), the remaining 
bits of the lVIP)\'1 word are stored into one of three 
registers; namely, the SAR, LIT, or the AMPCR. The 
determination of which register is to be loaded is also 
specified by the first bits of the ]VIPM word. The N ano­
memory is not accessed during a Type II operation. 
A Type II microinstruction has an implicit STEP 
successor. 

The sequencing of microprogram instructions is con­
trolled by the following procedure: The Nanomemory 
provides information to the condition testing logic indi­
cating which condition is to be tested. The condition 
testing logic provides a True/False signal to the suc­
cessor selection logic which selects between the three 
True and three False successor bits (also from the 
Nanomemory). The three selected bits (True/False) 
provide eight possible successor command combina­
tions also shown in Figure 5. 

The eight successor commands and their associated 
interpretations are: 

Wait 
Step 
Skip 
Jump 

Retn 
Call 
Save 
Exec 

Repeat the current instruction 
Step to the next instruction 
Skip the next instruction 
Jump to another area of MPM (as 

specified by AMPCR) 
Return from Micro subroutine 
Call a Micro subroutine 
Save the address of the head of a loop 
Execute one instruction out of sequence 

The particular chosen successor command then pro­
vides controls used in the selection (MPCR/ 
AMPCR) and incrementing logic which generates the 
next MPM address. Except for the EXEC command 
the MPCR is loaded with this lVIPM address. 

From MPM 

From 
Barrel 
Switch 

Command 

WAIT 

STEP 

SKIP 

JUMP 

RETN 

CALL 

SAVE 

EXEC 

SUCCESSOR COMMANDS 

Selection 

MPCR 

MPCR 

MPCR 

AMPCR 

AMPCR 

AMPCR 

MPCR 

AMPCR 

Increment Comment 

MPCR~AMPCR 

MPCR~AMPCR 

Inhibit: MPM 
addr-+MPCR 

Figure 5-Microprogram instruction sequencing 

Nano-Bits 

1- 4 
5 
6 

7 

8-10 
11-16 

17-26 
27 
28-31 
32-33 
34-36 
37-40 
41 
42 
43-48 

49-50 
51-54 
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TABLE II-N anocodes 

Select a condition 
Selects true or complement of condition 
Specifies conditional or unconditional LU opera­

tion 
Specifies conditional or unconditional external 

operation (memory or device) 
Specify set/reset of condition 
Microprogram address controls (wait, skip, step, 

etc.) for true and false successor 
Selects A, B, and/or Z adder inputs 
Carry control 
Select Boolean or basic arithmetic operations 
Select shift operation 
Select inputs to A registers 
Select inputs to B register 
Enables input to MIR 
Enables input to AMPCR 
Enable and select input to address registers and 

counter (MAR, BR1, BR2, CTR) 
Select SAR preset 
Select external operations (read, write, lock, etc.) 

Each Type I microinstruction requires two clock 
intervals for its completion. The first (phase I) involves 
the fetching of the instruction from the lVIPM/N ano­
memories and the second (Phase 3) executes the fetched 
instruction. Figure 6 illustrates these two basic phases 
(1 and 3) of each Type I microinstruction. 

It should be noted that each phase 3 (execution) 
clock interval of instruction I is overlapped with phase 
1 (fetch) clock interval of instruction I + 1. Hence, the 
performance of each microinstruction requires effec­
tively one clock interval. 

As seen in Figure 6 the fetch phase involves: ]VIPlVI 
memory accessing, N anomemory accessing, the logic 
for condition testing and successor determination and 
in parallel the logic for loading the control register. 

The execute phase includes adder input selections, 
adder function, barrel switch shifting of the adder· out­
put, and the destination register(s) loading. Figure 7 
shows various timing examples for Type I and Type II 
instruction sequences. 

INTERPRETER MICROPROGRAMMING 

The pattern of Is and Os in the MPM and N ano­
memories (together with the data) determine the opera­
tion of the Interpreter. The microprogrammer is con­
cerned with the generation of these patterns to provide 
the desired control functions. However, instead of 
actually writing these patterns the microprogrammer is 
assisted by a microtranslator (or assembler) that allows 
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CLOCK 

Instruction 

PHASE 1 (FETCH) 

L CONO 

SUCC 
DET 

CLOCK 

PHASE 3 (EXEC) 

CLOCK CLOCK 

M_N

L 
T:~~ 

C.R. -----4-AIS -ADDER --SSW -DEST 

PHASE 1 (FETCH) 

Dynamic 
Conditions 
(AOV,ABT,MST, LST) 

COND 

PHASE 3 (EXEC) 

M --N TEST. 

Instruction 

2 

M = MPM ACCESS TIME 

N = NANO ACCESS TIME 

L ~~~c 
C.R. D_ET ___ --I-_ AIS- ADDER -BSW - DEST 

I Dynamic 

+ Conditions 

COND TEST AND SUCC DET. = CONDITION TEST AND SUCCESSOR DETERMINATION 

BSW = BARREL SWITCH 

DEST = BARREL SWITCH OUTPUT DESTINATIONS;I.E., REGISTERS (B, CTR, ETC.) AND THEIR INPUT LOGIC 
C.R. = COMMAND REGISTER AND ASSOCIATED LOGIC 

AIS = ADDER INPUT SELECTION FROM COMMAND REGISTER 

Figure 6-Timing analysis, Type I instructions 

him to write microinstructions mnemonically. The 
microtranslator then scan~ these instructions and pro­
duces the pattern of Is and Os to be placed into the 
MPM and N anomemories. 

Figure 8 indicates the ease with which one can learn 
to microprogram the machine and the simplicity of the 
microprogram structure. The high degree of parallelism 
extant in the Interpreter is also evident from the power­
ful statements that can be expressed. For example, the 
following actions may be expressed and performed in 
one instruction: 

• test a condition (for either True or False) 
• set/reset a condition 
• initiate an external operation (e.g., memory read) 
• perform an add operation 
• shift the result of the add 
• store the results in a number of registers 
• increment a counter 
• complement the shift amount 
• choose the successor microinstruction 

It is also possible to perform these operations condi­
tionally or unconditionally as suggested in Figure 8. 
The group A and group B portions (either, neither, or 
both) of the microinstruction may be placed before the 
condition test portion of the instruction. This will re­
sult in that portion (A and/or B) being performed 
unconditionally. 

The following four microinstruction examples illus­
trate both the parallelism and the conditional/uncondi­
tional properties of the microinstructions. 

(1) If NOT LST then set LCl, l\1Rl; Al+B+ 
1 C~A2, l\1IR, CSAR, INC; Step else Jump 

(2) Set LCl, l\IRl; If NOT LST then Al+B+1C~ 
A2, :lVlIR, CSAR, INC; Step else Jump 

(3) A1+B+IC~A2, :VUR, CSAR, INC; If NOT 
LST then Set LCl, ::\I[Rl; Step else Jump 

(4) Set LCl, l\1Rl; A1+B+IC~A2, l\I[IR, CSAR, 
INC; if NOT LST then; Step else Jump 

In (1) the LST bit is tested and if not true, the local 
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l. All Type I unconditional ins tructions 
a ~CR t 1 

a. Al + B --. Al 1 :3 

b -CR A2 

b. A2 + B --. A2 1 :3 

C CR A:3 

c. A3 + B --. A3 1 :3 

d'" ·CR 

d. Al C -+ AI; 1 :3 

2. All type I instructions 
Both AOV and ABT test true 

a--CR Ai 

a. Al + B --. Al 1 :3 

AOVTest b CR A2 
b. If AOV then A2 + B -+ A2 1 :3 

ABT Test c~CR A:3 

c. If ABT then A3 + B -+ A3 1 :3 

d -CR 

d. Al C--'Al; 1 

3. All Type I instructions 
AOV tests false; ABT tests true 

/ CR Re: ins a 
a ~CR 1 

a. Al + B --. Al 1 :3 'IV :3 

AOV Test 
b. If AOV the n A2 + B-+A2 1 "~ )( 

ABT Test Cot CR A:3 
c. If ABT then A3 + B --+A3 1 :3 

d .... CR 

d. AIC-+AI; 1 :3 

4. Type I and Type II instructions 
Re sulting Al contains least four 
bit s le ft jus tified 

2 ~S 
:3 .L 

a. 2 -+ SAR; 3 -+LIT 2 
/,CR Rem~ ins b 

b ~CR 1** 

b. Al and LI'J:' C -+ Al 1 :3 'If :3 
4 ... S 

15 .... ·L 
c. 4 -+ SAR; 15 -+LIT 2 

d .... -CR 

d. Al C --+ AI; 4 :3 

Figure 7 -Timing examples 
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~ - Use of nano memory (54 bits) 

A B 

Nanobits 
1-7 8-10 51-54 17-41 42-50 11-13 14-16 
(7) (3) (4) (25) (9) (3) (3) 

*. If Condition then Condition Adjust; External LU MCU/CU; True Succ else False Succ 

GC1/2 Set LC1/2/3 Main A/Z Select Control for: wait wait 
LC1/2/3 Set GC1/2 Memory: B/Z Select step step 
SAl Set INT Read/Write Adder Function AMPCR save save 
EX1/2/3 Reset GC Shift Select BR1/2 skip skip 
MST Device: Destination(s) MAR jump jump 
LST Read/Write CTR, INC exec exec 
ABT Lock/Unlock SAR, CSAR call call 
AOV retn retn 
COV 
INT 
ROC 

*Groups A and B may be executed either conditionally as shown or unconditionally by being placed before condition test. 

Type II - Loads any ~f 3 specified registers (no nano memory access, step successor) 
Four variations 

k ~ SAR 
k ~ LIT 
k ~ AMPCR 
k1 ~ SAR; k2~ LIT 

Figure 8-Microinstruction types 

condition 1 (LCI) is set, memory read is initiated 
(1\IRl), the function AI+B+l is performed in the 
adder and the adder output is shifted circular and the 
result stored in both the A2 and MIR registers, the 
content of the shift amount register is complemented 
(CSAR), the counter is incremented (INC), and the 
true successor (STEP) is selected. 

In (2) the LCI is set and the memory read is initiated 
(lVIRI) unconditionally (i.e., without considering the 
LST bit). The remaining functions are conditionally 
performed as in (1). 

In (3), the functions Al+B+IC~A2, lVIIR, CSAR, 
INC are performed unconditionally but set LCI and 
lVIRI are performed conditionally. 

In (4) the functions Set LCI, MRI, AI+B+IC~ 
A2, lVIIR, CSAR, INC are all performed uncondi­
tionally and only the successors Step and Jump depend 
upon the LST test. 

The Interpreter microprogramming reference card 
(Figure 9) specifies the use of each of the MPlVI and 

N ano bits and defines the meaning of the mnemonics 
found in the microprogram examples. 

Two simple examples demonstrating the micropro­
gramming of the Interpreter are shown in Figure 10 
Binary l\iJ:ultiply and Figure 12 Fibonacci Series genera­
tion. The comments serve to explain the function of 
each microinstruction step. Figure 11 shows the micro­
translator output (1 and 0 patterns for ::VIPM and Nano) 
for the Binary lVlultiply example. 

INTERPRETER APPLICATIONS 

General 

As mentioned earlier, one of the design objectives 
was to provide versatility so that a wide range of appli­
cations may be performed. The tasks to which the In­
terpreter has been successfully applied include periph­
eral controllers, emulators, high level language exec­
utors, and special function operators. This versatility 



allows the Interpreter to attack not only a wide range 
of problem areas but also every phase of a problem 
solution. 

As indicated in Figure 13 a data processing facility 
receives programs written in either machine language 
or a high level language (e.g., Algol, Cobol, Fortran) 
and data upon which these programs operate. If the 
program is written in a high ]evellanguage, then a com­
pilation (or preprocessing) phase may be performed to 
translate this program into machine language form be­
fore execution. Each phase of this problem solution 
operation-recognition, code generation and execu­
tion-can be performed by a microprogrammed pro­
cessor; in fact, each phase can be tuned to optimally 
perform the task. 

Three main data processing functions to which the 
Interpreter may be applied are: Emulation of existing 
or hypothetical machines, "direct execution" of high 
level languages, and problem solution through micro­
program "tuning" of the machine to the problem. These 
three function areas-emulation, "direct execution," 
problem "tuning"-will now be defined and the Inter-

MICRO CONTROLS 

1 2 3 4 5 6 7 8 9 1011 1213141516 

o ~I * SAR 1999999 ~ 9 
1 0 I * SAR 1 LIT 

1 1 0 ~I * AMPCR 

III 01 ~ ~ ~ iii LIT 

1 1 1 11 * NANO ADDRESS 

~ Unused 
* Shorter fields are right justified 

NANO CONTROLS 

Parentheses surround optionallexic units, 
provided by default. 

Condi tion Tested 
Re suIt is Boolean end 

o 0 GCI 
o 0 GC2 

I LCI 
I LC2 
o MST 

LST 
ABT 
AOV 
COV 
SAl 
RDC 
LC3 

I EXI 
lINT 
I EX2 

1 I I EX3 

[II FT Condition Value 

NOT cnd=:SC 
cnd=:SC 

m Logic Unit Conditional 

Do Unconditionally 
Do Conditionally if SC 

[1] Ext Op (MDOP/CAJ) Conditional 

Do Unconditionally 
Do Conditionally if SC 

~ Condition Adjust -- CAJ 

o 0 0 
SET LC2 
SET GC2 
RESET GC 
SET INT 
SET LC3 
SET GCI 
SET LCI 

~.,uccessor 

Then Part Else Part 
Used if SC=I to MPAD Ctls Used if SC=O 

WAIT 0 0 
(STEP) 0 I 
SAVE I 
SKIP I 
JUMP 
EXEC 
CALL 
RETN 

o 
o 

I I 
I I I 

~ Adder X Input 

o 0 0 (0) 
o I LIT 
I 0 ZEXT 
I CTR 
o Z 
o I Al 

A2 
A3 

120 21 22 23 24 25 261 Adder Y Input 

BO--

Comp 
Com!> 
o 0 
o 0 
o 1 
o 1 
o 0 

Comp 
Comp 
o I 

BT--
BF--
BI--
B-O-
B-T-
B--O 
B--T 
B--F 
B--I 
B-F-* 
B-I-* 
LIT 
ZEXT 
CTR 
Z 
AMPCR 

*Use Adder Operation with Complement Y 
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preter approach to their implementation will be 
described. 

Emulation 

In a conventional (non-microprogrammable) com­
puter, the control unit is designed using a fixed set of 
flip-flops and decoders to perform the execution phase 
of the operation. The execution phase includes the 
fetching of machine instructions, calculation of effec­
tive operand addresses, and the provision of each micro­
step command in the performance of the machine 
instruction. 

Emulation is defined in this paper as the ability to 
execute machine language programs intended for one 
machine (the emulated machine) on another machine 
(the host machine). Within this broad definition, any 
machine with certain basic capabilities can emulate 
any other machine; however, a measure of the efficiency 
of operation is generally implied when the term emula­
tion is used. For example, if a conventional computer 

~ Inhibit Carries into Bytes 

-- Allow 
IC Inhibit 

128 29 30 311 Adder Operation 

X + Y 
X NOR Y 
X NRI Y 
X+ Y + I 
X NAN Y 
X OAD Y 
X XOR Y 
X NIM Y 
X IMP Y 
X EQV Y 
X AAD Y 
X AND Y 
X- Y I 
X RIM Y 
X OR Y 
X Y 

Logic 

Xy 
XY 

XvY 
X + (X v y) 

XYv XY 
XY 
XvY 
XYv XY 
X+(XY) 
XY 
X+Y 
XvY 
XVY 
X+Y+ I 

~ Shift Type Selection for BSW 

No Shift 
R Right End Off 
L Left End Off 
C Right Circular 

134 35 361 A Register Input from BSW 

o 0 No Change 
Al 

- I A2 
A3 

137 38 39 401 B Register Input Select 

o 0 No Change 
BC4 Comp 4 Bit Carries 
BAD Adder 
BC8 Camp 8 Bit Carries 
BBA BSW v Adder 
B BSW 
BEX External 
BMI MIR 
BBE BSW v External 
BBI BSWv MIR 

Ii!! MIR Input from BSW 

No Change 
MIR 

~ AMPCR Input from BSW 

No Change 
AMPCR 

143 44 45! 461 Mem Dev Address Input 

0 0 No Change 
LMAR From LIT 
MAR From BSW 

- I BR2 From BSW 
I MAR2 From BSW 

BRI From BSW 
MARl From BSW 

Counter Input 

- 0 No Change 
o LCTR From LIT* 
o CTR From BSW* 

- I INC +1 

"tlnes Complement 

~ SARInput 

No Change 
CSAR Complement 
SAR From BSW 

151 52 53 541 MemDevOphMDOP 

MRI 
MR2 
MWI 
MW2 
DLI 
DL2 
DRI 
DR2 
DUI 
DU2 
DWI 
DW2 

No Change 

Figure 9-Interpreter microprogramming reference card 
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Assumptions 

(1) Sign-magnitude number representation 

(2) Multiplier in A3; multiplicand in B 

(3) Double length product required with resulting 
most significant part, with sign, in B and least 
significant part in A3 

1. A3 XOR B~ ;if LC1 

2. Borr'" A2; if MST then Set LC1 

Comme~t: S~eP.1 resets LC1. Steps 1 and conditional part of 2 
check signs; If different, LC 1 is set. 

3. BOOO-+B, LCTR 

Comment: Steps 2 and 3 transfer multiplicand (0 sign) to A2 
and clear B. 

4. uN" .... LIT; 1 .... SAR 

Comment: Steps 3 and 4 load the counter with the number 
(N = magnitude length) to be used in terminating the multiply 
loop and load the shift amount register with 1. 

S. A3 R-.A3; Save 

Comment: Begins test at least bit of multiplier and sets up loop. 

6. LOOP: If not LST then BOTTC-.B skip else step 

7. A2 + BOTTC-.B 

8. A3 OR BTOOR~A3, INC; if not COV then jump else step 

Comment: 6 through 8 - inner loop of multiply (average 2.S 
clocks/bit). 

9. If not LC1 then BOTT ....... B; skip else step 

10. B1T~B 

Comment: If LC1 = 0, the signs were the same hence force sign bit 
of result in B to be a O. ' 

Figure lO-Example of microprogram for binary multiply 

emulates another computer, the emulation efficiency is 
generally very poor since for each machine language 
instruction of the emulated machine there corresponds 
a sequence of machine instructions to be executed on 
the host machine. This relatively inefficient operation 
for conventional computers with fixed machine instruc­
tions (called simulation in IB1\1 literature-see Husson

25 

and Tucker17) turns out to be significantly more effi-

cient on microprogrammable computers. In a micro­
programmed machine, the controls for performing the 
fetching and execution of the machine instructions of 
the emulated machine consist of a sequence of micro­
instructions which allows the increased efficiency. 

There are a number of attributes of the Interpreter 
which make it uniquely appropriate for emulation appli­
cations. In addition to the obvious flexibility allowed by 



microprogramming, the following features of the Inter­
preter contribute significantly to. an effectiv~ emula­
tion capability: 

1. l\1odularly variable logic unit word length per­
mits configuring the emulator machine for most 
effective match with the emulated machine. 

2. The barrel switch provides for arbitrary length 
shifts in a single clock time, a very effective 
facility for instruction "break-apart" and ad­
dress calculation. 

3. Powerful and extremely flexible microinstruc­
tions. There is no fixed, limited-size instruction 
repertoire; rather, the Interpreter's nanoinstruc­
tion provides practically unlimited flexibility in 
instruction composition. The microinstructions 

000 PROGRAM BIMULT; 
100 A3XOR B=:;IFLC1; 
200 BOTT = : A2; IF MST THEN SET LC1; 
300 BOOO = : B, LCTR; 
400 N = : LIT; 1 = : SAR; 
500 A3 R = : A3; SAVE; 
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of some machines have a rather elemental capa­
bility; here, it is possible to compose microin­
structions of relatively great power. A single 
micro-nanoinstruction may specify selective 
condition testing and setting, conditional or un­
conditional logic unit operations between 
selected registers, optional shifting, literal load­
ing of certain registers, and independently condi­
tional or unconditional memory or device 
read-write operations. 

4. The zoned B-register selection affords convenient 
testing and setting of special bits. 

5. Condition setting and testing allows ease of 
communication with peripherals and memories. 

6. Multiple units for a variety of system functions 
and multiprocessing may be interconnected via 

600 LOOP: I F NOT LST THEN BOOT C = : B; SKIP ELSE STEP; 
700 A2 + BOTT C = : B; 
800 A3 OR BTOO R = : A3, INC; IF NOT COV THEN JUMP ELSE STEP; 
900 IF NOT LCl THEN BOTT = : B; SKIP ELSE STEP; 

1000 B1TT = : B; 

1 NANO ADDRESS= 0 1111 000000000000 
3 5 13 16 17 18 19 21 22 26 29 30 

2 NANO ADDR ESS= 1 1111 000000000001 
2 7 8 9 10 13 16 22 26 35 

3 NANO ADDR ESS= 2 1111 000000000010 
2 5 13 16 37 39 40 48 

4 SAR= 1 LIT = 0 10 00000100000000 

5 NANO ADDR ESS= 3 1111 000000000011 
2 5 12 15 17 18 19 33 36 

6 NANO ADDRESS= 4 1111 000000000100 
2 4 5 6 12 13 16 22 26 32 33 37 39 40 

7 NANO ADDRESS= 5 1111 000000000101 
2 5 13 16 17 18 22 26 32 33 37 39 40 

8 NANO ADDR ESS= 6 1111 000000000110 
1 11 16 17 18 19 21 28 29 30 33 36 47 

9 NANO ADDRESS= 7 1111 000000000111 
3 6 12 13 16 22 26 37 39 40 

10 NANO ADDR ESS= 8 1111 000000001000 
2 5 13 16 20 21 22 26 37 39 40 

Figure ll-Example of microtranslator output 



718 Spring Joint Computer Conference, 1972 

Assumptions: 

A 1 contains starting address for storing of series 

A2 contains the number representing the length 
of the series to be computed 

1. Al -.--..MARl 

Comment: load starting address of series into address register 

2. BOOO - .. B, MIR 

3. BOOl ~,.A3; MW1 
Comment: load initial element of series (0) into A3 and MIR and write it 

into starting address. load second element of series (1) into B. 

4. A2 ~ CTR;SAVE 

Comment: load counter with length of series; the counter will be incremented 
for each generation of an element of the series; COV will signify 
completion. The SAVE sets up the loop. 

5. lOOP: If SAl then Al + 1 ~ Al, MARl, INC, Step else Wait 

Comment: Set up the next address and increment counter 

6. A3 + B ---- MIR 
Comment: Generate new element in series and place in M I R 

7. B ----A3; BMI, MW1; If NOT COV then Jump else Step 

Comment: Write new element into next address 
Transfer i - 1 element to A3 
Transfer i element to B 
Test counter overflow for completion (go to LOOP, if not done) 

8. DONE: 

Figure 12-Example of microprogram for generation of Fibonacci series 

the Switch Interlock to facilitate emulation of a 
large range of target machine structures. 

These characteristics of the Interpreter that prove so 
useful in emulation derive from the basic design con­
cept that the Interpreter was to be both simple enough 
and yet powerful enough that one basic element could 
be microprogram specialized and modularly expanded 

Program in 
Machine Language 

Data 

Figure 13-Basic data processing functions 



Op Code 0 address 
Op Code 1 address 

Op Code n address 

Instruction 
Fetch & Decode 

~------ -- -
Address Calculation, 
Operand Fetch, and 

Resu It Store 

Op Code 0 Routines 

Op Code 1 Routine 

Op Code n Routine 

General operating procedure 

-
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Directory 

General routines 
used by the op code routines 

Special routines 
corresponding to 
each type of machine 
instruction op code 

1. Instruction fetch - fetches next machine instruction to be interpreted 

2. Instruction decode - separates the op code field in the machine instruction. 

3. Pass control to appropriate op code routine - using the Directory as a pointer. 

4. Execute the specifiedop code routine - using the general routines (esp. addressing) as needed. 

5. Return control to the instruction fetch routine 

Figure 14-Emulation-MPM map and operating procedure 

to efficiently cover a broad range of applications from 
simple controllers to complex processors or computer 
systems. 

I t is important to realize that the machine being 
emulated may be either an existing· or a hypothetical 
machine. The basic items necessary to define a machine 
and hence to emulate it are: 

1. memory structure (registers, stacks, etc.), 
2. machine language format (0, 1, 2, 3 address) 

including effective operand address calculation, 
and 

3. operation codes and their functional meaning 
(instructions for arithmetic, branching, etc.). 

The process of writing an emulation therefore, in­
volves the following analyses and the microprogram­
ming of these basic items: 

1. Mapping the registers (stacks, etc.) from the 
emulated machine onto the host machine, 

2. Analysis of the machine language format and 
addressing structure, 

3. Analysis of each operation code defined in the 
machine language. 

All the registers of the emulated machine must be 
mapped onto the host machine; that is, each register 
must have a corresponding register on the host machine. 
The most frequently used registers are mapped onto 
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the registers within the Interpreter Logic Unit (e.g., 
registers AI, A2, A3). The remaining registers are 
stored either· in the main system memory or in special 
high speed registers depending on the desired emulation 
speed. The machine language format may be 0, 1, 2, 3 
address or variable length for increased code density, 
and may involve indexing, indirection, relative ad­
dressing, stacks, and complex address conversions. 
Figure 14 shows the general microprogram require­
ments (MPlVI 1Vlap) and operating procedure for the 
emulation task. 

Direct execution 

The term "direct execution" has a variety of mean­
ings resulting from the possible divisions of effort in 
the preprocessing and execution phases of the data 
processing operation. It may be understood that a 
machine "directly executes" a high level language 
(HLL) if a program written in that HLL is submitted 
to the machine and results occur without regard to how 
this has been accomplished. Under this broad definition, 
any machine that has a compiler for this HLL would 
be considered a "direct executor" of that HLL and this 
represents one extreme. The amount of preprocessing 
in this case is quite significant since an entire compiler 
is required before execution begins. 

At the other extreme, practically no preprocessing 
occurs and the entire HLL program resides in the sys­
tem (e.g., memory or disc) as it was written (i.e., one­
to-one correspondence with the characters of the input 
code). Each character scanned in the input source 
string causes an appropriate action. Although this 
definition involves no significant preprocessing, it is 
probably only of academic interest because of its slow 
inefficient operation. It appears that some amount of 
preprocessing is desirable and that an optimum degree 

Program 
inHlL 

I 
____ ...1 

Figure 15-Direct execution of HLL 
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of preprocessing may be arrived at for each environ­
ment and/or application. 

Figure 15 shows two approaches for arriving at re­
sults from a program written in a HLL. The one path 
involves the standard compilation process followed by 
an emulation and the other path involves interpretation. 

Compilation consists of two basic functions: Analysis 
and Synthesis. The Analysis function depends upon the 
HLL and includes the scanner (of the input source 
string of characters) and the syntax recognizer which 
determines when a syntactic element of the HLL has 
been obtained. The output of this analysis is a program 
in intermediate language form which is usually in Polish 
postfix notion with tables indicating an internal repre­
sentation of each element of the input string. This 
intermediate program has basically a one-to-one cor­
respondence to the in put HLL program. 

The Synthesis function depends upon the machine 
that performs the execution phase and consists pri­
marily of code generation. The input is the intermediate 
language program and the output is a program in the 
machine language of the execution machine. The code 
generation is generally a one-to-many mapping from 
intermediate to machine language. 

The term Interpretation generally involves t\VO func­
tions~Analysis and Execution; that is, translation of a 
HLL program into an intermediate (or internal) form 
and execution of the program directly in this inter­
mediate form without a translation to a machine lan­
guage. The Analysis is basically the same as that de­
scribed above for the compilation process. The meaning 
of the term Interpretation will be limited in the follow­
ing discussion to the second part; that is, the execution 
of the program in its intermediate form. 

An Interpretation is often slower in execution time 
than the equivalent execution of a machine language 
program. This might not always be the case in a micro­
programmed environment, when the control structure 
of the HLL is significantly different from that of the 
host machine language, or when a significant portion 
of the execution time is spent in standard system rou­
tines. Interpretation does provide a better facility for 
development of new programs through built-in func­
tions (e.g., debugging tools). 

The functions involved \vith "direct execution"­
Analysis, Synthesis, Interpretation-may all be more 
effectively performed in a microprogrammed environ­
ment. For each function, a set of microprograms may 
be developed to provide a significant increase in operat­
ing speed (see Tucker and Flynn26). 

A combination of· approaches is also easily imple­
mented on a microprogrammed machine. The Inter­
pretation approach may be used during the program 
development phase and depending upon its operating 



performance, it may be used for the repeated "produc­
tion" phase. The compilation approach may be desired 
for the "production" phase if the execution of a machine 
language program is of higher performance than the 
Interpretation approach. The microprogrammed ma­
chine provides great versatility here also. In addition 
to providing a highly efficient compilation process, the 
machine code output may be modified until an "opti­
mum" machine is defined for the application and/or 
high level language. This machine would then be emu­
lated on the same Interpreter as described earlier 
("Emulation") . 

The designing of conventional machines to match a 
particular high level language has been demonstrated 
to provide high performance. Two examples of this are 
the Burroughs B 5500 for the ALGOL language and 
the B 3500 for the COBOL language. A number of the 
HLL features are reflected in these architectures; for 
examples: The B 5500 run time stack in which the 
calling environment resides matches the ALGOL block 
structure and recursive procedures. 

The B 5500 code stream is a reverse Polish notation 
corresponding to order of expression execution with 
intermixed operators, literals, operand calls, and de­
scriptor calls. This not only matches the ALGOL 
operator precedence but also results in increased code 
density. 

The B 5500 operand fetch is driven by data descriptor 
so that uniform codes can be used for call by name, 
value, and reference parameters. 

The B 5500 performs arithmetic on real numbers, 
treating integers as zero exponent reals and Booleans as 
a real 0 or 1 thus providing uniform data represeIltation. 

The B 5500 stores arrays as a hierarchy of vectors 
that contain bases of the next lower level of arrays thus 
providing for the ALGOL N-dimensional dynamic 
arrays. 

TheB 3500 operators work on packed, unpacked, and 
mixed stored forms of decimal or character data thereby 
providing convenient management of COBOL variable 
length operands. The COBOL editing and moving 
operations are provided for by the primitive B 3500 
instructions for character string editing and moving. 

The ability to structure a machine for a particular 
language is enhanced through microprogramming; 
hence, these same capabilities may be more easily im­
plemented than on the conventional machine. 

Tuning the machine for the problem 

In the past, conventional machines with fixed instruc­
tion sets were used with a force fit approach to solve a 
given problem. Furthermore, the language and com-
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puters (including instruction sets) were developed inde­
pendently and were based on different requirements 
and constraints. The language design depended on the 
user and application and the computer hardware de­
pended primarily on cost and general performance rela­
tive to all potential problems. At the juncture, a 
sometimes complex preprocessor ( compiler) was re­
quired to make compatible the two designs. 

J\1:icroprogrammed machines offer the unique oppor­
tunity to modify the system architecture to optimally 
solve a given problem. Languages may still be designed 
with the application and user in mind but the computer 
now may also be designed to be compatible with the 
application and the language. As a result, (1) the lan­
guage is ideal for the user and application; (2) the pre­
processing is significantly simpler because both· ends 
(i.e., language and machine) are flexible, and (3) the 
machine provides an optimum solution to the problem 
by matching the language and application requirements. 

Among the many advantages to this tuning to the 
problem approach in addition to this increased system 
performance is the fast turn around time from problem 
statement to problem solution. lVlachine hardware does 
not have to be built for each new application since the 
hardware is off-the-shelf and only the microprograms 
must be developed. This also allows a delayed binding 
of the required system specification until the problem 
is clearly defined. As a matter of fact, no permanent 
binding is ever required since the microprograms may 
be modified (expanded/contracted) at any time to 
meet new system needs. 

Two basic methods for initiating the implementation 
of this tuning to the problem approach are: (1) design 
on paper the ideal machine and/or language for the 
particular task and then emulate that machine and/or 
directly execute the language and (2) use an existing 
machine and/or language as the starting point and 
emulate the machine or directly execute the language. 
In either case, the process of tuning is generally iterative 
in nature. The application programs may be executed 
using monitoring techniques to detect and gather a 
variety of statistics about the program. This monitor­
ing is very easily implemented on a microprogrammed 
machine and may be used for examples (1) to analyze 
the operation code usage and (2) to determine the slow 
areas within the program where most of the time of 
execution is spent. This information may then be used 
to modify the instruction set by adding or deleting 
operation codes to the original set. In addition to the 
instruction sets that may be modified to optimize per­
formance, the data may also be specified as to data 
types, word lengths, etc., depending on the data struc­
tures and accuracies required. The machine structure 
may also be modified (e.g., adding stacks or general 
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Figure 16-Tuning the machine for the problem 

registers, indexing) and the machine language instruc­
tion format altered. 

Figure 16 indicates a method used for tuning to the 
problem. The language description is entered into the 
Analysis Builder and the machine description is entered 
into the Synthesis Builder. The function of the Analysis 
and Synthesis Builders is to develop the internal tables 
(syntax recognition, etc.), machine code segments, etc., 
for use by the Analysis and Synthesis sections. This 
building function is presently performed manually but 
may eventually be performed with computer assistance. 
T he functions of the Analysis, Synthesis, Interpretation 
a1 Ld Execution sections are basically the same as previ­
oHsly described ("Direct Execution"). The prime en­
hancement here is the Monitoring of the Execution 
function and the feed-back of information for the lan­
guage and machine descriptions. This allows iteration 
on the language and machine descriptions until an 
optimum solution is attained. The result is a language 
and machine ideal to solve the given problem. Any 
number of different machines may be emulated by 
simply modifying the microprogram set. 

As an example of this process, let us assume that an 
emulation of some existing or hypothetical machine 
(simple or complex) exists. The application program 
may be run and statistics gathered (by monitoring) 
concerning this program. The monitoring for dynamic 
operation code usage, for example, requires only about 
10 lines of microcode. The gathered statistics can indi­
cate the execution areas where most of the processing 
time is spent; that is, the section(s) of machine language 
instructions most used. The function of this section(s) 
of machine instructions may then be specified, a single 
new machine instruction may be defined to perform 
this same function, and microcode may be developed 
to emulate this new machine instruction. This process 
of enhancing the original machine language allows a re­
duction in main memory requirements for the applica­
tion program in addition to increasing the performance 

by a factor of 10 to 20. The estimated speed improve­
ments were stated by Tucker and

c 

Flynn26 in their com­
parison of the IBM360/50 and their suggested micro­
programmed machine. The examples that they chose 
for demonstrating the increase in performance were: 
array element address calculation,- Fibonacci series 
generation, and a table search algorithm. Interpreter 
analyses of these and other examples tend to verify 
these order of magnitude performance improvements. 
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Modeling, measurement and computer power* 

by G. ESTRIN, R. R. MUNTZ and R. C. UZGALIS 
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Los Angeles, California 

INTRODUCTION 

Since the early 1960s the literature9•32 reveals 
increasing concern with effectiveness of information 
processing systems and our ability to predict influences 
of system parameters. A recent survey paper38 discusses 
methods of performance evaluation related to three 
practical goals: selection of the best among several 
existing systems; design of a not-yet existing system; 
and analysis of an existing accessible system. The 
classification of goals is useful, but we can point to 
neither the models nor the measures nor the measure­
ment tools to allow reliable judgments with respect to 
those three important goals at this time. 

We choose to discuss three issues which do not fall 
cleanly into Lucas' categories but which are certain 
to influence our ability to evaluate computer systems 
in the 1970s. The three issues are: effectiveness of 
models of computer systems; requirements to be met 
by measurement experiments; and application of 
modeling and measurement to the user interface with 
computer systems. 

The first section provides a context for the other 
sections by reviewing parameters which make com­
puting systems more or less powerful. The second 
section gives a critique of the state of modeling. The 
third section characterizes measurement tools. The 
fourth section discusses the role of nleasurement at 
the user interface. 

COMPUTER POWER. 

We consider a computer system to be composed of: 
a centralized hardware configuration; a set of terminals 
for entry and exit of user programs and data; an 
operating system; public programs and data bases; 

* This research was supported by the National Science Foun­
dation, Grant No. GJ 809. 
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user programs and data; and users and user protocol 
for entry and exit. 

There is no accepted measure for global power or 
performance of computer systems. There is even no 
accepted measure for computer cost. Only when a 
SUbsystem or subfunction is isolated does it become 
possible to determine key parameters. However, it is 
useful to hypothesize such measures and consider in­
fluences on them. 

Let us, therefore, define a conceptual measure which 
we call computer system power, P, as a multivariate 
polynomial function whose coefficients are significance 
weights. We would, of course, like to have a set of 
orthogonal functions whose independent variables 
correspond to measurable parameters but that state 
of . happiness is not· apparently within reach. In an 
attempt to exemplify our philosophy, the authors 
discuss a set of variables which should influence P 
keeping in mind that derivation of a figure of merit 
would require dividing P by some measure of cost. 

We intuitively expect computer system power to 
increase if the: 

• execution time of any CPU instruction is decreased 
• access time of any memory subsystem is decreased 
• transfer rate to or from any memory subsystem is 

increased 
• transmission rate of any buss structure is increased 
• transfer rate to and from any input or output de-

vice is increased 
• delay in resource availability is decreased 
• error recovery time is decreased 
• number of useful public programs is increased 
• performance of any public program is increased 
• access time to any public data base is decreased 
• arrival, execution, and departure rates of user 

programs are increased 
• execution time or resource requirement of any user 

program is decreased 
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• number of effective users increases 
• amount of protocol for any user decreases 

In a deeper, even more qualitative sense, we expect 
a computer system to be more powerful if the following 
conditions hold: 

• system manager has a model permitting adaptation 
to changing load 

• errors and system imbalances are reported to 
maintainers and developers 

• program documentation and measurements permit 
modification with few side effects 

• average number of user runs before correct execu­
tion is decreased 

• the quality of any user program increases in the 
sense that there is more effective use of a source 
language on a given computer system. 

Although the above observations are useful in 
stating expected events of concern they ignore inter­
actions between such events and give no indication 
of weighted importance of the individual events. We 
further characterize our systems by the following 
simple remarks. 

If the time required for every physical transition to 
reach its new stable state were halved, we would expect 
throughput of the system to double. If only some of 
the events were reduced in transition time, we could 
no longer guarantee that there would be a reduction 
in computation time because the scheduling of events 
is a function of starting and stopping times of con­
current processes. Anti-intuitive anomalies23 , 3 are 
disturbing but do not keep us from conjecturing that 
they occur only infrequently. If we' neglect anomalies, 
then we cannot expect change in execution time of 
anyone instruction or anyone routine or anyone 
compiler to produce a decimal order of magnitude 
change in a sensibly weighted function of the above 
parameters. Given reasonable measurement tools and 
design of measurement experiments . we conjecture 
that somewhere between 10 percent and 50 percent 
improvement in performance can be accomplished for 
most systems by changes in assignment and sequencing 
of resources. Although these percentages do not seem 
dramatic in their impact, the absolute number of 
dollars or number of computer hours which would 
become available is far from negligible. 

In contrast with the heuristic probing and tuning 
of a given system, much greater impact is possible 
at the user interface with a computer system and by 
advances in models, particularly validated models of 
our computer systems. For example, we would guess 

that there are more than 10 attempts to run a program 
during its development before it runs once "correctly." 
For complex programs the ratio of number-of-correct­
runs to number-of-runs can approach -zero. Hence, if 
the user interface can be altered so as to increase the 
probability of a correct run, large benefits may result. 

The effect of model development is a more sophis­
ticated and qualitative issue. It is self evident that to 
the extent that we can predict behavior of even a 
subsystem through modeling, we can hope to isolate 
important parameters and the way they affect p er­
formance. In fact, only through modeling efforts can 
we generalize experimental results at one cente r to 
apply to many others. Furthermore, it has been 
recognized that simulation is the most widely used 
tool in evaluation of systems. If simulation dep ends 
upon precise imitation of a computer system, its 
development cost is generally prohibitive and it is 
fraught will all the unreliability associated with one­
shot development. Effective simulation depends upon 
validated approximate models of systems and of user 
programs. Creation of such strong models is the most 
difficult of our tasks. However, the very process of 
validating or invalidating simplifying assumptions 
used in models can lead to new algorithms and im­
proved models. Margolin, Parmelee and Schatzoff39 
very competently demonstrate this effect in their 
recent study of free-storage management algorithms. 

In this section we have taken cognizance of the fact 
that there is no simple (or even complex) formula for 
computer performance. The reader's attention has 
been focussed on the last five in the list of factors 
affecting computer performance because they offer 
so much more return. The following sections review 
work in analytic modeling, measurement, and the user 
interface. 

CRITIQUE OF ANALYTIC MODELING 

Any system design, any measurement project or 
any resource allocation strategy is based on some con­
ception of the environment in which it operates. That 
conception is a model. It is beneficial to have such 
models explicitly stated so that they can be explored, 
tested, criticizeq and revised. Even better, though not 
often achieved to the extent desired, is a formal anal­
ysis of the models. 

Models and methods of analysis vary greatly. Our 
concern here is with probabalistic models of systems 
and processes and also with discrete graph models of 
programs. The goals of these analyses are both insight 
and quantitative results to influence the design of 



systems, resource allocation strategies and possibly 
the design of languages. 

While most will argue that the goals of such analyses 
are inherently worthwhile and must be pursued, there 
is widespread dissatisfaction with the current state of 
the field. Basically, there are three major areas of dis­
satisfaction. First, the models are generally over­
simplified in order to make them mathematically 
tractable. This obviously makes the results questionable 
and brings us to the second major failing which is that 
analytic results/are often not validated by measurement 
or simulation. Moreover, in cases where system evalua­
tion studies are carried out, the existing models do not 
seem powerful enough to provide a uniform basis for 
measurements. The third major criticism is that most 
of the literature on analytic modeling is a collection 
of analyses of specialized models. This points up the 
lack of very general powerful results which would 
allow analysis to become an engineering tool. As it is 
now, each new situation almost always requires a 
separate analysis by an expert. 

While the above are substantial criticisms, this is 
not to say that analysis has not had its impact. We 
can cite, for example, the working set model of program 
behavior,12 the work on stack algorithms,41 studies of 
time-sharing and multiprogramming system resource 
allocation and analyses of I/O scheduling,42 , 49 
the work on data transmission systems and on 
networks 11 , 35,19 and the work on graph models of 
programs.40.26.27.33.14.24.7,10,22 

Promising areas of research 

Multiple resource Inodels 

Much analytic work has dealt with single resource 
models. The reason for this is clearly that most of the 
analytic tools which are available apply to single re­
source environments. The computer system analyst 
is typically not a mathematician developing new tools 
but is generally engaged in applying existing tools. 
Nevertheless, computer systems are multiple resource 
systems and we must learn to analyze such systems. 

Some recent studies of multiple resource models of 
computer systems have been made using results by 
Gordon and Newell.21 The general model considered 
by Gordon and Newell is one in which customers (or 
jobs) require only one resource at a time, but move 
from one resource to another. An example is illustrated 
in Figure 1 for three resources. 

The nodes in this figure represent resources and the 
arcs represent possible transitions from one resource 
to another. When a customer has finished at resource i 
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Figure I-Example network of queues model 

he moves to (requires) resource j next with proba­
bility P ij. The arcs are labeled with these probabilities. 
The service time at each resource is assumed to be 
exponentially distributed. This is a closed system 
meaning that the number of customers in the system 
remains fixed. Gordon and Newell have found ex­
pressions for the equilibrium distribution of customers 
in service or queued at each resource. This allows one, 
for example, to calculate the utilization of the various 
resources. 

Moore43 and Buzen8 have applied this model to 
multiprogramming systems. Moore measured the MTS 
system to obtain the transition probabilities and mean 
service times of the resources and then used the model 
to estimate system parameters such as resource utiliza­
tions. The relatively close agreement to measured 
system parameters leads one to believe that the model 
can be used to predict the effect of some changes in 
system configuration. In using the model in this way, 
one must be careful that the proposed changes do not 
significantly affect the basic behavior of the customers. 
Buzen used the same model to gain insight into re­
source allocation in multiple resource models of com­
puter systems. His studies include the investigation of 
buffering and the effects of paging algorithms. Both 
Moore and Buzen have used the model to try to give 
a meaningful formal definition to the term "bottle­
neck." It is of interest that they arrive at different 
definitions of a bottleneck. The reader is referred to 
the references for details. 
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While the studies mentioned above are clearly ad­
vances in the study of computer system models there 
are numerous open questions. For example, the model 
does not allow the representation of the simultaneous 
use of several resources such as memory and CPU. 
Also there is no means for representing the synchroni­
zation of events such as a process doing buffered I/O. 
Another limitation is that the customers in the system 
are assumed to have the same statistical behiavor, i.e., 
the transition probabilities and service time distribu­
tion are the same for all customers. 

Bounds and approximations 

Every evaluation technique makes use of approxi­
mations. These approximations may arise, for example: 
in estimating the system parameters, user and program 
behavior; or in simplifying the model of the system 
itself. There is clearly a tradeoff between types of 
approximations. By simplifying a model one might be 
able to handle more general types of user and program 
behavior. Much of the analytic work has been con­
cerned with exact mathematical solutions to models 
which are themselves gross approximations. 

An area which is beginning to be explored is that of 
approximate solutions to more general models. ~or 
example, Gaver has used the diffusion ap~roximat~on 
for the analysis of heavily loaded resources III queueIng 
studies.20 The basic technique is to consider that the 
work arrival process is not the arrival of discrete cus­
tomers requiring service but rather a work arrival flow. 
This work arrival flow is a continuous process with the 
same mean and variance as the original process. Another 
example of the use of approximations is the work by 
Kimbleton and Moore on the analysis of systems with 
a limiting resource.34 

I t is clear that the use of any approximation requires 
validation of the results. This may take the form of 
comparing results with measurements of an actual 
system, simulation, or obtaining bo~nds. on th~ error 
in results. Bounds may also be applIed III a dIfferent 
manner. Much has been written on the analysis of 
time-sharing scheduling algorithms and their effects 
on response times. Kleinrock, Muntz and Hsu36 have 
reported on results which in effect demonstrate the 
bounds on response time characteristics for any CPU 
scheduling algorithm which does not make use of a 
priori knowledge of customers service times. ~h~ im­
portance of the bounds is that one can see the hffilts of 
the variation in response characteristics that are 
possible by varying the scheduling algorithm and the 
extent to which these limits have been approached. 

Program behavior 

A major problem that must be dealt with in any 
evaluation effort concerned with computer systems is 
program behavior. Even when using approaches such 
as benchmarking or trace-driven modeling there is the 
problem of selection of programs which are in some 
sense representative of the total population of programs 
that will be run on the system. 

Studies of memory management in particular have 
had to explicitly include models of program behavior. 
The early work in this area2,12 stressed very general 
but powerful aspects of program behavior such as 
"locality" and "working set." More recent work deals 
with more explicit models of the generation of reference 
strings which assume more about program behavior 

·1 d I· 13 but correspondingly allow for more detal e ana YSIS. 
It is hoped that these models will permit more detailed 
studies of multiprogramming and procedure sharing. 

It is interesting to note that the bulk of this work 
has been directed toward finding models which can 
represent the universe of possible programs. More 
particular:y, the goals of this research have be.en to 
isolate parameters characterizing program behaVIOr to 
which memory management is sensitive and to compare 
the effectiveness of various memory management 
strategies. This approach is in line with a common 
theme which runs through most of the work on resource 
allocation strategies in computer systems. That is, we 
see most allocation strategies attempting to work well 
over the total population of programs possibly utilizing 
measurements of recent past history of the process to 
predict the near future. Outside of work arising from 
graph models of parallel programs5,6,51 very little has 
been done to utilize a priori information about a process. 
Many systems do make a priori distinctions between 
batch and interactive processes. It seems reasonable 
though that much more information may be available 
which would be useful in allocating resources. For 
example, it has been suggested that the time-slice and 
paging algorithm parameters be tailored to the pro­
cess.46 Use of a priori information assumes that the 
process is available for analysis prior to execution. This 
is a valid assumption for production jobs, system 
processes,and to some degree for all jobs at compile 
time. Since these processes consume a significant por­
tion of the system resources, gains in efficiency in 
managing such processes might result in major gains 
in total efficiency. There are many open problems 
associated with this approach: 

1. Is there a conflict with a program design goal of 
program modularity? How is information about 
separately compiled procedures to be combined? 



2. Should processes be permitted to advise the 
system as to their resource needs? How does the 
system protect itself against false information? 

3. How to manage resources effectively for pro­
cesses which provide a priori information, and 
also for processes without associated a priori 
information? 

4. What kind of a priori information is actually 
useful to management of a system: how costly 
is it to obtain and utilize effectively? 

5. How predictable are the resource requirements 
of processes? 

While this approach has received only some slight 
mention in the literature, it appears to be a fertile 
area for research. 

Graph models of programs provide an abstraction 
of program structure governing flow of control and 
demand for resources. 51,10,18,22 They permit a represen­
tation fitting somewhere between the full detail of 
actual programs and parametric or stochastic repre­
sentations of them. Most work using graph models 
has been concerned with concurrent processing. How­
ever, the graph model analyses explicitly reveal sets of 
independent tasks which become candidates for al­
ternate sequencing in sequential systems. 

Ideally, we search for models of systems and program 
behavior which provide principles guiding synthesis of 
configurations along with well founded resource manage­
ment strategies. Measurement must validate effective­
ness of such strategies. The diversity of computations 
further demands that measured parameters be pro­
vided to operating systems and users in order to permit 
adaptation to dynamic variations in system behavior 
and to unavoidable anomalies in systems and languages. 

Studies during the latter half of the '60s showed how 
little attention had been given to measurability in 
the man-made universe of computer systems. The 
next section characterizes some of the problems in 
measurement. 

MEASUREMENT OF INFORMATION 
PROCESSING SYSTEMS 

Tools for measurement of computer systems must 
satisfy all of the following requirements: detection of 
prescribed events; recording of detected events· . ' 
retrIeval of accumulated records; data reduction; and 
display. 

We comment on each in turn. 
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Detection 

We start by rejecting the absurdity of observing all 
of the states of a system under observation since it 
would imply detecting the state of every input, every 
memory element and every output every time there 
was a change, along with the time at which the change 
occurred. Hence, any set of measurement tools must 
include means of selecting a subset of system states. 

Hardware measurement tools provide a prescribed 
number of sensing probes which may be physically 
placed on selected register or buss points in a machine 
under observation. Measurement system registers 
along with programmed comparators and basic logical 
operations permit further filtering by allowing detec­
tion of a subset of the events sensed by the probes. 
Even with such filtering the rate of change of detected 
states may be excessive. If the response time of hard­
ware measurement elements is insufficient basic . . ' CIrCUIt changes would be required to make the measure-
ment feasible. If bandwidth is insufficient, it is some­
times possible to introduce a sampling signal and 
thereby further reduce the number of detected events. 
In the absence of interaction with software monitor pro­
grams, a hardware monitor is clearly limited in its utility. 
To be convinced of this, one need only consider the 
kind of program status information change which is 
observable by probes only when it appears in the form 
of an operand during the course of computation. Hard­
ware detection can have the virtue of introducing no 
artifact into the measured system and of being able to 
detect events whose states are not accessible to meas­
urement programs. Sampled detection may be made 
more effective by allowing interference with the ob­
served process. If a sampling signal enforces a proper 
interruption, observed data may be sequentially sensed 
by detection circuits. The recently reported "N eurotron" 
monitorl is the most interesting implemented hardware 
monitor, and its design shows the foresight of enabling 
interaction with software monitor programs. 

Software measurement tools consist of programs 
which detect selected events by virtue of their insertion 
at state-change points in the sequential computational 
process.17, 47,31 This detection process introduces arti­
fact in execution time, in space required for measure­
ment program storage, and sometimes (e.g., synchroni­
zation with asynchronous cyclic processes) in qualita­
tive side effects on existing computational processes. 
In a sampling mode, measurement programs can have 
their in-line artifact reduced by disturbing the flow 
o! computation only at a sampling time. Ata sampling 
tIme, measurement programs may be brought in to 
check as large a set of memory states as is needed and 
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then control is returned to the observed system. In 
the absence of hardware support, a software monitor 
is limited to observation of those system states which 
have affected memory contents. In one case, careful 
analysis of measurement of PL/I functions of an IBM 
360/9150 revealed anomalies in recorded system states 
which can best be characterized as artifact introduced 
by OS/360 when it inserts code associated with I/O 
interrupts into the code being measured. 

It has become clear that we are not faced with mu­
tually exclusive alternatives of hardware detection 
tools or software detection tools. Rather how much of 
each; how they are integrated; and how they are made 
available to experimenters. A paper by Nemeth and 
Rovner45 presents a pleasing example of the power of 
combined hardware and software in the hands of a 
user. They point out that facilities introduced for hard­
ware debugging are often the kind useful in later program 
measurements. 

Recording 

If an event of interest has been detected, its oc­
currence must affect memory contents. Such action 
may be as simple as incrementing a counter or as com­
plex as storing a lot of state information for later 
analysis. In the case of non disturbing hardware mea­
surements, external storage must be provided and the 
transfer rate must be able to keep up with the rate of 
change-of-state information observed by a set of probes 
and associated circuits. In the case of software measure­
ments, sufficient memory space must either be pro­
vided to record all relevant state information, or else 
preprocessing reduction programs must be called in 
to reduce storage requirements. 

Retrieval 

In the construction of any large system, both a data 
gathering and retrieval system must be incorporated 
into the basic design. Failure to do so will limit the 
amount of instrumentation available later when ef­
ficiency questions arise. For example, in a large pro­
gramming system which has transient program seg­
ments, data gathering is easily inserted into any 
program segment; however, unless a standard data 
storing program is available, the data gathered cannot 
be easily retrieved. The IBM PL/I F -level compiler 
is an example of a programming system broken into 
transient program segments. It fails to have a data 
storing program with adequate bandwidth to support 
meaningful measurement activity. ' 

Data Reduction 

The amount and kind of data reduction is determined 
by the goal of the measurement experiment and limita­
tions of measurement tool capabilities in detection, 
recording and preparation for retrieval. For example, 
assume that we want to obtain a history of utilization 
of routines in order to decide which should be kept in 
primary storage and which should be kept in backup 
storage. Assume, further, that every time a routine is 
called: the name of the called routine, the time of day, 
and the name of the user is recorded. It would not be 
very meaningful to generate only a history showing the 
times at which each routine in the system was used by 
each user. Data reduction would be required to deter­
mine, for example, the total number of such uses, an 
ordering of routines by number of uses, a determina­
tion of the number of routines involved in, say 50 
percent, of the uses and their names, etc. 

Display 

The goal of the data reduction process is defined by 
the specified form of display or feedback to the experi­
menter. If measurement is being made for feedback 
to an operating system for use in resource allocation, 
parameter values must be delivered to memory cells to 
be accessed by the operating system. If measurement 
is made for accounting purposes or, more generally, to 
provide the user with feedback about his quality of 
use and system response, results should be merged into 
user and system manager files. If measurement is made 
for operator control and management, simple alpha­
numeric displays are common. For experimental anal­
ysis of system behavior, CRT displays, graphs and 
computer printout are generally required. 

M easurement Methodology 

The complexity of computer systems dictates special 
care in the planning of measurement experiments. If 
the results of experiments are not reproducible, they 
are of little value. If any assumptions made are not 
recorded and validated, the results cannot be general­
ized and applied at another time or place. A large body 
of statistical theory is available providing methods for 
abstracting properties out of individual data points, 
but applicability must be carefully checked. We have 
little hope of adhering to principles if we do not have a 
measurement language to prescribe measurement ex­
periments as sequences of commented operations which 
are appropriately integrated with observed data. The 
latter step needs wait upon creative development of 



measurement tools and their test in meaningful ex­
periments. Measurement capability must be explicitly 
included during periods of system design and must be 
available for inclusion in user program design. Digital 
computer systems and programs are properly charac­
terized as complexes of very elementary functions. 
Full systems or programs, therefore, generally require 
partition in order to manage the synthesis process. 
Each partition introduces possible measures of validity 
of output, of performance and of cost. Means for meas­
urement should be checked at that point in design and 
a value judgment made if excessive artifact would be 
introduced by the measurement process. 

If a system contains the structure and primitive 
operations satisfying the five requirements discussed 
in this section, it carries the tools for adaptability. We 
conjecture that much more than the 10 percent to 50 
percent improvement alluded to in the Introduction 
becomes attainable-particularly when measurement 
tools can influence user behavior. 

COMPUTER POWER AND USER INTERFACE 

In the seventies some stronger effort must be directed 
toward increasing computer power by a reduction of 
the complexity of the user interface. 

Operating systems and Higher Level Languages are 
tools designed to give the user control of the portion of 
a computer system he needs. With the exception of 
work done at SDC,28,29 little reported effort has been 
devoted to the human engineering aspects of these 
tools. During the last decade, while hardware made a 
dramatic increase in power, the management tasks 
required of the operating system increased from trivial 
to highly complex. At the same time, the users were 
required to supply (in unnatural form like JCL) more 
of the parameters which would allow effective manage­
ment decisions to be made by the operating system. 
These user-su pplied parameters have increased the 
burden of complexity at the user interface-and re­
duced the amount of useful work a user can accomp:ish 
in a given period of time. 

For example, much of the attraction of APL/360 
is its simplification of the operating system interface 
along with the addition of immediate execution of its 
concise powerful primitives. A batch oriented 
FORTRAN user perceives this as a tremendous in­
crease in his computer power. A more sophisticated 
user might see APL as a powerful desk calculator which 
provides immediate access to functions similar to 
functions he already commands, less accessibly, in 
other languages. 
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Another user interface problem exists at the level 
of higher level languages. As more advanced hardware 
becomes available to the user, he seeks to solve more 
complex problems. When a problem grows beyond a 
manageable point, the user segments the problem into 
pieces plus associated linkages. In doing so, however, 
he introduces a new set of communication problems; 
a change in one program which affects an interface can 
now wreak havoc in another "completed" portion of the 
problem solution. Higher level languages have been lax 
in the types of program interconnections (and inter­
actions) allowed. 

An example of the problems of creating a large pro­
gramming system are reported by Belady an d Lehman 
using data from the development of OS/360.4 While 
this study concerned programs written in assembly 
language for the IBM 360, the properties which produce 
the error rates and modification ratios reported in 
their paper are characteristics of all large programming 
systems today. 

Several techniques for im proving the probabilities 
that a program can be made error free are available in 
the literature. One of the earliest is Dijkstra's "Notes 
on Structured Programming, "16 and also "THE Pro­
gramming System."15 His system breaks the problem 
into shells of "pearls" or "primitive" operations. Each 
shell is built using the "primitives" of the next lower 
level. This system attempts to minimize interactions, 
forces the programmer to produce generalized func­
tions which can be tested, and allows easy instrumenta­
tion because of the segregation of functions. 

Some disadvantages of such a hierarchical scheme 
make its practical application difficult. Such a scheme 
increases initial development time because it forces 
developers to completely understand the structure of 
the system being built and to predefine the proper 
function for each hierarchy. Transitions between levels 
may be costly. Functions at the lowest level are the 
most general and, therefore, the most frequently used. 
Small inefficiencies in these functions, or in the method 
of traversing levels of the structural hierarchy, magnify 
costs dramatically and force the user away from cen­
tralized functions. This defeats the original purpose of 
the organization. 

Another disadvantage of a hierarchical scheme is 
that while instrumentation of the system is easy, in­
terpretation of the measurements is generally not. 
Measurement results could change drastically if the 
organization of the program were modified. Therefore, 
it is hard to tell how much of what goes on is due to 
the structural hierarchy and how much is due to the 
intrinsic properties of the program. Such knowledge 
points a way toward improvement. 
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COMPILE-TIME 

EXECUTION-TIME 

NUMBER OF 
ERROR 
OCCURRENCES 

263 

87 

74 

63 

46 

39 

27 

27 

25 

23 

14 
12 
8 
7 

ERROR TYPE* 

IEM0227 

IEM0182 

IEM0725 

IEM0152 

IEM1790 

IEM0185 

IEM0677 

IEM0109 

IEMOO96 

IEM0673 

IHE804 
IHE320 
IHE140 
IHE604 

ERROR DESCRIPTION 

NO FILE/STRING SPECIFIED. SYSIN/SYSPRINT HAS 
BEEN ASSUMED. 

TEXT BEGINNING yyyy SKIPPED IN OR FOLLOWING 
STMT NUMBER. 

STATEMENT NUMBER xxxx HAS BEEN DELETED DUE 
TO A SEVERE ERROR NOTED ELSEWHERE. 

TEXT BEGINNING yyyy IN STATElVENT NUMBER xxxx 
HAS BEEN DELETED. 

DATA CONVERSION WILL BE DONE BY SUBROUTINE 
CALLS. 

OPTION IN GET /PUT IS INVALID AND HAS BEEN 
DELETED. 

ILLEGAL PARENTHESIZED LIST IN STATEMENT NUM­
BER xxxx FOLLOWS AN IDENTIFIER WHICH IS NOT A 
FUNCTION OR ARRAY. 

TEXT BEGINNING yyyy IN OR FOLLOWING STATEMENT 
NUMBER xxxx HAS BEEN DELETED. 

SEMICOLON NOT FOUND WHEN EXPECTED IN STATE­
MENT xxxx. ONE HAS BEEN INSERTED. 

INVALID USE OF FUNCTION NAME ON LEFT HAND 
SIDE OF EQUAL SYMBOL OR IN REPLY, KEYTO OR 
STRING OPTION. 

ADDRESSING INTERRUPT. 
FIXED OVERFLOW. 
FILE name-END OF FILE ENCOUNTERED. 
ERROR IN CONVERSION FROM CHARACTER STRING TO 

ARITHMETIC. 
* IBM, PL/I(F) Programmers' Guide (Appendix K), GC28-6594, January 1971. 

Figure 2a-Most frequent PL/I errors 

GRAPH CF VARIABLE 10 EACH SPACE = 10)000 UNITS. 
SAMPLES CF LESS THAN 5 HAVE BEEN DELETED. 
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Figure 2b-Average persistence sorted by average persistence 



NUMBER OF 
ERROR 
OCCURRENCES 

COMPILE-TIME 
143 
131 
89 
83 
76 

55 
53 
48 
46 
40 

EXECUTION-TIME 
827 
239 
211 
189 
180 
169 
141 

90 
46 

45 

ERROR TYPE* 

SY16 
SYE5 
CGOC 
SYOB 
SM4E 

SY3A 
SY04 
SY06 
SY09 
SM50 

EX78 
EX83 
EXBB 
EX7D 
EX98 
EX7B 
EXB8 

EX9F 
EX89 

EXB7 
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ERROR DESCRIPT:ON 

IMPROPER ELEMENT(S) 
ILLEGAL USE OF COLUMN 1 ON CARD 
NO FILE SPECIFIED. SYSINjSYSPRINT ASSUMED 
MISSING EEMICOLON 
ident HAS TOO MANY SUBSCRIPTS. SUBSCRIPT LIST 

DELETED 
IMPROPER LABEL 
MISSING) 
MISSING COMMA 
MISSING: 
name NEVER DECLARED, OR AMBIGUOUSLY QUALIFIED 

(EXPRESSION REPLACED OR CALL DELETED) 

SUBSCRIPT number OF ident IS OUT OF BOUNDS 
FIXED POINT OVERFLOW 
DELETED STATEMENT ENCOUNTERED 
LENGTH OF SUBSTRING LENGTH OF STRING 
INCOMPATABLE OPTIONS ON OPEN 
INDEX OF SUBSTRING LENGTH OF STRING 
ARRAY ELEMENT HAS NOT BEEN INITILIZED. IT IS 

SET TO o. 
IMPLIED CONVERSION NOT IMPLEMENTED 
PROGRAM IS STOPPED. NO FINISH ON-UNIT AFTER 

ERROR 
ident HAS NOT BEEN INITIALIZED. 

* Conway, R. W. et al,. User's Guide to PLIC, The Cornell Compiler for PLjI, Release 6, Department of Computer Science, Cornell 
University, Ithaca, August 1, 1971. 

Figure 3a-Most frequent PLjC errors 

Present studies of forced program structure and 
program proofs of correctness may begin to provide 
models on which HLL designers may base their pro­
posals. However, any major changes should be de­
signed to improve the user's system so that each pro­
gram submittal can be a learning experience. In this 
way a programming system can be milled upon to point 
out unusual events; draw the programmer's attention 
toward possible errors; and yet, not produce volumes 
of output which would be costly to print and which a 
programmer would refuse to read. 

Work at Cornell toward producing compilers which 
correct human failings rather than punish them has 
culminated in a highly functional, rapid compiling, 
and very permissive PL/I student-oriented compiler 
called PL/C.44 This compiler does spelling correction of 
keywords, automatic insertion of missing punctuation, 
etc. In addition automatic collection of some statistics 
is done at execution time. For example, each label 
causes a count to be maintained of the number of times 
execution passed through that labeled statement. 
Compilers such as these increase computer power by 
reducing the complexity of the user interface. 

Implementations of HLLs could further help a 

programmer by glVIng an optional cross reference 
listing showing locations where a variable is changed, 
could be changed, or just referenced. Items could be 
flagged if they were never referenced or set; only refer­
enced; or only set. In the first two cases spelling cor­
rection might be applicable. Statements which use 
expensive library subroutines or other costly language 
features could be flagged. Measurement nodes could 
be easy to insert and operate. These should, in turn, 
produce meaningful data which relate directly to 
questions the programmer wanted to ask. 

But such discussions have only beat around the bush 
itself. The real problem, the bush, is the higher level 
language. The real questions are: What features are 
error prone? What features of the language allow auto­
matic validity checking of what is written? How can 
these properties be identified and measured? How can 
the knowledge of these things be used to reduce com­
plexity of the user interface so that the user perceives 
an increase in his computer power? Which language 
constructs are seldom used, adding unnecessary com­
plexity and unreliability? 

Efforts to measure the human engineering aspects 
of computer language use37 and to provide feedback 
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Figure 3b 

into the design stages of higher level languages and 
the control and command languages of the operating 
system may provide major increases in computer 
power by: 

• increasing the number of users who can bring 
problems to the machine 

• decreasing the number of problem submissions 
necessary to bring a job to completion 

Work is in progress at SDC,28,29,48 moving toward a 
man-machine symbiosis. These little publicized ap­
proaches to measurement of human problem solving 
and computer languages have just begun to scratch 

the surface of this very important area. Work at UCLA 
has attempted to identify properties of PL/I which 
are prone to human error. As a first approximation, 
error rates and persistence curves of various errors 
identified in students' use of the IBM PL/I F -level 
compiler30 is presented in Figure 2. Corresponding 
results for errors found by Cornell's PL/C compiler 
are presented in Figure 3. Figure· 2a shows a table of 
the number of occurrences of the most frequent PL/I 
error types recorded during compilation and during 
execution times. Figure 2b displays the persistence of 
errors by PL/I type during the student runs. The 
vertical coordinate is the error type ordered by the 
magnitude of PERSISTENCE RATIO. The hori-



zontal coordinate is the PERSISTENCE RATIO and 
was calculated as an average of (number of sequential 
trials during which the particular error persisted) 
divided by the total number of trials. If an error type 
did not occur in at least 5 problem assignments it was 
arbitrarily deleted to keep the displayed range of 
values reasonable. Figures 3a and 3b display the same 
properties for assignments using PL/C. A total of 128 
problem assignments completed by 28 students are 
included in the statistics. Follow-up work is intended 
to lead more deeply into language design and hopefully 
into new techniques for automatically localizing errors 
in a program. 

The basic technique for doing this is to allow the 
programmer to specify more information than the HLL 
processor needs to compile the program. An example 
would be identifiers of the form "CONSTANT" in a 
PL/I data attribute syntax. CONSTANTs as opposed 
to variables, would only be set by an initial attribute 
and would be illegal as a left-hand side of an assign­
ment or as an argument of a pseudo-variable. In ad­
dition, the program could be considered as having this 
attribute. At several points in a program (e.g., block 
exit time) these constants would be checked to see if 
their value had changed. If any had, a warning would 
be printed; the correct value restored; and the program 
would continue. Such a new PL/I data type allows 
automatic checking for consistency to localize errors 
and yet is almost painless for a programmer to use. 
When a program is debugged, it is easy to turn off this 
kind of checking for the sake of more efficient per­
formance. In a hardware environment like the 
MULTICS GE 645, these errors can be detected dy­
namically when illegal accesses occur. 

Debugging tools should be designed into the lan­
guage and taught as part of the language, because the 
majority of the time a programmer deals with a lan-

~ user~ output V ~ listing 

Source Input ) 

I . ____ data 
compilation execution input 

~accretion/ 
libra{~ 

Figure 4a-Information flow in a standard HLL job 
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Figure 4b-Modified information flow to augment feedback 
in a HLL job 

guage, he is also dealing with an incorrect program. 
Subscript checking, trace information, validity checking 
at periodic intervals, time and count information, 
formatted displays of all program information and 
selective store and fetch recording are the kinds of 
things which should be available to the HLL pro­
grammer. 

In addition, measurement tools should be im­
mediately accessible to any user without burdening 
others, so that if questions of efficiency are raised they 
can be answered simply and quickly. Some of the 
measurement tools which seem important are: (1) flow 
charts or tables as optional output which would stress 
intermodule dependencies; (2) time and count control 
statements which could be output, reset and inactivated 
under program control, and would create output auto­
matically if the program terminated abnormally or 
without expressly outputting the data gathered; (3) 
program size should be easily accessible by the program 
dynamically and summaries of available space should 
be available at program termination. 

In order to increase the complexity of the pro­
gramming problems which users can handle, languages 
must be allowed to accommodate personal ways of 
expressing concepts. To do this, at the very minimum, 
new data types should be available for the programmer 
to define as well as operators which use these data 
types. This begins to syntactically approach the 
Dijkstra concepts and to allow easier application of 
hierarchically structured programs. Hopefully these 
approaches will increase the user's computer power by 
making the development of his programs easier. 

The programming system itself should be restruc­
tured so that more information is available to a HLL 
processor. Figure 4a shows the diagram of information 
flow in a usual batch oriented system. The source code 
is compiled; the resulting object code is passed to the 
accretion step where library or previously compiled 
programs are added to it; and the resulting load module 
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is passed to the execution phase; finally, output from 
execution is passed back to the user. To provide more 
automated feedback, Figure 4b shows information 
flow in a system where statistical summaries of one 
execution are available to the next compilation. In 
addition, the accretion step spends much more of its 
time checking linkage conventions and the validity of 
argument-parameter choices. This programming sys­
tem has an editj compile time library which is designed 
to help make changes easy. For example, it keeps 
"COMMON" declarations uniform (read EX­
TERN AL if you are a PLjI programmer) and it also 
uses information from the compiler to point the user at 
syntax errors and information from the execution phase 
to point the user at semantic errors. 

Such modifications can reduce errors and speed the 
development of programs by improving communica­
tion between what are now considered separate pro­
gram steps. However, the most important changes, 
across all the proposed modifications, are those changes 
which will allow the programmer to receive only those 
pieces of information relevant to the level at which he 
is programming (i.e., making changes). This would 
provide dynamic help; help where the programming 
language acts as an extension of the users' mind to 
assist in problem solving and optimization. 

It is important to view these changes which move 
toward dynamic assistance in terms of costs. Each 
change must cost something in execution time over­
head. Some of the more powerful features like selective 
fetch and store monitoring must be expensive. How­
ever, if these features were found valuable, then modi­
fication to hardware might diminish costs dramatically. 
Integrating these techniques into HLLs must be 
inherently costly because implementation and testing 
of human interaction with these diagnostic features 
are difficult to execute in any controlled way-much 
work must rest on SUbjective evaluation of users' 
behavior. Integration of aids into HLL translators 
must be initially done without those very aids which 
are deemed necessary to help programmers modify 
programs. Therefore, any change is fraught with risks 
caused by lack of checks in current systems. Obviously 
bootstrapping is called for and we can expect many 
passes before achieving effective tools. 

The development of richer higher level languages 
on the one hand, and the development of debugging 
services and error correcting compilers on the other, 
exert· forces in the direction of increasing performance 
at the user interface. With appropriate use of models 
and measurement much more improvement may be 
obtained. 

SUMMARY 

Computer systems are different from other systems by 
virtue of the dynamic fashion in which our compre­
hension of their behavior may be built into their opera­
tion. If validated models are developed, they may then 
be built into the system itself to serve adaptive re­
source allocation algorithms. If measurement tools are 
effectively integrated, they may be made available to 
the user to improve the quality of his use of program­
ming languages. If the user is, in fact, a team deve lop­
ing programming systems, the modeling and meas ure­
ment facilities may serve to make much more complex 
programs possible because a model of progr ams being 
built is, itself, generally too complex for a group of 
unaided humans to manage in an error free way. In 
the above paper we have sought to open up these 
questions. 

We have not had much experience with effective 
modeling and measurement. There is an immense 
amount of data to be observed in a computer system. 
Cost-effectiveness of performance measurement must 
be considered. As one of our reviewers put it, "This 
reviewer has seen some measurement studies lead to 
system improvements which will payoff sometime in 
2018." Hopefully the 1970s will see more effect.ive 
modeling and measurement introduced into the design 
process and selectively carried into developed systems 
to he'p both internal process management and the 
enrichment of external US3 through the user interface. 
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Experiments in page activity determination 

by JOHN G. WILLIAMS 

RCA Laboratories 
Princeton, New Jersey 

INTRODUCTION 

In a memory hierarchy various storage devices are 
structured into various levels. By convention, informa­
tion at storage level i may be accessed and stored in 
less time than information at storage level i+ 1. Since 
a smaller access time generally implies a greater cost 
per bit of storage, storage level i will generally be 
smaller than storage level i+ 1. An example of such an 
arrangement with four levels is a system with core, 
drum, disc and tape memory devices. 

A storage level is called directly addressable if the in­
formation stored at that level may be utilized by the 
processor directly, without first being moved to another 
level. For example, in the core, drum, disc, tape hier­
archy only the core memory is directly addressable, 
since information at the other levels must be moved 
into the core before it can be used by the processor. 
If a memory hierarchy contains two or more directly 
addressable storage levels, then these levels may them­
selves form a directly addressable hierarchy. 

Recently a device called "large-core storage" has 
come into use. This device utilizes the familiar principles 
of core operation, only it is designed to have a greater 
access and cycle time, and consequently it is less ex­
pensive per bit. This allows a larger memory to be built 
for a given cost, so that large-core storage may be con­
sidered as a replacement for drum memory in a storage 
hierarchy. A four-level hierarchy might be formed 
using core, large-core, disc and tape. In this case stor­
age levels 1 and 2 would form a directly addressable 
hierarchy. 

Let us consider this directly addressable hierarchy 
in more detail. Information in the large-core store can 
be accessed in one of two ways. It can be moved from 
large-core to core (as if the large-core were not directly 
addressable), and then accessed from the core. Alterna­
tively, the information can be accessed directly in the 
large core. Assuming that the information is moved in 
fixed-size units called pages, the following question 
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presents itself: should a page be moved from large-core 
to core when it is needed, or should it be addressed in 
the large-core directly? 

Algorithms which attempt to resolve this question 
will be considered below. Such an algorithm \yill be 
called a page promotion procedure, since its function is 
to promote a page to a more favorable position in the 
memory hierarchy. Although the following discussion 
will be in terms of a core, large-core hierarchy, some of 
the results might be applied to any directly addressable 
hierarchy with two or more levels. 

In a way this question resolves itself quite simply. 
There is a certain overhead associated \vith moving a 
page from large-core to core. However, once a page has 
been moved it may be addressed by the processor in a 
shorter time. Thus a page should be moved if it is ad­
dressed often enough that the shorter access time of the 
core more than defrays the overhead costs associated 
with moving the page. In other words, those pages 
which are addressed more often (termed the more 

TABLE I -Properties of the four programs studied 

NUMBER NUMBER DESCRIPTION 
OF OF TIMES OF 

PROGRAM PAGES ADDRESSED PROGRAM 
(J) (N) 

INSTRUCTIONS 35 833,907 FORTRAN 

1 IV 

DATA 45 397,075 COMPILER 

INSTRUCTIONS 75 1,877,187 

2 SNOBOL 

DATA 105 1,140,077 

INSTRUCTIONS 31 209,973 COBOL 

3 
DATA 48 137,530 . COMPILER 

INSTRUCTIONS 27 973,786 
4 ASSEMBLER 

DATA 46 641,931 
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active pages) should be moved. The problem is to deter­
mine which pages are the more active. 

Algorithms which detect the high activity pages may 
be divided into two types. Algorithms of the first type 
simply assume that page activity is known prior to 
processing. This is a reasonable assumption for pro­
grams of known characteristics. For example, it may be 
known that certain pages in a compiler or in an operat­
ing system are more active than are others. This ap­
proach has been implemented by Vareha, Rutledge and 
Gold3 at Carnegie-Mellon University, and by Free­
man1 •2 at the Triangle Universities Computation 
Center. 

Algorithms of the second type depend upon the sta­
tistical properties of page activity, although they as­
sume no a priori knowledge of the activity of any 
particular page. * Such an algorithm must be used when 
a program is not run often enough to become "known" 
in the sense of the first approach discussed above. 
Even when a program is known, algorithms of this 
second type may still be effective and may be simpler to 
implement. The page promotion procedures to be stud­
ied below are algorithms of this second type. 

In the next section we will introduce some experi­
mental data concerning the page activity of several 
programs. The two sections following this are devoted 
to an analysis of page promotion procedures. In these 
two sections, the experimental data will be used to 
test the effectiveness of the procedures. 

EXPERIMENTAL DATA 

In the previous discussion it was tacitly assumed 
that certain pages of a program will be addressed more 
often than will others. If this is not so, then the page 
promotion procedure is pointless. We will now present 
some experimental evidence which shows, at least for 
several programs, that some pages are indeed addressed 
more often than are others. 

We consider the behavior of four programs, each of 
which addresses memory for both instructions and 
data. Let J be the number of pages addressed, and let 
N j be the number of times page j is addressed (j = 1, 
... J), where a page is addressed either to access in­
formation or to store it away. For each program there 

* It might be noted that this classification of algorithms has an 
analogue in other resource scheduling problems. For example, in 
queueing theory the shortest-remaining-processing-time dis­
cipline requires an a priori knowledge of the processing time of 
each job; while the round-robin discipline achieves its effect due 
to the statistical properties of the distribution of processing 
times, with no a priori knowledge of the processing time of any 
particular job. 

are two sets of J and N 1, • • • N J defined, one for in­
struction pages and one for data pages. Let the pages 
be numbered so that Nj::;Nj+1 (j = 1, ... , J -1), and 
define N = NI + N 2+ ... + N J. Some of the properties 
of these four programs are summarized in Table I. 

For a given program consider the x percent of the 
pages (either instructions or data) which are the most 
active. We wish to determine the percent of the total 
activity which these pages account for. Since N j ::;Nj +1, 

this can be obtained as: 

Percent of Pages = 100 (k/J) , 

Percent of Activity = 100 t N j / N, 
j=J-k+l 

where k= 1,2, ... J. 
Figure 1 shows this result for the instruction and 

data pages of the four programs studied. Note that 
some pages are much more active than are others. 
Typically, the 50 percent of the pages which are the 
most active account for about 95 percent of all the 
activity. Thus, at least for these four programs, it is 
apparent that a page promotion procedure could be 
effective, if one can be devised. We will now discuss 
one such algorithm. 

A SEQUENCE-INDEPENDENT ALGORITHM 

For a given program, suppose that all of the pages 
are in large-core storage at the start of processing. Each 
time a page is addressed, assume that there is a fixed 
probability P that the page will be moved from large­
core to core. Once a page has been moved, assume that 
it remains in core storage until processing is finished. 
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Figure l-Page activity of the most active pages 
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Figure 2-Sequence-independent algorithm 

This, in brief, is the sequence-independent page promo­
tion procedure which will be studied below. A flow 
chart of this algorithm is shown in Figure 2. 

This algorithm is called "sequence-independent" be­
cause it acts on each page in a way which is independent 
of its action on all the other pages, so it does not depend 
upon the particular sequence in which the pages are 
addressed. This aspect will be considered in more detail 
when we discuss "sequence-dependent" algorithms 
below. 

From a hardware standpoint, the implementation of 
the sequence-independent algorithm should be rela­
tively straightforward. Suppose that we have a page­
oriented machine which supports a translation between 
virtual and real page addresses. Then whenever a byte 
of any page is addressed, this translation function must 
be performed. At that time, a real-address limit com­
parison may be made to determine if the page is in 
large-core storage or core storage. If the page is in 
large-core, the output of a ran!iom number generator 
may be obtained from a special register. Assume that 
this output has a uniform distribution between 0 and 1. 
Then if the random number is between 0 and P, the 
page may be marked to be moved from large-core to 
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core. This may be done by generating a page-fault 
interrupt and temporarily suspending the program 
using the page, just as if the page were on a drum or 
disc. While this is taking place, the random number 
generator may place a new number (independent of the 
previous one) into the special register . It should also be 
possible to place the probability P under program 
control, perhaps by keeping P in another special 
register. 

It is clear that this algorithm will tend to detect the 
higher activity pages in the following sense. Given that 
a page is addressed more often, it stands a greater 
chance of eventually being moved from large-core to 
core. However, when it is moved, most of the addressing 
of the page may have alre-ady taken place. While it is 
clear that the algorithm will tend to tell which were 
the most active pages, it is not clear that it will indicate 
this while they still are. In other words, the algorithm 
itself must use the activity of the pages to select those 
pages with the higher activity. Thus there is a danger 
that the algorithm will "use up" the activity in the 
selection process, leaving little or none remaining after 
the page is selected. For any particular program, this 
question can be answered by the analysis to follow. 

For a given program, suppose that page j is addressed 
N j times, each time using the page promotion procedure 
described in Figure 2. Define: 

Aj The expected number of times page j is addressed 
in the large-core storage. 

¢j The probability that page j will not be moved 
from large-core storage to core storage. 

It will be shown in Appendix I that: 

For the arbitrary program in question, we further 
define: 

P A The expected percent of the N times that mem­
ory is addressed which will be directed to core 
storage. 

P P The expected percent of the pages which will be 
moved from large-core storage to core storage. 

Since the algorithm acts upon each page in an inde­
pendent fashion, it follows that: 

PA~100[ N - "'f Ai]/ N, 

PP~lO+- f,q,;]/ J. 
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Figure 3-Effect of the sequence-independent algorithm 

At the start of processing all the pages of a program 
are assumed to be in large-core storage. The page pro­
motion procedure will cause a certain number of these 
pages to be moved from large-core to core. The expected 
percent of the pages which will be moved is P P. Be­
cause these pages are moved, a certain percent of the 
N times that memory is addressed will be directed to 
core storage. The expected value of this percentage is 
P A. Weare willing to move a certain percentage of the 
pages from large-core to core, i.e., we are willing to 
accept a certain value of PP. For this value, we wish 
P A to be as large as possible. The value of P A will be 
increased by the extent to which the more active pages 
are selected soon enough. 

Suppose that we are willing to move x percent of the 
pages from large-core to core. Then any random selec­
tion of x percent of the pages would account for an ex­
pected x percent of the activity. Thus a page promotion 
procedure in which P A = PP is really useless, while one 
in which P A < P P is less than useless. 

Suppose that we are willing to move x percent of the 
pages from large-core to core, and that we know the 
activity of each page prior to processing. Then we would 
simply move the x percent of the pages which are the 
most active. For the four programs discussed in the 
previous section, Figure 1 shows the percent of the total 
addressing activity which would be directed to the core 
memory. For these programs, Figure 1 also provides an 
upper bound on the value of P A obtainable from the 
page promotion procedure for any given PP. 

Applying the above equations for P A and P P to the 
data for the four programs discussed in the previous 
section, we obtain Figure 3. Since the performance of 
the page promotion procedure can be varied by chang-

ing the value of the probability P, various points on 
the curves are obtained by using various values of this 
parameter. The data from Figure 1 is also included in 
Figure 3, in order to compare the best possible per­
formance of the procedure with the expected per­
formance. 

Various conclusions may be drawn from Figure 3. As 
an example, if we are willing to move 50 percent of the 
pages from large-core to core, then: 

(1) By random selection of the pages prior to any 
processing, we could expect 50 percent of the 
addressing to be directed to core storage. 

(2) Using the page promotion procedure, we could 
expect about 80 percent of the addressing to be 
directed to core storage. 

(3) If we had perfect knowledge of the page activity 
prior to processing, we could expect about 95 
percent of the addressing to be directed to core 
storage. 

In this sense, the page promotion procedure is about 
(80-50)/(95-50) =% as effective as it possibly can 
be (when operating in the range of P P = 50 percent, on 
the four program studied). For smaller values of PP, 
similar conclusions could be drawn. However P P = 50 
percent is an interesting value, since it reduces the page 
traffic between large-core and core by one half, and 
since at this value P A is about 80 percent, which is 
large enough to be of interest. 

We note that PA and PP are expected values, so 
there is no reason to believe that the page promotion 
procedure will produce these values on any particular 
run of any particular program. However, it is assumed 
that a system using this procedure would process a large 
number of jobs. Thus, on the average, the specified 
values of P A and P P could be achieved. 

A SEQUENCE-DEPENDENT ALGORITHM 

Suppose that we modify the algorithm of the previ­
ous section in the following way. Let us replace the 
constant probability P by a probability P k which is a 
function of k, the number of pages already moved 
from large-core to core. Such a modification would not 
be difficult to implement, since we have already as­
sumed that P can be placed under program control. 
Such an algorithm will be termed. sequence dependent, 
since the algorithm depends not only upon the number 
of times each of the various pages is addressed (the 
N1, N 2, ••• N J), but also upon the sequence in which 
the pages are addressed as well. 

In particular, we shall be interested in the sequence-



dependent algorithm in which: 

[

p k=O, 1, ... , K-l 

Pk = 0 (1) 
k=K 

This algorithm operates just like the sequence-inde­
pendent algorithm until K pages have been moved 
from large-core to core. At this point the procedure 
simply shuts down, and no more pages may be moved. 
Weare interested in this algorithm because it guaran­
tees that no more than K pages will be moved from 
large-core to core. With the sequence-independent 
algorithm there is always the possibility that most or 
even all of the J pages will be moved. Let us now con­
sider the extent to which this guaranty degrades the 
performance of the original sequence-independent 
algorithm. 

In studying the sequence-independent algorithm it 
was only necessary to know the J integers N 1, N 2, 

. . . , N J, which are the counts of how many times the 
various pages are addressed. In order to study the 
sequence-dependent algorithm, it might appear that 
we must know the sequence in which the pages are 
addressed. This sequence could be characterized by a 
sequence of N integers, where integer n (n= 1, ... , N) 
is j (1 ~j ~J), indicating that page j is the object of 
memory reference n. Using this approach, we could 
take the characterization of any particular sequence 
and find expressions for P A and P P. 

An alternative approach would be to proceed as fol­
lows. For a program with a given N 1, N2, ... , N J, 
there are 

N!j (NI! N2! .•• N J!) 

different sequences in which the pages may be ad­
dressed. We shall establish that one of these sequences 
(called the MIN sequence) causes P A to take on its 
smallest value. If we can show that the sequence­
dependent algorithm will still perform well under this 
sequence, then we can be assured that the algorithm 
will perform at least as well under all the other possible 
sequences. 

There are several advantages to this second ap­
proach. One· advantage, of course, is that less data is 
involved in the analysis of any particular program. To 
characterize a sequence we need N (the number of 
times addressed) data points, while with this second 
approach we will need only J (the number of pages) . 

There is a more fundamental reason for preferring 
this second approach. If the sequence-dependent algo­
rithm were analyzed for one specific sequence, then we 
would have to consider the possibility that a slight 
change in this sequence might affect the performance 
of the algorithm. By showing that the algorithm will 
work across all possible sequences, we are depending 
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upon a program property which is somehow less 
"fragile" than the addressing sequence, namely the 
addressing counts N 1, N 2, ••• , N J. 

Let us now discuss the MIN sequence. Suppose that 
we have a sequence-dependent algorithm of the type 
specified by Equation (1), with given values for P and 
K. Consider a sequence of the following type: each 
time a page is to be addressed, the page is selected so 
that no other page has fewer remaining times to be 
addressed. Intuitively, with this sequence there is the 
greatest probability that the algorithm will move those 
pages with the least remaining activity. Since by con­
vention Nj~Ni+I, one such sequence of this type is the 
one in which all of the addressing of page j is performed 
prior to any of the addressing of page j + 1 (j = 1, 2, 
... , J -1). This particular sequence \vill be called the 
MIN sequence. In Appendix II we will show that of all 
the possible sequences with a given N 1, N 2 , ••• , N J, the 
MIN sequence does indeed minimize P A . 

We now wish to find expressions for: 

P A * The value of P A (the percent of the addressing 
activity directed to core storage) when the 
sequence-dependent algorithm is used with the 
MIN sequence. 

P p* The value of P P (the percent of the pages 
moved from large-core to core) when the 
sequence-dependent algorithm is used with the 
MIN sequence. 

In the MIN sequence all the addressing of page j is 
performed at one time-just after the addressing of 
page j -1 has been completed and just before the ad­
dressing of page j + 1 begins. We therefore define the 
following for the MIN sequence: 

CPi,k 

The probability that core storage contains ex­
actly k pages just prior to the time that the 
addressing of page j begins. 
The expected number of times that page j is 
addressed in the large-core storage, given that 
core storage contains exactly k pages just prior 
to the time that the addressing of page j begins. 
The probability that page j will not be moved 
from large-core storage to core storage, given 
that core storage contains exactly k pages just 
prior to the time that the addressing of page j 
begins. 

It then follows that: 

[ 

J j-I ]/ 
PA*=100 N- E 'ERi,kAi,k N, (2) 

[ 

J i-I ] / 
PP*= 100 J - EE Ri,kCPi,k J. (3) 
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From Appendix I we know that: 

Aj,k= [(I-Pk ) (1- (l-Pk)Nj ) J/Pk , 

¢j,k= (l-Pk )Nj • 

The probabilities Rj,k may be computed by an algorithm 
to be developed in Append,ix III. Using this algorithm 
and the above four equations, P A * and P P* may be 
determined. 

Although this method may be used to compute P A * 
and P p* for any sequence-dependent algorithm, we will 
limit our interest to the algorithm specified by Equation 
(1). Thus each time a page in large-core storage is ad­
dressed, there is a probability P that the page will be 
moved to core storage. When K pages have been moved, 
the promotion procedure will be terminated and no 
more page movement will take place. 

To use this procedure the parameters K and P must 
be set. To set K let us suppose that there is a certain 
maximum percentage of the pages which we wish to 
move from large-core to core. Let this percentage be 
called P P MAX. Then: 

K = [PPMAX/l00}J. (4) 

Consider now the problem of setting P. Suppose that 
we wish to set P so that pp* will be about 50 percent. 
For the four programs that we have studied, the value 

P= 100/N (5) 

has been found to be satisfactory. When N (the total 
number of addressing references) is larger, then P must 
be smaller to achieve the same effect. If N is not known, 
then, of course, P cannot be set by an equation such 
as (5). If a program is to operate for a given time slice, 
then N is known. In other cases, it may still be possible 
to set P by some adaptive process, while monitoring 
the performance of the system. Further, some fixed 
value of P may produce good overall performance, 
since it is not necessary for the algorithm to perform 
satisfactorily for any particular program, but only on 
the average. 

Assuming the MIN sequence for the four programs, 
Table II shows the result of using the sequence­
dependent algorithm specified by Equation (1) with the 
parameters set by Equations (4) and (5). For compari­
son, Table II also shows the result of the sequence­
independent algorithm, which may also be interpreted 
as the sequence-dependent algorithm with PPMAX = 100 
percent. We see that at P P MAX = 60 percent there is 
little degeneration of performance over the sequence­
independent algorithm (i.e., little decrease in the value 
of PA* over PA), while at PPMAX =50 percent the 
degeneration is significant. Using the mean of the results 
for the four programs, we see that with the sequence-

dependent algorithm we can expect to move 45.2 per­
cent of the pages from large-core to core, while we can 
expect to direct 77.3 percent of all the addressing to 
core storage. Furthermore, we can guarantee that no 
more than 60 percent of the pages will be moved. 

SUMMARY AND CONCLUSIONS 

This paper was concerned with page movement in a 
directly addressable memory hierarchy. A two-level 
hierarchy was studied, so the question arose as to which 
pages should be moved from the second to the first 
level, and which pages should be addressed in the second 
level directly. One approach is to move those pages 
which are used more often, since access time to the 
first level store is less. The problem is to determine 
which pages are the most active. Some procedures to 
detect the high activity pages were developed. These 
algorithms assume no knowledge of the page activity 
prior to processing. 

The behavior of four programs was studied, and it 
was shown that some pages were used far more often 
than were others. For example, it was shown that the 
50 percent of the pages which are the most active ac­
count for about 95 percent of all the activity. These 
data on program behavior were then used to test the 
procedures. 

The first procedure was termed "sequence-inde­
pendent," since although it depends upon the relative 
number of times each page is addressed, it does not 
depend upon the sequence in which the addressing 
takes place. Using this algorithm, it was found that by 
moving an expected 50 percent of the pages from the 

TABLE II -Effect of the sequence-dependent algorithm 

SEQUENCE- SEQUENCE-DEPENDENT ALGORITHM 
INDEPENDENT 

PROGRAM ALGORITHM PPMAX = 60% PPMAX = 50% 

PP PA pp* PA* pp* PA* 

INSTRUCTIONS 54_4 81.0 54.0 78.2 48.2 51.9 

1 
DATA 52.3 76.5 52.2 75.4 48.1 51.4 

INSTRUCTIONS 31.9 76.1 31.9 76.1 31.9 76.1 

2 
DATA 17_4 80.2 17.4 80.2 17.4 80.2 

INSTRUCTIONS 58.2 82.0 55.9 70.3 48.3 41.1 

3 
DATA 50.0 76.0 50.0 75.9 48.4 68_3 

INSTRUCTIONS 53.3 85.6 53.0 84.1 47.8 62.6 

4 
DATA 47.3 78.2 47.3 78.2 46.5 73.6 

MEAN 45.6 79.5 45.2 77.3 42.1 63.1 



second to the first level store, one could expect to direct 
about 80 percent of the addressing references to the 
first level store. Since the most active 50 percent of the 
pages account for about 95 percent of all the activity, 
and since any arbitrary but random selection of 50 per­
cent of the pages would account for an expected 50 
percent of the activity, this algorithm may be said to 
be about two-thirds as effective as it possibly can be. 

Sequence-dependent procedures were then studied, 
with the emphasis on one such algorithm in particular. 
This algorithm operates just like the sequence-inde­
pendent algorithm, until a fixed number of pages have 
been moved. At this point the algorithm shuts down, 
and no more page movement takes place. Unlike the 
sequence-independent algorithm, this procedure guaran­
tees that no more than a certain number of pages will 
be moved. Just as in the case of the sequence-indepen­
dent algorithm, we found that this procedure can be 
adjusted to move about 50 percent of the pages from 
the second to the first level store, while expecting to 
direct about 80 percent of the addressing references to 
the first level store. Furthermore, with this algorithm 
we can guarantee that no more than 60 percent of the 
pages will be moved. 

Thus the page promotion procedures appear to be 
effective, at least within the limited context in which 
they have been studied above. Of course, such a pro­
cedure would only be one element of a complete hier­
archy management algorithm. This complete algorithm 
must be concerned with many other issues, such as the 
removal of pages from core storage and the manage­
ment of page traffic with slower peripherals such as 
disks. Thus these preliminary experiments are encourag­
ing, but they need to be carried much further, in order 
that the utility of the page promotion procedures may 
be judged within the context of a complete system. 
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APPENDIX I 

Suppose that a page is addressed 8 times, each time 
using the page promotion procedure described in 
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Figure 2. Define: 

A The expected number of times the page is 
addressed in the large-core storage. 

cf> The probability that the page will not be 
moved from large-core storage to core storage. 

We wish to show that: 

A= [(l-P) (1- (l-P)S) J/P, (6) 

cf>= (l-P)s. (7) 

To establish Equations (6) and (7), we note that 
the page will be addressed exactly: 

o times in large-core with probability P, 
1 time in large-core with probability (1-P) P, 
2 times in large-core with probability (l-P)2P, 

8 -1 times in large-core with probability 
(l_P)S-IP, 
8 times in large-core with probability (1-P) s. 

Then: 

S-l 

A=O·P+ .L: [So (1-P)8PJ+8(1-P)S (8) 
8=1 

This establishes Equation (7). The equation for A 
must now be reduced further. It is not difficult to show 
that: 

S-l 

L: s(1-P)8= [l-P- (1-P)SJ/P2 
8=1 

-[(8-1) (l-P)sJ/P. 

Using this result in Equation (8) : 

[
l-P- (l-P)S 

A=P p2 
(8-1) (I-P)SJ 

P +8(I-P)S, 

A = _l-_P_-_(:...-l_-_P_)_S +_P-,-(_I-_P..=.-) S 
P , 

(I-P) (1- (I-P)S) 
A= P , 

which establishes Equation (6). 

APPENDIX II 

Consider a program with a given N 1, N 2, ••• , N J. 

Suppose that a sequence-dependent algorithm is in use 
and that: 

k=O, 1, ... , K-l 

k=K. 
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There are N!j (NI! N2! ... N J!) different sequences in 
which the pages may be addressed. Of these, there is 
one sequence in which all of the addressing references 
to page j are performed prior to any of the references 
to page j+ 1 (j = 1, 2, ... , J -1). This particular se­
quence is called the MIN sequence. Since Nj~Ni+I it 
follows that whenever a page is to be addressed in the 
MIN sequence, a page is selected so that no other 
page has fewer remaining times to be addressed. We 
wish to show that of all the possible sequences with a 
given N I, N 2, ... , N J, the MIN sequence minimizes 
PA. 

For a given program, define: 

NAThe number of times that core memory 
is addressed. 

Since N A is a random variable, it follows that: 

PA*= 100E(NA)/N. 

Thus it will· suffice to show that the MIN sequence 
minimizes E (N A) . 

Define: 

E(NA I k) 

The probability that the sequence­
dependent algorithm will move exactly 
k pages from large-core to core. 
The expected value of N A, given that 
exactly k pages are moved from large­
core to core. 

It then follows that: 
K 

E(NA) = LE(NA I k)ak. 
k=O 

For a given N I, N2, ... , N J, we will now show that the 
ak are independent of the addressing sequence. It will 
then suffice to show that the MIN sequence minimizes 
E(NA I k). 

Define: 

Then 

{3k The probability that the sequence-inde­
pendent algorithm will move exactly k 
pages from large-core to core. 

ak={3k for k=O, 1, ... , K-I, 

For a given N I, N 2, ... , N J , the {3k are independent of 
the addressing sequence. From the above two equations, 
it therefore follows that the ak are independent of the 
sequence too. 

We must now show, for arbitrary k, that the MIN 

sequence minimizes E (N A I k). Define: 

Then: 

'Y j ,k The probability that page j is moved 
from large-core to core, given that ex­
actly k pages are moved. 

t j The expected contribution of page j to 
E(N A), given that it is moved from 
large-core to core. 

J 

E(NA I k) = L tj'Yj,k. (9) 
j=1 

Let us consider tj first. We are given that within N j 
addressing references, page j is moved from large-core 
to core. At each of these references there is a probability 
P that the page will be moved, if it has not been moved 
previously. It therefore follows from Equations (6) and 
(7) of Appendix I that: 

tj(I-¢j) = Nj-Aj, 

tj(I- (I-P)Nj) =Nj- [(l-P) (1- (I-P)Nj) J/P, 

tj=Nj/[I- (I-P)NjJ- [[I-PJ/P]. 

It can be shown that t j is an increasing function of 
increasing N j (if 0 < P ~ 1). Since N 1 ~ N 2 ~ ••• ~ N J, 
it therefore follows that: 

(10) 

Note also that t j is not a function of the addressing 
sequence. 

Let us now discuss 'Y j ,k. The expected number of 
pages moved from large-core to core is: 

J 

L [I'Yj,k+O(I-'Yj,k)]. 
j=1 

But it is known that k pages are moved, so: 

(11) 
j=1 

where k is a constant. 
We are now in a position to complete the proof. 

Gathering our results from Equations (9) through 
(11), we have: 

E(NA I k) =tI'YI,k+5"2'Y2,k+·· ·+tJ'YJ,k, 

tI~t2~··· ~tJ, 

'YI,k+'Y2,k+· •• +'YJ,k = CONSTANT. 

It therefore follows that E(NA I k) is minimized by 
making 'YI,k as large as possible. Given this, 'Y2,k must 
be made as large as possible, and so on. It is obvious 
that this will be accomplished by the MIN sequence. 
Thus the MIN sequence minimizes E (N A I k), which 



implies that it minimizes E (N A), which implies that it 
minimizes P A, which completes the prooL 

APPENDIX III 

Suppose that the sequence-dependent algorithm is in 
use, and that pages are addressed in the MIN se­
quence. We wish to devise a method for computing: 

The probability that core storage con­
tains exactly k pages just prior to the 
time that the addressing of page j begins. 

Prior to the first time that page 1 is addressed there 
are no pages in core memory, so for j = 1: 

R1,o= 1. 

Consider now the case when j> 1. The only way 
that there can be no pages in core memory just prior 
to the first time page j is addressed is for there to be no 
pages in core memory just prior to the first time page 
j -1 is addressed, and for page j - 1 to remain in large­
core. Thus: 

Rj,o = R j- 1 ,OcPj-l ,0, 

where cPj,k is the probability that page j will remain in 
large-core when addressed N j times by the page pro­
motion procedure using P k • We know from Equation 
(7) that: 

cPi,k= (I-Pk)Ni . 

For k 2:: 1 there are exactly two ways in which there 
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can be k pages in core memory just prior to page j 
being addressed for the first time: 

(1) There can be k -1 pages in core memory just 
prior to page j -1 being addressed, and page j-l 
can be moved from large-core to core. 

(2) There can be k pages in core memory just prior 
to page j - 1 being addressed, and page j - 1 can 
remain in large-core. 

Thus: 

When k = j - 1 this becomes: 

Rj,j-l = R j - 1 ,i-2 (1- cPj-l,j-2) + R j - 1,j-lcPj-l,j-l, 

but R j - 1.i-l = 0, so: 

Rj,j-l = R j - 1 ,j-2 (1- cPj-l,j-2). 

In summary, Rj,k may be computed for increasing 
values of j by using the following equations: 

IF j = 1 : Rl,O = 1. 

IF j> 1: R j ,0 = R j - 1 ,OcPj-l ,0, 

Rj,k = R j - 1,k-l (1- cPj-l,k-l) + R j - 1,kcPj-l,k 

for k= 1,2, ... , j-2, 

RU-l = R j - 1 ,j-2 (1- cPj-l,j-2). 

For j = 1, ... , J and k = 0, 1, ... , j-l, the Rj,k may 
then be used in Equations (2) and (3) to compute 
PA* and PP*. 





Validation of a trace-driven CDC 6400 simulation 

by J. D. NOE and G. J. NUTT 

University of Washington 
Seattle, Washington 

INTRODUCTION 

A computer center typically faces questions of how to 
deal with a growing load in the face of tight financial 
constraints and with the need for lead time for planning 
ways to meet the demand. The needs may be met by 
altering the equipment configuration, changing priority 
algorithms and other features of the operating system, 
controlling the time scheduling of various classes of 
job load, or perhaps shifting load from one machine to 
another if the center is large enough to have such a 
capability. It is often difficult to gather enough data 
and insight to show the direction these changes should 
go and to support the decision to do so. One useful set 
of tools is provided by simulation backed up by mea­
surements required for validation. However, it is all too 
common to find that fear of interruptions of the com­
puting center's service to user, combined with an over­
worked systems programming staff, prevents insertion 
of the desired measurement probes into the operating 
system. Then one is restricted to measures that can be 
derived from the normal accounting log, or "Dayfile", 
and to software probes that can be injected in the guise 
of user's programs. In spite of these limitations, useful 
results can be obtained, and this paper describes valida­
tion of a simulation model of a multiprogramming 
system, the Control Data 6400, making use of these 
restricted measurements. 

The level of detail included in the model affects the 
degree of confidence one can place on the results of the 
simulation. It is necessary to represent the system 
accurately at the level of detail needed to support the 
predictions of interest. This implies not only enough 
detail to include the system resources that may be 
altered, but also enough detail to faithfully represent 
the interaction of these resources. In a complex system 
this becomes an important factor since the change in 
one area may have surprising effects in another part of 
the system. This argues for inclusion of finer detail. 

749 

A counter argument relates to high cost, which is a 
frequently-discussed difficulty with simulation. How­
ever, cost is a relative matter. There is no point in spend­
ing money to simulate or measure a system unless 
the resulting changes lead to savings well in excess of 
expense; but, when one is dealing with systems costing 
on the order of fifty to one hundred thousand dollars per 
month, plus supporting expenses equal or greater to that 
amount, a relatively small increase in efficiency can 
more than pay for a useful amount of simulation and 
measurement effort. It is still important to hold down 
the cost of simulation and one way of doing so is to 
avoid more detail in the model than is necessary. 

These points, of course, lead to a compromise in the 
choice of what to include in such a model, and as will 
be explained later in the paper, we found that the 
process of validating the model and examining the 
sensitivity to various parameters gave useful insight on 
the level of detail that was necessary. 

THE CONTROL DATA 6400 

Many descriptions of the Control Data 6000 Series 
exist and there is no point in repeating a lengthy discus­
sion (see Thornton,! Control Data,2 .3 MacDougall,4 
Noe5). Only the salient features of the system will be 
described here in order to remind readers of its general 
structure. 

The Control Data 6400 is a multiprogrammed, file­
oriented system, using a central processor, ten periph­
eral processors and twelve channels, a central memory 
of up to 131K 60-bit words is available to the system 
and to the user programs. Each peripheral processor 
has 4K memory (12 bits per word) for its local use. The 
peripheral processors communicate with the central 
processor through central memory and they take over 
many system tasks, such as communicating with the 
I/O equipment. Concurrent users' programs within the 
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system become files on disk and these files are placed in 
queues for the needed resources. As the programs are 
executed, output files are built and transferred to 
disk for scheduling of output printers and card punches. 
Programs are executed from central memory by the 
central processor, using peripheral processors as neces­
sary for subsidiary tasks. A group of eight control 
points or communication areas is set aside in lower 
central memory. One of these is unique and is used by 
the system to keep track of currently unused resources. 
The others of these may be occupied by users' jobs or by 
system programs such as JANUS and IMPORT/ 
EXPORT for communication with users' programs. 
Each control point, 200 octal words in length, stores 
information unique to the job, such as register contents, 
program counter, etc., that is needed when the central 
processor is switched from one job to another. 

A variety of operating systems for the CDC 6400 
exists. The one on which this simulation is based is 
SCOPE 3.2 with some modifications that are local to the 
University of Washington Computer Center. One of 
these modifications is the disk image (DI) option. 
This option, when used on a tape request control card, 
causes the system to first search the disk directory 
to see if that tape has been copied onto disk. If so, the 
disk file is used. If not, the operator is requested to 
mount a tape, which is then copied to disk and retained 
there for some period of time, (e.g., eight hours). This 
modification is advantageous in an environment in 
which many calls may be made for the same tape during 
any given day, providing disk saturation is not a factor. 
Another modification is the addition of a staging 
queue. Jobs that require magnetic tape are held on 
disk in this queue until the operator has mounted the 
reel on the tape drive; then they are allowed to proceed 
into the input queue where they wait for central memory 
and for a control point. 

A feature of the operating system that has been 
necessary to this simulation and validation study is 
the system Dayfile. This file accumulates data on in­
dividual jobs, such as time into the card reader, time 
of exit from the input queue, amount of central pro­
cessor time used, time into the output queue and time 
off the system. This file, which was originally designed 
for accounting purposes, provides a significant amount 
of information that can be used for describing the job 
load in the trace driven simulator and it will be dis­
cussed more fully in subsequent paragraphs. 

THE APPROACH 

The general approach taken in this study was to 
develop a simulation at the level of detail that shows the 

interaction between tasks and system resources. The 
Dayfile was analyzed to obtain trace data, i.e., to show 
how the actual job load on any given day made use of 
the system resources. Validation runs were then made 
by driving the simulation model with trace data from 
various days to provide a range of load conditions. 

Provisions are included in the simulation model to 
represent the input job load either as individual jobs 
(to allow driving the model with the trace data) or as 
job classes (to drive the model with distributions repre­
sentative of groups of jobs). Only the former method 
is reported on in this paper, because it is restricted to 
a discussion of the model and its validation. The use 
of job classes will be discussed in a separate paper re­
porting on use of the model to explore effects of load 
variations. 

This work was done under a number of constraints 
that limited some of the things we would like to have 
done. It was important not to interfere with the service 
being provided by the Computer Center. In particular, 
it was not possible to insert probes in the system moni­
tor, or to dedicate a peripheral processor to the measure­
ment role, as has been done in work by others (see 
Stevens,6 Control Data,7 and ShermanS). As a result, 
we were unable to include disk statistics among the 
parameters used to describe jobs, except in a very 
general way. Disk accesses were not modeled in detail 
although their overall effect on job flow was accounted 
for in the simulation through the time interval a job 
stayed at a control point. 

In spite of these constraints, a considerable amount 
of information was available through the Dayfile and 
inasmuch as the constraints under which we were 
operating are not uncommon, it may be of interest to 
others to see how much can be done without the freedom 
to alter the system programs for measurement pur­
poses. 

DESIGN OF THE SIMULATION 

In general structure, the simulation parallels the 
operating system and allows parameter choices repre­
senting a range of available operating system and hard­
ware options. The level of detail of the model is re­
stricted to focus on system resources that may be 
altered, omitting wherever possible the inclusion of 
resources for which no decisions may be made. Execu­
tion speed of the model is approximately fifty times 
faster than the real system, i.e., one hour of real system 
operation is represented by 70 seconds of operation of 
the model (see Nutt9 for a detailed description). 

The model is written in ANSI FORTRAN and 
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Figure I-Modified Petri net of simulated CDC 6400 

its general structure is similar to BASYS (see 
MacDougaPO). ANSI FORTRAN was used rather 
than a specialized simulation language for two reasons: 
first it made the program available on both the CDC 
6400 and on the XDS Sigma 5 (for which we had no 
discrete system simulation language compiler); 
second, since this was done in a learning environment 
in a university, the use of FORTRAN gave an op­
portunity to learn more about the details of queue 
handling and sequence timing that are obscured by the 
automatic features of simulation languages. 

The model is trace-driven, i.e., jobs are represented 
by the resources they require. It then provides data 
about jobs that are dependent on system efficiency, 
such as turnaround, job dwell-time at control points 
and dwell-time in input and output queues. It also 
provides data on system performance such as queue 
lengths, the number of control points in use, CPU 
utilization, and the amount of central memory oc­
cupied by all jobs at sample intervals. 

The system actually simulated is shown in Figure 1. 
The notation is that of the modified Petri net, as intro­
duced in Reference 5. To generate a simulation, it is 

essential to have a clear representation of the system 
being modeled. The modified Petri net notation is used 
because it shows the computer structure under the 
influence of the operating system. * For the purposes of 
the present description, it should be adequate to notA 
that the vertical lines are transitions. When the neces­
sary input conditions (denoted by incoming arrows) 
exist, the transition "fires" causing the output condi­
tions to come into being (denoted by outgoing arrows). 
Arrows marked at either end with the symbol "E9" 
denote EXCLUSIVE OR; arrows with no symbol at­
tached denote AND ... i.e., two or more are required. 
Note that different symbols may exist at the two ends 
(input or output) of an arrow. 

As an example of the interpretation of Figure 1, 
"JOB IN CARD READER" represents the existence 
of one or more jobs in the card reader. Whenever the 
"CARD READER AVAILABLE" and "JOB IN 

* At the state of development of the notation used here, the 
system representation by Petri nets is qualitative. Further work 
is in progress to add quantitative features to the modified Petri 
nets. . 
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TABLE I-Characteristics in Simulator Job Array 

Characteristics that are inputs to the model 
(Columns in Job Array) 

1. Central Memory (during compilation) 
2. Central Memory (during execution) 
3. Central Processor Time Limit 
4. Central Processor Time Actually Used 
5. PeripHeral Processor Time Used 
6. Job Priority 
7. Magnetic Tapes Used 
8. Disk Image Files Used 
9. Number of Cards Read 

10. Number of Cards Punched 
11. Number of Lines Printed 
12. Total Rollout Time 
13. Number of Times Job Rolled Out 
14. Time Job Entered Card Reader 

Characteristics that may be calculated outputs or 
(Columns in Job Array) 

15. Time of Entry into Staging Queue 
16. Time of Entry into Input Queue 
17. Time of Assignment to Control Point 
18. Time of Entry into Output Queue 
19. Time Job Vacated Machine 

CARD READER" conditions are true, the associated 
transition is fired, causing a job to be removed from the 
card reader and to be placed in the staging queue 
("JOB IN STAGING QUEUE"). Note that the stag­
ing queue can accept jobs from the card reader or the 
remote input, but not both simultaneously. The use of 
EXCLUSIVE OR when leaving the staging queue is 
interpreted as follows: When "JOB IN STAGING 
QUEUE" is true and no tape is required, the next 
transition fires, altering job status to "JOB IN IN f UT 
QUEUE." Or (exclusive) when a "tape job" is in the 
staging queue and a tape is assigned to it, the transition 
fires. 

In making use of the model, it is important to be 
aware of system resources that are not included. Most 
important are channels, peripheral processors, and the 
details of disk access (disk file activity is accounted for 
only in length of dwell-time of jobs at a control point*). 
A most important reason for not including channels and 
peripheral processors is that the number of each avail-

* Specifically, an average disk access time was used, as measured 
by a software probe entered as a user's job. The number of 
accesses per job was approximated by dividing the job's peripheral 
processor . time by the average access time. The measurement 
program was written, and the data gathered, by Geoffrey C. 
Leach, University of Washington. 

able is fixed, i.e., addition of channels and peripheral 
processors is not among the decisions that might be 
implemented by the Computer Center. Therefore, it 
was pointless to examine simulation results dependent 
on changes in the number of these units. However, it is 
important to bear in mind that before deciding upon 
some system changes suggested by the simulator, one 
should make measurements to see if the proposed 
change is likely to cause saturation in channel or PPU 
usage, thereby shifting the bottleneck out of the "range 
of view" of the simulation. 

A principal feature of the simulation model is the 
method used to describe the job load driving the system. 
Because this method provided flexibility, it aided vali­
dation of the model as well as extrapolation into future 
situations of interest. Visualize an array in which each 
row describes a job during the period it is active in the 
system. As jobs exit from the system, they are removed 

TABLE II-Outputs from Simulator 

Job Statistics: 

Mean and standard deviation for the group of jobs streaming 
through the simulator are provided for all the characteristics 
listed in Table 1. In addition, histograms of the distributions are 
printed for 

• Central Memory (average of compilation phase and execution 
phase) 

• Processor Times (central and peripheral) 

• Length of time in Rollout status 

• Time on Control Point· 

• Time in Output Queue 
• Time in combined Staging and Input queues 

• Turnaround Time (from card entry to vacating machine) 

Complete trace on each job as it progressed through the model 
was provided. 

Queue Statistics: 

• Card Reader Queue 

• Staging Queue 

• Input Queue 
• Central Processor Queue 

• Output Queue 
• Rollout Queue (i.e., jobs awaiting Rollin) 

Resource Utilization: Accumulated busy-time for 

• Card Readers and Punch 

• Line Printers 
• Magnetic Tapes 
• Central Processor 

• Control Points 



from the array to provide room for new jobs to be 
added. Therefore, the array size need be large enough 
only to handle the currently active jobs rather than 
all the jobs entered within a given simulation run. The 
columns in this array represent the trace characteristics 
of each job, and their contents are listed in Table I. 
Some of these columns (1 through 14) must be pre­
specified to describe the job; they may contain positive 
numbers representing the actual value of the param­
eter, or may contain negative integers indicating that 
a value is to be obtained by the simulator system from 
a distribution identified by the negative integer. This 
feature allows driving the model with either actual 
trace data extracted from the Dayfile of the real sys­
tem, or from data approximated by distributions that 
represent a job mix, or possibly some combination of the 
two. 

Columns 15 through 19 in the job array show char­
acteristics that may be prespecified (again from actual 
values or from distributions), or may be calculated by 
the simulator. This flexibility is helpful during valida­
tion of the model since it allows one initially to drive 
the model with predetermined data, thus force-fitting 
it to behave like the real system; and then one can 
back off as confidence is gained, and let the simulator 
provide more and more of the parameters. This has 
proven to be a very useful tool during model validation. 
It is also useful for taking care of. "peculiar" jobs, 
such as control programs that handle terminals and 
other I/O and which appear to the system as long-term 
"user" jobs rather than as part of the operating system. 

Based upon these input statistics for individual jobs 
and on the simulator's calculation of the time each job 
requires to go from point to point in the system, data 
are gathered on the overall operation of the multi­
programmed system and the nature of the aggregate 
results provided are listed in Table II. 

VALIDATION OF MODEL 

General 

The procedure followed to validate the model is 
shown schematically in Figure 2, which starts from the 
tape containing the Dayfile, i.e., the CDC 6400 normal 
record of the day's operation, originally conceived as 
an accounting tool. The Dayfile does not exist in a 
format suitable to drive the simulator, since entries are 
ordered according to clock time and information on a 
unit job is scattered throughout the file. The program 
DFPREP extracts the proper parameters for each job, 
creating a new file of properly formatted trace data 
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DFPREP 

LOG OF ACTUAL OPERATION 

EXTRACTION or TRACE 
PARAMETERS AND ANALYSIS 
OF DAYFILE 

SIM6000 
SIMULATION DRIVEN 
BY INPUT TRACE 
PARAMETERS 

COMPARISON OF SHruLATED 
AND ACTUAL SYSTEM PERFORMANCE 

Figure 2-System validation procedure 

selected over the time period being examined.· As 
DFPREP reads the Dayfile and creates input for the 
simulator, it analyzes the data to provide statistics on 
system performance and on the jobs entered into the 
system. The trace data are used to drive the simulator, 
entering only the input descriptions of the job into the 
simulator and asking it to provide simulated system 
performance. 

The process just described sounds deceptively simple. 
In actual fact, getting the simulated model to agree 
with measured performance over a range of parameters 
and job mixes proved to be a complex and time­
consuming process. The authors suspect that this is a 
typical situation and accounts for the fact that the 
extensive literature describing simulation of computer 
systems is rather sparsely populated by papers on 
validation. 

On the other hand, this validation phase proved· to 
be very valuable, not only in terms of the essential 
point of building confidence in the realism of the simu­
lator's performance, but also in the better understand­
ing of the system and of the model that was gained 
during the validation process. For example, during 
validation it became clear that it was necessary to 
extend the model to include jobs that bypassed part 
of the system, e.g., a remote batch capability that by­
passes the card reader queue and the output queue had 
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Figure 3-Comparison of simulated and actual job delays 

grown in importance in actual system use so that it 
was necessary to incorporate it. Also, the sensitivity of 
the system to the manner in which magnetic tapes were 
handled became apparent as did the effect of the disk 
image (DI) option. Some errors in the model, in the 
control point area and in central memory field length 
variation, were detected and corrected as a result of 
validation. It was found necessary to approximate the 
number and duration of disk accesses in order to prop­
erly fragment each job's use of the CPU. It also became 
apparent that it is important to be able to precondition 
the state of the simulated system when starting it in 
the middle of the day's operation. In other words, the 
start-up transient in the simulation, which seems to be 
on the order of fifteen minutes to one-half hour of 
simulated time, can obscure the results if one attempts 
to simulate two or three hours of mid-day performance 
without. preloading the system. 

In retrospect, it is tempting to say that some of the 
points that needed changing should have been included 
in the model as originally constructed. Yet, we would 
argue against going overboard in this direction. The 
question is one of performance sensitivity to a given 
system feature. If one initially attempts to include so 
much detail that all significant factors are likely to be 
in the model as originally constructed, one is certain 
to end up with a number of unnecessary details that 

only serve to lengthen the program writing, debugging, 
validation, and execution time. The authors believe it 
makes far more sense to construct a model along 
reasonably simple lines, containing flexibility for inject­
ing needed changes, then adding features when the 
validation process shows them to be necessary. 

Interestingly • enough, some of the most difficult 
things to validate in the model involved human actions 
and human judgment, particularly the time required 
to fetch and mount magnetic tapes, aqd the criteria 
used by the operators in deciding when to place a pro­
gram in rollout status (i.e., removing it from contention 
for core memory and for the CPU) were subject to 
wide variations. On the other hand, inclusion of these 
factors was necessary for realism and will provide ways 
to test some operational procedures and policies that 
might be applied. 

Validation data 

Validation and alteration of the model finally con­
verged to a point where reasonable confidence in the 
model was established. To illustrate this, data are pre­
sented that cover four different job mixes and job 
densities chosen to represent two extremes in computer 
usage and an intermediate case. One extreme was near 
the end of an academic quarter, during which the sys­
tem was used heavily by students trying to finish 
problems and term projects. The other extreme was 
between academic quarters when the student load had 
decreased significantly, leaving a predominance of re­
search jobs and system development jobs running on 
the machine. The mixes ranged from a low of 37.5 per­
cent student jobs up to a high of 75.7 percent student 
jobs. The job densities covered a range greater than 3.5 
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to one in jobs per hour, and included densities near the 
current record day for this installation. 

Figure 3 summarizes the mean values of delay times 
as the jobs progressed through the system. It shows 
comparison values for the real and simulated system 
for each of the four load conditions. The lower curve 
(A) in Figure 3 shows average delay times through the 
combined staging s,nd input queues. The next higher 
curve (B) adds control point dwell times to the staging 
and input delays. The top curve (C) adds output queue 
times to the cumulative delays and thus represents 
turnaround times, i.e.; time between entering the card 
reader and ejection from the line printer. 

A word of warning about Figure 3: Do not interpret 
it as "how delay time varies as a function of rate of 
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Figure 5-Job dwell time at control point 

job flow"; instead, interpret it as "for the specific 
cases (job mix and density), how do the real and simu­
lated systems compare?" The reason for this is that the 
higher densities shown in this figure correspond to 
cases in which a higher proportion of student jobs were 
run. These jobs on student account numbers are pre­
dominantly short jobs with three or four pages of listing 
and less than ten seconds central processing time 
(see Huntll). 

The set of points corresponding to the highest job 
density (and highest student job proportion) proved 
initially to be very troublesome. Upon closer investiga­
tion the difficulty proved to stem from tape jobs. For 
some reason the standard deviation in t.ape fetch and 
mount time for that day was unusually high (greater 
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than three times the mean value). For the other days, 
the standard deviation ranged from 1.63 to 2.25 times 
the mean value. Therefore; for that troublesome day, 
the tape jobs were pre-specified in the model, to allow 
validation of its performance on the remaining, more 
normal job load. 

In Figure 3 the middle curves (B) are critical, since 
control point occupancy time directly influences mem­
ory and the number of control points available. During 
validation overall results were found to be most sensi­
tive to agreement in this area. Figure 3 shows only the 
mean values. The variation in these values is quite 
great and comparison of the distributions of results is 
important to the validation. Figures 4 through 7 com-
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Figure 8-Number of control points in use at sample times 

pare the simulated and actual distributions for the 
various queues and for overall turnaround time for the 
job load corresponding to 169.4 jobs per hour and 64.5 
percent student jobs. The agreement between simu­
lated and actual mean values for this case, as shown in 
Figure 3, is within 9 percent through the staging and 
input queue, 11 percent when the control point dwell 
time is added, and 4 percent for overall turnaround 
time. The agreement in the distributions, as shown in 
Figures 4 through 7, shows that the model is operating 
quite well over a wide range in values. Figures 8 and 9 
show similar comparisons between the number of con­
trol points and the amount of memory in use in the 
simulation and in the actual system. These are sample 
data with the samples not synchronized between the 
real and simulated systems. A sample was taken approx­
imately every ten seconds and the total run during 
which comparison was made lasted for two hours. 

The agreement of the distribution for this particular 
load case was representative for the other cases and 
they are not repeated here. The goal was to verify the 
model to within 10 to 15 percent. This was generally 
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Figure 9-Memory in use at sample times 

achieved over the range of loads and over a range of 
parameters within the model. There are some excep­
tions, but they are generally understood. For example, 
the simulation of the 169.4 jobs/hour and 64.5 percent 
student jobs assumed that there was a constant avail­
ability of two line printers. Analysis showed this not to 
be the case. In the actual system only one line printer 
was operating initially. Twenty minutes later, another 
line printer was turned on, and 25 minutes after this 
event, 3 line printers were operational for a short 
period of time. Also there were cases where some very 
unusual system development jobs appeared in the real 
system and they were not accounted for in the simula­
tion; however, these cases are understood to the point 
where they do not detract from the confidence in the 
model to predict performance for the major types of 
jobs that are important in this environment. 

SUMMARY 

At this point, the model is ready for use in experiments 
to examine the effects of changes in load and system 
configuration, and these are proceeding. 

Perhaps the most important point established so far 
is that it is possible to gather enough data to validate 
a useful model, even under the stringent conditions 
imposed by a non-interruptible computing service 
center. There is no doubt, though, that special software 
and hardware measurements would be useful. For one 
thing, this would provide validation data for a more 
detailed simulation of the disk system. 

The model as it now stands can be used to predict 
the effects of changes in job arrival density or in job 
nature. Effects of changes in job CP use and memory 
use (estimated and actual), number of cards, lines 
printed, tapes and disk image usage can be observed. 
Some configuration changes that can be studied include 
those in central memory, central processor speed or 
numbers, line printers, card readers, tapes, and number 
of control points. Scheduling algorithms for these re­
sources. can be varied, and the effects of a variety of 
operational policies can be observed, such as tape­
handling, rollout, and control of types and schedules of 
jobs submitted to the system. 
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INTRODUCTION 

The techniques of multiprogramming originated in an 
attempt to better utilize a computer system's resources. 
Multiprogramming supervisory systems are usually 
rather complicated and their performance is still poorly 
understood. Some of the reasons why performance 
should be analyzed are given in Reference 1. It is pos­
sible to monitor the system with hardware devices, but 
analysis must often wait several hours or days before 
it can be performed. Also, there are quantities that are 
impossible to reach with conventional hardware moni­
toring devices. In particular, process identities are lost. 
This means that some kind of software monitoring 
method must be envisaged. 

A number of articles2 ,3,4,5 have discussed different 
approaches to software measuring. Since operating sys­
tems must compute great quantities of information 
during their operation, it is clear that the best informed 
piece of software of the system must be the supervisor 
itself. In the case of CP-67,l° the system used at the 
Institute of Applied Mathematics of the University of 
Grenoble, a simple approach to monitoring can be used. 

CP-67 runs on an IBM System 360/67, which is a 
machine having the dynamic address translation fea­
ture. CP-67 creates the time-sharing environment by 
generating virtual machines. The real resources of the 
system (CPU, main memory, channels, etc.) are shared 
among the users concurrently logged-in onto the sys­
tem. After a virtual machine is generated the user loads 
in his virtual computer the operating system of his 

* Presently a visitor at IBM France Scientific Center. 
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choice, e.g., CMS, OS/360 or even CP-67. Only the 
real CP-67 runs in supervisor, non-interruptible mode. 
All the generated virtual machines run in problem 
state, and the computer is enabled for I/O and timer 
interrupts while they are active. Privileged instructions 
executed by a virtual machine cause a program inter­
rupt to CP-67 which analyzes it and determines the 
action to be taken. 

Of special interest are the paging and dispatching 
algorithms employed by CP-67.10 For our purposes it 
suffices to mention that when processes request the sys­
tem resources (for example, CPU and main memory) 
they are divided into two sets, interactive and non­
interactive, depending on their type of activity. Those 
members of each set who have been allocated main 
memory belong to the active class. When a process 
causes a page fault, the paging algorithm tries to find a 
page not in use by someone in the active class. If no 
page is found satisfying this criterion it will choose the 
first page it finds, in what amounts to essentially random 
replacement. 

Virtual machines communicate with CP-67 by 
means of the diagnose instruction.10 Thus, it is possible 
for a virtual measuring machine to demand the in­
formation contained in special locations within CP-67. 
The information is updated by CP-67, but the data 
collection and treatment is done by the measuring 
machine. The treatment includes writing the data in a 
disk file and displaying the more important information 
in a CRT or a console. 

The transfer of information by the diagnose instruc­
tion and the data treatment are imputed to the measur­
ing machine, which is viewed as just another process 
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by the supervisor. Furthermore, the virtual machine is 
dormant waiting for a timer interrupt during the com­
paratively long intervals between two measurements. 
The supervisor overhead in running this measuring 
system is updating the information kept in CP's coun­
ters and the process management associated with the 
virtual measuring machine. 

The variables chosen to be observed can be classified 
as follows: 

1. Variables of identification which identify each 
measure. They are: date, time of day, ordinal 
number of the present measure. 

2. Instantaneous variables. They have a meaning 
only at the moment at which the measure is 
taken. There is no relationship between values 
taken at different times. They are: number of 
virtual pages in drums and in disks, number of 
users logged-in, interval between two measures. 

3. Cumulative variables. When the operating sys­
tem is loaded these variables are set to zero. 
They are incremented by the system. The differ­
ence between two values is divided by the time 
in terval between two measures. They are: time 
in problem state, time in supervisor state, time 
in wait state, number of pages read per second, 
number of pages written per second, number of 
pages "stolen" from the members of the active 
class per second (see paging and dispatching 
description), number of virtual machine I/O 
operations per second, number of CP-67 I/O 
operations per second, number of privileged in­
structions per second. 

4. Variables of integration. These are variables 
whose instantaneous value, or even the difference 
between two values, lacks significance. Instead 
it is their time average value that is relevant. 
For example, the number of processes in the 
active lists may be the same at the moment of 
two successive activations of the measuring 
machine. Yet, during this time interval the 
multiprogramming level has changed often, re­
flecting the fact that user processes block and 
become active again. It has been found necessary 
to form the time integral of the number of users 
in the active class. This is the only case where 
relatively many instructions (about 30) have 
been added to the system's code. The quantities 
that must be treated· this way are: lengths of 
queues of the active class, lengths of channel 
I/O request queues. 

The results presented correspond to measures taken 

during the month of July 1971. The system configura­
tion included 512 K 8-bit bytes. Also, two drums used 
solely for paging, both on the same channel, and two 
disk units each consisting of 8 disk packs. Each disk 
unit has its own selector channel. The system measured 
was CP-67 version 3 level O. The computer system is 
run under control of CP-67 from 8 :00 to 12 :00 and from 
15:00 to 18:00. The time interval between measures 
was set to 100 seconds of virtual time. Because virtual 
clocks run slower than· real clocks this gives real time 
intervals of between 100 to about 140 seconds. About 
2500 sets of measures were collected in the four-week 
period analyzed in this report. 

I t is very difficult to give a characterization, even 
approximately, of the system load. Heavily used com­
ponents are PL/1, Fortran, Assembler, Lisp and vari­
ous other languages. Also context editors and debugging 
aids that run interpretively. Most virtual memories 
have either 64 pages or 128 pages. Peak loads correspond 
to about 40 terminals simultaneously logged in, though 
several of these virtual machines may be running multi­
access systems of their own, such as APL or (virtual) 
CP-67. 

DISCUSSION OF RESULTS 

Direct, on-line visualization has proved invaluable 
in discovering anomalous system behavior. The first 
lesson we learned is that the system has a tendency to 
thrash when the number of logged-in consoles exceeds a 
certain value. The symptoms are a low CPU efficiency 
and a large number of pages stolen from the members 
of the active class. Thrashing has been amply discussed 
in Reference 9 and is well-known to be caused by in­
creasing the multiprogramming level beyond a certain 
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point. This causes an increase in the page fault rate, 
which brings an increase in the traverse time (the time 
necessary to bring a missing page in memory). This 
leads to a decrease in total processing time. As far as 
we know, no experimental data has previously been 
published on this phenomenon. 

There are other conditions whose influence on system 
behavior would have been very difficult to determine 
without the CRT display. The supervisor time grows 
when a virtual machine writes on its console, or, more 
generally, on a virtual device attached to the virtual 
multiplexor channel. The supervisor time can easily 
reach 70 percent or more of the total time when pro­
grams write large amounts of data using the multi­
plexor channel. Another effect which is easily discernible 
is the degradation in performance brought about by 
insufficient drum space for paging. 

Among the interesting results concerning the system 
is the low CPU problem state utilization, about 25 per­
cent. Another result is the time the machine spends in 
supervisor state, which is about 35 percent of the total 
time. These values are well in agreement with values 
obtained by a hardware monitoring device, and other 
values reported in Reference 6. This means that the 
system, although unbalanced, is not CPU bound. 

Some of the results concern thrashing and thrashing 
conditions. Explanations of thrashing have to do with 
number of processes actively competing for the re-
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sources. Paging rates have been given in References 
6 and 7, yet they are given as a function of the number 
of logged-in users, not as a function of the multipro­
gramming level. 

Figure 1 is a plot of m r , the number of page faults 
per second of real time, as a function of NAP the mean 
number of active processes, i.e., the mean multipro­
gramming level. Figure 2 is a plot of mv , the number of 
pages stolen from users in the active class, per second 
of real time. There is nothing dramatic about m r , cer­
tainly not the steep. change that should take place when 
a certain multiprogramming level is exceeded. Rather, 
the curve keeps its nearly constant slope in the region 
shown. Figure 2 indicates that as the multiprogramming 
level is increased, more and more pages are stolen from 
the processes in the active class. It has also been found 
that 70 percent of the pages chosen to be replaced 
have been modified and must first be written on the 
drum. 

Figure 3 shows the percentage of real time spent .in 
problem state, which we shall call efficiency, as a func­
tion of NAP. The maximum efficiency is attained for 
values of NAP between 2.5 and 4. The efficiency de­
creases as the multiprogramming level is increased be­
yond 4. This is well in agreement with thrashing 
behavior, and it suggests that thrashing sets in at this 
point. Figure 2 confirms this impression. 
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From Figures 1, 2 and 3, Figure 4 can be deduced. 
Knowing that the CPU can execute 600000 instructions 
per second, Figure 4 gives ffip the expected number of 
page faults per instruction executed. This curve is the 
thrashing curve of Denning.9 The sudden change in 
slope occurs for values of NAP between 3.5 and 4. Before 
these values, mp varies comparatively little. A change 
in multiprogramming level from 4 to 4.5 brings about 
a change in mp four times as great as a change from 
3 to 3.5. The lower curve gives mvp, the number of 
pages stolen per instruction executed. If we subtract 
mvp from mp it is apparent that the number of page 
faults per instruction executed would grow less rapidly 
if no pages were stolen. 

We can conclude that, from the standpoint of paging 
rate behavior, the system follows what amounts essen­
tially to a working set policy before it gets into memory 
saturation and thrashing. Afterwards two combined 
effects take place. One of them is the increase in paging 
rate because there are, on the average, less pages avail­
able in memory for each process. The second effect is 
due to the paging algorithm that takes the decision of 
stealing pages which will soon be referenced again. 
This will make the paging rate still greater. 

Any discussion concerning system efficiency must 
perforce take into account the fact that programs re­
quest I/O operations during their execution. If a pro-

gram executes V virtual time units it will need a total 
real time of 

T= V + (Vmp)Tp+ (Vmio)Tio 

where the quantities mp and T p are respectively, the 
number of page faults per unit of virtual time and the 
transfer time of a page fault expressed in virtual time 
units. A complete discussion of these quantities is 
found in Reference 9. Similarly, mio and T io are the 
number of I/O operations per unit virtual time de­
manded by the process and the time necessary to pro­
cess one such request. The discussion of the factors 
affecting these two parameters parallels that of mp and 
T p. It is interesting, however, to notice that mio depends 
only on the process being considered. 

Hence, the process efficiency will be 

V 1 
'1JT= - = 

T l+mpTp+mioTio 

In order to simplify the discussion we can assume 
that Tp and T io are composed only of seek time and/or 
rotational delay plus data transfer time. We can also 
include the time spent in the queue waiting for the re­
quest to be processed. The overhead in T p and T io is 
supposed to be small. Measurement of the paging and 
disk file channel queues indicate that before thrashing 
no queues are formed at the I/O channels. Unfortu­
nately this condition does not last long, for when NAP 
grows the transfer time T p grows, because longer 
queues form. There is, in addition, the increase in mp 
due to thrashing. In the limit we will have 

mpTp»I+mioT io 

Before thrashing the system efficiency grows linearJy 
with NAP 

NAP 
'1Jsys= -------

l+mpTp+mioT io 

As the multiprogramming level is increased longer 
queues form at the paging channel. If the drum is or­
ganized as a FCFS drum, like in CP-67, there will 
eventually be NAP-l requests in the queue, each re­
quest requiring T p time units to be served. If Tn is the 
time the channel is engaged serving one request we 
would have 

Tp = (NAP-l)Tn+Tn = NApTn 

The quantity mp can be expressed as A + B NAP, A, B 
constant. 

Consequently, 

1 



And the efficiency decreases hyperbolically with NAP. 

We can then distinguish three regions in the response 
of the system's efficiency to an increase of the multi­
programming level. In the first region it behaves nearly 
linearly, in the third region it decreases hyperbolically 
and in the in-between region it will grow slowly until 
reaching the maximum possible efficiency (see Figure 3). 

The influence of the multiprogramming level on sys­
tem efficiency has been discussed in Reference 11. How­
ever, that model is exceedingly simplified and neither 
the variation in paging rate nor I/O operations are 
taken into account. But it is . pointed out that some 
optimum multiprogramming level must exist. Some 
experimental data are given in Reference 8 but the 
CPU is near saturation at the measured points. 

Proceeding in the same manner as for mp we find 
that mio is practically constant. Its value has been 
found to be 

mio = 0.1 X 10-3 requests per instruction 

Typically the time necessary to process an I/O request 
is about 50 000 instructions. Since no queues are ever 
found at the disk channels the product mioTio can be 
assumed to remain essentially constant. 

Figure 5 shows the experimental values for nWD, the 
number of requests waiting to be served by the drum 
channel, as a function of NAP. To obtain a mathematical 
model of the system is a more difficult question. lVlost 
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feedback queuing models assume exponentially dis­
tributed service times, which is not the case of the 
drum. Another model is given in Reference 12 where 
the drum's service time can be a constant or a random 
variable. However, in this model file I/O operations 
are not taken into account. The model discussed in 
Reference 13 does take into account disk I/O opera­
tions, but the I/O request sequence and operations are 
fixed. Thus it is of no avail in our case. In view of the 
paucity of existing mathematical models we feel justi­
fied in applying the simple l\-1/G/1 queuing model to 
the drum. The data transfer time of the drum is 3.5 
msec for a page and a complete revolution is made in 
17 msec. Using the Khinchine-Pollaczek formulae we 
can find the theoretical curve plotted also in Figure 5. 
The curves diverge after NAP = 3, which is about the 
point where the system begins thrashing. 

Figure 6 compares the experimental values obtained 
by using the results of the M/G/1 model for T p and 
the measured values for mp. For small NAP the curve is 
very sensitive to mioTio. Further measurements are 
necessary in order to obtain better estimates of program 
behavior. As NAP grows, the number of requests actually 
waiting in the drum queue is greater than the calcu­
lated value and their difference causes the theoretical 
curve to be an upper bound on the system efficiency. 

Figure 7 shows the cumulative distribution function 
for NAP. The average multiprogramming level never 
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reached 7 in this case. All values between 0 and 2.5 
have the same probability of occurrence. The most 
probable value is the same as the mean value and it is 
3.0. Assuming the thrashing threshold to be at NAP = 3.5 
we find that the probability of thrashing is 40 percent. 
There is only a 25 percent probability of being in the 
optimum region (2.5~NAP~3.5). Of course the multi­
programming level depends on what the users are doing. 
It seems that 35 percent of the time the multiprogram­
ming level is less than 2.5, meaning that the users are 
not active enough to impose a heavier load on the sys­
tem. From the efficiency standpoint it seems that, 
should the service demand be large enough, it is better 
to tolerate some thrashing (e.g., NAP =4.0) than to be 
overly anxious to avoid it, imposing, for example, 
NAP =2.0. 

CONCLUSION AND FUTURE WORK 

The system described permits evaluation of the be­
havior of CP-67 in a given environment. The limiting 
factor was found to be main memory, since neither the 
CPU nor the I/O channels were saturated. Main mem­
ory has been increased to 1024K bytes, and the meas­
urement system has permitted evaluation of the new 
configuration. 

Since the original dispatcher does not prevent thrash­
ing, it has been modified to follow a working set policy. 
Data are being collected to analyze its behavior. In 
particular, more information is needed about process 
resource demand and I/O behavior. 
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LSI and minicomputer system architecture 

by L. SELIGMAN 

Data General Corporation 
Southboro, Massachusetts 

INTRODUCTION 

The direct impact of Large Scale Integration (LSI) on 
minicomputer system architecture has been and will 
continue to be evolutionary and incremental, not revo­
lutionary. 

LSI has been applied to minicomputers most effec­
tively in the form of an incrementally improved tech­
nology. When well understood, it has offered predictable 
cost reductions and performance improvements. It has 
been most successful commercially when combined with 
other factors such as improved core memory technology 
and imaginative new approaches to minicomputer 
packaging. While the combination of these factors has 
been steadily driving prices down and performance and 
reliability up, we are not likely to see the bottom drop 
out of prices. There will not be a full scale minicomputer 
in every gas pump in the near future; nor will there be 
such dramatic improvements in minicomputer per­
formance that minis will replace large System 360s one 
for one. 

INDUSTRY lVIATURITY 

Although technological advances, including increased 
use of LSI, have improved both price and performance, 
the recent maturing of the industry has had a more 
dramatic impact on the minicomputer market; thus, it 
has also had an indirect impact on the technological 
base of the industry. 

A few years ago, there were many companies selling 
minis. The cost of entering the market was low, and 
many of these companies enjoyed some initial success. 
In the last few years, however, price competition has 
increased significantly, and the number of manufac­
turers has shrunk. Concurrently, the OEM mini­
computer market has grown, such that, while there are 
many fewer companies in this business today, those who 
remain are each manufacturing thousands of units a 
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year. These large minicomputer manufacturers are 
necessarily becoming very manufacturing-oriented. 
Their production methodology is growing to resemble 
that used in producing consumer electronics. Indeed, as 
Figure 1 shows, a modern mini with 32,000 16-bit 
words of memory and several peripheral controllers is 
about the same size as a stero receiver. 

V olume production of such a complex product has 
been facilitated by the improved reliability provided by 
the new technology. In fact, the greatly increased reli­
ability of the modern mini, based in part on the use of 
LSI, has been a major factor in its proliferation, es­
pecially in real-time systems. 

The basic cycle of a maturing industry-larger mar­
ket, fewer manufacturers, better product, higher vol­
ume, increased manufacturing orientation-has natu­
rally driven prices down and opened new application 
areas. 

The indirect impact of LSI grows out of the business 
cycle as each of the minicomputer manufacturers re­
maining use many more integrated circuits. The suc­
cessful manufacture of complex integrated circuitry re­
quires high volume to obtain the high yields required 
to achieve profitability. Without large volumes, LSI 
manufacture is burdened with high prices, low yields, 
stalled development programs, and money-losing sales 
efforts. However, as minicomputers begin to use more 
LSI-more because the product design calls for more 
LSI per unit, and because more units are being made~ 
large IC production develops. At this point the snow­
ball effect begins to work beneficially. There are large 
circuits requirements, higher yield, lower costs, larger 
orders. This process is very much in keeping with the 
evolutionary character of changes in mini price/per­
formance. That is, the manufacturers are increasing 
their use of LSI technology in predictable, evolutionary 
way, and not as a means to a breakthrough. 

A third element in the growing maturity of the in­
dustry has been the diffusion of computer-oriented pro­
fessionals into most industries. Many of the students 
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Figure I-A modern minicomputer with 32,000 words of mem­
ory and several peripheral controllers requires only 57<1" of rack 

space 

who had hands-on experience with minicomputers in 
the university environment will apply this experience 
to the development of minicomputer based systems for 
specific applications that had not previously used com­
puters, and they contribute a wealth of ideas to the in­
dustry itself. 

EFFECT OF LSI 

While the result of these technological and business 
developments has been an evolutionary improvement 
in the price, performance, and reliability of minicom­
puters, the effect of the improvement has been revolu­
tionary in one important area-the basic architecture 
of medium-scale computer-based systems. 

There have been two elements in the revolution. 
First, the minis are real and system designers can trust 
them. They have become inexpensive, so inexpensive 
that they are impossible to ignore; and they are re­
liable, largely because they contain far fewer com­
ponents and are built in long production runs. For those 
applications with emphasis on logical decision making, 
their performance is comparable to large-scale systems.1 

Thus, system designers are using minicomputers in 
new applications such as front ends or preprocessors for 
large business data processing installations; at various 
levels in hierarchical communications systems; in small, 
dedicated accounting systems; and in groups in real­
time control applications. 

The second part of the revolution is more interesting 
and is developed in detail in this paper. As the minis 
have become faster, more reliable, and less expensive, 
they have forced changes in the traditional perception 
of a computer system. Today most minicomputer pro­
cessors comprise a relatively small part of the cost of 

the system. Peripheral devices and their controllers/ 
the system hardware package, and the software to run 
it all costs as much or more than the basic CPU / 
memory package. 

It no longer makes sense to hold a strictly processor 
centered view nor does it make economic sense to base 
all design decisions on a requirement to keep the central 
processor busy all the time. The low total costs of 
modern minis make multiprocessor minicomputer sys­
tems a practical alternative to large multitask mono­
processors, especially in real-time systems which can be 
partitioned into individual functional tasks. 

MULTIPROCESSOR CONFIGURATIONS 

The use of multiple minicomputers, each performing 
some relatively independent function as part of an 
overall system, is a natural extension of the concept of 
the dedicated realtime minicomputer that has evolved 
over the past several years. This technique is in sharp 
contrast to the traditional approach to a real-time ap­
plication, which consists of dropping the entire time­
critical package onto a single processor. The alternative 
approach outlined here substitutes an individual mini­
computer for each of the natural functional subsystems 
of a large-scale application, interconnecting the mini­
processors through an adequate communications path. 

The "traditional" or general multiprocessor system 
is a cross-connected network of processors, memory, 
and I/O controllers (channels); this configuration 
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Figure 2a-Traditional multiprocessor 



shown in Figure 2, is widely described in the literature2 

and is most often proposed for the multitask environ­
ment. 

A number of problems have arisen in the completion 
of the development programs for these systems. Very 
high utilization is considered imperati-;e for these sys­
tems, and a sophisticated multiprogramming executive 
is required to keep the processor busy. Use of a large 
executive control program is acceptable so long as the 
costs of resource allocation and optimization do not 
exceed the savings which can be attributed to its use. 
This goal has not always been realized,3 although a good 
deal of research has been done on "balanced" resource 
allocation.4 Minicomputer multiprocessor systems will 
inherit similar problems if configured in the traditional 
patterns. In addition, these problems would have to be 
solved in light of the particular constraints imposed by 
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Figure 2b~Associated support processor 
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Figure 3-Processor and memory subassemblies 

minicomputers, especially the amount of software de­
velopment resources which can be applied economically. 

"Wrhile there are a number of these traditional multi­
processor systems in use today, many more multi­
processor systems are organized in the form of a main 
processor and one or more smaller support processors. 
The processor cost in each system is often sufficiently 
low compared to the cost of the peripherals required to 
support the data base that it is economical to increase 
capacity with additional processors. 

This associated support processor concept is less ele­
gant, but it has been more successful commercially, 
mainly because the program development efforts re­
quired to make it operational are within the resources 
of the various manufacturers. The support processors 
function primarily in the I/O area, freeing the main 
processor to perform computational functions, while 
communications, file maintenance, and most I/O ac­
tivities are handled elsewhere. Even without an ex­
plicitly programmed support processor, a typical large 
scale system is a multiprocessor in that the data chan­
nels and some of the peripheral subsystems (especially 
the disk) contain a substantial instruction processing 
capacity. 

The increased use of LSI imposes some new economic 
constraints, especially in regards to multiprocessor 
configurations, on minicomputer systems engineering. 
The cost of the central processing or memory units are 
so low that one is forced to view them as modules. In 
fact, in the case of the Nova 1200 series, as shown in Fig­
ure 3, the processor is a single replaceable printed 
circuit card as is an 8192-word memory module. Other 
modules, for example a magnetic tape or disk controller, 
are about equally complex as a processor. Since the 
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manufacturing volume of the processor module is 
higher than the others, its sales price can be lower. 
Thus, the use of multiple processors need not add sig­
nificantly to the system cost. 

Once it is decided that a multiple processor approach 
is the most suitable for a particular application, the 
intramodule connection facility must be selected. Due 
to the small physical size and low cost of the modules, 
the interconnection facility and the mechanical pack­
age(s) must be low in cost or much of the potential 
economic advantage of LSI is lost. Yet, the intercon­
nection facility must support the extremely high com­
bined data rates found at the processor-memory inter­
faces. 

The generalized crossbar interconnection scheme used 
in the traditional multiprocessor does not meet these 
needs. Nor does there seem to be a general solution to 
the multiprocessor system design problem. One does not 
simply replace a single $200,000 large scale processor 
with 50 or fewer $4,000 minis, however tempting. How­
ever, a number of specialized minicomputer systems 
have been developed with the concept of the mini as a 
system element, and some general principles can be 
abstracted from these designs. As implemented on the 
minis, none are multiprogramming systems but by 
necessity they would have been if they had been imple­
mented on a one or two processor large scale machine. 
They are all organized in a form similar to the associa­
tive support processor concept. A processor and suf­
ficient storage to hold its application program and 
data buffers form a module. Several of these modules 
are connected via a high speed interconnection bus, so 
that data and control information can be passed among 
the several functional programs. 

THE PROCESSOR/STORAGE MODULE 

The processor/storage module approach of Figure 4 
(PSlVI) calls for the loose interconnection of a number 
of such modules into a single system according to a 
partition of the overall application into functional 
tasks. The modules operate independently but are tied 
together via an interconnection bus that allows a 
number of concurrent inter module logical communica­
tions links to be established. Processing is thereby 
distributed across the system rather than concentrated 
at a central point. 

The logical basis of the PSlVI approach is "locality", 
which is the observed phenomenon that the memory 
address patterns generated by a processor are not 
random but exhibit a strong clustering. This principle 
has led to the development of many storage hierarchy 

systems ranging from cache memories in modern large 
scale machines5 to various overlay systems like the 
chaining feature in Fortran to demand paging time­
sharing systems. The success or failure of these various 
approaches depends on the relationship between the 
a.mount of locality encountered and the overhead in­
curred on nonlocal references. The general problem is 
difficult to model mathematically, although in recent 
years several approaches show promise. 

Locality requires, especially in real time systems, that 
certain portions of the program be resident in primary 
(low access time, executable) memory; other portions 
can be brought in as needed. l\Iinicomputer economics 
are such that each memory partition might just as well 
have a processor associated with it. One would then 
think of the memory as defining a function, specializing 
a processor for a task just as read-only control memory 
has been used to define the function performed by 
microprogrammable controllers. 

The interconnected processor/storage module or­
ganization described here constrains the programs 
'written to a form that is highly local. Like chaining in 
Fortran, inter module references are quite explicit and, 
hence, visible to the individual programmer 'who most 
optimally partition the program. 

Not all of the individual minicomputer subprograms 
need come directly from a partitioning of the task. A 
PSlVI can be used as a flexible, programmable controller 
to enhance the performance of peripheral equipment. 
In the message switching system example below, the 
disk control program and associated processor, together 
with a simplified hardware controller, perform many of 
the more sophisticated key search functions that would, 
in a large scale system, be performed in part by the file 
controller itself. The major advantage of the mini as a 
controller is that it can be programmed by the user for 
its particular task rather than micro-programmed at 
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Figure 4-Processor/storage module system organization 



the factory for a generalized task. It is far easier to 
modify a factory supplied operating system than to alter 
firmware. 

In addition, programs can be swapped in and out of a 
physical memory through the inter-module communica­
tion facility. In such a situation, one module would 
have secondary storage associated with it and would 
distribute programs on request (or by some scheduling 
algorithm) to other modules. In essence, it would act as 
a (micro-) programmable multi-port disk controller 
serving many processors and would perform certain 
system level executive functions. 

The hardware actually used to interconnect the pro­
cessor is termed a multiprocessor communications 
adapter (MCA). One lV[CA is attached to the I/O bus 
of each computer in the system, and the adapters are 
connected together by a common communication bus 
which is time-division multiplexed among the adapters. 
Although a single circuit module, an M CA actually 
contains independent receiver and transmitter sub­
sections, allowing simultaneous reception and trans­
mission of data. Each interface is connected separately 
to the data channel. The program need only set up an 
interface for receiving or sending, and all transfers to 
and from memory are then handled automatically by 
the channel hardware. A processor with an adapter can 
establish a link between its transmitter and any re­
ceiver it designates, provided that the receiver adapter 
has been initialized for reception. 

A number of logical links concurrently share the single 
communications bus using time-partioning multiplexer 
circuitry built into the adapters. If there are N logical 
links established and communications is proceeding on 
all, each link receives l/N of the communications bus 
time. The bandwidth of the bus is 500 KHz (1 million 
bytes per second). However, this rate will only be ob­
tained when a large number of links are active concur­
rently as data rates are primarily determined by the 
processor's channel facilities. The typical data rate on 
a single link for a pair of Nova-line computers with high 
speed data channel feature is 150 KHz. 

Each adapter has a unique identifying number as­
signed to it. These codes are used to specify the number 
of a second adapter to which the first is to be logically 
connected. Upon receipt of the first data word from some 
transmitting adapter, the identifying number of the 
transmitter is set into the receiver adapter status reg­
ister; the receiver will subsequently accept further data 
only from the transmitter, i.e., it "locks" to that trans­
mitter. It must be explicitly unlocked by the receiving 
processor's program. 

A number of the specifications of the lVICA arise from 
the need for the whole system to remain functional 
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despite a hardware or software failure. The transmitter 
registers must be initialized by the transmitting pro­
cessor; and the receiver registers must be initialized by 
the receiving processor. Thus, a transmitter cannot 
force data into a receiving processor at addresses not 
specified by the receiver. Transmission of a block termi­
nates when the number of words transferred satisfies 
the transmitter or receiver with the shorter word count. 
In addition, a receiving processor is not only protected 
against a failing transmitter as described above, but 
the hardware is arranged so that any of the intercon .... 
nected computers can be stopped or have their power 
switched off without affecting the other computers still 
in operation. If a processor adapter attempts to trans­
mit data to an unavailable receiver adapter, a timeout 
interrupt will occur after a delay of approximately 10 
milliseconds. If the receiver is unavailable because it is 
linked to another transmitter, the transmitter may be 
restarted for further attempts or the data may be 
routed to a different receiver. 

The size and nature of the data transmission can fol­
low any convention established by the user; no particu­
lar structure is forced by the hardware design. In a rela­
tively simple system in which the size and nature of the 
data block to be transferred is always known in ad­
vance, the receiver can simply initialize itself to accept 
the next block at the completion of the previous trans­
mission. 

If the exact size and nature of the data blocks is 
determined dynamically, a control block specifying the 
nature of a transfer can be transmitted before the actual 
data block. With such a convention, the receiver ini­
tializes itself to accept a control block of standard for­
mat and unlocks itself. The first word transferred to the 
receiver locks it to the sending transmitter by setting 
the transmitter's code into its status register, locking 
it to that adapter transmitter until explicitly unlocked 
by the program. Thus, once the first word in a control 
block is accepted, the receiver is locked to that trans­
mitter and can be initialized to accept subsequent 
data blocks from the appropriate transmitter. 

Alternatively, the control block from adapter A to 
adapter B can be a request for data. Adapter B's trans­
mitter can be started sending the desired data while its 
receiver is reinitialized to accept a new controf block. 
The hardware itself does not distinguish between a 
data and a control block. 

The first sample system using the PSM approach is 
shown in Figure 5. The function of the system is small 
scale message switching and it uses the separate control 
and data block technique. Separate processors handle: 
(1) interfacing to synchronous and asynchronous lines, 
(2) disk queuing, and (3) executive and journal func-
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tions. The system is an analog of its large scale predeces­
sors in the sense that PSM's duplicate the functional 
software components. 

The synchronous and asynchronous line control 
processors duplicate the functions of a transmission 
control unit as well as the functions of the line-control 
and polling-sequence subprograms normally run in the 
central processor. The number of processors required 
for these functions is determined by the total combined 
line rate supported. It can vary from one to several 
depending on the capacity of the rest of the system. 
Similarly, the disk processor duplicates the key search 
functions performed by more sophisticated large scale 
computer disk subsystems. It also decreases effective 
disk access time since it can use its core (up to 64K 
bytes) as a data buffer in three ways: First, write oper­
ations as seen by the line control processors are virtually 
immediate, as the data can be passed through the MCA 
at 300 K bytes/sec. to a primary memory buffer area 
for future writing on the disk. Second, the queuing 
processor can optimize the order of seeks to the disk, 
thereby reducing disk latency. Finally, if sufficient pri­
mary memory buffering space is available, the queuing 
processor can look ahead in the queue for output mes­
sages. In some cases, a message accepted by the queuing 
processor would be output directly from primary mem­
ory if it had not yet been written on disk. All of these 
techniques are possible in a single large scale processor 
as well as in the multiple mini configuration; however, 
they are less practical, due to the relatively higher price 
of the needed primary memory and limited processing 
time available. 

For lines using the bisynchronous communication 
discipline, the synchronous line processor is definitely 
needed. The control sequences required by that com.;. 
munication discipline are complex and expensive to 
implement in hardware. By using software drivers, not 
only can the control 'procedures be handled for a large 
number of lines, but a variety of other line disciplines 
can also be accommodated (i.e., "foreign" terminals 
can easily be added to a system.) 

The journal and executive/monitoring functions are 
traditional. As the disk is basically organized as a ring 
buffer, older messages can be copied from it onto tape 
during the system's idle periods in order to keep as 
much space as possible available on disk. A second tape 
keeps a permanent record, including sequence numbers, 
terminal ID's, etc., of system activity. The executive 
function is primarily active in case of error, rebuilding 
the system after error through journal tapes; it also 
responds to system level messages, such as requests for 
retransmission of an earlier message. 

The significant point is that nmv functions and ap­
plications modules are not limited by total computa­
tional capacity, because additional processor modules 
can be added as necessary. 

A second example of the PS::\I approach is the experi­
mental multiprocessor small computer system developed 
at the Plessy Laboratories for the control of a small tele­
phone exchange.6 The design is inherently extensible 
and allows for better performance for both voice and 
data users since the processing capability is distributed 
among the several processor/memory modules, the 
number of which can be varied according to the size of 
the switching network being controlled. The modules 
are interconnected via a "ring highway" data trans­
mission path similar to the previously described multi­
processor communications adapter. 

The organization of the control programs for the 
multiprocessor complex is almost identical to the 
organization used in the (essentially) single processor 
telephone exchange control developed at Bell Labora­
tories. 

In both cases, large tables stored in memory define the 
state of the switching network itself, and individual, 
table-driven functional programs are run to implement 
the various stages in the completion of a call. The major 
difference between the two approaches is that a spatial 
distribution of programs across several processors is 
used in the former, while a time division of the proces­
sor is used in the Bell System No. 1 ESS. The amount 
of interprogram data movement is proportional to the 
number of calls that can be completed per second. This 
number is relatively small, since it is limited by the 
electromechanical nature of the switching equipment. 
A detailed description of the functions performed is 
beyond the scope of this paper, but such tasks as dial 
pules accumulation, network computation, billing, and 
trunk signaling are typical. 

A second important distinction between the Plessy 
and Bell systems results from different goals influencing 
the tradeoffs between the costs and benefits of redun­
dancy and error detec tion. The micro-synchronism of 
the two computers used in No.1 ESS allows for the 



immediate detection of hardware errors at the cost of 
doubling the amount of hardware required. The PSM 
approach allows as few as one additional module to be 
used for lower cost redundancy but does not provide as 
good error detection. Dual micro-synchronous pro­
cessors could, of course, be used as modules in the 
PSM approach which is probably less susceptible to 
software errors. In addition, many of the real-time 
problems encountered in a time-division, traditional 
multitask system can be avoided because modules can 
be added as the traffic load increases. In fact, as in the 
message switching system, the modular design facili­
tates the duplication of a module or application pro­
gram when use of that program exceeds the available 
subsystem capacity. 

SUMMARY 

A number of technical and economic arguments have 
been presented for the use of multiprocessor minicom­
puter systems. It is hoped that the examples given 
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will spur the development of a methodology for system 
design. 
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Approaching the minicomputer on a silicon 
chip-Progress and expectations for LSI circuits 

by H. G. RUDENBERG 

Arthur D. Little, Inc. 
Cambridge, Massachusetts 

INTRODUCTION 

Technological progress in semiconductor integrated 
circuits during the last five years has been truly as­
tounding, and the results of this progress are being 
aggressively exploited in the designs of new minicom­
puters. During the 1960s, effort in minicomputer 
design was concentrated on applying the low price, 
high speed, and ever-increasing complexity offered by 
the integrated circuit industries to the original architec­
tures so as to provide greater speed and particularly 
lower cost. lVluch of this effort consisted of substituting 
first 1\181 and now LSI circuits for the simpler inte­
grated circuits with which previous minicomputers 
were implemented without greatly changing either 
archi tecture or structure and programs. ""Vith such 
substitution, however, tremendous decreases in system 
cost and some increases in speed were accomplished. 
Most recently, new structures and architecture are 
being examined so as to further extend the capabilities 
as well as economy of minicomputers. 
Especially impressive has been the impact of LSI on 

small, portable electronic calculators; one can readily 
expect a revolutionary impact soon on minicomputers. 
For example, during 1969-70, the electronic calculators 
then sold required five separate lYIOS/LSI devices. 
Present calculators function with two or three different 
devices, and one now being developed performs all 
calculating functions with a single large M OS /LSI 
device. In these examples, modern LSI semiconductor 
technology has created the LSI calculator-on-a-chip, 
which requires only the input keys, output display, and 
power supply in order to provide the four major 
mathematical functions for up to sixteen digits. Soon 
we shall similarly see the microcomputer and the 
minicomputer-on-a-chip or possibly two or three 
chips for separate memory logic and interface. A 
microcomputer of modest capability using four-bit 
words has already been conceived and implemented. 

775 

Before attempting to evaluate the possibilities and 
assess the likely impact of recent advances in LSI 
technology on the minicomputer field, we shall examine 
the progress made to date and, from this, draw infer­
ences about likely developments over the next several 
years. 

PRESENT ACCOMPLISHl\1ENTS 

Performance improvements 

The great progress achieved by the semiconductor 
industry during recent years has been widely docu­
mented. LSI circuits underwent considerable improve­
ments between 1965 and 1970, as shown in Table 1. 

TABLE I-Best Characteristics Available in Integrated 
Circuits or LSI 

Function 

Switching delay 
(nanoseconds) 

Device complexity per chip 
Gate circuits 

Bipolar 
MOS 

Bit density 
Bipolar 
MOS 

Price per device package 
Per gate or circuit function 

Bipolar 
MOS 

Per memory bit (RAM) 
Bipolar 
MOS 

Source: Arthur D. Little, Inc. 

Factor of 
Improve-

1965-66 1970-71 ment 

12 1.2 10:1 

12-16 150 1:10 
100 5-10,000 1:100 

4 256 1:64 
32 1,024 1:32 
$2.00 20¢ 10:1 

$1.00 4¢ 25:1 
$0.30 2¢ 15:1 

$4.00 6¢ 65:1 
$1.00 1¢ 100:1 
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Figure I-Speed of bipolar integrated circuits versus year 
of introduction 

These improvements can also be seen from Figures 1-3, 
which present the achievements in speed, complexity, 
and price of LSI circuits during this period and project 
their trends to 1975. 

Trade-off relationships 

The data of Figures 1-3 and Table I represent peak 
achievements of devices offered by the industry; 
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naturally, not all of these peak achievements can be 
obtained simultaneously from the same device. How­
ever, by examining commercial offerings more closely, 
trade-off curves depicting the available relationships 
between several of these factors can be determined 
which describe the data available for any technology 
at a given time. 

Of considerable interest are the performance trade­
offs against price. With increasing circuit function 
complexity, the price of mass-produced bipolar logic 
gate circuits will obviously increase due to the decreas­
ing yields obtained for large, complex silicon devices. 
Ultimately, when device size or complexity measured 
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Figure 3-Price of bipolar logic circuits 

by the number of gate circuits per module rises into the 
hundreds, the yields become low and cost of production 
rises disproportionately rapidly. Figure 4 depicts this 
relationship for some commonly purchased TTL 
circuits. These prices represent recent quotations for 
quantities of Y2 to 1 million units per year and are 
believed representative of the present status. 

A more useful picture is obtained by dividing the 
price by the number of gate circuits contained on each 
chip, thereby obtaining the price per circuit function; 
In mid-range, this price of bipolar TTL circuits ranges 
between 3¢ and 4¢ per circuit function. It is readily 
seen that for devices of low complexity one primarily 



pays for the packaging; in devices of high complexity, 
yields become of overwhelming importance and actually 
raise the price per circuit function. 

This mid-range price has decreased greatly from year 
to year and depends, of course, on the volume of 
purchasing, the type of package (such as military or 
commercial), and other factors as well as the circuit 
technology used in implementing the logic functions. 
Figure 3 illustrates the time development of this 
economic figure of merit for logic, the price per gate 
function. In 1965-66, the cheape3t logic circuits readily 
available were DTL circuits, whereas at present the 
cheapest bipolar integrated circuits are TTL, and some 
still less expensive logic circuits are MOS. It is seen 
that the reduction applies to the cheapest units avail­
able as well as to the average for the industry; the latter 
is generally three or four times higher, since it represents 
also the effect of smaller unit volume of some types as 
well as military and specialized packaging. 

In a like fashion, one may survey the price/speed 
relationship by plotting such minimum function prices 

en 
a: « 
..J 
..J 
0 
C -w 
u 
a: 
Q.. 

10 

1 

0.1 

PRICE PER DEVICE 
PACKAGE 

0.01~-...I----"--'---'---""'"---

1 2 5 1 0 20 50 100 
GATE CIRCUITS PER DEVICE CHIP 

SOURCE: ADL 

Figure 4-TTL logic price (1971) versus complexity 

Approaching the Minicomputer on a Silicon Chip 777 

10 

en 
a: « 
..J 
..J 

-0 1965-66 
C 

w .... « 
(!) 

(J 

(!) 

0 
..J 

a: 
W 
Q.. 

W 
(J 0.1 
a: 
Q.. 

~ 
=> 
~ 

1970-71 

X « 
~ 

0.01 '--__ ....;._~_"_ _____ ~ 

100 10 1 
GATE CIRCUIT DELAY (nsec) 

SOURCE: ADL 
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of present offerings against the gate circuit delay or 
speed (Figure 5). This shows the enormous improve­
ment achieved during the last five years in both lowered 
prices and faster performance. A similar survey of 
memory bit prices (Figure 6) also illustrates a dramatic 
improvemen t. 

Price/performance index 

These classes of devices may be compared by means 
of a price/performance index. The "present best" 
figure is obtained by multiplying the price per bit or 
gate function times the gate or access delay. The result 
is a price/performance index number representative of 
the cost per unit speed of the individual logic and 
memory components. When plotted against time as in 
Figure 7, it illustrates the dramatic improvement in 
price/performance achieved by industry during the 
late 1960s. It would be too much to hope that this 
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revolutionary trend will continue for the next five 
years; nevertheless, we expect considerable further 
improvement on which to base new component offer­
ings, even though we have barely begun to utilize all of 
the performance now available from LSI circuits. 

APPLICATIONS TO MINICOMPUTERS 

The earliest applications of LSI have been in logic. 
This has usually entailed straightforward translation of 
the transistor circuits of the earliest minicomputers to 
integrated circuits and now to LSI. Thousands of tran­
sistors are normally manufactured by the semicon­
ductor producer on a single wafer and then cut apart 
and packaged individually, only to be wired together 
again on a circuit board. In the innovation of integrated 
circuits, the interconnections are placed over the 
transistors. The wafers can then be cut into groups of 
devices that are already interconnected internally. 
With more recent improvements in semiconductor 
technology, these groups or circuit functions of the 
integrated circuit were not cut apart but were further 
integrated and interconnected on the same silicon chip, 
leading to large-scale integrated circuits or LSI. The 
masks also had to be shrunk so that a complex LSI 

circuit could still be squeezed onto a silicon chip perhaps 
Ys inch square. This development naturally also greatly 
simplified the assembly of Minicomputers and of all 
other types of electronic systems, as dozens, even 
hundreds, of packages containing LSI circuits need 
only to be mounted and further interconnected to 
comprise a highly capable electronic computing system. 

At present, more inventive applications are being 
developed to capitalize further upon the circuitry 
which can be included along with the conventional 
serial logic of an integrated circuit semiconductor 
chip. One example is the selection, multiplexing, and 
decoding circuits which permit channeling appropriate 
outputs of the LSI logic to the several communication 
buses that interconnect various portions of a 
minicomputer. 

A major part of the circuitry of every minicomputer is 
concerned with memory. Cores were initially used for 
this function, but a considerable number of integrated 
circuits were needed to perform the addressing, drive, 
and sense functions necessary for utilizing core with a 
few thousand words. At present, LSI semiconductors 
are becoming price competitive with core memories 
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TABLE II-Implementation of Small Computing Machines 
with Logic Circuits 

Small computer 
Minicomputer 
Terminal 

(simple) 
Desk 

calculator 

Avg. no. of Circuit 
Functions 

Transis-
tors IC's 

1965-66 1970-71 Increase 

10,000 30,000 1:3 
2,000 5,000 1:2.5 

600 1,000 1:1. 7 

200 300 1 :1.5 

No. of LSI and 
IC Device 
Packages 

1970-71 Decrease 

1,000 10:1 
100 20:1 
30 20:1 

3 66:1 
(soon 1) (200: 1) 

(Figure 6) and with their associated interface circuits for 
memories of a size suitable for minicomputers. Thus, in 
the future, semiconductor memories are likely to be 
used extensively. However, a somewhat different 
systems organization will be necessary to allow for the 
refresh and access or cycle timing required for dynamic 
M OS memories. 

Serial shift registers and read-only memories are 
also being used in addition to random-access semicon­
ductor memories. The most recent trend we have 
observed is the inclusion of specialized ROM devices to 
provide fixed microprogramming or look-up tables for 
special functions and sequences. 
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Figure 8-Functional complexity of computers 
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The considerable reduction in package count attain­
able through the use of LSI semiconductors is shown 
in Table II. Between 1965-66 and 1970-71, while 
the functional complexity of minicomputers at least 
doubled, the actual package count of comparable 
machines decreased by a factor of 20 through the aggres­
sive inclusion of LSI circuits for most electronic 
functions. 

Figure 8 illustrates the number of circuit functions 
generally utilized in minicomputers and various other 
classes of equipment at a given time. Of course, con­
siderable variations from this generalization are some­
times encountered. The ensuing count of logic and 
memory LSI packages is projected into the future in 
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Figure 9-Lower limit of LSI and IC devices in minicomputers 

Figure 9. This figure, however, presents a rather 
optimistic situation on the assumption that available 
LSI technology is utilized fully with custom circuits. As 
this assumption is not always economically justified, 
actual machines may lag this curve and use more but 
simpler standard integrated circuit devices to achieve 
interfacing and control with integrated circuits and LSI 
circuits already available. 

TECHNOLOGICAL IMPLEMENTATION 

Since· the initial development of simple integrated 
circuits, a number of processes and circuit technologies 
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have been adapted to semiconductor integrated circuits 
and more recently to LSI. During most of the decade, 
bipolar integrated circuits were fabricated using planar 
diffusion processes. Logic circuits developed from re­
sistor-transistor logic (RTL) to diode-transistor logic 
(DTL), transistor-transistor logic (TTL), and now, for 
the fastest speed, emitter-coupled logic (ECL) or 
common-mode logic (CML). For a considerable time 
to come, TTL will be the most popular bipolar tech­
nology for minicomputers, as it is available in a wide 
range of devices at reasonable speed and low price. 1Vlost 
recently, several process variations, such as "collector 
diffusion isolation," are being developed to a practical 
status to provide lower cost bipolar devices for simpler 
processes, albeit at somewhat lower speed. 

Since 1965 a form of transistor other than the bipolar 
transistor, termed the metal-oxide-semiconductor tran­
sistor (MOS), has been developed for practical applica­
tions in silicon devices. As now implemented, the 
various forms of MOS technology have a smaller 
cell area for each function and require fewer processes 
for manufacture (which leads to higher yields), but 
they are slower than bipolar integrated circuits. Thus, 
MOS is exceedingly well suited to LSI, and especially 
to economic use in minicomputers. 

Initially, most MOS devices used the P-channel 
process; now a few memory circuits use the more 
difficult N-channel process giving higher speed, and a 
complementary (C-lVIOS) structure utilizing both N­
and P-channels has been perfected. The latter, while 
somewhat more expensive to fabricate than P-MOS, 
nevertheless is expected to be cheaper and a little 
slower than TTL. C-JVIOS is especially attractive for its 
low power drain and high noise immunity. Thus, it 
may well become the preferred device of the future, 
promising a good compromise in optimizing price/ 
performance trade-offs among different semiconductor 
technologies. 

11VIPLICATIONS 

The present impact of LSI is a restructuring of the 
organization and pgrtitioning of minicomputers. To 
arrive at a useful architecture, the minicomputer must 
be partitioned according to the availability of LSI 
circuits and the efficient use of these building blocks 
throughout the minicomputer, as well as to preserve 
compatibility with programs previously used. Four 
directions are observable at this time: 

Intermingling of memory and logic. Each LSI 
semiconductor memory circuit can now be basically 

self-contained (with address, decoding, drive, and 
sense circuits where needed) in an economical size. 
This circuit will also include chip-select for power 
control or input selection as well as output busing 
or multiplexing control. Thus, the semiconductor 
memory circuit can be placed within this system 
wherever it is needed, not where the economics 
of core circuits sharing such peripherals dictates. 

Utilization of high internal communication speed. 
Because a minicomputer does not need to operate 
at the highest speed of large machines, it can 
benefit somewhat from the speed/price trade-off. 
The great improvement in price/performance index 
of both LSI logic and semiconductor memory can 
provide much more capable small computers 
containing only a few functional blocks. Further­
more, as this index at a given time is relatively 
insensitive to the particular speed and performance 
compromise, a relatively few high-speed memory 
and logic circuits used serially may be as economical 
(in terms of component cost) as a larger number of 
slower components having longer delays. This 
permits trade-offs between hierarchical memory 
levels and shared high-speed logic against larger 
parallel or interleaved logic and memory circuits 
to obtain a structure most suited for specific 
application. 

Use of read-only memories and programmable 
ROJl,f's "firmware." This is now the case even in 
minicomputers. Microprogrammed memories and 
array logic are especially simple to implement in 
the short word lengths that suffice for minicom­
puters. The same reasons of short word length 
might even lead to consideration of content­
addressable memories in future special-purpose 
computers, whereas such memories are still much 
too complex for use in general-purpose machines 
having long words and large instruction sets. In 
short, the present size of LSI logic and memory 
arrays is ideally suited to the design of small 
computing systems. 

Further reduction of package count. With the 
development of a wider range of LSI to implement 
all functions or subsystems desired for minicom­
puters, a further drastic reduction of package 
count can be projected. We anticipate that 
minicomputers will be designed in the future with 
as few as 10-20 LSI complex circuits for all memory, 
logic, and control functions, yet which have 
capabilities exceeding their present counterparts. 



Already we have seen electronic calculators 
shrunk to a single LSI device. A four-bit micro­
computer that uses as few as four different single 
LSI devices is now available, and we should soon 
see further applications of semiconductor 
LSI to the next generation of highly compact 
minicomputers. 
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The external access network of a modular computer system* 
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INTRODUCTION 

A modular time-sharing computer system, called 
PRIME, is currently under development at the Uni­
versity of California, Berkeley. Basically, PRIME 
consists of sets of modules such as processors, primary 
memory modules, and disk drives, which are dy­
namically reconfigured into separate subsystems. One 
ramification of the architectural approach is the need 
for a medium to accommodate three classes of com­
munica tions: 

(1) those between any processor and any other 
processor, 

(2) those between any processor and any disk drive, 
external computer system, or other device in 
the facility pool, and 

(3) those between primary memory and any device 
in the facility pool. 

This paper describes the External Access Network 
(EAN) which was developed for this purpose. The 
EAN is specialized by certain PRIME implementa­
tion constraints. Otherwise, it is adaptable to any 
system having similar design objectives, or to ag­
gregates of independent computer systems at the same 
site, which share a similar facility pool and which re­
quire system to system communications. 

Such systems are computer networks in the sense 
used by Bell and Newell1: that at least two computers, 
not connected through primary memory, must com­
municate with each other through messages. Although 
primary memory is a shared resource in the PRIME 

* The views and conclusions contained in this document are those 
of the authors and should not be interpreted as necessarily 
representing the official policies, either expressed or implied, of 
the Advanced Research Projects Agency or the U.S. Government. 
This research was supported by the Advanced Research Projects 
Agency of the Department of Defense under Contract no. 
DAHCI5 70 c 0274. 
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system, specific measures are taken to prevent inter­
processor communications through shared primary 
memory pages. It was thought that subsystem in­
tegrity would be more easily protected if messages are 
passed between processors through the EAN. In 
general, separate computer systems can be intercon­
nected by a network like the EAN if they are reasonably 
close spacially, close enough to make high data transfer 
rates economically feasible. For example, the computer 
network at the Lawrence Radiation Labs at Livermore2 

satisfies this requirement. However, it does not neces­
sarily require the availability and security features of 
the EAN. One PDP-6 is used as a centralized switching 
computer, a situation which will be seen to be contrary 
to the PRIME architectural approach. A system more 
similar to PRIME in some respects is the Burroughs 
D825,3 although it is not a computer network by the 
definition we have adopted. Primary memory is the 
medium for interprocessor communications; and an 
external access network, called the "Automatic Input/ 
Output Exchange", is used for communications between 
a facility pool and primary memory. The D825 and 
PRIME share important design objectives, availa­
bility being one of them. The similarities are reflected 
in the external access networks of the two systems. 
However, there are major differences. They stem from 
an additional objective of the PRIME system design: 
to ensure date security to time-sharing users. This 
leads to protection mechanisms described in the text 
of this paper and to the fact that the PRIME proces­
sors do not communicate through primary memory. 

Distances profoundly affect the channel capacity and 
therefore the functional properties of a network. The 
EAN is to be distinguished from the many networks 
designed to operate over great distances. Some simi­
larities do exist in the message formatting, as described 
for the EAN later in the text. For example, the end of 
message tag and the source and destination identifier 
are not new.4 However, these networks are constrained 
to lower channel capacities. One very high capacity 
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long distance network is based upon 1.5 Mbaud links,5 
as opposed to the approximately 20 Mbaud links of the 
EAN. The ARPA network uses more economic 50 
Kbaud links.6 Another distinctive feature of long dis­
tance networks is the way in which availability . is 
achieved. In order to provide routing alternatives, the 
ARPA network has a much more complex structure 
than is necessary for the EAN. Also, the ARPA net­
work uses the store-and-forward method to accommo­
date a non-fully connected structure. The EAN uses 
a relatively simple structure and has no need to store­
and-forward messages. 

Thus, the EAN is significantly different from other 
networks. The difference arises from differing design 
objectives, principally the high channel capacity, 
availability, and data security features of PRIME. 
The design objectives of PRIME, and its implementa­
tion, are outlined in the text and related to the EAN. 
The EAN structure and components are described. 
N et"work control sequences are given and the results 
are summarized. 

SYSTEM ASPECTS 

The design objectives most important to this paper 
are high availability and high data security. Availa­
bility implies that the system remains in continuous 
operation, suffering as little performance degradation 
as possible, during the occurrence of any single hard­
ware or software failure. The PRIME system repre­
sents an attempt to achieve high availability without 
recourse to component redundancy.7 Instead, the 
approach is to develop a modular system which utilizes 
system resources as efficiently as possible, but which 
is capable of continuous operation whenever individual 
modules fail. In addition to continuous operation, the 
system must be capable of maintaining data security 
in the presence of hardware or software failures. By 
data security, we mean that the data of anyone user 
is protected from unwanted intrusions by any other 
user. 

The overall implementation is described by another 
paper in this conference proceedings.8 In summary, 
modules such as processors, primary memory, and disk 
drives, are dynamically reconfigured into separate 
subsystems while the system is running. One sub­
system is designated to run the control monitor which 
defines subsystem configurations by allocating and 
scheduling system resources. Its processor is called 
the Control Processor. The others are called Problem 
Processors. Error detection mechanisms, distributed 
throughout the system, enable the Control Processor 

to reconfigure subsystems to exclude a faulty module. 
When the Control Processor is suspected of faulty 
operation, it is automatically replaced by one of the 
fault-free Problem Processors. The loss of anyone 
module thereby degrades system performance by, at 
most, the loss of one subsystem. 

The fault detection and system reconfiguration 
capabilities both rely upon two hardware entities: 
the primary memory map and the EAN. The map 
serves to partition memory into non-overlapping sets 
of pages, one set per processor. Subsystems are not 
permitted to share pages because to do so would con­
siderably complicate the methods used for insuring 
data security. Instead, interprocessor messages are 
passed through the EAN where various consistency 
checks are thought to be more easily implemented. 
Mechanisms necessary for the isolation of subsystems 
must be built into the EAN. 

An additional objective arises from the fact that the 
EAN must ensure subsystem integrity while ac­
commodating valid reconfiguration and valid message 
flow between subsystems. Mechanisms are described 
later in this paper which aid in the detection and isola­
tion of failures which could lead to the penetration of 
subsystem boundaries. The subject is treated separately 
by another paper.9 Features which ensure availability 
are described in broad terms here, with many imple­
mentation details being omitted. For example, the 
switching characteristics of the EAN are largely de­
termined by a unit called the Switch Matrix. In order 
to circumvent catastrophic power failures, each circuit 
card of the Switch Matrix is powered by a separate 
supply. The loss of one supply removes one subsystem, 
but no more. Full details on the Switch Matrix can be 
found elsewhere.lO 

Other design objectives and PRIME implementation 
features effected the design of the EAN. Evolvability 
is generally accepted as a desirable system feature. In 
our case, evolvability assumes an added significance. 
PRIME is intended to be an experimental system, a 
computer laboratory for the study of various implemen­
tations of a basic architectural approach. Therefore, 
the number and types of devices to be interconnected 
by the EAN could not have been predicted with cer­
tainty at the outset. Our strategy was to establish 
reasonable limits on the growth of the main resources, 
and to strive for simplicity and generality at the EAN 
interfaces. Readily available packaging hardware was 
then chosen which permitted the EAN implementation 
to meet or exceed the requirements determined by our 
strategy. 

Figure 1 shows the initial configuration of the 
PRIME system. The main resources are primary 
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T = interactive terminal connections 

Figure 1-A block diagram of the PRIME system 

memory, processors, and secondary storage. In this 
paper, we group resources in greater detail so that the 
functional characteristics of the EAN can be better 
understood. We distinguish between four kinds of 
resources: primary memory, the processors, the inter­
active terminals, and the facility pool. The primary 
memory resource includes the entire bank of MOS 
memory modules,11 the memory maps, and the memory 
part of the I/O control logic shown in Figure 1, al­
though the latter two are physically housed in the 
processor cabinets. The processor resource includes the 
five META 4 processors,12 and all hardware dedicated 
to the processors (for example, the processor part of 
the I/O control logic shown in Figure 1). Current 
plans call for the interactive terminals to be connected 
directly to the processors, where characters are as­
sembled and relayed to the Control Processor through 
the EAN. All other resources are referred to in this 
paper as devices of the facility pool. 

The EAN has been scaled to the numbers of proces­
sors and devices ever to be found in the PRIME system. 
Preliminary estimates of the balance of tasks between 
Problem Processors and the Control Processor indicated 
that one Control Processor can service approximately 
four Problem Processors. With an initial system of 
five processors, a failure in anyone results in a total 
system degradation of 25 percent or less, an availa­
bility level which seems acceptable for our purposes. 
For these reasons, we have permitted our packaging 

constraints to limit the number of processors to eight. 
Beyond eight processors, plug-in expansion is no longer 
possible; but the next eight require only minor rede­
sign. Each processor has been provided with three 
independent connections to the EAN. Typically, two 
will be used to control on-going transfers between 
primary memory and two independent disk drives. The 
third remains available for interprocessor communica­
tions or for communications with other devices within 
a subsystem. Thus, an eight processor maximum im­
plies a maximum of 24 EAN nodes to be dedicated to 
processors. 

A system with eight processors is estimated to require 
no more that 20 disk drives of the CDS 215 class. 13 

Other devices currently planned for the facility pool 
include magnetic tape units, a time of day clock, a line 
printer, and three other computers: an XDS 940, a 
PDP-5, and a Datapoint 2200. The extensive language 
repertoire of the XDS 940 on campus will be accessed, 
at least initially, by means of a 50 Kbaud link to the 
EAN. The PDP-5 will be used as the processor for a 
graphic terminal. The Datapoint 2200 is part of the 
PRIME maintenance and measurement system. Thus, 
at least 26 devices can be counted. In addition, as will 
become apparent later, communications between 
PRIME subsystems require at least one EAN node 
which otherwise would be used for devices. Therefore, 
the packaging constraints were permitted to limit to 
32 the number of EAN nodes dedicated to devices in 
the facility pool. 

PROCESSOR 
NODES 

SWITCH 
NODES 

DEVICE 
NODES 

MULTIPLEXORS 

m,,; 24 

A FREE SWITCH NODE 

n ,,; 31 

Figure 2-The structure of the EAN 
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THE EAN STRUCTURE 

The EAN has the very simple structure shown. in 
Figure 2. Each path through the EAN consists of two 
terminal nodes linked together by a switch node. Ter­
minal nodes serve the purpose of attaching devices to 
the EAN. A device can be attached to more than one 
terminal node; but each terminal node is attached to 
only one device. As explained in a later section of the 
paper, this device can be a multiplexor which interfaces 
several devices. Terminal nodes are designated as 
either device nodes or processor nodes. Each device node 
is attached to one switch node. Switch nodes which 
are not attached to device nodes are called free switch 
nodes. Each processor node is attached to all switch 
nodes, but at anyone time, at most one switch node 
can be selected by anyone processor node. 

A link between a processor node and a device node is 
established by the processor node selecting the cor­
responding switch node. A link between two processor 
nodes is established by both processor nodes selecting 
the same free switch node. The partitioning into sub­
systems, and therefore the establishing of links within 
the EAN, is determined by the Control Processor. 
However, the dynamic designation of the Control 
Processor prevents the selection of switch nodes from 
being done by one centralized control node. Distributing 
the selection control over all processor nodes makes it 
necessary for the Control Processor to specify which 
switch node a Problem Processor should select. Mech­
anisms are built into each terminal node to guarantee 
that the Problem Processor has made the correct con­
nection. Therefore the Control Processor retains control 
of the EAN and acts as if it were the only processor 
which could establish links. The distinction between 
processor nodes and device nodes is made for economic 
reasons. Not all terminal nodes need to provide switch 
node selection logic and the hardware cost is not 
negligible. 

THE EAN TERMINAL NODES 

As is suggested by Figure 3, terminal nodes consist 
of one, two, or three ports. Each serves a different 
function. A terminal node is customized to a processor 
or a particular device by the choice of ports to be in­
cluded in it. In general, every processor and device is 
considered to be a collection of registers interfaced to 
the EAN, usually including at least the equivalent of 
registers for data input, data output, instruction input, 
and status output. The interfaces are simplified by 

n SWITCH 
NODES 

24 PROCESSOR NODES 

r~--------~A~--------~ 

PROCESSOR NODE 
,--__ ~A'_ __ ___., 

CIRCUITRY FOR 
SELECTING ONE OF THE 
SWITCH NODES 

SWITCH { 
NODE ---------,.,c--f-H-----J-----+-----, 

SEPARATE POWER SUPPLIES 
FOR EACH SWITCH NODE 

Figure 3-Components of the EAN 

DEVICE 
NODE 

providing the Standard Message Port (SMP) for register 
to register transfers. The SMP transfers single words, 
having fixed length and format. A word may be directed 
to or from registers within the SMP itself, for purposes 
of error detection and reporting. All terminal nodes 
haveoneSMP. 

A terminal node mayor may not include a Block 
Transfer Port (BTP) for transfers between primary 
memory and devices in the facility pool. The BTP has 
no fixed word length, transmission format, or error 
checking capability. Consequently, more complexity 
is required of an interface to the BTP; but fewer con­
straints are placed on its design. The purpose is to 
provide a network channel which has a very high 
channel capacity and a wide range of operating char­
acteristics. Very high data transfer rates are necessary 
in order to accommodate disk transfers. A wide range of 
operating characteristics are necessary because the 
device controllers of PRIME are not centralized at 
the devices. In general, the controller logic resides 
partially at the device and partially in the memory 
channels. The controller micro-code resides in the 
micro-code of the processors. Distributed controllers 
are preferred to centralized controllers for economic 
reasons. Memory channels and processor micro-code 
can be shared by all devices. 

Each processor node has one Call Control Port 
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(CCP) which is used to select switch nodes, as pre-
viously described. The following sections outline the 
functioning of each port. 

Call Control Port (CCP) 

A link between a processor and a device is created 
by the selection of the appropriate switch node through 
the Call Control Port of the processor node. Two 
processors create a link to each other by individually 
selecting the same free switch node through their own 
Call Control Ports. 

The CCP has one more function: to disconnect a 
processor node from all other nodes. In effect this 
operation selects a non-existent free switch node. 

Block Transfer Port (BTP) 

The number of signal lines connecting two terminal 
nodes must be as small as possible because the number 
of decoding, driving, and receiving gates increases as 
the product of the number of processor nodes and the 
number of device nodes. The BTP was chosen to be 
2-bits wide, the minimal width which provides the 
desired generality and channel capacity. Transmis­
sion modes can be full-duplex with one line devoted 
to each direction, half-duplex with data on one line 
and clock on the other, or half-duplex two-bit parallel 
with clock and data interspersed. Maximum trans­
mission rates are expected to be 20 Mbauds total 
including clock. This capacity is approximately one~ 
third of the· primary memory speed. 

In PRIME, a BTP is used to transfer data between 
primary memory and disk drives of the CDS 215 class. 
The channel capacity of each drive has been doubled to 
5 Mbauds (data) by accessing two surfaces in parallel. 
One head transfers words with even addresses on one 
line while the other head transfers words with odd 
addresses on the other line. These words are accessed 
from primary memory asynchronously for each line, 
thereby greatly reducing the effect of the skew between 
surfaces caused by interchangeable disk drives and disk 
packs. The half-duplex double frequency transmission 
mode is used to transfer data to and from the disk 
drives, in order to maintain head independence all the 
way to primary memory. 

Standard Message Port (SMP) 

The SMP accommodates register to register transfers 
by sending the 52-bit SMP word shown in Figure 4. 

IE 40-BIT WORD ~ I 

I 32 Ii ~ ~ 
1 1 

1 
l 1 1 sol", 

SOURCE ADDRESS 

PARITY BIT DATA 
DEALLOCATION BIT 

MULTIPLEXOR ADDRESS 
Ilo BIT 

Figure 4-The 40-bit SMP word and 12-bit appendage 

As with the BTP, similar considerations led to a 2-bit 
transfer path for the SMP. Information is transmitted 
bit serially on one line, using double frequency en­
coding. The other line is used to receive synchroniza­
tion signals or messages from the SMP at the other 
end. 

The 40-bit word corresponds to the 40-bit parallel 
path of an interface to a SMP. The implementation of 
the META 4 makes 40 bits convenient, although other 
word lengths would be acceptable. This word includes 
a data field and a multiplexor address field which 
suggests the general structure of an interface to the 
EAN. Terminal nodes are attached to multiplexors 
which channel SMP messages to addressable registers 
of the same or of different devices. In effect, the multi­
plexor address is the address of a register interfaced to 
a SMP. Registers controlled by fixed sequential circuits 
can recognize or generate only their own addresses. 
Registers controlled by processors can deal with any 
address. The I/O bit of this address is separably dis­
tinguishable. It specifies whether the addressed register 
is an input or an output register. Therefore, the sending 
SMP can expect a response message within a fixed 
time duration if the message is addressed to an output 
register. This feature was added to the Sl\tlP for ef­
ficiency. Some other timing source would work as well, 
but more processor time and control storage would be 
required. The lack of a response is a detectable failure 
mode. 

One of the main concepts involved in the design of 
the SMP is transparency of the network. This concept 
is reflected in the fact that anything relevant happening 
at one port is reported in some way to the other port. 
This includes synchronization as well as error detec­
tion. The shaded fields shown in Figure 4 are generated 
and used by the EAN for that purpose. 

The sounding field precedes the message and is used 
to alert and synchronize the receiving S~IP. An error 
is detected if the receiving SMP is in transmitting 
mode. A message received error free causes a signal to 
be sent back to the transmitter. Another signal is re-
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turned to the transmitter when the addressed device 
picks up the message. The absence of either signal is 
detected as an error. All errors detected by the SMP 
of a processor node are reported to the processor as a 
standard 40-bit message having a special multiplexor 
address which identifies error messages. All errors 
detected by the SMP of a device node are transmitted 
to the SMP of the processor node where they are re­
ported in a similar fashion. Therefore the loss of mes­
sages by collision or overlapping is either avoided or 
reported as a failure mode. 

A parity bit is appended by the transmitting SMP 
and checked by the receiving SMP. In addition, the 
receiving SMP checks the format of the bit stream 
(number of clock pulses and time interval between 
them). These two simple checks, with double frequency 
encoding, detect a larger class of errors than without 
double frequency encoding. The probability is ex­
tremely small that error bursts will complement an 
even number of data bits without effecting intervening 
clock pulses. The failure of any of these checks is re­
ported as an error. It should be noted that we chose to 
provide checks on a message basis. Longer messages 
which are made up from several SMP words may 
require other checks at the process level (like check­
sums) to guarantee the contents of the total message. 

The error mechanisms described above prevent loss 
of information by distortion of message contents or by 
message loss. Another mechanism has been introduced 
to protect against transmission of messages to the 
wrong terminal node. The integrity of a link through 
the EAN is ensured by two addresses available at the 
terminal nodes. Each SMP has its own unique wired-in 
source address which is appended to each transmitted 
message. In addition, each SMP has a Source Com­
parison Register which is loaded as part of the protocol 
used to establish a link. It contains the source address 
of the SMP located at the other end of the link. The 
source address of an incoming message is checked 
against the contents of this register. A mismatch causes 
the message to be ignored and an error to be reported. 

The Source Comparison Register is cleared by an 
incoming message having the de allocation bit on. Only 
the Control Processor can substitute a zero source 
address for the wired-in source address of the SMP to 
which it is attached. Thus the clearing of the Source 
Comparison Register returns the usage of the terminal 
node exclusively to the Control Processor. The loading 
of the Source Comparison Register of a device node 
is possible only with a zero source address message. 
Therefore the protocol to establish a link between a. 
processor node and a device node requires the inter­
vention of the Control Processor. This mechanism 

allows the Control Processor to retain control of the 
EAN and to check that the Problem Processors make 
correct connections. By the time a Problem Processor 
is allocated to a subsystem, all of its nodes have selected 
the non-existent switch node, thereby having dis­
connected the Problem Processor from the EAN. Thus, 
a similar loading procedure cannot be used to set the 
Source Comparison Register of a processor node. Each 
Problem Processor must load its own register. It does 
so, through the CCP, as part of the switch node selec­
tion operation. In addition, the cleared state of the 
Source Comparison Register is indicated by a SMP 
signal which is made available to the device con­
troller. Any controller can have special checking fea­
tures which distinguish between the Control Processor 
and Problem Processors. 

EAN CONTROL SEQUENCES 

A presentation of all EAN control sequences is 
beyond the scope of this paper. The examples repre­
sent typical communications within one subsystem, 
and between different subsystems. They are simplified 
by the elimination of steps that are required for higher 
level system control, but not for EAN control. For 
simplicity, SMP is not distinguished from the device 
to which it is attached. Therefore each Problem Proces­
sor, PP, has a source address p; a device, D, is identi­
fied by its source address d; and the Control Processor, 
CP, has source address o. 

The first example allocates a device to a subsystem. 
The Source Comparison Register of a free device is 
assumed to hold the zero source address reserved to 
the CPo A device is considered to be allocated when­
ever its Source Comparison Register holds the source 
address of a PP. 
Allocation of a free device D to a PP: 

1-CP connects itself to D. 
2-CP loads the address p into the Source Compari­

son Register of D with a zero source address 
message. 

3-CP receives an acknowledgment from the 
SMP of D to verify that the Source Comparison 
Register has been loaded correctly. 

4-CP disconnects from D. 
5-Eventually, by means of a processor to processor 

communication, CP instructs PP to connect to 
D. 

6-PP connects to D and loads its own Source 
Comparison Register with d. 
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A path between D and PP is now established, and 
the transmission of messages can begin. The validity 
of the path is checked by PP with the first message it 
sends to D. If the terminal nodes of D and PP have a 
BTP, then transfers to or from primary memory can 
also be initiated. The form of communication neces­
sary for initializing BTP transfers is generally a one­
way stream of messages from PP to D. The memory 
channel of PP must be independently instructed by 
PP micro-code. 

The next example is a control sequence which es­
tablishes a link between CP and PP by request of PP. 
Two assumptions have been made. First, one free 
switch node (N) is dedicated to interprocessor com­
munications. (Consequently, only one pair of proces­
sors can be in communication at any time.) Second, 
there is an interrupt channel (I), separate from the 
EAN, which can be used by any processor to interrupt 
any other processor. 

Initiation of communications by PP: 

1-PP interrupts CP through 1. This is a request 
for communication. If possible, PP then con­
tinues to run its task while waiting for CP to 
satisfy its request. 

2-When CP is willing to communicate with PP, 
it connects itself to the switch node N and loads 
its own Source Comparison Register with p. 

3-CP interrupts PP through 1. 
4-PP then connects immediately to N and loads 

its own Source Comparison Register with zero. 
5-PP sends the first word of the message to CP, 

thereby notifying CP that the link has been 
made. 

SUMMARY 

The PRIME system can be viewed as a spacially 
small computer network for which the EAN serves 
two purposes: to interconnect subsystems, and to 
interconnect devices within subsystems. The archi­
tectural approach represented by PRIME is reflected 
in availability, data security, evolvability, and economic 
features of the EAN. As a result, the EAN has both 
similarities and dissimilarities with other networks. 

Communications with subsystems are made possible 
by very high channel capacities, a feature which dis­
tinguishes the EAN from spacially large networks. 
Data security is accommodated by providing for sub­
system to subsystem communications through the 

EAN, instead of through primary memory, and by 
detecting failure modes which might lead to penetra­
tion of subsystem boundaries. Availability considera­
tions, as well as data security requirements, lead to 
various error detecting and reporting mechanisms 
which are built into the SMP. Other availability 
features are the ability of the EAN to exclude faulty 
modules by reconfiguring subsystems, the ability to 
redesignate any Problem Processor as the Control 
Processor, the limitation of the effect of failures, and 
the network transparency which considerably eases 
fault diagnosis. Economy considerations lead to the 
construction of terminal nodes from three types of 
ports, the provisions for distributed controllers, the 
simplicity of the SMP interfacing, and the simplicity 
of the EAN structure. Finally, evolvability is served 
by plug-in expansion to 24 processor nodes and 31 de­
vice nodes, and by the multiplexor address field which 
permits fan-out from each terminal node. 
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An over-the-shoulder look at 
discrete simulation languages 

by IRA M. KAY 

Southern Simulation Service, Inc. 

The past of simulation languages resembles any other 
history of a subject. For those interested in computers, 
it presents an absorbing story with moments of out­
standing achievement. When Shakespeare said "The 
Past is the Prologue" he preceded the age of the com­
puter, but he recognized tha.t, regardless of the field, the 
history, the habits and the education of those engaged 
in any enterprise shape the way the future will be. Ac­
cepting this hypothesis, it then behooves us to look to 
the past if we are to see what the future holds in digital 
discrete simulation. 

Any practitioner of the art of simulation for a number 
of years ca.n truthfully say that the past ten years have 
been both fruitful and full. The term "fruitful" is used 
in the sense that a relatively new art has been applied 
to such a wide range of subje('ts. Mr. Stanley Reed of 
IBl\I, in describing the applications to the attendees of 
the First Animal Simulation Symposium in Tampa, 
Florida in January 1968 gave a list of applicat.ions, and 
they are repeated here as Appendix 1. Any art that can 
serve this many fields must certainly be classified as 
fruitful! "Full" is used in the sense that simulation 
languages have proliferated as tools to serve the re­
searcher. The author, in an invited paper for the Fifth 
Annual Simulation Symposium provided an inventory 
of general purpose digital discrete simulation languages. 
After excluding any special purpose languages, and of 
course, any digital continuous languages, there were 
thirty-five inventoried and described. An alphabetical 
list of the languages (augmented by later additions) 
is contained in Appendix II, and demonstrates the 
"fullness" of our past ten years. 

One might ask why so many languages have appeared 
on the scene, and wonder about their availability today. 
The "why" is hard to explain, other than to say that in 
many cases pride of authorship kept many going when 
common sense should have indicated that other avail­
able languages would fulfill the needs. In other cases, a 
simulation compiler was required for a specific com­
puter, and the authors proceeded with what they felt 
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met the needs of the user and thus produced a new 
language. 

Regardless of the numbers, however, there is truly no 
difference to the philosophy of how the languages work 
for modeling and simulation. The basic alikeness of all 
simulation problems is what provides a fertile field for 
simulation languages. Each in its own manner has a 
timing routine which keeps scheduled future occurrences 
in chronological order, each advances a system held 
variable representing the current tjme consistent with 
the occurrences as their scheduled time is reached, and 
each provides for the gathering of statistics concerning 
the specific variables (values) the researcher might wish 
to evaluate. Examination of the languages produced 
reveals that there were three basic approaches to pro­
viding the simulation languages and almost all the lan­
guages fit into one of these three styles, or "families". 

First, the authors took an existing scientific lan~uage 
like FORTRAN or ALGOL and prepared sub-routines 
to provide the user with the special requirements of 
simulation languages, i.e., timing, set manipulation, 
random deviate generation, statistical summary and 
input-output. Then the user is able to write in the 
"host" scientific language, calling the furnished sub­
routines for the special actions desired. This is a direct 
method of getting the new user quickly into using 
simulation languages, in fact, we can almost call it the 
painless approach, and this ease of transition is the 
strongest argument for using languages of this type. 
This writer chooses to name this the GASP family, 
after the best known of that type language. A "family 
portrait" of these languages is: 

GASP FAMILY 

ESP (The Elliott Simulation Package) 
FORSIM IV 
GASP (General Activity Simulation Program) 
HOCUS (Hand or Computer Universal Simula-

tion) 
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JASP (JOSS Conversational Simulation Program) 
PA3 
PROSIM (Program System for Shnulation) 
QUICKSCRIPT 
SIMON 
SIMQUEUE 
SPURT (A Simulation Package for University Re­

search) 
UNS 
UNISIM 

The second family of languages uses a logical block 
design for describing the model to be simulated. This 
means that blocks of certain shapes and identifiers call 
for designated actions on the part of the computer. 
Almost in a sign language then, a researcher can portray 
his model, calling for the generation of transactions, 
their path through a complex world, the capacities and 
capabilities of the world through which it must pass, 
the alternate solutions under blocked overloaded or 
changed conditions, and still without, or with most 
minor computer programming capability, the researcher 
can simulate the world of his model. The compiler in­
terprets the logical design and produces an operational 
program, adding without demand a wide range of 
statistical summarizations concerning the period of 
simulation. This type of family must be called the 
GPSS family, after the best known and most copied 
language of all. A "group photograph" follows: 

GPSS FAIYfILY 

BOSS (Burroughs Operational System Simulator) 
EGPS (Extended General Purpose Simulator) 
FLOW SIMULATOR 
GESIM (General Purpose Discrete Shnulator) 
GPDS (General Purpose Discrete Simulator) 
GPS (General Purpose Simulator) 
GPS K (General Purpose Simulation K) 
GPSS (General Purpose Simulation System) 
GPSSjNORDEN 
QUICKSIM 

The last family of languages are those which provide 
a syntax of their own and have the necessary compiler 
capability to react to the simulation demands of the 
user for all the aforementioned prerequisites of a simu­
lation language. These type of languages require a pro­
gramming expertise on the part of the user, but in turn 
permit him the widest range of operation in dealing 
with complex problems, and the most ability to tailor 
his program to fit a particular problem. They are also 
the most parsimonious in memory use and least costly 

in running time. This group is called the SIMSCRIPT 
family after the best known a;nd most widely used of 
that type. They include: 

SIMSCRIPT FAMILY 

CLP (Cornell List Processor) 
CSL (Control and Simulation Language) 
GEMS (General Electric Marketing System) 
GSP (General Simulation Program, Mark II) 
MILITRAN 
MONTECODE (Monte Carlo Coded Simula­

tions) 
OPS-3 
SEAL (Simulation, Evaluation and Analysis Lan-

guage) 
SIMPAC 
SIMSCRIPT 
SIMTRAN 
SIMULA 
SOL 
SOLPASS 
SPS-1 

All sorts of attempts have been made to "rank" these 
languages, or to try to advise a reader that one language 
would provide more capability than another. Other 
papers have been written which provided detailed com­
parisons of several of the languages. Presumably, in 
the latter case, the reader was to be in a better po~ition 
to make a choice. In the opinion of this writer, all of 
such effort is futile. First, the choice of a langua~e de­
pends on an expert choosing among them, if all other 
factors are equal, which rarely occurs. Next, the choice 
depends upon the language in which the researcher can 
program. There is no virtue in a choice which cannot be 
utilized by the programmer, or at least, acquired by him 
within a reasonable time. Last, there is the question of 
compiler availability. Given a choice of one language 
over others, and given that the researcher is capable in 
that language, what earthly purpose is served if a com­
piler for that language is not available within a reason­
able range of the intended user? 

It has been the sad experience of the author, in which 
he is as much the culprit as the observer, that those who 
discuss several languages are rarely expert in more than 
one and never in more than two. However, with great 
pomposity, the "experts" discuss what each of several 
languages can, and cannot do, displaying, by their errors 
easily discernible by a real expert in anyone language, 
that they have no real rig-ht to qualify or quantify that 
language. If several "single language" experts could ob­
jectively discuss anyone paper which rates or ranks 



languages, it is forecast that much air could be released 
from the balloon. 

To view these languages in retrospect has, in most 
cases, a nostalgic charm. It is even more important to 
now identify those which are still "active". With all due 
respect to second generation computers that are living a 
graceful old age in obscure universities, only those lan­
guages with compilers available on third generation 
machines are listed. 

Arranged by families, the current list is: 

GASP Family GPSSFamily SIMSCRIPT 
Family 

GASP BOSS CSL 
HOCUS EGPS SEAL 
PROSIM FLOWSIMU- SIMSCRIPT 

LATOR 
SIMON GESIM SIMULA 
SIMQUEUE GPS SOL 
SPURT GPSK 
UNS GPSS 

GPSSj 
NORDEN 

With a backward glance over our shoulder then, we 
have every right to look to the future with confidence. 
Any discipline which can invent at this prolific rate can­
not but move forward with equal ability to formulate 
tools for the future work. 
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APPENDIX I 

1. Advertising 
A. J\lIedia selection 
B. Impact on sales 
C. Campaign strategy evaluation 
D. Sales contests 
E. Customer contests 

2. Airlines 
A. Runway utilization 
B. Terminal facility planning 
C. Crew scheduling 
D. Reservation system modeling 
E. Airliner seating and freight configurations 
F. Spare parts inventory 
G. Scheduling of service and maintenance facilities 
H. Time tables 
1. "Stack" modeling 
J. Cargo handling 
K. New airport facilities and locations 

3. Banking 
A. Operation of bank floor (teller model) 
B. Behavior of on-line system 
C. Check transit model: 

1. Collection routes 
2. Centralized vs. decentralized processing 
3. Schedule arrival of inscriber operators 
4. Breakpoint for specially handled items 

D. Interest rate and other policy studies 
E. Special service studies (credit card, payroll, 

etc.) 
4. City Planning and Urban Renewal 

A. Transportation networks 
B. Planning for services, facilities, etc. 
C. Welfare studies 
D. Crime and law enforcement studies 
E. Budget planning 
F. Information systems and record planning 

5. Communications 
A. Information flow in networks 
B. Adaptive routing 
C. Study polling disciplines, concentrators, buffer-

ing, etc. 
D. Intercept and rating systems 
E. Evaluate telephone information system 
F. Maintenance and service facilities planning 
G. Studies of future growth needs 

6. Data Processing Systems 
A. Response time, throughput analysis for real-

time systems 
B. Organization of direct-access files 
C. Study queuing disciplines 
D. Storage allocation and buffering 
E. Study degraded performance 
F. Study operating system behavior 
G. Flow of jobs through a computer "shop" 
H. Priority assessments 
1. Equipment add-on effects 
J. Personnel and organization studies 

7. Distribution 
A. Truck routing 
B. Optimization of distribution networks 
C. Number and location of warehouses 
D. Warehouse automation procedures 
E. Inventory management 
F. Schedule work crews 
G. Design truck docking facilities 
H. Design packaging facilities 
1. Information systems design 

8. Elevator Operation 
A. Number of elevators 
B. Dispatching rules 

9. Enterprise Models 
A. Flow of material, men, money, information. 

Evaluate all-over behavior-design for maxi­
mum profit. Policy studies at corporate levels 

B. Effect of reducing delays (such as installation of 
management information system) 

C. Personnel rules 
D. Advertising allocation 
E. Capital investment 
F. Diversification, merger and risk studies 

10. Gaming (other than war games) 
A. Management games 
B. Purchasing games 
C. Creation of sporting events ("dream world 

series") 
D. Training models 

11. Insurance 
A. Policy administration and accounting 
B. Investment studies 
C. Information and retrieval systems design 



D. Statistical aging 
E. New policy plans 

12. Job Shop Simulation 
A. Bottleneck elimination 
B. Capacity-production studies (order backlog) 
C. Work rules 
D. Equipment evaluation and layout 
E. Quality control 

13. Manufacturing 
A. Facilities planning 
B. Assembly line balancing 
C. Scheduling 
D. Manpower allocation 
E. Inventory management 
F. Quality control 
G. Information systems 
H. Equipment maintenance 
I. Subcontracting policies and schedules 
J. Raw material acquisition 
K. Plant location 
L. Labor studies 

14. Marketing 
A. Pricing 
B. Advertising 
C. Sales force allocation 
D. Product installation and acceptance 
E. Competitive strategy 
F. Product introduction studies 
G. New product requirements 

15. Medical 
A. Behavior of real-time information system 
B. Blood bank inventory 
C. Admission/discharge policies 
D. Hospital bed and patient scheduling 
E. Scheduling of staff 
F. Scheduling nurse activities 

16. Metal Processing 
A. Facility planning and scheduling 
B. Warehousing 
C. Ordering policies 
D. Open pit mine design 

17. Monte Carlo simulation of complex deterministic 
problems 

18. Paperwork Flow 
19. Personnel Policies 
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A. Hiring and promotion rules 
B. Allocation, distribution, and movement of 

personnel 
20. Proposals 

Demonstrate new system feasibility to customer 
21. Railroads 

A. Yard operation 
B. Network operations 
C. Freight blocking strategies 
D. Motive power assignment 
E. Crew scheduling 
F. Rapid transit-train scheduling 
G. "Piggyback" studies 
H. Equipment planning 
1. Commuter rate studies 

22. Reliability 
A. Determine system availability 
B. Spare parts requirements 
C. Service crew and facility requirements 
D. Economic batch size for quality 
E. Failure rate studies 
F. "Fail softly" systems-effect of duplexing 

23. Shipping 
A. Schedule port facilities 
B. Schedule freighters, tugs, etc. 
C. Cargo mix 
D. Automation studies 
E. "Fishybacks" and other competitive studies 
F. Harbor design 
G. Fleet composition 
H. Labor practices 

24. Traffic Control 
A. Timing of traffic lights 
B. Design turning rules at intersections 
C. Test real-time control algorithms 
D. Automated systems 
E. Road planning 
F. Safety studies 

25. Trucking 
A. Truck docking facilities 
B. Scheduling 
C. Routing and franchise studies 
D. "Piggyback" and other competition 
E. Rate studies 
F. Information and retrieval systems 



796 Spring Joint Computer Conference, 1972 

APPENDIX II 

General Information about Digital-Discrete Simulation Languages 

LANGUAGE NAME TYPE 

BOSS Process 

CLP Process 

CSL Process 

EGPS Process 

ESP Unk 

FLOW SIMULATOR Process 

FORSIM IV Event 

GASP Event 

GEMS Event 

GESIM Process 

GPDS Process 

GPS Process 

GPS K Process 

GPSS Process 

GPSS /360 NORDEN Process 

DEVELOPING 
ORGANIZATION 

Burroughs 

Cornell University 

IBM(U.K.), Esso 
Ltd., ICL 

Nippon Electric Co. 
Ltd. 

Elliott Electric Co. 

RCA CSD 

Mitre Corporation 

U. S. Steel, Arizona 
State U. 

AUTHORS 

Roth, Meyerhoff & Troy 

Conway, Maxwell & Walker 

Buxton & Laski 

Unk 

Unk 

Unk 

E. Famolari 

Kiviat & Pritsker 

General Electric Co. Markowitz 

General Electric Co. Unk 

Xerox Data Systems Unk 

Nippon Elec. Co. Ltd. Unk 

Honeywell, Inc. Unk 

IBM Gordon and others 

Norden Div. of United Katzke & Reitman 
Aircraft Corp. 

COMPlITER 
DlPIBMENTATION DOCUMENTATION OR REFERENCE 

B5500, B6700 BOSS Applications Manual, Report lfo66099, 
Burroughs Corp., Paoli, Pa., July 1970 

CDC 1604 CPL Preliminary Manual, Dept. of Industrial 
Eng., Cornell U., Oct. 1963 

IBM 7090, 7094; ICL Reference Manual 3386, 1900 CSL, Oct. 
1900 Series 1966, and ICL Reference Manual 1105, CSL 
ICL, ICL System 
4 

NEAC Series NEAC Reference Manual, EGPS 
2200 

Elliott 503 & Unk 
803 

RCA 3301 Flow Simulator Reference Manual 70-00-617, 
Spectra 70 April 1969 

IBM 7030 Mitre Progress Memorandum SR-99, FORS 1M IV 
FORTRAN IV Simulation Language, User's Guide, 
E. Famolari, Feb. 1964 

With appropriate Simulation with GASP 11, Kiviat & Pritsker, 
modifications, Prentice Hall, 1969 
any computer 
with FORTRAN IV 
compiler 

Unk Unk 

HIS Sys. 600 & GESIM User's Manual GES-l022 
6000 Series 

Sigma 5-9 Xerox General Purpose Discrete Simulator, Sigma 
5-9 Computers, Xerox Data Systems, April 1971 

NEAC Series 2200 NEAC Reference Manual, GPS 

Series 200 Honeywell Order No. 773, April 1969 
(models 200/1200/ 
1250/2200/4200 

IBM 7090, 7094, General Purpose Simulation System/360 OS Version 
7040, 7044, Sys- 2 Users Manual, SH20-0694-0, IBM Corp. 
tem 360 UNIVAC 
1107/1108/1110 

IBM System 360 Norden Report 4269R0003, Users Guide to Conversa-
w/2250 Display tional GPSS, December 1969 
Unit 
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LANGUAGE NAME TYPE 

GSP MK II Unk 

HOCUS Event 

JASP Event 

MILITRAN Event 

MONTE CODE Unk 

OPS-3 Event 

PA3 Unk 

PROS 1M Unk 

QUIKSCRIPT Event 

QUIKSIM Process 

SEAL iEvent 

SIMON Process 

SIMPAC Process 

SI~UEUE Event 

DEVELOPING 
ORGANIZATION 

U. S. Steel Co. Ltd. 

P-E Consulting Group 
Ltd. 

RAND Corp. 

Office of Naval 
Research & Systems 
Research Group, Inc. 

Unk 

M. 1. T. 

General Electric Co. 

Data Saab 

Carnegie Inst. of 
Technology 

~ationa1 Cash Register 
1"0. 

IBM 

Bristol College of 
Science & Technology 
and ICL 

ystems Development 
Corp. 

University of Iowa 

AUTHORS 

Unk 

R. Hills 

Pritsker 

Unk 

Kelley, D. H. & Buxton, J. N. 

Greenberger, Jones, Morris & 
Ness 

Ebeling and Hurst 

Unk 

Tonge, Keller & Newell 

Weamer 

Braddock & J)owling 

~nk 

Bennett, et a1 

Wicklund 
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IMP~:rr!~ION DOCUMENTATION OR REFERENCE 

Ferranti Pegasus Operational Research Report, !F1l8/0RD 10/ TECH, 
1964 

Any with FORTRAN HOCUS Manuals I & II 
compiler 

JOSS Language RAND Memo RM-6279-PR, June 1970 
Computer (RAND 
only) 

7090, 7094 

Unk 

Only with M. 1. T. 
Time Sharing 
CTSS System 

GE Mk II Time 
Sharing 

D21, D22 

G-20 

~CR 315 RMC 

IBM System 360 

i 

MILITRAN Reference Manual, AD 601-794, Systems 
Research Group, Inc. (Clearinghouse) 

I An Interpretive Program for Monte Carlo S imu1a­
i tions, Computer Journal, V, 1962 

I . . 3 

Greenberger, et a1, MIT Press, 1965 I
On-Line Computation and Sunu1atl.on OPS- , 

A General Purpose, Conversational Time-Sharing 
Program for Probabalistic Analysis (PA3-1969 
version of PAL), August 1969 

Unk 

CODDIlunications of the ACM, June 1965 

Proceedings of the Third Conference on the Appli­
cations of Simulation, December 1969 

Simulation, Evaluation and Analysis Language 
(SEAL), IBM System Manual, 360D 15.1.005 

jElliott 503, 803, ICL Reference Manual 4138, Simulation Language 
ICL 1900 Series SIMON, January 1969 

IBM 7090, 7094 

IBM System 360 

SIMPAC Users Manual, SOC TM602/000/00, Bennett 
et a1, April 1962 

Working Paper Series 69-13, College of Business 
Administration, University of Iowa 
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APPENDIX II (Cont'd) 

LANGUAGE NAME TYPE DEVELOPING AUTHORS COMPUTER 
DOCUMENTATION OR REFERENCE 

ORGANIZATION 
IMPLEMENTA TION 

SIMSCRIPT Event RAND Corp. Markowitz, Hausner & Karr IBM 7090, 7094 S IMSCRIPT, A S imula t ion Prograllmling Language, 
7040, 7044, 360 Markowitz, Hausner & Karr, Prentice Hall, 1963 
CDC 3600, 3800, 
6400, 6600, 7600 
UNIVAC 494, 1107, 
1108, 1110, RCA 
Spectra 70 series 
NCR 200 series, 
PHILCO 2000 ser-
ies, HIS 615, 625 
635, 655, 6030, 
6040, 6060, 6080, 
STANDARD IC-6000 

SIMSCRIPT II Event RAND Corp. Kiviat, Markowitz, Hausner & IBM System 360, S IMSCRIPT II - A Programming Language, Kiviat, 
Villaneueva RCA Spectra 70 Villaneueva and Markowitz, Prentice Hall 1969 

(object code 
only) 

SIMI'RAN Event IBM Braddock, Dowling and Rochelson IBM 7030 Reference Manual, IBM, SDD, Dept. B85, July 1965 

SIMULA Process Norwegian Computer Dahl & Nygaard UNIVAC 1107, 1108 SIMULA - A language for Programming and description 
Center 1110, CDC 6400, of discrete event system, Users Manual, Dahl & 

6600, 6700, 7600 Nygaard, Norwegian Computer Center, 1965 
Burroughs B5500, 
B6000 series 

SOL Process Burroughs Corp. & Knuth & McNeley Burroughs B5000/ SOL - A symbolic language for general purpose 
Case Ins t. of Tech 5500, UNIVAC 1107 systems Simulation, Knuth and McNeley, 1963 

1108 

SOLPASS Process U.S. Army (Ft. Mon- Armstrong, Ulfers, Miller & Burroughs B5500 lInk 
mouth) and Internation- Page 
al Computer Sciences, 
Inc. 

SPURT Event Northwestern U. Mittman & Goldberg CDC 3400, 6000 ~PURT Users Manual, Vogelbach Computing Center, 
series, IBM rorthwestern U. 

UNISIM Process Bell Telephone Labs. • A. Gimpelson & J. H. Weber UNIVAC 1108 iuNISIM - A Simulation Program for COIDIIunication 
Networks - Case 38931', Oct. 9, 1963 

UNS Process UNIVAC ~nk ~IVAC 490 series Network Simulator Programmer's Reference, UP 7548, 
1107, 1108, 1110 1967 
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INTRODUCTION 

The need for evaluating the performance of con­
temporary computer systems is well recognized by the 
manufacturers as well as the users of these systems. 
The evaluation is difficult because of the complexities 
and sophistication of the computer hardware and 
software system design. The computer manufacturers 
have produced an abundance of literature encompassing 
somewhat subjective evaluations of their products. 
Unfortunately, relatively little effort has been directed 
by the manufacturer toward the development of 
generalizable scientific tools for the purpose of a 
quantified evaluation of the performance of computer 
systems operating in a specified environment. The 
need for such generalizable scientific tools for studying 
the behavior of a given computer system in a specified 
environment can hardly be over-emphasized. 

Contemporary computer systems are, in general, 
architectured from organized semi-independent pro­
cessing modules which share a finite set of modular 
resources. The performance characteristics of a com­
puter system are partly governed by the characteristics 
of the various modules and partly by the interactions 
and interrelationships among these modules. A per­
formance evaluation instrument for these systems 
should provide an insight into the dynamics of the 
interactions among the various components of the 
system. This hypothesis strongly suggests simulation 
techniques for investigating the behavior of computer 
systems. 

Simulation, by definition, is a process of conducting 

* Some of the work leading to this paper was supported in part by 
ONR-THEMIS Contract N00014-68-A-0151 
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experiments on a model representing an abstraction of 
the system. Simulation may take place only if a model 
of the system under investigation is available. 

As previously hypothesized, computer systems may 
be represented in terms of components, variables, 
parameters in conjunction with algorithms which 
describe corresponding logical and functional relation­
ships. However, the dynamic complexity of these 
systems coupled with the desired level of detail, does 
not facilitate the translation of these models into a set 
of equations which are analytically tractable. N one­
theless, it is possible to apply the description of the 
computer system (model) to a given set of input to the 
system. The manner in which the model reacts to this 
input may be summarized in terms of the variables of 
interest such as the time consumed by the management 
functions and the fraction of the time the various 
system components are busy. By varying the input 
and/ or varying the model, an investigator can observe 
the variables of interest and make appropriate deci­
sions. The enormity of computations and the volume 
of data involved, in investigating systems in this 
manner, can be handled effectively if the model is 
translated into a computer program. The validity of 
this approach is evidenced by the simulation studies 
conducted by Nielsen,16.17 Katz,6 Scherr,22 and Rehman 
and Gangware19 among others. These simulation 
studies were reported to be successful. The building 
of simulation models requires specialized skills and 
time. These requirements act as deterrents for con­
ducting generalized simulation studies of computer 
systems. 

There is a need in several areas for a mechanism that 
enables the construction of working simulation models 
(at several levels of detail) in relatively short periods 
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of time. Such a mechanism would not only be useful to 
the designers and users of the computer systems as a 
"quick-look" mechanism but would also have a signifi­
cant pedagogical value. Students of operating systems 
could gain in-depth knowledge through designing and 
observing operating systems by the use of such a 
mechanism. 

In the development of the OSSL language and 
simulator an effort has been made to provide the user 
with the capability to represent all components of a 
computer system including memories, processors, and 
input-output systems in both an associative and a 
hierarchical relationship. The OSSL language has not 
been written for usage in areas other than computer 
systems simulation and is intended to be limited to this 
area of application. The known limitations of the 
language lie in the representation of detailed discrete 
phenomena such as a particular memory mapping 
algorithm, a hybrid input-output algorithm, etc., 
although most, if not all, of these cases can be repre­
sented stochastically in considerable detail. A similar 
effort has been made in OSSL to enable the representa­
tion of software processors and task sequences, stochas­
tically, in sufficient detail and accuracy to provide for 
the simulation of any specific computer system work 
load. 

THE SIMULATION LANGUAGE 

This paper presents an overview of a language 
developed for structuring simulation models of com­
puter systems. A more detailed description of the 
OSSL Language and its use is presented in a User's 
Guide.25 The various language elements reflect the 
phraseology in use by those involved in the imple­
mentation of computer systems. The format-free 
language has been implemented in a subset of the 
FORTRAN IV language for the following reasons: 

(a) FORTRAN IV is available on almost all 
medium- to large-scale computer systems. 
Special features of the language were purposely 
avoided in the coding process to facilitate 
usability on a variety of implemented systems. 

(b) FORTRAN IV has the potential to accommodate 
the flow oriented structure of GPSS, and also 
the entity, attribute, set, state, and event 
concepts of SIMSCRIPT. 

(c) FORTRAN IV provides the facility to construct 
adequate specialized data structures needed for 
simulating computer systems. 

(d) Implementation of the language interpreter is 
much easier in a general purpose language like 
FORTRAN, than in the special purpose simula­
tion languages like GPSS, SIMSCRIPT, 
SIMULA, etc. 

(e) The simulator and the language interface have 
been coded in FORTRAN IV in order to provide 
user modularity. The various OSSL segments 
have been represented via FORTRAN sub­
routines which are as accessible as provided for 
by the particular FORTRAN compiler. 

A simulation model for a given computer system 
consists of components representing 

(a) the hardware characteristics and system con­
figuration, 

(b) the operational philosophy of the system, and 
(c) the environment in which the system is to 

function. 

The simulator employs the asynchronous timing 
technique for advancing the model through the simu­
lated time. This implies that the state of the system is 
updated upon the occurrence of events. An event may 
be the start of a new job, initiation/completion of data 
transmission, interruption of a running program to 
provide CPU service relative to a different user job, 
etc. All the processes to be simulated are viewed as a 
series of events. The updating. of the state of the system 
consists in changing the simulation parameters as well 
as the scheduling of future events induced by the event 
causing the update. All future events thus scheduled 
are filed in a threaded list. The events are retrieved 
from the list in the order of their scheduled occurrence 
of time for updating the state of the system. Such a 
scheme positions events on the time line and the 
updating mechanism relates the events to their respec­
tive processes, thereby enabling the handling of con­
current operation of the various processes. 

The language described herein allows for a modular 
construction of simulation models representing these 
components. Each of the components may consist of 
one or more segments provided by the language. The 
three components of the model may be structured as 
follows: 

HARDWARE CHARACTERISTICS AND 
SYSTEM CONFIGURATION 

This component may be defined through the following 
two segments of the language: 

Central processing units (C p Us) 

The CPUs are considered to be interruptible entities 
capable of executing instructions related to a single 
request at any instant of time. All requests for CPU 
service have an associated priority level. The language 
allows for the definition of up to 15 CPU s in the system. 



CPU DATA 
CPU 1 

QUEUE 7 
UNINTERRUPTIBLE LEVEL 45 
TIME QUANTUM .050 
INSTRUCTION TIMES .00001 .000015 .00005 
TABULATE BUSY TABL 

END OF CPU DATA 

Figure 1 

Figure 1 shows an example of the CPU definition 
segment. CPU numbered 1 is being defined. Requests 
for CPU service are entered in the queue number 7 if 
they cannot be met immediately. 
The CPU goes into an uninterruptible state if the re­
quest being executed has a priority level of 45 or higher. 
The time quantum is specified to be .05 units of time. 
The CPU can execute one instruction each of class 
1, 2 and 3 in .00001, .000015 and .00005 units of time 
respectively. The language allows for up to 10 classes 
of instructions. The time required for instructions 
belonging to classes 3-10 is specified to be zero. The 
continuously busy spans of the CPU are to be tabulated 
in the frequency table labelled TABL. 

Devices and channels 

Characteristics of the peripheral devices like the 
card-readers, card-punch equipment, teletypes, CR T 
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units, etc., are defined in this segment. The system 
configuration is implied through the definition of each 
device. Multiplexor channels are not to be included 
since these are transparent to the simulation model. 
This is because a multiplexor channel is always available 
to the device controllers attached to it. 

Figure 2 shows a sample definition of the segment. 
The system configuration implied is shown in figure 3. 
The characteristics of the CPU would be defined in 
the CPU segment. 

The segment, as defined, specifies one card-reader, 
one line printer, one card-punch and two discs. The 
strings TCR, TCP, Tl, T2, T3 and T4 are the labels 
assigned to the user defined distribution functions. 
Requests for the selector channel are to be entered in 
queue 5 if they cannot be attended to immediately. 
Similarly, requests for disc number 2 are to be entered 
in queue number 3 if they cannot be attended to 
immediately. 

THE OPERATIONAL PHILOSOPHY 

This component of the simulation model embodies 
the manner in which the user jobs flow through the 
system. The flow of jobs involves movement of data 
among the system components, allocation of primary 
memory, scheduling of jobs for execution and file 
management functions. The manner in which these 

DEVICES AND CHANNELS SEGMENT 
TOTAL CR 1 
TOTAL LP 1 
TOTAL DISCS 2 
TOTAL CP 1 

DEVICE CR 1 
TRANSFER TIME TCR 

DEVICE CP 1 
TRANSFER TIME TCP 

DEVICE LP 1 
TRANSFER TIME Tl 

DEVICE DISC 1 
SEEK TIME T2 
TRANSFER TIME T3 
SELECTOR CHANNEL 1 

DEVICE DISC 2 
TRANSFER TIME T3 
SEEK TIME T4 
SELECTOR CHANNEL 1 
QUEUE 3 

CHANNEL 1 
QUEUE 5 

END OF DEVICES AND CHANNEL DEFINITION 

Figure 2 
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Figure 3 

the bufferpool is disposed of in the following manner: 

(a) User defined criterion are applied to the request 
to determine if the request is to be met. 

(b) Number of instructions (say n) to be executed 
for applying the criterion are generated in 
accordance with the user specified distribution 
function. 

(c) If the request is to be met, the number of 
instructions to be executed (say m) for the 
assignment of space are generated in accordance 
with the user specified distribution function. 

(d) If the request is not to be met immediately, the 
number of instructions (say m) to be executed 
to enter a specified queue are generated in ac­
cordance with the user specified distribution 
function. 

( e ) A CPU from the specified list is selected to 
execute n+m instructions. 

activities are to be performed are defined by the 
following segments: 

(f) The request is either met or placed in a queue 
upon execution of n+m instructions. 

Figure 4 shows a sample definition of the bufferpool ' 
segment. Bufferpool numbered as 1 containing 100 
buffers of a unit space each is being defined. The 
number of instructions for decision, assign, refusal and 
release activities follow the user defined 

Bufferpools 

The language allows for the operation of up to twenty 
bufferpools numbered 1 to 20. A request for space in 

BUFFERPOOL DEFINITION 
BUFFERPOOL 1 

FIXED SIZED BUFFERS 
NUMBER OF BUFFERS 100 
SPACE 100 
INSTRUCTIONS FOR DECISION DISA MIX MXA 
INSTRUCTIONS FOR ASSIGN DISC MIX MXA 
INSTRUCTIONS FOR REFUSAL DISC MIX MXA 
INSTRUCTIONS FOR RELEASE DISD MIX MB 
CPU 1 
INTERRUPT LEVEL FOR ASSIGN 92 
INTERRUPT LEVEL FOR RELEASE 92 

DECISION RULES FOR BUFFER SPACE 
ASSIGNMENT 

FILE IS USING LESS THAN 3 BUFFERS OR 
AT LEAST 1 BUFFER AVAILABLE FOR EACH FILE 

END OF BUFFERPOOL DEFINITION 

Figure 4 

distribution functions labelled DISA, DISB, DISC, 
DISD. Requests for bufferspace are to be placed in 
queue number 10 if they cannot be met. MXA and MB 
are the labels assigned to the proportion of the various 
classes of instructions to be executed by the CPU 
number 1. The priority level for the CPU service 
associated with the assignment and release of buffer­
space has been specified as 92. 

The request for bufferspace is to be met if the file 
requesting space is using less than 3 buffers or at least 1 
buffer is available for each file attached to the buffer­
pool. 

Movement of data 

Movement of data in the system is described via the 
definition of one or more PROCEDURES. An example 



of a procedure is the set of activities associated with the 
input of a job in a batch-processing system like the 
XDS system SIGMA 7 symbiont and the IBM 
System/360 SPOOL (DOS/360 POWER and OS/360 
HASP). 

The input procedure may consist in the movement 
of the source statements from a card reader on to the 
disc. This movement of data \vould involve various 
activities like the request and assignment of buffer­
space, activation of the card-reader, deposition of the 
card image into a buffer, emptying of the buffer onto 
the disc, release of the bufferspace, and update of the 
various tables. 

The various· tasks being performed by a computer 
system under the direct control of its operating· system 
may be grouped into procedures. These procedures are 
activated by the services requested by a user's job. A 
procedure consists of an ordered list of statements and 
thus are flow oriented. The language provides 38 
different statements for defining procedures. There are 
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statements to request system services like the move­
ment of data, request/release of bufferspace, request 
for CPU service via an interrupt, etc. Statements have 
also been provided for the management of records in 
files and interrogation of the attributes of files. The 
language also provides statements for controlling the 
flow within a procedure. The procedures defined by the 
user are assigned unique labels. Individual statements 
comprising the procedure may be assigned a label. 
Some examples of the statements available are as 
follows: 

Statement: 

MOVE TO DISC 2 

Execution of this statement causes data to be moved 
to Disc 2. 

Statement: 

INTERRUPT CPU 1 PRIORITY 95 QUANTITY A MIX MX 

This statement generates a random value, say n, 
from the user defined distribution function labelled A. 
A request with a priority level of 95 is placed on CPU 
1 to execute n instructions of the mix labelled as MX. 
Statement: 

REQUEST 1 FROM BUFFERPOOL 2 

A request for space from the bufferpool number 2 is 
generated and disposed of as prescribed by the user in 
the BUFFERPOOL segment. 

Statement: 

ASSIGN FILE 6 

The statement creates file 6 for the job being handled 
by the procedure. 

Statement: 

ATTACH FILE 8 TO BUFFERPOOL 1 

This statement attaches file 8 belonging to the job to 
the bufferpooll. 

Statement: 

CHECK IF RECORD READY 

PROCEDURE IN 

The statement gets executed only if a record is 
available for reading. 

Statement: 

CHECK IF RECORD IN FILE, ET 

The flow is transferred to the statement labelled ET 
if the file is empty, otherwise the flow reaches the next 
sequential statement. 

Statement: 

INCREMENT DATA IN FILE 6 BY 2 

This statement increases the number of records in 
file 6 by 2. 

Statement: 

REQUEST CHANNEL 1 2 

This statement is considered executed only when 
either the selector channel 1 or the selector channel 2 is 
made available to the procedure. 

A sample procedure to mode input from a teletype 
into the system is shown in Figure 5. 

REQUEST 1 FROM BUFFERPOOL 3 
MOVE FROM TELETYPE 10 
INTERRUPT CPU 1 PRIORITY 90 QUANTITY A MIX X 

TERMINATE 

Figure 5 
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SCHEDULER DEFINITION 
QUEUE 7 
CPU 1 
JOBS ARE SLICED 
MAXIMUM JOBS UNDER PAGING 5 

END OF SCHEDULER DEFINITION 

Figure 6 

Job scheduler 

Assignment of CPU for executing the code specified 
by the user's job is handled by the job scheduler. The 
model provides for the simulation of batch-processing, 
time-sharing and multiprogramming computer systems 
by an appropriate definition of scheduler. Figure 6 

shows a sample definition of the scheduler. A time­
slicing system is specified. Jobs awaiting CPU assign­
ment for the execution of code are placed in queue 
number 7. CPU number 1 is to be used for executing 
the code. The number of jobs under paging at any 
time may not exceed 5. 

Memory management 

This segment is for the purpose of defining the 
various parameters as well as the decision rules to be 
used for allocating primary memory to the various 
jobs. A sample definition of the memory management 
functions is shown in Figure 7. The primary memory 
consists of a single partition 

MEMORY MANAGEMENT DEFINITION 
PARTITION 1 

LAST PAGE OF THE PARTITION 512 
RELOCATABLE CODE 
GENERATE A SET OF PAGES AS FOLLOWS: 

PAGE DOES NOT BELONG TO THE JOB REQUESTING PAGE 
PAGE HAS BEEN ACCESSED AT LEAST ONCE 

PAGE ASSIGNED FIFO 
ROLL IN PROCEDURE RIN 
ROLL OUT PROCEDURE ROUT 
PAGES SWAPPED ONLY IF MODIFIED 

END OF MEMORY MANAGEMENT 
DEFINITION 

Figure 7 

containing 512 pages. All the user specified code is 
relocatable. Pages not in use are used for meeting page 
demands. If no such page is available, a set of pages is 
generated. The pages belonging to this set have been 
accessed at least once and do not belong to the job 
demanding the page. The page that has been in resi­
dence the longest among the members· of the generated 
set is selected for meeting the demand. A page is 
swapped only if it has been modified. The rolling-in 
and rolling-out of pages are in accordance with the user 
defined procedures labelled RIN and ROUT respec­
tively. 

FILE MANAGEMENT 
CPU 1 

File management 

CPU service, if any, in regard to the opening, closing, 
attaching/unattaching of files during the execution of 
procedures, is specified in this segment. 

Figure 8 shows a sample definition of this segment. 
The specifications imply that a request for CPU 
service is generated if the files are opened, closed, and 
attached/unattached. The number of instructions to be 
executed by the CPU number 1 follow the distribution 
function labelled INST. The priority level associated 
with the request for CPU service is specified to be 97. 

INSTRUCTIONS FOR OPENING FILES INST MIX S2 
INSTRUCTIONS FOR CLOSING FILES INST MIX S2 
INSTRUCTIONS FOR ATTACH/UNATTACH FILES INST MIX S2 
INTERRUPT LEVEL FOR OPENING FILES 97 
INTERRUPT LEVEL FOR CLOSING FILES 97 
INTERRUPT LEVEL FOR ATTACH/UNATTACH FILES 97 
END OF FILE MANAGEMENT DEFINITION 

Figure 8 



THE ENVIRONMENT 

This component of the simulation model embodies 
the services that the system is called upon to perform. 
The language provides for structuring the environment 
in terms of jobs. Since the jobs require a variety of 
system services, the language allows for the classifica­
tion of jobs into numbered types. All the jobs belonging 
to a particular type demand the same system services 
in the same order. However, the amount of service 
demanded by jobs of the same type may be different. 
The services demanded by the job may be classified 
into three categories, viz., entry of the job into the 
system, computations as specified by the job and the 
delivery of the computational results by the system. 
Entry of the job, the delivery of the computational 
results and the manner in which the computations are 
executed is fixed by the design of the system (as repre­
sented via the hardware configuration and the opera­
tional philosophy) and is described by specifying job 
steps relative to each type of job. 

Code 

The computations to be performed are represented 
by the code to be executed. The code may pertain to 
the compiling, loading, and the job itself. The language 
provides the facilities to specify the code to be executed. 
The language allows for the structuring of the various 
software processors from the user defined code. 

The software representation is at a macroscopic level. 
A software program to be represented is divided into 
one or more "blocks." Each of these blocks contains the 
instructions to be executed, the specific pages needed 
in core for the execution of the block. In addition, the 
block may also contain specifications on the pages 
modified and the frequency with which the various 
pages are accessed during the execution of the code 
contained in the block. 

A block is assigned a unique label so that a reference 
may be made to it for the purposes of structuring soft­
ware processors, specification of code for the user's 
jobs and transfer of control during execution. 

Figure 9 shows a sample definition of the code. 
Three blocks of code labeled EX, ST, AND EX2 have 
been defined. A brief explanation of the code contained 

OSSL 805 

in the block labelled EX is as follows: 

Pages 1, 3, 7, and 9, relative to the job are needed in 
core before the code may be executed. Pages 3 and 7 
will be modified as a result of the execution of the code. 

The statement 

INITIATE READ 1 IC 3 

implies that the procedure associated with the type 1 
read is to be invoked. The number of records to be 
read follow the distribution labelled IC and the file 
number 3. is involved in the read statement. Control is 
transferred to the next statement without awaiting the 
completion of the read. 

The statement 

E READ 2 RDZ 5 ST 

specifies that records from file 5 are to be read from file 
5 in a manner defined by the procedure associated with 
the type 2 read. The number of records to be read is to 
be randomly generated in accordance with the dis­
tribution function labelled RD2. In case file 5 is empty, 
control is transferred to the block labelled ST. Control 
is transferred to the next statement only after the 
read statement has been completed. E is the label 
assigned to this statement. 

The statement 

COMPUTE COM MX 

specifies that the CPU is to be requested to execute 
instructions of a mix defined by the label MX. The 
number of instructions to be executed are randomly 
generated from the distribution function labelled COM. 

The statement 

WRITE 2 WT1 7 

specifies that a number of records, randomly generated 
from the distribution function labelled WT1, be written 
into file 7. The manner in which the records are to be 
written into file 7 is specified via the procedure asso­
ciated with type 2 write. Control is transferred to the 
next statement only after the write operation has been 
completed. 
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The statement 

LOOP LE E 

specifies that the statements 

CODE DEFINITION 
EX BLOCK 

PAGES NEEDED 1 3 7 9 
PAGES MODIFIED 3 7 
INITIATE READ 1 IC 3 

E READ 2 RD2 5 ST 
COMPUTE COM MX 
WRITE 2 WT1 7 
LOOP LE E 
TRANSFER .4 EX 2 
WRITE 2 WT2 7 

ST BLOCK 
STOP 

EX2 BLOCK 
PAGES NEEDED 245 689 10 
PAGES MODIFIED 4 8 

E READ 2 RD 6 ST 
COMPUTE CA MP 
WRITE 4 WT 8 
JUMP .8 E 
STOP 

END OF CODE DEFINITION 

Figure 9 

starting with the one labelled E and ending with the 
one before the LOOP statement are to be executed a 
number of times randomly generated from the dis­
tribution function labelled LE. 

The statement 

TRANSFER .4 EX2 

would result in the generation of a random value from 
the uniform distribution over the interval (0., 1.). If 
the value of the number generated is less than or equal 
to .4, the control is transferred to the block labelled 
EX2, otherwise the control reaches the next sequential 
statement. 

Input/output 

The procedures associated with the different types 
of reads/writes are declared as shown in Figure 10. 
RDA, RDB, AD, W, AND RITE are the labels of the 
user defined procedures. 

INPUT/OUTPUT PROCEDURES 
READ 1 PROCEDURE RDA 
READ 2 PROCEDURE RDB 
READ 3 PROCEDURE AD 
WRITE 1 PROCEDURE W 
WRITE 2 PROCEDURE RITE 

END OF INPUT/OUTPUT DEFINITION 

Figure 10 

Software processors 

Software processors may be defined from the specified 
code. A sample definition of a software processor named 
FORT consisting of 31 pages is shown in Figure 11. 
EXE is the label of a block of code. 

SOFTWARE PROCESSOR 
PROCESSOR FORT 

STARTS AT EXE PAGES 31 
END OF SOFTWARE PROCESSOR 

DEFINITION 

Figure 11 

Code specifications for the jobs 

The number of pages and the code of a job arriving 
in the system is specified in the job list segment. Each 
entry in the list contains the number of pages and the 
reference to a label of a block of code. The job list is 
subdivided. Each sub-list belongs to a different job 
type. The sub-lists are circular and hence endless. Each 
of the sub-lists has a pointer indicating the entry to be 
used for assigning 'the number of pages and the code to 
a job arriving in the system. The pointer moves to the 
next entry after the current entry has been used. 
Figure 12 shows a sample job list. 

JOB LIST 
Type 1 

PAGES 143 STARTS AT BLOCK C1 
PAGES 78 STARTS AT BLOCK LA 

Type 2 
PAGES 47 STARTS AT BLOCK LB 
PAGES 43 STARTS AT BLOCK CN 

END OF JOB LIST 

Figure 12 



Job description 

The job type is characterized by the specification of 
the relationship between the various procedures and 
processors. A job type is specified in terms of steps to be 
executed sequentially. Each step consists in either the 
execution of a procedure or the execution of code. 
Figure 13 shows a sample job description. 

JOB DESCRIPTION DEFINITION 

Type 1 

JOB STEPS ARE AS FOLLOWS: 
PROCEDURE IN FILE 7 DEVICE 2 
EXECUTE FO 
EXECUTE LO 
EXECUTE JOB 
PROCEDURE OUT FILE 8 

END OF JOB DESCRIPTION 

Figure 13 

IN and OUT are the labels of the user defined pro­
cedures, whereas FO and LO are the labels of the user 
defined software processors. 

The language embodies other elements for defining: 

(a) the various distribution functions, 
(b) the various frequency tables, 
(c) the various cumulative distribution functions for 

generating the job types, 
(d) queue disciplines, 
( e ) initial conditions, 
(f) limits on the number of jobs in the system at any 

instant of time, and 
(g) other simulation parameters like the seed for 

generating random numbers, length of a simula­
tion run and the number of reports to be gen­
erated. 

USE OF THE MODEL 

Several simulation studies have been carried out to 
check the operation of the generalized model. One such 
case is included to serve as an example for demonstra­
tion of some of the uses of the generalized model. The 
particular simulation study concerns an on-line enquiry 
system as described on page 79 of the General Purpose 
Simulation System/360: Introductory User's Manual, 
IBM Inc., Form G H20-0304-4. A G PSS construct of 
the enquiry system appears on pages 82-83 of the 
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referenced material. The on-line enquiry system was 
selected for simulation due to its relative simplicity 
and because of the availability of published results for 
comparison purposes. 

The experiment consisted of processing the OSSL 
version of the basic GPSS model in order to verify the 
similarity of the results. The OSSL model was con­
structed using as nearly as possible identical parametric 
information to that assumed for the GPSS representa­
tion of the five teletype computer enquiry system. The 
basic OSSL model is shown in Figures 14a, 14b, and 14c. 

An explanation of various statement types may be 
found in Reference number 25 (Wyatt & Dewan, 1971). 

All the jobs arriving in the system require the same 
set of services from the system. The only distinction 
between jobs is the teletype number from which they 
originate. This distinction was used to build the five 
types of jobs that the model services. Jobs belonging to 
type n implies that. they originated from the teletype 
number n. Thus a job type 3 implies that the job 
originates from the teletype number 3. 

The job description segment defines the job steps 
associated with each of the five job types. Each of the 
five job types consists of a single step, viz., execution 
of the procedure labelled ENQY. The specifications 
imply that a job arriving in the system would cause the 
activation of the procedure ENQY relative to this job. 
The file associated with the procedure will be o. The 
device number associated with ENQY would depend on 
the type of the job. Thus if the arriving job is of type 2 
the device number 2 would be associated with ENQY. 
The priority associated with jobs is set to 101 due to 
lack of specifications. 

The Bufferpool Definition segment specifies that the 
system is to contain a bufferpool numbered as 1. All the 
buffers in this pool are of a fixed size. The total space in 
the pool is 10 units divided amongst 10 buffers. Requests 
for bufferspace are to be placed in queue 7 if they 
cannot be satisfied immediately. Number of instruc­
tions to be executed by the CPU for the assignment and 
release of bufferspace is specified as zero (by default). 
Lack of decision rules specifications for the assignment 
of bufferspace imply that the requests for bufferspace 
are to be met if bufferspace is available. 

The Initial Condition segment specifies that at 
simulated time zero one job is to arrive in the system. 
The type of this job is to be determined by the cumula­
tive distribution function labelled J1. 

The Simulated Time Specification segment specifies 
that the model is to be operated for 1020000 units of 
simulated time after which a report is to be generated. 
Lack of the random number seed specification implies 
that the system is to use the built-in random number 
seed during the simulation process. 
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Figure 14c-OSSL model 

The output generated by the generalized model is in 
the form of a report shown in Figures I5a, I5b, and I5c. 
The report contains the various statistics concerning 
the teletypes, CPU, the selector channels, the buffer­
pools and the various queues. 

It may be pointed out that the CPU service related 
to interrupts is considered as overhead. Since all the 
CPU services in the simulated system were represented 
by interrupts, the generalized model reports that all 
the CPU utilization was for overhead. 

TABLE I 

EQUIPMENT AVERAGE 
UTILIZATION 

GPSS Generalized Model GPSS Generalized 
Model Model Model 

TERM1 TTYP 1 .242 .2506 
TERM2 TTYP 2 .231 .2512 
TERM3 TTYP 3 .251 .2568 
TERM4 TTYP 4 .266 .2517 
TERM5 TTYP 5 .260 .2510 
CHANI CHAN 1 .118 .1192 
CPU PROCESSING UNIT 1 .645 .6385 
CHANO CHAN 2 .177 .1782 
CORE BUFFERPOOL 1 .099 .1010 

TABLE II-Message Transit Time Distribution 

Percent of Total 

Interval GPSS Model Generalized Model 

0-400 10.89 13.026 
400-500 16.14 17.385 
500-600 20.04 18.722 
600-700 11.69 9.807 
700-800 9.34 8.370 
800-900 7.79 6.984 
900-1000 6.04 6.043 

1000-1500 12.75 12.927 
1500-2000 3.35 4.160 
2000-2500 1.30 1.535 
2500-3000 .21 .545 
3000-3500 .00 .347 
3500-4000 .04 .149 
over 4000 .00 .000 

The results obtained by the generalized model are 
essentially the same as those obtained by the GPSS 
model. The equipment utilization as reported by the 
two models is shown in Table I. 

The total transit time distribution of the messages 
as obtained by the two models is shown in Table II. 
The differences in results obtained by the two models 
may be attributed to sampling error. 
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In developing the OSSL version of the GPSS model, 
the following advantages of the OSSL language over 
the GPSS language for computer system simulation 
were noted: 

1. There is a more direct correspondence between 
the various components of a computer system 
and the available OSSL language segments. This 
feature practically eliminates the translation of 
the computer system operation concepts into 
simulation concepts as contained in GPSS or 
any other general purpose simulation package. 

2. The OSSL language elements reflect the ter­
minology used by the designers and implementors 
of computer systems. This feature goes a long 
way in reducing the time required for structuring 
and debugging of a simulation model. A side 
benefit is expected to be the ability to involve 
interested people who do not know the simula­
tion techniques. 

3. The OSSL language is self documenting and 
thus considerably reduces the need for lengthy 
explanations for communicating the model 
being simulated. 

4. The OSSL simulator is capable in dealing with 
fractions of unit time, whereas G PSS deals in 
integral values for time. This feature eliminates 
the scaling of the time specifications by the 
user. 

5. The OSSL language provides the user the ability 
to define the various distribution functions in 
terms of their parameters rather than via a table. 

6. The OSSL language provides for free-format 
input as opposed to the fixed-field format of 
GPSS. 

7. The modularity of a particular simulation model 
expressed in the OSSL language will allow for 
several persons to contribute to a simulation 
study much more easily than the GPSS language. 

CONCLUSIONS 

The OSSL language, developed for simulating computer 
systems, seriously attempts to reflect the terminology 
used by the designers and implementers of computer 
systems. This semantic structure should allow the use 
of the language even by those who are not particularly 
well-versed in the art (and science) of simulation. The 
free-format syntax of the language should also encourage 
its use. The OSSL simulator is also inexpensive to use. 
The simulation run relative to the o.n-line inquiry 
system consumed 30 seconds on the UNIVAC 1108 
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computer system. Other, more complex systems have 
been simulated in from approximately one to five 
minutes (CPU time) on the UNIVAC 1108. The ratio 
of simulated time to real time is not readily generalizable 
since it depends heavily on the complexity and number 
of concurrent processes being simulated. 

A simulation model structured by the use of the 
language consists of several interrelatable but modular 
segments. This modularity makes it easy to effect 
changes in the model. Moreover, it enables several 
persons to contribute to the simulation study. In 
addition to providing simulation capability, the 
generalized model provides a tool to document com­
puter systems in a relatively unambiguous manner as 
demonstrated in the examples. This capability, hope­
fully, will raise the level of communications between 
personnel dealing with the different aspects of com­
puter systems. 

The language may also be used as a pedagogical 
device in the area of computer operating systems. 
Modelling of operating systems has the potential of 
providing to students invaluable insight into the 
dynamic relationships of various elements of an 
operating system. For example, the OSSL language is 
being used in a graduate course in computer operating 
systems design and in graduate research at the U ni­
versity of Houston. The ability of students without 
formal training in simulation to grasp, learn, and use 
the OSSL language in computer systems simulation 
based on this limited experience has been very grati­
fying. With the OSSL User's Guide25 as a reference , 
students with a strong background in computer 
operating systems are able to have simple models 
developed and executing in a matter of days. Relatively 
complex models have been developed and experiments 
implemented by a different group of similarly prepared 
students within a matter of three to four weeks. A more 
complete analysis of the results of the usage of OSSL 
in the tracking of computer operating systems topics is 
being prepared for a future paper. 

During the brief but intensive period of usage of 
OSSL since June of 1971, a list of improvements and 
modifications is being compiled and some such changes 
are being implemented as time permits. A partial list 
of these improvements is as follows: 

1. Introduction of dynamic storage allocation for 
storage relative to model parameters during 
execution. 

2. Provision for more extensive and. specific error 
messages for both compile time and execution 
time errors. 

3. Provision of recursive "Subroutine-like" capa-
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bility for procedures written in the OSSL 
language~ 

4. Expansion of memory management and pro­
cessor simulation capabilities to allow for user 
representation of more "exotic" computer system 
architectures. 

I t is recognized that the language may not be able to 
simulate all computer systems, primarily due to the 
current weakness of the language in the area of "uncon­
ventional" memory management strategies and intra­
processor scheduling algorithms. This weakness suggests 
that more research needs to be done in this area. To 
this end, the language has been implemented with an 
open-ended structure, which will hopefully allow for the 
inclusion of these and other developments with mini­
mum difficulty. 

I t is hoped that the language will be used extensively 
to establish its usefulness as well as its limitations. 
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Discrete computer simulation-Technology and 
applications-The next ten years 

by JOHN NORRIS MAGUIRE 

Consultant 
Reston, Virginia 

Digital computer simulation is an effective method 
of pretesting proposed systems, plans or policies prior 
to the development of expensive prototypes, field tests 
or actual implementations. In simulation analysis the 
computer traces out in detail the implications and 
consequences of a proposed system or course of action. 
Compared with other forms of analysis, simulation is 
more realistic, more easily understood and more con­
clusive. Because the results are easier to understand, 
the conclusions receive wider acceptance. 

As an aid in making important decisions, the use of 
computer simulation is growing at an astonishing rate. 
A decade ago it was used occasionally in manufacturing, 
military, nuclear, and a few other pioneering applica­
tions. In more recent years its use has expanded ex­
ponentially, both through increased coverage of old 
areas and in application to new areas. The growing list 
of successful uses includes the simulation of proposed 
information systems and manufacturing facilities; 
proposed inventory control systems; war games such as 
air battles, tank battles, and amphibious operations; 
hydroelectric, transportation, and communication sys­
tems; and many more. 

Five factors have triggered this growth in the past 
and will continue to do so in the future. The first is the 
increasingly widespread recognition of simulation's 
role in careful planning. It pretests proposals under 
alternate contingencies prior to implementation. To a 
certain extent, it provides hindsight in advance. 

The second factor contributing to the growing use of 
simulation is the advancement in techniques for pro­
ducing simulation models and programs. 

The third factor is the increasing availability and use 
of generalized models which focus on particular problem 
areas. The most notable successes here have been in the 
information systems area, but the development and 
use of generalized models have been spreading rapidly 
into other areas such as inventory, transportation, 
logistics, financial and management planning systems. 
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The fourth factor contributing to the increased use of 
simulation is the application and acceptance of more 
scientific techniques to the experimental design aspects 
of simulation experiments. Coupled with this has been 
the development of automated analysis techniques for 
simulation models. 

The fifth factor is the increasing availability of data 
vital to the formulation of models. Naturally, this 
change has come about mostly in the areas which have 
been susceptible to a high degree of automation, e.g., 
computerized information, inventory, financial and 
manufacturing systems. Successes in these areas have 
accelerated simulation research and applications in 
areas such as marketing, social, biomedical, ocean­
ography and environment/ecological systems where the 
data is more sparse, but growing rapidly. 

These statements are generally true for all types of 
modelling. It is convenient to classify simulation models 
into two major types: continuous change models and 
discrete change ( or discrete event) models. Some 
models are clearly best described by one type or the 
other; for a few problems, either type may be used. 
Many of the comments to follow on technological 
developments and trends will be applicable to both 
kinds of modelling, but the discussion will concentrate 
on discrete event modelling. 

THE SIMULATION PROCESS 

A brief review of the simulation process itself is 
appropriate prior to discussing the recent and likely 
future technological changes in this process. One view 
of the simulation process suggests that there are ten 
steps as illustrated in Figure 1. 

1. Formulate the Problem This includes a definition 
of the general objectives of the study; specifica­
tion of the questions to be answered; and a 
description of decision criteria and processes. 
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I MODEL REQUIREMENTS 

II MODEL DESIGN 

5. 6. 

III MODEL EXPERIMENTATION 

Figure 1-Modelling tasks 

2. Identify Major System Elements A description of 
the major system components and features has 
to be developed; explaining functional depen­
dencies and interrelationships. Also, the "domain" 
of the system under study should be defined in 
terms of exogenous and endogenous phenomena. 

3. Collect and Analyze Data This involves the 
classification and identification of relevant data 
sources. Procedures/data collection forms/ com­
puter programs/devices may be used in the 
collection of this data. 

4. Formulate Model Detail Create the design 
specifications defining basic elements and their 
characteristics coupled with a verbal description 
of model operation. 

S. Establish Model Content Specify the degree to 
which phenomena will be enacted. Establish 
control and experiment parameters along with 
system performance measures. 

6. Construct Model Evaluate alternative modelling 
techniques; flow chart, code and de-bug the 
model. 

7. Validate Model Compare simulated data with 
hypothesized, actual, and/or historic data; and 
perform sensitivity analysis. 

8. Design Experiments Evaluate alternative experi­
mental design techniques and compare with 

/ SimOptimization* procedure; make decision and 
set up experiments. 

* SimOptimization is a Trademark and Service Mark of Con­
solidated Analysis Centers Inc. 

9. Run Experiments Implement model initializa­
tion and operating procedure and perform 
experiments. 

10. Analyze Results Relate the results back to the 
real phenomena; decide if further experimenta­
tion is required; and document results. 

Of these ten steps of specified simulation activity, 
step Number 6, Model Construction, is the one that 
has seen the most dramatic change in the past decade 
through the development of high level simulation 
languages and generalized models. Changes will con­
tinue to take place in this area and these will be dis­
cussed in a later section of this paper. 

Significant changes have also taken place in the 
following steps: 

3. Data Collection 
8. Experiment Design 

10. Analysis 

It is in these three areas where some substantial changes 
may be expected to occur in the coming decade. 

Again, the five factors which seem to have brought 
about an expotential increase in the use of simulation 
are: 

1. Recognition of simulation's advantages. 
2. Advancements in techniques for producing 

models. 
3. Increased availability of generalized models. 
4. Increased application of experimental design and 

automated analysis techniques. 
S. Increased availability of relevant model data. 

Trends in these five areas can be discussed and 
extrapolated with a reasonable degree of confidence for 
the next decade. Other positive factors will also in­
fluence the growing use of simulation. These factors 
include: 

• Larger numbers of students leaving the campus 
trained in simulation techniques. 

• Successes with simulation in new application areas. 
• Reduction in the cost of using computer simulation, 

especially for machine time as we enter the "no­
cost processor" era in the 1980's. 

The major factor on the negative side which might 
tend to inhibit the growing use of simulation in a 
particular functional area or organization is either the 
misapplication of the technique or low quality work 
performed by an over zealous, ill equipped individual or 
group. This will happen, as it has in the past, as a field 
turns from more of an "art" to more of a "science." 
Examples of this type appear in every new field, be it 
process control computers or heart transplants, but it is 



not expected to be a significant deterrent to increased 
use of computer simulation. 

1. Recognition of Simulation's Advantages 

One indicator that this has occurred is simply the 
vast sums of money and resources being expended in 
the area and the trend is clearly up-after possibly a ' 
leveling off during the recent recession. One measure 
of this effort is the published computer simulation 
papers and conferences devoted solely to the subject. 
In addition to many simulation papers presented as 
parts of many conferences such as this Spring Joint 
Computer Conference during the past five years, new 
annual simulation conferences include: 

• Summer Computer Simulation Conference 
(1970 Denver, Colorado-1971 Boston, Massa­
chusetts) 

• Applications of Simulation 
(Usually New York) 

• Annual Simulation Symposium 
(Tampa, Florida) 

Attendance at these conferences has been growing and 
the proceedings from the 1971 SCSC ran 1,323 pages. 
Various organizations and societies have co-sponsored 
one or more of the above conferences. These societies 
include: 

• American Institute of Aeronautics and Astronautics 
(AIAA) 

• American Institute of Chemical Engineers 
(AIChE) 

~ American Institute of Industrial Engineers (AIlE) 
• American Meteorological Society (AMS) 
• Association for Computing Machinery (ACM) 
• Board of Simulation Conferences (BSC) 
• Institute of Electrical and Electronics Engineers 

(IEEE) 
• Instrument Society of America (ISA) 
• Simulation Councils, Inc. (SCi) 
• SHARE-IBM User Group 
• The Institute of Management Science (TIMS) 

While there is a way to go before operating personnel 
use, or at least endorse simulation techniques, the 
previous paragraphs do indicate that general ac­
ceptance of the technique has occurred among profes­
sionals working in a variety of fields. 

2. Advancements in Techniques for Producing Models 

These techniques have centered around the develop­
ment of high level simulation languages. A detailed 

Discrete Computer Simulation 817 

discussion of these languages is presented in Mr. Ira 
Kay's paper for this session. 

The two most widely used discrete event simulation 
languages, are SIMSCRIPTl,2,3 and GPSS.4 A recent 
development has been the availability of the HOCUS 
modelling method.5 With simulation techniques and 
languages, as with most other tools, there is a trade-off 
between performance and simplicity of design. The 
HOCUS approach occupies a particular point on the 
trade-off curve. SIMSCRIPT and GPSS represent two 
other distinct trade-off points. Each of the three systems 
fulfills an important need not fully met by the other 
two, even though the basic principles underlying all 
three systems are essentially the same. 

The extreme simplicity of HOCUS gives it many 
important practical advantages over other methods, 
including quick model formulation, the ability to 
operate the model by hand, and easy transfer to a 
computer. On the other hand, some simulation models 
cannot be forced into the limited HOCUS framework. 

At the other extreme, SIMSCRIPT is the most 
general and powerful of the three techniques. It de­
mands highly skilled simulation analysts or pro­
grammers, but its great power and generality are 
sometimes indispensable. GPSS falls between HOCUS 
and SIMSCRIPT (Reference No. 6 details an evalua­
tion of major simulation languages-although published 
in 1966, the study is still reasonably valid). Some sys­
tems can be classified as a restricted language or a 
generalized model depending upon your viewpoint. An 
example of this is ECSS (see: Kosy, D. W., "Experience 
with the Extendable Computer System Simulator," 
RAND No. R-560-NASA/PR, December, 1970). 

The main point is that the programming "bottle­
neck" in the development of simulation models has, 
for the most part, been solved. Refinements will con­
tinue in the simulation language field. Two of the most 
promising developments are interactive modelling and 
simulation oriented graphics. 

The best known interactive simulation language is 
OPS-3.7 This language was designed and implemented 
at M.LT. and used successfully to demonstrate the 
feasibility of interactive modelling. Operating in a time­
shared environment under the M.L T. Compatible 
Time Sharing System (CTSS), OPS-3provides a user 
with on-line interactive communication between him­
self and a programming system. Using it, one can, in a 
single sitting, compose a program, test and modify it, 
expand and embellish it, and prepare it for subsequent 
production use. 

A considerable amount of simulation-oriented graphics 
research is going on right now. At the Norden Division 
ofU nited Aircraft, an IBM 2250 is used to modify 
source language GPSS programs and view their output 
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in graphical form.8 At the RAND Corporation, the 
Grail system and the RAND Tablet are used to con­
struct GPSS programs on-line from hand-drawn 
flowcharts. 9 At M.LT., the SIMPLE project is using 
graphics for man-computer interaction during modelling 
and experimentation. Papers have been written on the 
use of graphics in simulation modelling and the use of 
existing graphics packages for analyzing simulation­
generated output.IO 

There is little doubt that interactive modelling is 
carried out better with a CRT device than with a 
typewriter or line printer. When designing programs, 
flow-charts and other symbolic notation can be dis­
played. For analyzing performance data, graphs pro­
vide more insight than do lists of numbers. The growing 
use of line-printer plotting simulators testifies to the 
utility of graphic output. 

Also, we will see during the next decade extensions 
of a few simulation languages that will include mass 
storage random access data handling capabilities. There 
already exists a design and a tested prototype for this 
in SIMSCRIPT. The model builder will be able to use 
the simulation language itself to acquire most, if not 
all, of the data he requires for model formulation and 
testing. 

3. Increased Availability of Generalized Models 

During the early 1960's, a few simulators for discrete, 
dynamic models of manufacturing, inventory and EDP 
systems appeared and were parameterized and relatively 
easy to use, but had a narrow range of application. The 
alternative programming solution for a computer model 
was frequently machine language or a language such as 
FORTRAN or ALGOL which typically consumed a 
large amount of time for implementation. After that 
period, there emerged a number of simulation languages 
that attempted to provide the flexibility of machine 
language with the power of a generalized model. In 
parallel with these developments, a number of gen­
eralized models became available. SCERT,ll CASE,12 
S.A.M.,13 LOMUSS,14 and ECSSI5 are examples of 
generalized models of EDP systems. These models 
possess the advantage of "ease of use" if their structure 
happens to fit your EDP modelling problem. Examples 
of their general use are numerous,16,17 and growing 
rapidly. Successful simulation applications of gen­
eralized models have helped to determine EDP design 
answers such as machine core size, secondary storage 
assignments, peripheral terminal configuration, oper­
ating system procedures and allocation rules. Similar 
successful use of generalized models in other problem 
areas insure their increased use, because of the rapid 

implementation and low cost usually experienced with 
each application of a generalized model. 

4. Increased Application of Experimental Design and 
Automated Analysis Techniques 

Much has been written about the use of computer 
simulation experiments for the study and design of 
systems.18 For the most part, the literature has empha­
sized the "model building" aspects rather than the 
experimental design aspects of simulation experiments. 
It may be that by the time the typical model-builder 
has gone through all the steps of implementing a model, 
he has run out of time and frantically makes a series of 
computer runs changing parameters here and there on a 
"gut-feeling" basis. He then culls through stacks of 
computer output trying to perform analysis. Other 
factors presently associated with this situation of not 
using more sophisticated techniques may be cost (these 
techniques tend to require more labor and computer 
time) and training prerequisites (A strong mathematical 
and/ or statistical background is required.) N everthe­
less, increasing use of more analytical techniques for 
simulation of systems is a near certainty. 

In a well-designed experiment, consideration must '\ 
be given to methods of analyzing the data once it is 
obtained. Most of the classical experimental design 
techniques described in the literature (e.g., 19, 20) are 
used in the expectation that the data will be analyzed 
by one or both of the following two methods: analysis 
of variance and regression analysis. Recently, however, 
several other techniques have been proposed for ana­
lyzing data generated by computer simulation models 
including multiple ranking procedures, sequential 
sampling plans and time series analysis. Also, a tech­
nique called "SimOptimization" shows promise for 
automating and minimizing the number of simulation 
runs required. 

A nalysis of variance 

The analysis of variance is a collection of techniques 
for data analysis which are appropriate when qualita­
tive factors are present, although quantitative factors 
are not excluded. An example of a qualitative factor 
would be the testing of different decision rules in a 
simulation model. Regression analysis is a collection of 
techniques for data analysis which utilizes the numeri­
cal properties of the levels of quantitative factors. The 
parameters chosen for describing probability dis­
tributions are quantitative factors, but the type of 
probability distribution (e.g., exponential or normal) 
would be a qualitative factor. From a mathematical 



point of view the distinction between regression and 
analysis of variance is somewhat artificial. For example, 
an analysis of variance can be performed as a regression 
analysis using dummy variables which can assume only 
the values of zero or one. A treatment of the relation­
ship between regression and the analysis of variance can 
be found in the book by Graybill.21 

Multiple ranking procedures 

Conway22 and others have pointed out that analysis 
of variance techniques frequently do not supply the 
kind of information that the experimenter seeks. 
Referring specifically to the design of computer simula­
tion experiments, Conway has stated that: 

the analysis of variance seems a completely 
inappropriate approach to these problems. It is 
centered upon the test of the hypothesis that all of 
the alternatives are equivalent. Yet the alternatives 
are actually different and it is reasonable to expect 
some differences in performances, however slight. 
Thus the failure to reject the null hypothesis only 
indicates that the test was not sufficiently power­
ful to detect the difference-e.g., a longer run 
would have been employed. Moreover, even when 
the investigator rejects the hypothesis, it is 
highly likely that he is more interested in iden­
tifying the best alternative than in simply con­
cluding that the alternatives are not equivalent. 
Recently proposed ranking ... seem more 
appropriate to the problem than the conventional 
analysis of variance techniques, but the in­
vestigator is still going to have difficulty satis­
fying the assumptions (normality, common 
variance, independence) that the statistician 
will require. 22 (P. 53) 

Bechhofer's procedure for ranking means of normal 
populations with known variances23 .24 and Bechhofer 
and Sobel's procedure for ranking variances of normal 
populations25 are examples of multiple ranking pro­
cedures which seem appropriate to the design of 
computer simulation experiments. 

Sequential sampling plans 

Experimental designs which use analysis of variance 
as a technique of data analysis are based upon the 
assumption of fixed sample size. However, with certain 
kinds of experiments conducted on an "accumulation­
of-information" basis, sequential sampling methods 
can be utilized which may lead to significant reductions 
in sample size. Since we are using computers on an 
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accumulation-of-information basis and not planting 
plots of beans that will mature next year, we may want 
to take advantage of the savings (in terms of computer 
time) sequential experiments offer. Sequential sampling 
methods were designed for testing hypotheses or 
estimating parameters "when the sample size is not 
fixed in advance but is determined during the course of 
the experiment by criteria which depend on the ob­
servations as they occur."26(p.365) 

In testing a hypothesis with a computer model, the 
sequential method yields a rule for making one of the 
following three decisions at each stage of the simulation 
experiment :27 (p .271) ( 1) Accept the null hypothesis; 
(2) Reject the null hypothesis; (3) Continue the 
simulation experiment by generating additional data. 

Although W aId's Sequential A nalysis28 is probably the 
best known reference on sequential sampling pro­
cedures, the optimization procedures developed by 
Dvoretzky, Kiefer and Wolfowitz29 (PP.51-55) appear to 
offer promise in analyzing data generated by computer 
models. Chernoff's30 article entitled, "Sequential Design 
of Experiments" considers a number of important 
aspects of sequential designs also. 

Spectral analysis 

Spectral Analysis31 is a statistical technique widely 
used in the physical sciences to analyze time-dependent 
physical processes. There are at least two reasons why 
one may want to consider spectral analysis as a tech­
nique for analyzing data generated by computer 
simulation models. First, data generated by computer 
simulation experiments are usually highly auto­
correlated. Yet classical statistical theory of the design 
of experiments (analysis of variance) is based on the 
assumption that component observations or experi­
mental outcomes are independently distributed. In 
simulation experiments involving autocorrelated data, 
classical statistical theory must be replaced by a 
sampling theory such as spectral analysis in which the 
probabilities of component outcomes in a series depend 
on other outcomes at other time points in the series. 
Second, as one becomes more sophisticated in the 
analysis of computer simulation data, he may become 
interested in analyzing more than expected values and 
variances. "When one studies a stochastic process, he is 
interested in the average level of activity, deviations 
from this level, and how long these deviations last, 
once they occur. Spectral analysis provides us with this 
kind of information. Spectral analysis studies the 
salient time properties of a process and presents them 
in an easily interpretable fashion for descriptive and 
comparative purposes."32 
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Fishman and Kiviat32 have written a survey article 
on the use of spectral analysis in analyzing data gen­
erated by computer simulation models. Tukey33 has 
written an article in which spectral analysis and the 
analysis of variance are compared in detail. 

SimOptimization 

SimOptimization34 ,35,36 is a set of optimum-seeking 
techniques embedded in an automatic cycle of simula­
tion-analysis-simulation. These procedures quickly 
locate improved policies and computer system con­
figurations in simulation models. Their use greatly 
increases the value of simulation analysis. 

While simulation is more realistic and easier to 
understand than mathematical optimization, it has the 
disadvantage of being somewhat clumsy to use. A 
typical simulation model has an enormous parameter 
space in which the desired optimum solution is con­
cealed. Finding this solution can be difficult. 

Fortunately, a good analyst, using his judgment and 
intuition can find improved solutions by studying the 
results of a limited number of simulation runs. Even so, 
the process of making a few runs, studyin~ then:, 
deciding what runs to make next, then repeatIng thIS 
procedure, is a time consuming and costly way to grope 
for a good solution. By using SimOptimization, the 
preferred solution for most models can likely be deter­
mined in a single computer run consisting of from two 
to four simulation and analysis phases. 

In most simulation models, optimality cannot, of 
course, be proven rigorously. However, SimOptimiza­
tion solutions are at or very close to the "apparent" 
optimum. In every case, a "good" solution to a realistic 
model is preferable to an "optimal" solution to an 
unrealistic model. 

While SimOptimization is still new, all of its applica­
tions have been highly successful. Judging from this 
empirical experience, SimOptimization seems to offer 
the best of two worlds, namely the realism of digital 
simulation combined with the convenience of automatic 
analytical solutions. 

5. Increased Availability of Relevant Model Data 

The technological changes taking place today in data 
collection in information processing, or "EDP Systems" 
is taking place in parallel with other areas such as 
finance and manufacturing and portends what is going 
to happen in the future in other areas susceptible to 
simulation. A detailed discussion follows covering the 
trends in EDP System data collection. Within the next 
decade we will see similar changes in other areas where 

data is now laboriously collected only on an ad hoc 
basis for a simulation study. 

A key step in the process of constructing an ED P 
system model is the collection of data characterizing the 
work load. Of course, if we are hypothesizing a new 
system in a new environment, it doesn't pose much of a 
problem. But, typically, the model builder is studying 
possible hardware and software changes to an existing 
system. Therefore, he must represent as accurately as 
possible the complete system. In the past, this meant 
collecting some data on the work load and the computer 
system. Job data was (and still is) frequently obtained 
from an accounting file generated by the operating 
system. The characteristics of the hardware are ob­
tained from the technical manuals. * This is the pro­
cedure used in applications, of which the study by 
Hutchinson and Maguire17 is an example. 

But computer system complexity has increased 
faster than our ability to characterize these systems. 
Today, the complex interactions between the work 
load hardware and software of computer systems make , . 
the batch-processing systems of the second generatlOn 
appear very simple, indeed. The difficulty today of even 
intuitively being able to predict the performances of 
some of these systems creates a situation where simula­
tion for EDP systems is in more demand than ever. 
The recent development of EDP System Hardware and 
Software monitors offers a solution to this problem. 
As will be shown, use of these monitors can help solve 
operating problems and increase efficiency in the short 
run, but an even greater value may be in their use for 
generating data for EDP system models for pretesting 
system changes. 

Hardware monitors 

A hardware monitor consists of sensors, control logic, 
accumulators, and a recording unit. The sensors are 
attached on the back panels of the computer system 
components-CPU, channels, disks, etc. The signals 
from registers, indicators and activity lines picked up 
by the sensors can be logically combined or entire 
registers can be compared at the control panel and then 
be routed to the accumulators for combining or timing 
events, e.g., CPU active, any channel busy, disk seek 
counts and times, etc. Typically the contents of the 
accumulators are written periodically to a magnetic 
tape unit. The magnetic tape is batch-processed by a 
data analysis program to produce a series of analysis, 
summary and graphic reports. Figure 2 shows a hard­
ware monitoring system. 

* Some generalized models such as SCERT and CASE maintain 
this data on tape for convenience in processing. 



Table I lists some hardware monitors presently 
on the market. 

Figure 3 illustrates some typical output from a data 
analysis program run against a monitor tape.37 

Two examples of how hardware monitors are used 
to improve system performance are: 

1. Channel Imbalance 

If the channel utilization is high, but the channel load 
is not balanced, the device activity needs to be mea­
sured to determine device rearranging. A new system 
performance profile should be measured to verify the 
results. 

Low channel utilization would indicate that all the 
work can be placed on one channel with little effect on 
the system throughput. 

2. Multi-programming Effectiveness 

A large CPU ACTIVE ONLY time coupled with a 
low CPU-CHANNEL OVERLAP indicates that the 
benefits of multi-programming are not being obtained. 
Possible reasons are poor job scheduling (a balance is 
needed between CPU and I/O bound jobs); poor data 
set allocation (data sets should be on different channels 
so they do not have to be retrieved sequentially), or 
inefficiently written programs. Several of the production 
jobs which use a large part of the system resources 
should be selected and run stand alone in the system to 
create an individual job profile. These profiles show 
data set usage to make data set placement changes and 
processing phases which are CPU or I/O bound to 

Hardware Monitor 

• Compare 
• Logic Control 
• Accumulators 
• Count 
• Time 

Analysis 
f--------fI Sunuuary 

Graphs 

Figure 2-Hardware monitor system 
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TABLE I-Computer Hardware Monitors-A Sampling* 

Supplier Hardware Price 
Monitor 

Allied Computer CPMII $35,000 to $80,000 
Technology, Inc. 

1610 26th Street 
Santa Monica, California 

90404 
Telephone: (213) 828-7471 CPM III $14,700 to $24,000 

Computer Learning & X-RAY $2,350/month or 
Systems Corp. $50,0000 purchase 

5530 Wisconsin Avenue 
Suite 1600 

Chevy Chase, Maryland 
20015 

Telephone: (301) 652-9220 

Computer Synectics, Inc. SUM Starts at $1,750/ 
328 Martin Avenue month for one year 
Santa Clara, California lease or $34,000 

95050 purchase 
Telephone: (408) 247-0200 

COMRESS Dynaprobe $4,000/month-
2 Rockville Court lease 
Rockville, Maryland 20850 $34,000-typical 
Telephone: (301) 948-8000 purchase price 

IBM Corporation SMIS $1,800 for basic 
112 E. Post Road service contract 
White Plains, New York 

10601 
Telephone: (914) 696-1900 

Computer & Programming CPA 7700 $5,000 to $40,000 
Analysis Inc. 

One Wynnewood Road 
Wynnewood, Pa. 19096 

* For Suppliers not included or if listed Supplier's information is 
not up-to-date, please write to author. 

enable efficient job scheduling. This will increase CPU 
utilization and system throughput. 

While the data derived from the hardware monitor is 
useful for immediately improving system performance, 
it can also be very valuable to the model builder con­
templating major changes or new systems. This data 
serves as: 

• Input to development of the model. 
• A validation "check point" for model testing. 

The hardware monitor does not degrade or interfere 
with the system it is measuring and requires no system 
overhead. A software monitor, on the other hand, is a 
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Figure 3-Histogram of CPU active 

program itself, uses system resources, and adds to 
system overhead. Both have their merits. A software 
monitor costs less than a hardware monitor and does a 
better job of getting a "fix" on the system workload. 

Software monitors 

The important variables in a computer system can 
be classed as either quantitative variables or qualitative 
variables. Quantitative variables are concerned with 
the magnitude of some quantity such as cpu active 
time. Qualitative variables identify which, of a perhaps 
very large number of different system elements, are 
being considered. For example, when measuring the 
work performed by a given program (i.e., the percent of 
available cpu cycles being utilized), it is necessary to 
identify each module and overlay segment individually 
and to show the cpu activity requirements of each. The 
module and segment names are the qualitative or 
descriptive variables, the cpu activity associated with 
each is the quantitative variable. 

Qualitative and quantitative variables must be 
combined to present a usable set of measurements. One 
of the advantages of software monitors is their ability to 
obtain both from the system itself. This eliminates the 
necessity for using manual techniques to obtain or 
correlate information on what elements were active 

during the data collection process. When the descriptive 
data required is not available through console logs or 
other means, then either a pure software approach 
must be used or special software supplied to obtain the 
needed descriptors in a manner which permits proper 
correlation. 

How a software monitor extracts variables from 
memory is conditioned on the timing and form in which 
such variables are retrieved in memory, which in turn 
tends to be a function of the structure of the operating 
system, compilers, etc. Thus, software monitors are at 
least operating systems dependent and can be compiler 
dependent or even problem program dependent. 

Ideally, the act of taking a measurement should not 
alter the system being measured nor require the system 
to be altered beforehand. This is not perfectly achieva­
ble in software monitors. A good software monitor 
extracts data from the system without significantly 
altering the run characteristics of the system. This 
involves three parameters: cpu cycle requirements, 
I/O activity, and core usage. The first two quantitative 
variables can be expressed as a percentage of some total 
time, rather than an absolute count. Thus classical 
sampling techniques can be used instead of activating 
special codes or going to the techniques of trace routines. 
Furthermore, if the frequency of sampling is less than 
the minimum time in which some event can occur, then 
other measures of interest can also be supplied. Thus, 



even though the sampling techniques are used, software 
monitors can obtain the cylinder addresses of successive 
head movements on discs by using a sample interval 
less than the minimum positIoning time. 

The third design parameter-core usage-is resolved 
typically by the simple expedient of separating the 
data extractor mechanism from the data analysis 
function. As an example, Figure 4 illustrates this 
structure for the Boole and Babbage program evaluator 
(PPE) .38 

Application examples are given in References 39 and 
42 using PPE40 and another software monitor called 
CUE.41 

This has several other important benefits, such as 
the ability to combine and/or reanalyze raw data in 
various ways. While some software measurement tools 
have been built with the extraction and the data 
reduction mechanisms combined, experience with them 

User Program 

Extractor 

Analyzer 

Reports 

Figure 4-PPE-General procedure 
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TABLE II-Computer Software Monitors-A Sampling* 

Supplier 

Allied Computer 
Technology, Inc. 

1610 26th Street 
Santa Monica, California 

90404 
Telephone: (213) 828-7471 

Boole and Babbage, Inc. 
1121 San Antonio Road 
Palo Alto, California 94303 
Telephone: (408) 255-1200 

Boothe Resources 
International 

3435 Wilshire Boulevard 
Los Angeles, California 90005 
Telephone: (213) 380-5700 

Computing Efficiency, Inc. 
35 Orville Drive 
Islip, New York 11716 
Telephone: (516) 567-3600 

Lambda Corporation 
1501 Wilson Boulevard 
Arlington, Virginia 22209 

Software Price 
Monitor 

CPS II $6,500 

PPE or CUE $8,800 or $15,400 
for both 

CIMS I or II $3,500 to $5,800 

Compumeter $3,500 for 360lDOS 
$15,000 for 36010S 

LEAP $8,500 

Webster Computer MURS Starts at $2,500 
Corporation 

1 Padanaran Road 
Danbury, Connecticut 06810 
Telephone: (203) 744-6500 

* For Suppliers not included, or if listed supplier's information is 
not up-to-date, please write to author. 

has tended to further strengthen the case for separation 
of these two functions. Table II lists some software 
monitors presently available. 

The techniques of sampling as used in software 
monitors are based on relatively straightforward 
mathematical concepts. Assuming randomness (viz. 
absence of synchronization) of observation with respect 
to the events being sampled, the accuracy of the data 
obtained is a function of the number of samples taken, 
not the frequency of sampling. For example, monitoring 
a one-hour program with a sample frequency of one-half 
second, for a total of 7,200 samples, results in data 
accurate to within 1.5 percent with a confidence level of 
99 percent. The cpu cycle needs of an extraction 
mechanism would be much less than 1 percent in this 
instance. On the other hand, the "overhead" can run as 
high as 20 percent with a sample frequency as small as 
16 milliseconds. 
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Code Execution Frequency for Each Interval 

Starting Ending Interval Cumulative Histogram-% of Time (Each * = 0.5%) 
Location Location Percent Percent .0 4.0 8.0 12.0 

000000 00061F 0.00 0.00 
000620 00068F 7.39 7.39 ************** 
000690 0006FF 0.0 7.39 
000700 00076F 1.56 8.95 *** 
000770 0007DF 15.59 24.54 ******************************* 
0007EO 00084F 13.94 38.48 *************************** 
000850 0008BF 12.58 51.06 ************************* 
000800 00092F 2.39 53.45 **** 
000930 00099F 3.41 53.86 
0009AO 000B5F 0.0 53.86 
000B60 OOOBCF 1.28 55.14 ** 
OOOBDO 000C3F 1.84 56.98 *** 
000C40 OOOCAF 3.45 60.43 ****** 
OOOCBO OOODIF .30 60.73 

Figure 5-Partial sample of code activity histogram 

An example of software monitor output is illustrated 
in Figure 5.38 

These monitors are most useful when used on a job 
mix containing programs which are either run fre­
quently or which take a long time when run. The most 
effective technique is to maintain a list of the top ten 
"cpu cycle using" programs, and to continuously work 
on these to reduce their cpu cycle time requirements. 
As improvements are made on one, other programs 
usually then move up the list for rework. This activity 
coupled with configuration improvements can result in 
very significant improvements to system throughput 
rate. 

FUTURE TRENDS 

The practical application of hardware and software 
monitors for improving EDP system efficiency has been 
amply demonstrated in the past year or so. These 
monitors provide a wide spectrum of detailed in­
formation on EDP systems, their workload and the 
interactions between hardware, software (operating 
system), and user programs. The potential for using 
this information for the construction, validation and 
use of EDP system models has not been realized. There 
appears to be a need for EDP models for planning 
purposes or for pretesting system changes suggested by 
intuition or monitor use. The monitors by themselves 
have limitations for planning future EDP systems. 
There are a few indications that the "monitor people" 

will add some simulation capability to their monitors. 
For example: 

Software adds important new capabilities to the 
hardware monitor, significantly increasing the 
usefulness, power and flexibility of such systems. 
The first software specifically designed to 
simulate hardware changes based on actual 
measurements made by hardware monitors has 
just been announced by Computer Synectics, and 
deserves mention. In addition to the 16 hardware 
accumulators provided by the hardware monitor, 
this software provides 19 pseudo-accumulators 
and time of day. A powerful set of operators is 
provided to manipulate these pseudo-accumula­
tors. Virtual simulation of a wide range of 
possible hardware and software alternatives is 
thus made feasible, which can give rise to 
marked improvements in overall system per­
formance, but based on recorded data about the 
user's actual job mix and working environment 
rather than on theoretical factors alone, and 
before equipment is physically changed or 
installed. A nd these advances are achieved with­
out the inclusion of a minicomputer in the 
hardware monitor.43 

Recent research work by N oetzel44 conceptualizes a 
design where a "meta-system" automates most of the 
simulation functions fora system designer. This con­
cept is illustrated in Figure 6. 

The concept for such a system has been fairly well 



User 
Tasks 

Time-Sharing System 
1------. Output 

"t 
Performance 

Data 
Ta'sk 

Event Traces 

System 
Event 
Trace 

Trial Modifications 

Figure 6-META system design 

detailed; the operational demonstration of such a 
system has yet to be shown; and the economic feasi­
bility of such a system remains dubious. 

It appears that the next major step in EDP system 
design methodology will be widespread. use of EDP 
hardware and software monitors (in addition to their 
normal operational use) as valuable sources of data for 
EDP model construction and use. These models will 
typically be implemented through use of generalized 
EDP models such as SCERT or CASE, or through use 
of high level software such as SIMSCRIPT, GPSS, or 
HOCUS for customized models. 

From a simulation viewpoint, these technological 
changes taking place in the EDP system design area 
are examples of what is being experienced in other 
"hard" data areas such as finance, logistics and manu­
facturing. One can expect similar changes in the "soft" 
data areas such as marketing, social, and oceanography 
within the next decade. 

In the coming decade, management personnel will be 
increasingly involved in the development of simulation 
models to assist them in making management decisions 
at all levels. In the past, the false promise of the com­
puter automating management decision making dis­
illusioned many management personnel who have again 
relegated the computer to routine data processing. 

A pre-determined simple mathematical statement to 
be minimized or maximized by a mathematical pro­
cedure inside a computer has, so far, turned out to be a 
very poor substitute for the shifting sensitivity of a 
good business executive to the implications of a decision 
for many groups. There seems to be no alternative to 
discussions with a variety of people in order both to 
consider the trade-offs between various goals of the 
organization and to get from the various parties the 
commitment which is essential to the successful imple­
mentation of the decision. 

But, as standard optimizing procedures, such as 
linear programming, have been losing favor with 
management, simulation concepts have been attracting 
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more and more interest-and will continue to do so. 
The judgment of the manager plays a crucial role in 
the formulation of most management-oriented models. 
J\1any model interrelationships and variables depend 
upon the intuition, experience and judgment of manage­
ment. With the growing participation of management 
in model development and use, further acceptance of 
the technique and implementation of models at higher 
levels in organizations is likely to follow. 

This trend will be accelerated by an increasing 
number of models which will be implemented via a 
terminal into a time-sharing computer system. Often, 
this terminal will consist of a CRT device with asso­
ciated software for the display of model output data in 
graphical forms. These technical innovations will 
facilitate the direct participation of management in 
model execution and modification. The next ten years 
will be an exciting and productive era for simulation 
techniques. 
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HISTORY 

By 1970 some users had regained control of the 
computer. This occurred because an operational mode 
had come into existence that permitted the man and 
the computer to simultaneously attain the productive 
heights that each had previously, but separately, 
achieved. The installation of this mode was prompted 
by the results of analyzing the computing environment 
of the late 1950's and early 1960's. 

Scientific computer installations circa 1960 operated 
in an environment in which computer runs, or "shots", 
were pre-scheduled, making the total system responsive 
to the individual who had "hands on" control of the 
machine. He was permitted to stop processor execution 
at some pre-set memory or instruction cycle, insert 
changes via the console, manually position tapes, take 
and immediately print snapshot dumps, relocate I/O 
channels, and isolate hardware failures. The total re­
sources of the installation were provided to achieve 
this mode of man and machine interaction that re­
sulted in high user productivity. 

Business oriented installations had a less personal 
environment because of the production, rather than 
developmental nature of their work. However, produc­
tion runs did require manual intervention because the 
processing cycle generally consisted of a progressing 
chain of separate events. Consequently, in both situa­
tions, operators were designated to service the printer, 
punch, reader, and other peripherals; keypunch fa-
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cilities were provided inside the computer room; 
scratch tapes were immediately available; and en­
gineers were assigned to maintain the hardware. 

As computers grew in capability· and cost, the op­
portunity for individual control lessened. The price of 
user convenience became too high. A way was sought 
to increase the productivity of the computer. Uncor­
related service routines such as memory dumps, loaders, 
compilers and assemblers were brought together under 
one supervisory program. By the early sixties super­
visory programs were gaining control of the operational 
environment of the computer, causing the activities 
once manually performed in the "hands-on" mode to 
now be performed "hands off." System utilization 
increased, and by superficial measurement, increased 
systems productivity claimed. However, user pro­
ductivity suffered. Runs frequently were aborted due 
to an improper monitor control statement, user aware­
ness of the event following hours after its occurrence. 
Large and frequent core dumps, whose processing con­
sumed equipment and increased turnaround, were 
taken in order to trap in print much of what once had 
been observed by eye. These and similar events dis­
couraged the installation manager because, in spite of 
a highly efficient operation, his stated goal-increased 
overall productivity-was missed. 

Multi-programming and rotating machinery, i.e., 
drums, discs, etc., offered some relief to what had be­
come an intolerable situation. Processing files from 
drums and discs reduced tape utilization, and improved 
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channel usage between main and auxiliary storage. 
lVIulti-programming systems provided for a more ef­
ficient use of the processor to process data and to service 
peripherals. Multi-processing held out the promise of 
lower cost through peripheral sharing, processor backup, 
and abundant capacity for special processing require­
ments. Extremely high system utilization was achieved, 
but the user was still forced to negotiate with the 
computer in a "hands-off" mode. This meant (1) he 
was unable to address the system except by those 
devices resident within the computer room; (2) he was 
forced to predict and prepare for all possible events 
that could occur during the execution of his program; 
and (3) his employment of the computer was through 
a manual operations procedure not under his control. 

THE UTILITY 

Early form 

The effort that surmounted this impeditive mode 
was the imaginative coupling of software, hardware 
and communications capabilities into systems designed 
to accommodate remote access and user interaction 
and to remove manual intervention. The card reader, 
printer, and keyboard, in becoming terminals, offered 
to bring the computer to the user. Simplified and well­
designed control languages and file editors made access 
to processor and files more convenient and approach­
able. A teleprinter became an on-line keypunch as well 
as an input and output station; card readers and high 
speed printers were available when needed, and no one 
intervened. The user at his terminal was regaining the 
position of control he had enjoyed previously when he 
processed from within the computer room. A computer 
could now be utilized in a convenient and productive 
manner from wherever its many concurrent users were 
located.1 The utility had its beginning. 

Operational problems 

Initially, this new operation mode was accompanied 
by new operational problems. Field maintenance, es­
sential for terminal up-time, was POOl'. Existing tape 
library management was inappropriate because run 
request forms no longer existed. Operator console 
messages were frequent, untimely and ambiguous. Data 
communications were unreliable, undocumented and 
without established operational procedures. Central 
site hardware maintenance was difficult to schedule, 
because output remaining to be transmitted was resi­
dent to and controlled by the central processor. Errors 

were difficult to trap because of the urgency in con­
tinuing on-line communications. Recreating errors was 
impractical because the dynamic status of the environ­
ment at the time of failure was unknown. Changes to 
the monitor system were difficult to te~t because of the 
lack of experience about the environment in which they 
would exist. Preparation, distribution and user notifi­
cation of changes was nightmarish. 

Central site power was increasingly consumed by 
terminal devices whose individual throughput was less 
than the central site devices they replaced. Early ex­
perience demonstrated a dramatic mis-match between 
terminal speed, line speed and processor speed. The 
processor became output bound, precluding any compu­
tational activity or the acceptance of any additional 
input requests. The first action taken to alleviate this 
problem was to add additional storage capacity for 
I/O buffering. This solution did not accelerate the 
throughput of the system but merely delayed the point 
at which the system again became output bound, causing 
another calamity-delay in turnaround time. In ad­
dition, timely communication between the remote 
terminal operator and the central site operator, essen­
tial, for example, in order to suspend output to re­
plenish printer paper, make forms changes, or correct 
terminal malfunction, was non-existent. Numerous 
tape mounts caused severe operator intervention, 
adding to central processor idle time. Queueing was 
primitive and a run requiring seconds of execution 
could find itself behind a half-hour run, and/ or its 
output stacked behind three hours of printing. Adding 
to the upset was the absence of data security and 
privacy that contributed to lost and misdirected files. 

Solutions 

The introduction of communications subsystems 
solved some of these problems. The communications 
subsystem consisted of a small processor especially 
programmed to manage the communication between 
the central computer and the remote terminals. Data 
compression, site verification and operator communi­
cation were among the tasks well performed by this 
subsystem. Communications handling was thus re­
moved from the central processor. 

Separate queues were established in the central 
processor for tape and non-tape runs, as well as for 
long and short runs. Tapes were pre-mounted before 
run execution and short non-tape runs were executed 
on a regularly scheduled interrupt basis. I/O files were 
site code identified and terminal verification was es­
tablished before data transmission began. Notice of 



changes to the system was included in the transmission 
to each terminal site. Hardware selection centered 
around the computational and the communications 
processors. The computational processor was selected 
according to maintainability, reliability, instruction 
repertoire, execution speed, and other historically 
accepted criteria. The communications processor, in 
addition to the above, was selected on its ability to 
easily handle multiple and dynamically switched 
priorities, to accommodate various speeds and dis­
similar modems, as well as readily interface with multi­
media mass storage devices. 

Measurement 

Instrumentation was installed to measure system 
productivity and to determine the profile of the most 
avid, and therefore, perhaps most productive user. 
Among the data collected were (1) execution time vs. 
output volume, (2) tape vs. no-tape runs, (3) average 
number of tapes per tape run, (4) terminal media by 
which runs were submitted, (5) time of day for heaviest 
traffic, (6) connect time vs. execution time, and many 
other criteria independent of and integrated with these. 

The analysis of these data revealed that more ef­
ficient utilization of the system was achieved. There 
was less idle central processor time, faster response to 
more users, timely operator communication with the 
terminal site, and much improved tape procedures. The 
analysis also suggested tha t the configuration of a 
computing system could be optimally adapted to a 
given job mix. The utility's most productive Ufer 
worked in an engineering discipline, demanded mini­
mal input/output, was remote batch oriented, executed 
his own applications, and was substantially indepen­
dent of operations personnel. This user regained 
hands-on posture, essentially because he was autono­
mous in his operating mode. From his terminal he 
initiated and resubmitted runs, made his own cor­
rections at his own pace, and therefore bypassed the 
impeding nature of a manual operations procedure. He 
worked in his habitat and he shared with and solicited 
comments from those with whom he worked. His need 
for printed output, especially during debugging, dimin­
ished as did his need for punched card files. 

Extending the service 

Enthusiasm within the utility community grew as 
more operational problems were resolved. This en­
thusiasmattracted another class of users who had an 
opposite profile to the earlier class. This new user re-
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quired numerous tape files, voluminous print files, forms 
changes, reprints, punched card output; and other 
services requiring manual intervention. This user 
executed runs that had a much higher ratio between 
I/O and processor time (e.g., 40:1 compared to 8:1), 
and he represented a group whose computing dollar 
expenditure was greater than 90 percent of the total 
expenditure of the computing community. 

This business data processing user could only partially 
capitalize on the increased productivity offered by the 
computer utility because of the above stated charac­
teristics of his work profile. The design legacy be­
queathed his program, many of which could trace 
their roots back to the single function, manual step 
mode of unit record equipment, contributed signifi­
cantly to this profile. lVIuch of the manual processing 
flavor of these systems remained when conversion 
occurred. Operational compatability for some of these 
systems during their conversion from unit record 
machines to computers was, in fact, a major considera­
tion. Furthermore, indeterminate output delay, due 
to a data communications failure, was sufficient cause 
to create a sense of real time urgency in payroll de­
partments, and the possibility that company data 
could be compromised without detection was intoler­
able. Continuing investigation to understand these 
problems brought the utility user's profile into sharper 
focus. For example, a geologist programmer required 
multi-media output and the data he processed was, to 
him, urgent and private. Business programmers also 
did "compile-and-go" testing. Thus it became apparent 
that this was not the case of the engineering vs. busi­
ness user, but rather the case of the autonomous vs. 
the non-autonomous user. 

Work began in two areas to provide for the inclusion 
of the non-autonomous user. At the central site ad­
ditional file processing schemes were installed. Print 
files were spilled over from drum to tape in background 
mode for subsequent low traffic distribution. Store and 
forward service was introduced permitting daytime 
transmission and nighttime execution of the run, or 
vice versa. Rotating machinery for additional buffering, 
as well as higher speed and full duplex lines for more 
rapid transmission, were added to the communications 
subsystem. Te:cminal site soft-ware was modified to 
facilitate additional operator communications and to 
service the equipment needed for local peripheral 
processing. 

CURRENT STATUS 

By now, computer installations operating in a 
utility mode employ several million miles of communica-
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tions lines serving over 200,000 keyboard terminals, 
and over 20,000 high speed card reader/printer ter­
minals. User productivity was the objective of the 
early installations. The growth in the number of 
computer utilities is attributable to that objective 
being met, to increased user sophistication, and to 
realized additional value by the installation manager. 

Users continue to become more aware of the com­
puter's value and less concerned with the computer. 
The utility provides a means by which the user can 
gain convenient access to the maximum contemporary 
computer power he requires. Company or department 
size may have little relation to the size of the computing 
problem at hand. With the commercial utility, a small 
firm has access to a resource similar to that available 
to the large corporation. With the in-house utility, all 
users within the organization have the opportunity to 
capitalize on the total computing resources available. 

There are several values realized by the installation 
manager. First, there is the reduction in shake-down 
time of new systems software and a manpower savings 
due to centralized software maintenance. Centralized 
usage being at least equal to the sum of the usage of 
previously individual sites causes bugs to show up 
sooner, and when the bug is fixed, it is fixed for everyone 
simultaneously. Second, there is a low cost opportunity 
for expansion. Additional capacity can be added to a 
utility operation on a cost basis distributed throughout 
the user network. And, this expansion provides a low 
cost opportunity for back-up heretofore denied in­
dividual sites. In addition, there are savings in the 
overhead costs such as physical plant, hardware main­
tenance, site security, and parts inventories. 

And, finally, there is the opportunity to focus re­
sources on the challenges of the future. Among these 
are (1) low cost reliable data communications, (2) 
simpler user file processing procedures, (3) more 
efficient on-line mass storage, (4) pricing, (5) data 
privacy and security, and (6) effective I/O file pro­
cessing. 

SOLUTIONS IN PROCESS 

Items (1), (2) and (3) of the preceding paragraph are 
receiving abundant attention. However, pricing remains 
as much a challenge to explain as to accomplish. Clearly, 
a utility user's job consumes time and space within 
the processor and the communications subsystem, 
space on peripheral storage devices, channel time to 
move data to and fro, communications lines and 
terminal devices. Further, there is the question of 
continuous operation and priority requests for critical 

needs. A multi-environment (user/processor) exists 
that precludes use of the historical time quantum and 
storage allocation pricing scheme. Determining the 
profile of the utility user and the effect this profile has 
on the total system is necessary in order to achieve 
efficient operations and precision pricing. A unit of 
cost based on user value discernible prior to execution 
and consistent within reasonable tolerance seems to 
be in the offing.2 

Data privacy is in its own right an emerging industry 
being prodded into existence because of the sheer 
dollar value at risk. Corporation data and computer 
programs are assets with high determinable value. 
Schemes and procedures for the protection of these 
assets are, for many installations, non-existent and, 
often where present, inadequate. The installation 
manager faces a severe challenge in finding the pro­
cedure to achieve data privacy and security. Within 
this procedure must be the means to prevent accidental 
and deliberate acts that destroy or jeopardize the 
storage, processing and retrieval of data.3 And this 
protection, this electronic 10ck4 that may include cryp­
tographic enciphering of files, must be installed without 
restricting or encumbering authorized user access. The 
security procedure must control physical access to the 
computer room, tape library and card file room, audit 
installation transactions and encourage a general 
security consciousness in installation personnel. 

Speedy I/O handling is as critical as the processing 
of the data. Transmission queueing and intermediate 
storage of the terminal I/O files are among the sig­
nificant factors contributing to the complexity of the 
developing I/O processing solution. 

SU1VIMARY 

As the past has demonstrated, solutions to processing 
problems will be found and, in turn, will provoke 
imaginative new ways to consume the power of the 
computer. This being the case, the installation manager 
will continue to face the decision of what operational 
mode his installation should employ. The utility makes 
access to contemporary and consummate computer 
technology simple and convenient, removes the geo­
graphical limitation of those working in cooperative 
efforts, and frees talent for creative activities by 
automating clerical procedures. 

The economic value concomitant with these achieve­
ments, whether it be yield on the utility investment 
or quality of the final product resulting from the 
availability thereof, will be left to the determination 
of the reader. 



The utility has emerged. As it matures it will move 
closer to the realization of its potential which is to 
bring the value of the computer to all who request it 
wherever and whenever they desire. 
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INTRODUCTION 

In this paper we will give our extrapolation of the 
exciting challenges facing installation managers in the 
coming years and how we expect to react to these 
challenges. We view the evolution to the present 
stage as having gone through three generations of 
installation management. The first generation was 
marked by the early computers with small memories 
and relatively crude input devices in which the opera­
tion of the computer was done mainly by the person 
using the computer. In this early generation the 
computer installation manager had the hardy pioneer 
spirit and knew most of his customers by first name. 
One of his main worries was how fast he could get the 
next model of the computer. 

The second generation was marked by the introduc­
tion of tape operating systems and some primitive 
disc systems which required that the person operating 
the computer be very nimble and able to react quickly 
to the need for changing tapes so that computer utiliza­
tion would not drop. In that generation the customer 
moved away from being in direct contact with the 
computer but there were still many customers who 
used the computer directly. Input and output were 
becoming a problem. The installation manager now 
had to start worrying about planning the layout of the 
I/O area carefully and was looking forward to the 
coming generation for order of magnitude improve­
ments. 

In the third generation we found the introduction of 
multiprogramming facilities through the use of primi­
tive drums and improved disc facilities. And here, as in 
the second generation, the need for competent opera­
tion of the equipment became of increasing importance. 
One then had many jobs requiring tapes and discs 
running at the same time. The I/O problem increased 
even further and the great hope of eliminating it 
through terminal access was dismally smashed. The 
utilization of remote job entry stations did finally ease 
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the problem in the latter part of this generation. 
By using remote job entry stations, most customers no 
longer required their own computer nearby to get 
adequate computing service. In this generation the 
installation manager had to face up to the full problems 
of being a production specialist, a resource accountant, 
a businessman and a technocrat. 

In what we now view as the fourth and present 
generation at Carnegie-Mellon University the distinc­
tion between the generations becomes hazier. We will 
list the main characteristics of this generation. Aware­
ness that computers cost large sums of money and that 
poor utilization is not uncommon here become per­
manent issues with the economic decline. The possibility 
of inexpensive mass secondary storage is becoming very 
real and in some cases is almost here. At times our 
complex systems appear to be working stably. Com­
puter installations are no longer simple one machine, 
one vendor sites. 

Telecommunication is now as big a problem as the 
computers and people are asking what they are getting 
for their dollar rather than how fast they can get the 
next piece of equipment. 

The fifth generation we project will be characterized 
by low cost mass secondary storage, so inexpensive 
and efficient that tape drives will become uneconomical 
to use in many cases. Telecommunications will be 
reliable and economical, so that we will not hesitate to 
use a computer at the opposite end of the country. 
Time-sharing systems will actually work reliably. No 
one will take note of using the system with several 
hundred people on it. Computer installations will 
become rather amorphous entities consisting of com­
plex inner connections of many different CPU s' 
memories, and various storage devices. 

In the fifth generation, management information 
systems will become paramount. Low-cost mass storage 
will make implementation easy and the interconnections 
of networks will make distributive data bases a reality. 
The challenges in the coming years are put into the 
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reference framework of cost effectiveness. Cost effec­
tiveness is the main theme of our management's 
interest and it should be and probably will be the 
main theme for the foreseeable future. 

By meeting some of the challenges mentioned, 
Carnegie-Mellon University (CMU) was able to cut its 
Computation Center costs by 40 percent and at the 
same time improve service, deliver more computing 
power, and increase customer satisfaction in a short 
period of a few months. Some details of this accomplish­
ment have been covered elsewhere.1 In our experience, 
innovation and implementation of automation is not 
an easy straightforward process, but the challenges can 
be met. 

PERSONNEL AND ORGANIZATION 

One of the largest voids in today's information 
processing technology is the lack of qualified educators 
to train the personnel we need. The ACM Curriculum 
Committee on Computer Education has presented 
reports2 •3 which will probably form the foundation of 
many curricula for training our future personnel. 

The increasing complexity of the computer installa­
tion requires a shift to more technically competent 
personnel for daily operations. Unfortunately this 
shift in general has been too slow and many present 
installations suffer with reduced productivity due to less 
than optimally trained personnel. 

Several years ago there were studies4- 7 which re­
vealed that the difference in the, productivity of pro­
grammers can be an order of magnitude. * 

Unfortunately, evaluating programmers3 remains in 
a state of witchcraft. We cannot hire enough experi­
enced programmers, and we are willing to train or hire 
inexperienced persons. Hopefully, by evaluating them 
over a period of employment, we can get a few very 
good ones from the crop. eMU receives big dividends in 
minimizing the actual number of personnel while 
maximizing on the competence of individuals. In other 
words, the incremental cost of properly compensating 
the excellent programmer is well worth the price if we 
are lucky enough to have him. 

The actual organization of a computation center is 
not so important since the organization should reflect an 
attempt to optimize the contributions of the individuals 
and inter-personal relationships with respect to the 
objective function of the group. Therefore, one would 

* These studies were attempts to evaluate the relative merits of 
time-sharing versus batch processing as a means of programming. 
Although the intended results were inconclusive, the wide range in 
programmer productivities was repeatedly demonstrated. 

reasonably expect the organization to change in time 
as the different members of the team come and go. 
Though the usual organizations are somewhat reluctant 
to be highly dynamic, the rapid change in the advance­
ment of information processing technology presently 
allows one to have a flexible organization without hav­
ing the appearance of a continual card shuffle. 

At CMU the shift to better qualified personnel has 
taken the route of the control center concepti with the 
elimination of the usual operations groups. The compu­
tation center staff sections are hardware, information, 
and software systems and with few exceptions every 
professional takes his turn being in charge of the control 
center. The programmer in charge of the control center 
may have as many assistants as the load requires. 
This approach is parallel with more automated opera­
tions requiring more technical skill and has significantly 
reduced operating costs. Better service and a more 
stable system result because of the increased technical 
ability of the personnel in charge to answer inquiries and 
react to contingencies. 

Personnel are the only important resource. Whatever 
machine we have today will certainly be outdated in 
five years whereas our personnel will be more valuable 
in five years if we give them the proper motivation to 
keep abreast of our challenging field. 

THE EXECUTIVE GAP 

Most computer installations are a part of a greater 
organization which the installation serves. With the 
increasing utilization of computing resources the im­
portance of the installation to the parent organization 
is increasing. The rising costs of these computing re­
sources to the parent have forced many organizations 
to recognize the need for an executive position with the 
responsibility for coordinating and integrating the 
organization's computing resources. This executive 
must be technically and administratively competent. 

In most organizations today there is not an executive 
position with adequate technical competence for the 
magnitude of importance of the organization's comput­
ing resources. One or more installation's managers 
have been given default technical responsibility without 
proper administrative authority for effectively handling 
the responsibility. One common symptom of this 
executive gap is separate computer installations for 
"administrative" and "scientific" computing. The 
managers and their organizations who recognize and 
react to this common gap in their executive structure 
have much to gain in better utilization and reduced 
total costs. 



Until the executive gap is filled the installation man­
agers must understand the requirements of the organi­
zations they serve as well as keep abreast of computer 
technology if their service is to be efficient. This re­
quirement of having an executive position which must 
be alert to developments in the rapidly changing com­
puter technology is one of the toughest challenges to be 
met if our organizations are to receive the proper 
benefits of our technology. 

CONFIGURATIONS 

Will the small computer installation disappear and 
be absorbed by the giant emerging ones or will a small 
computer installation have a place in the future? 
The answer to this question obviously depends on the 
circumstances. Just as a small switchboard has a place in 
our present day telephone system, there are many 
circumstances where the small switchboard· doesn't 
belong. In our projection it will be more than ten years 
before the small computer installation is really threat­
ened in the same way as a small telephone switchboard. 
Certainly the installations that will exist over the next 
few years will become more amorphous entities rather 
than one single CPU or one single manufacturer. 
Reliability will be markedly improved9 through new 

, circuitry, 10 improved hardware technology,ll and better 
software. 12 ,13 Emerging large mass storage systemsl4 ,15 
will permit a greater degree of automation and accom­
modate the developing management information sys­
tems. The general population is beginning to understand 
the basic principles16 of machine configurations. We 
now have our first book characterizing in a systematic 
way the various computer structures,17 The mini­
computers won't replace the large CPU's but they will 
certainly supplement and complement them. Every 
large CPU probably will have numerous minis around 
in various functions for which the larger CPU is less 
cost effective. 18 

NETWORKS 

Computer networks19 are another area in which the 
small computer installation is threatened by replace­
ment with a remote job entry facility or a few terminals. 
This will eventually happen, but we certainly do not 
think it will be in the next few years. It is, however, 
definitely a possibility in five to ten years. Communica­
tion20 ,21 problems have held the development of net­
works back many years. However, the great thrust 
provided by the underwriting of the ARPA Network 
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has provided the enthusiasm for exploring the present 
potential of networks. 27 

Actually there.will be two forms of networks, the 
local network and nonlocal or long distance network. 
There are many advantages to local networks which 
haven't been properly realized by the installation 
manager. Many installations have various computers 
with duplicated hardware and software facilities. 

The linking of local computers and the reduction of 
redundant facilities will result in the elimination of 
duplicate costs and also in increasing cost effectiveness 
because jobs will be easy to run on the appropriate 
machine. This was successfully accomplished recently 
at eMU with sizable cost saving (capital and opera­
tional), increased effectiveness, and added functional 
capability for the customers which formerly used each 
system as an independent entity.1 

Also the reliability of the total installation will be 
improved since one can transfer a job more easily from 
one machine to another. The non-local or long distance 
networks will satisfy peak load demands and actually 
permit installations to run at a greater average capacity 
because they will not have to have an excess capacity to 
satisfy peak loads. The result will also be an increased 
cost effectiveness. The non-local networks will allow 
each instal1ation to give one stop service to a broad 
spectrum of functions which will be available through 
the networks to which it is connected. 

RESOURCE ACCOUNTING AND CONTROL 

The measurement of computer systems has now come 
of age with the first annual workshop on software 
system performance evaluation held last year28 and 
installations are developing their own means of imple­
menting primitive measurement facilities. In the 
coming years manufacturers may actually supply 
measurement facilities as parts of the standard system. 
We should not have to buy a computer as though it 
were a car without a speedometer or gas gauge or odom­
eter. The question of pricing,29 cost accounting, and 
the administration of computer resources* is now 
considered an integral part of the resource accounting 
and control schemes.30 ,31 The marketplace will demand 
the facilities to measure and record utilization. Whether 
one should lease or buy and how and why one should 
write. off . purchased equipment is a commonly dis­
cussed issue. The marketplace will discover that 

* With proper accounting and pricing sometime during the coming 
years we will stop referring to our customers as 'users.' The label 
'user' has adverse psychological effects for the 'user' and the ones 
'used.' 
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purchasing equipment and using some sort of declining 
balance depreciation is the proper and logical way to 
cost account for equipment resources of a changing 
technology. 

HARDWARE PROJECTS AND MAINTENANCE 

This area is becoming a challenge due to the increased 
in-house capability of installations not only to maintain 
but also to fabricate and enhance their equipment. The 
recent emergence of the 'Brand X' peripherals has 
created a problem in many installations with multi­
vendors. Now the installation requires at least one 
person competent in hardware logic to minimize the 
potential conflicts between various vendors. For those 
with the capability, a potential savings of some magni­
tude exists for in-house maintenance of equipment.1 

But for those who do not prefer this route there are 
third party vendors who will furnish maintenance for 
various manufacturers' equipment. 

SOFTWARE PROJECTS AND MAINTENANCE 

Software still continues to be one of the biggest 
challenges. The Third AGM Symposium on Operating 
Systems32 last year gave us the impression that perhaps 
operating systems were now being comprehended. 

In general we are beginning to see logical structures 
and approaches to putting systems together. Three 
annual conferences have been held on software engineer­
ing. Their accompanying proceedings33- 35 project that 
an emerging profession is developing in software 
engineering. In the next few years we will even be 
getting the handbooks or cookbooks which will tell our 
software engineers what pieces to use for the type of 
system we want to put together. The education, 
training, and development of programmers and opera­
tors is still somewhat of a controversial subject.36 

Some curricula are becoming standardized and our 
first book on management· of computer programming 
was recently published.37 Perhaps people have not 
learned that we still have to develop the art of managing 
a large software project. It has been our experience that 
the project employing more than three programmers 
is likely to have serious problems without careful 
structuring of the project38 and software. 39 With the 
continual unbundling that is occurring perhaps the 
vendor software groups will have to stand on their 
own or face up to competition from the outside. Then 
the quality of the vendor software will be improved 
or the purchaser will not opt to take it. This will 
hopefully create more competition where installations 

can go to third party for maintenance of their standard 
operating system and have more options to buy software 
packages built to order for them. 

CONTRACTS AND LAW 

Contracts40 and law unfortunately tend not to be 
recognized as the challenge they are, although many 
of us have recognized this the hard way. Monopolistic 
tendencies of the various competitors in the market­
place require the installation manager to have an under­
standing of the Antitrust Laws. 41 The field of law is 
also now becoming aware42 of the particular require­
ments of the computing technology. 

STANDARDS 

An old and difficult challenge is still with us. The 
emergence of the networks has shown that if the net­
works are going to work, which they surely are, people 
will be forced to use standards.43 The developing of 
microprogramming44 capabilities hopefully will allow 
not only better standards but also allow a standard 
operating system which would run on most computers 
and still allow the computer to have its own unique 
capabilities. 

COMPETITION IN THE MARKETPLACE 

Do you really have competition in the marketplace? 
With the folding of RCA Commercial Computer 
Division and with GE electing to get out of the field, 
some think that competition is decreasing rapidly to 
zero. Of the many and various extreme views on this 
subject one of the more moderate was expressed by 
Larsen.45 He said, "Hurting IBM is easy; solvingna­
tional problems is tough and difficult. A good solution 
requires all of the business and technical skill at the 
industry's disposal. It also requires that we care-not 
about IBM, but about the United States, if we are to 
keep the United States in its lead of the computer 
technology." Larsen, unfortunately, did not cover the 
case of an international monopoly. 

The real question is whether or not our workable but 
competitive system gives the marketplace a fairly 
priced and up-to-date product. If one company spends 
more on research and development than most of its 
"competitors" gross46 is it possible to compete rather 
than just trail behind and subsist on leftovers? Could 
Fortran and OS/360 have survived in a free and knowl­
edgeable marketplace? How many installations have 



computing contracts tailored to their requirements and 
explicitly hold their vendors liable for failure to deliver 
as promised rather than the "standard" contract 
loaded with the "come hell or high water the installation 
will pay the vendor" clauses? Does the installation 
have the engineering specifications for equipment worth 
millions? What can the installation do if its equipment 
is not maintained properly? Go to another company 
for maintenance? We must decide if the answers to 
these and many other such questions are satisfactory. 
If the answers are not satisfactory then one of the most 
difficult and important challenges facing us is what 
to do to obtain a marketplace where the competition 
benefits the customersY 

The motivation behind present day monopolies is 
not usually the hungry greed of the communist's 
stereotyped capitalist, but rather nothing more than 
the desire for the easy life (i.e., a secure well-paying job). 
To quote Judge Wyzanski,48 "Some truth lurks in the 
cynical remark that not high profit but a quiet life is the 
chief reward of monopoly power. And even if a particular 
enterprise seeks growth and not repose, an increased 
rate in the growth of ideas does not follow from an 
increased concentration of power." This understandable 
motivation permeates the bureaucracy of the monop­
olistic organizations with the result that the monopoly 
power is not overtly exercised by anyone individual 
but by a collective effect sometimes expressed as, "It is 
our policy" , "We must treat everybody the same", or 
"We can't make exceptions". The salesman representing 
the monopoly, though benefiting from the monopoly, 
is quite helpless at combating his company's policy. 
This indirect collective effect can only be effectively 
changed by collective effort .. Why can't the customer 
groups make their own standard contracts? 

The Justice Department has historically acted very 
slowly on monopoly power. The large organizations 
with power to act do not want to "cast the first stone." 
The small installation cannot afford the time and 
money, and may times is justifiably afraid to fight. A 
giant organization is a fierce and ruthless opponent49 

but our obligation to society demands that if we decide 
detrimental monopolies exist, then we must face the 
challenges. 

MANAGEMENT INFORMATION SYSTEMS 

Corporations and private communities are recog­
nizing the need for and the potential benefits of being 
able to make more informed decisions through the use 
of computers. Unfortunately these areas perhaps have 
been the hardest to penetrate due to the classical con-
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servatism of the management 50 which will use these 
systems. Operating systems have not been outstanding 
successes in delivering past promises, but now that 
operating systems have become reliable, many different 
management information systems exist. Businesses are 
demanding the implementation of systems. 51 ,52 In 
fact the Government53 feels they are absolutely essential 
to the future of the congressional operation. 

INNOVATION AND AUTOMATION 

Innovative operations through automation should be 
the theme of the installation manager. He has at his 
disposal the machines which represent enormous 
advances made in automated processes and which, by 
means of information systems, have furnished us the 
ability to make informed decisions. 

Why hasn't the installation been able to exemplify 
the pinnacle of automation and innovation by allowing 
the machine to control the routine operations? With 
our society's becoming suspicious of computers54 and 
their encroachment upon privacy, installation managers 
will have to be innovative to impress society 55 that the 
powerful facilities are in competent hands. In the post­
industrial56 era, with information doubling every 12 
years,57 the challenge of keeping track of one's own 
installation will continue and should be met with our 
own technology. 

SUl\1MARY 

Innovation and automation: with this as the theme of 
our coming years, the installation manager should set 
the goal of making his installation the pinnacle of inno­
vation and automation. He will have to be prepared 
to justify to management not only that his present 
equipment is cost effective but that what he proposes 
to get in the future will improve the installation's cost 
effectiveness. Management is forced to recognize 
the large cost that information processing technology 
is now starting to represent with respect to the organi­
zations' total budget. We are all very lucky to be a 
part of this exciting era but we must not make the 
mistake of leaning so much on our lessons of the past 
to extrapolate our actions into a very innovative and 
challenging era which may be totally different from our 
past experience. 
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A set of goals and approaches for education in 
computer science 

by SAUL AMAREL 

Rutgers University 
New Brunswick, N ew Jersey 

INTRODUCTION 

In order to evaluate and plan educational programs in 
computer science it is important to have a clear concep­
tion of the internal structure and content of the disci­
pline, and also of its relationships with other disciplines. 
It is also important to have a clear set of goals, values, 
and priorities in the light of which given programs can 
be evaluated, and new approaches can be developed. 

In this paper I will discuss a specific set of goals and 
approaches for educational planning in computer sci­
ence. lVluch of our planning at Rutgers reflects the view­
points that I am presenting here. 

THE STRUCTURE OF COMPUTER SCIENCE 

In Reference 1 I have presented a framework for cur­
riculum planning in computer science which combines a 
global view of the discipline and a local view. The global 
view is concerned with the kinds of objects, phenomena, 
and concepts that form the domain of discourse in com­
puter science, and also with the pattern of relationships 
between this domain and other domains of study. The 
local view focuses on a structured description of the 
knowledge, problems, and activities within the disci­
pline. 

In developing the local view of the field, I find it use­
ful to distinguish between two broad categories of ac­
tivities: (1) activities concerned with problems, methods 
of solution and programming; and (2) activities con­
cerned with representations, languages, schemes of 
processing, and system designs. They correspond 
roughly to computer applications and to systems. Within 
each of these two categories there is a broad spectrum 
of types of activities: development of formal systems 
and formulation of theories; search for fundamental 
principles; invention and exploration of new schemes; 
design and construction of new systems; and experi-
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mentation with existing systems. The range extends 
from purely theoretical work to practical work within 
the state of the art. 

Theory and practice 

I think that it is important to maintain a view of the 
field which helps to minimize the distance between theo­
retical and practical work. Computer Science is con­
cerned with analysis and synthesis aspects of various 
types of computer applications and systems. A continu­
ous interaction between theoretical and design/ experi­
mental work is needed for a vigorous rate of progress in 
the field. Theoretical work in a rich applied environ­
ment is likely to receive stimulation along lines of 
'relevant' models and theories. Design and experimental 
work in a good theoretical environment promises to 
lead to more efficient and powerful systems and ap­
plications. 

An important reason for maintaining a strong cou­
pling between theory and practice in academic computer 
science is our responsibility for guiding the growth of 
the discipline toward the dual goals of intellectual depth 
and coherence, and also of pragmatic significance for the 
real world of computing. Because of the phenomenal 
growth of the computer field, we are witnessing a rapid 
accumulation of vast amounts of unstructured infor­
mation: specifications of many diverse hardware and 
software systems, records of a variety of operating ex­
periences, discussions of different principles, techniques, 
and empirical advice, and many fragments of knowl­
edge only weakly related to each other. In order to be 
able to build on top of what has been done in the past, 
and in order to understand and effectively use new de­
velopments, we must plan computer science programs 
in accordance with the following: (a) exposure to what 
is being done in the real world of computing, (b) study 
of ways for bringing order into what is being done .. 
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through an active search for unifying principles, general 
methods and theories, and (c) exploration of new com­
puter designs and applications in the light of new con­
cepts and theories. 

Clearly any structural description of the subject 
matter of computer science reflects certain points of 
view and values about what we ought to teach and how. 
By not using a separate category for 'Theory' or 'Formal 
Systems' in a broad structuring of the field I am inject­
ing a specific viewpoint into curriculum planning which 
favors 'rapprochement' between theory and practice in 
computer science programs. 

Systems and applications 

Our academic planning at Rutgers is based on further 
substructuring of the two categories 'Systems' and 'Ap­
plications' into the four parts 'Hardware Systems' 
'Software Systems', 'Numerical Applications', and 
'N onnumerical Applications'. 2,3,4 The 'Hardware Sys­
tems' part covers mainly machine organization, digital 
subsystems, operating systems, and design processes. 
The emphasis in the 'Software Systems' part is on 
machine level representation and programming, operat­
ing systems and language systems. The 'Numerical 
Applications' area is mainly concerned with problems 
and procedures where numerical data are dominant, 
such as problems in numerical analysis and in statistical 
processing, optimization and mathematical program­
ming, and certain classes of modeling and simulation 
problems. The 'N onnumerical Applications' area is pri­
marily concerned with processes involving nonnumeri­
cal data. Examples of such data are: representations of 
problems, situations and programs; symbolic expres­
sions; language text; abstract structures; and graphic 
objects. In addition, each of the application oriented 
areas is concerned with relevant studies in high level 
languages, schemes for representing problems, data 
bases and procedures, and related theoretical subjects. 

Each of the four parts described above provides a 
basis for a "topic of study", which may be chosen by a 
student as an area of concentration. The partition into 
the four areas reflects an attitude to curricular design 
which is widely accepted at present. It has a fairly 
sound conceptual basis, and it leads to an implementable 
program which can now be supported by considerable 
experience and a growing literature. The conceptual 
basis is essentially reductionist: computer systems are 
decomposed in terms of different types of structural 
components (structural properties determine possible 
modes of computation), and computer applications are 
differentiated in accordance with major types of data 
structures (properties of data structures determine 

types of information processes). This reductionist atti­
tude will probably change in the next few years, as it 
will become increasingly desirable (and feasible) to treat 
hardware and software designs in a unified manner, and 
as the emphasis in application areas will be on broad 
problem types where both numerical and nonnumerical 
processes will play essential roles (e.g., modeling and de­
cision making in medicine, large design and optimiza­
tion problems). The changes are likely to come first in 
advanced parts of graduate programs, and they will 
gradually move toward undergraduate programs. I 
expect the changes to be relatively slow, not only be­
cause of the conceptual issues involved in restructuring 
the field, but also because of the natural inertia of edu­
cational systems where required courses, supporting 
texts, and other relevant resources, cannot change over­
night. 

A structured description of the field is an important 
input for planning an educational program, and it al­
ready reflects a specific set of viewpoints and decisions 
on priorities. We need, in addition, further clarification 
of priorities in order to determine (a) the relative empha­
sis that the program should place on different parts of 
the field, and (b) the way in which individual students 
should be guided through the program. 

Our emphasis at Rutgers is on the relationship and 
mutual impact of application areas and computer systems. 
This implies a fairly balanced set of activities in ap­
plications and systems, with major effort in problem 
solving methods, computer procedures, languages, sys­
tems software, and associated theories. This approach is 
consistent with our view that studies of computation 
mechanisms and system designs should grow in an en­
vironment which is rich with significant and challenging 
computer applications. 

COMPUTER APPLICATIONS 

I believe that serious work on new types of computer 
applications is essential for the healthy development of 
computer science. The challenges presented by new ap­
plications and the constructive attempts to meet them 
will continue to be key factors in the evolution of com­
puter systems and in the conceptual maturation of the 
field. Work on new applications will lead to increasing 
collaborative ties with people in other disciplines; this 
wi1l increase the 'surface of contact' between computer 
science and other areas, to the benefit of all involved. 
In this context, computer science could provide an 
academic home for certain important activities as­
sociated with applied mathematics: the formulation and 
study of models, the development of methodologies for 
bridging the gap between a real life problem and its 
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representation within a system wherein the problem can 
be solved, and the study of broad approaches to prob­
lem solving. 

In our programs at Rutgers, computer applications 
are studied at various levels. A freshman-level introduc­
tion to computing is oriented to hands-on experience 
with computer problem solving, using BASIC on a time 
sharing mode. Sophomore-level courses in computer 
problem solving focus on a variety of problem types 
(numerical and nonnumerical) and on the use of several 
high-level languages-FORTRAN, PL/I, SNOBOL. 
Thus computer languages and their features are intro­
duced in the context of their use for formulating com­
puter procedures of different types in a variety of prob­
lem areas. The study of computer organization, machine 
level programming, and systems software follows the 
courses where problem solving is the dominant theme. 
Thus, a student is first exposed to what kinds of things 
computers do and how can they be used, and then he is 
led to consider how computer systems operate, how they 
are structured and how they can be designed. 

The study of computer applications continues in our 
upper level undergraduate classes with courses in 
numerical methods, data processing methods and non­
numerical algorithms. At the graduate level, two intro­
ductory (and required) courses on numerical analysis 
and nonnumerical algorithms are followed by a collec­
tion of courses and seminars which explore in different 
degrees of depth a variety of application areas, proce­
dures, and approaches to problem solving. 

Recently we established an (NIH supported) re­
s~arch resource on computers in biomedicine. This pro­
VIdes a focus for collaborative activities with people in 
medicine, bioengineering, psychology and ecology on a 
broad range of problems that involve the use of com­
puters in biomedical inquiry. This type of research ac­
tivity is an extremely important environment for ad­
vanced graduate work and for faculty research m 
various aspects of advanced computer applications. 

N onnumerical applications 

The study of nonnumerical applications is of central 
importance in a computer science program. It provides 
insight into the broad notion of computers as symbol 
manipulators, and it permits a clear view of many key 
information processing concepts that become obscured 
when presented only in the context of mathematical 
algorithms for numerical problems. Also, the domain of 
nonn~merical applications is extremely large, and it 
contams a great variety of significant problems in the 
field. In addition to the broad spectrum of problems 
from elementary data processing to complex decision 

and problem solving in artificial intelligence, the entire 
area of systems software (languages and operating sys­
tems) is mainly founded on nonnumerical processes and 
techniques. 

Artificial intelligen ce 

Work in artificial intelligence problems provides an 
excellent opportunity for the study of nonnumerical 
processes and for the clarification of certain basic issues 
in software design. It is important to work toward the 
development of closer links between artificial intelli­
gence studies and other studies in the mainstream of 
computer applications and of systems design. I believe 
that this will be of benefit to computer science educa­
tion, and in general, it will stimulate new, significant 
developments in the computer field. 

It is becoming increasingly clear that there is no 
sharp dividing line betvveen the problem solving pro­
cedures of artificial intelligence and the procedures of 
today's 'conventional' software. 5 It is useful to think 
that computer procedures lie in some sort of continuum 
and each procedure in the continuum is characterized 
by the relative amount of systematic versus heuristic 
knowledge available to it, as well as the degree to which 
this knowledge can be efficiently exploited by the pro­
cedure for the solution of specific problems in its do­
main. At the one end of the continuum, where sys­
tematic knowledge is dominant and its mode of utiliza­
tion is highly efficient, we have the customized pro­
cedures and the formally validated algorithms of the 
well developed computer application areas. At the other 
end, where amount of systematic knovvledge is low, \ve 
have the general, flexible, goal directed procedures of 
artificial intelligence, where a set of relatively weak 
problem-specific principles are combined with heuristic 
methods for the control of processes that search for 
solutions. In between, we have the bulk of procedures 
that run on computers at present-including procedures 
that manipulate computer languages, and those that 
control computer operations. 

The notion of a procedure continuum, where the 
emphasis is on types of information processes and on 
types of knowledge associated with them, promises to 
provide a fruitful conceptual framework for education 
in computer science. It would be interesting to explore 
it further in the context of future curriculum designs. 

Numerical applications 

Numerical analysis and several other subjects in the 
general area of numerical applications are among the 
best developed in the field in terms of systematic knowl-
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edge available and theoretical treatment of algorithms. 
I think that these subjects have an important place in 
a computer science curriculum, not only because of 
their great significance for many computer applications, 
but also because they provide models of 'high quality' 
procedures and of successful theoretical approaches to 
their study. Such models are needed for progress in 
other, less developed areas of the field. 

INTERACTION WITH :\IATHE1VIATICS 

The study of numerical applications is closely related 
to mathematical studies. A strong mathematical back­
ground (especially in calculus and linear algebra) is 
needed for work in most numerical applications. Con­
versely, numerical applications are in themselves sig­
nificant topics of study in mathematics. 

The question of mathematical preparation for work in 
computer science must receive careful consideration in 
the development of computer science programs. Theo­
retical work in computer science relies on several 
branches of mathematics and logic. In addition to the 
formal background needed for numerical applicat:ons, 
various topics in abstract algebras, in logic and founda­
tions, in combinatorial analysis, in graph theory and in 
probability theory are needed for work in well developed 
areas of nonnumerical applications and of computer 
system design. 

A problem aIises when we consider the training of 
people who are oriented to the bulk of design and appli­
cation activities in the field. For the most, these activi­
ties are in areas where relevant theoretical knowledge is 
poor. There is considerable consensus among computer 
science educators that people working in these areas 
must have at least a certain level of 'mathematical 
maturity.' This does not imply necessarily the knowl­
edge of specific mathematical facts and methods. What 
is meant usually is training in disciplined modes of 
thought, in the manipulation of abstractions, and in the 
development and use of methods that can apply in a 
great variety of situations. To obtain this type of 
training, we have several approaches: (a) provide suffi­
cient exposure to offerings in regular mathematics cur­
riculi, (b) restructure some mathematical offerings to 
attain within a limited time, both the 'maturity' objec­
tive and the objective of education in mathematical 
topics of special relevance to work in the computer 
field, and (c) develop computer-based courses that ad­
dress themselves directly to the underlying cognitive 
skills implied by 'mathematical maturity,' without 
using conventional mathematical material. These ap­
proaches are not mutually exclusive. I believe that it is 
an important challenge for computer science education 

to develop the approach (c). In parallel, I would place 
considerable stress on the approach (b). I am basing 
this on the conviction that even those who graduate at 
present from a computer science program and expect to 
take a programming job which does not require an im­
mediate specific knowledge of mathematics, must be 
equipped against rapid obsolescence in a field which is 
extremely dynamic and which requires continuous 
learning and adaptation to new concepts and tech­
niques. As theoretical knowledge grows in their area of 
activity, they must be prepared to understand it and 
to use it. Formal approaches will continue to develop 
in computer application areas; they are likely to pene­
trate more and more in systems design areas as concern 
with quality and efficiency of designs will continue to 
grow, and as methods of system analysis and evaluation 
will become increasingly available. 

Wallace Feurzeig and his colleagues at Bolt Beranek 
and Newman have started to design courses where 
computer programming is being used as a key to the 
development of certain basic mathematical ideas and 
of skills for abstract reasoning. 6 This work has been 
oriented so far to pre-college instruction. It would be 
extremely interesting to develop courses of this type for 
introductory college instruction. In addition to their 
effectiveness for the development of 'mathematical 
maturity,' such courses would be exceptionally well 
suited for the introduction of computers to a large 
number of college students who, because of their 'fear 
of math,' hesitate to take introductory computing 
courses in their present form (which is commonly biased 
toward mathematical calculations). 

INTRODUCTION TO COMPUTING AND TO 
GENERAL EDUCATION ABOUT 
COlVIPUTERS 

Computer science departments have an important 
responsibility to provide broad introductory computing 
courses to the entire College population. In order to 
reach a very wide group of students, with a great pos­
sible variety of backgrounds and orientations, it is 
important to develop courses with no special mathe­
matics requirements and with the main emphasis on the 
essentials of information processing and on hands-on 
problem solving experience with computers. The design 
of such courses is of considerable value for computer 
science as a new discipline, since it forces attention on 
fundamental concepts in the field and on imaginative 
ways of communicating them. 

One of the most promising areas for the use of CAl 
in a college curriculum is in introductory courses in 
computer science and in mathematics. It would be 
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highly desirable to stimulate the development of such 
computer-based courses in computer science depart­
ments; this would be a valuable activity for both faculty 
and students. 

In our program at Rutgers we have had some experi­
ence with an introductory course where the emphasis 
was on uses of computers and on their impact on society. 
We found that students at the freshman level were 
much more interested in what computers are and how 
they can be used, rather than in general questions 
about the impact of computers on society and the broad 
significance of a growing computer culture on people. 
I think that it is profitable and important to discuss 
these issues in a senior seminar; at that level, students 
have more knowledge (of computers and of other 
things), and more maturity and ~otivation to study 
relationships between computers, man, and society. 

SUGGESTED APPROACHES TO LONG RANGE 
EDUCATIONAL PLANNING IN COMPUTER 
SCIENCE 

The question of educational breadth versus specializa­
tion is central to long range academic planning in com­
puter science. As the computer field grows, there is an 
increasing demand for in-depth training of a variety of 
specialists. If the rate of generation of general principles 
and methods in the field will continue to lag behind the 
rate of production of specific computer systems and 
specific application packages, then there will be a ten­
dency for computer science curriculi to be overwhelmed 
by a variety of fragments of detailed, specialized ma­
terifLl-and for students of computer science to have 
negligible opportunity of being exposed to other disci­
plines, and to areas of intellectual activity where com­
puters do not necessarily play maj or roles. On the other 
hand, it is essential for computer science not to grow in 
isolation, but to actively seek and strengthen intellec­
tual bonds and working contacts with other disciplines. 
Accordingly, future contributors in the field must de­
velop the ability to communicate and collaborate with 
people in other areas, and to be sensitive to ideas and 
concerns outside their discipline. This implies the need 
for balance between activities within the discipline and 
outside it. Also, the nature of studies in computer sci­
ence should reflect the dynamic character of the field, 
and the need to develop in students a capacity for inde­
pendent learning and growth. 

The following set of approaches are suggested in 
response to the requirements for educational balance 
and for adaptability to fast changes in the field: 

(a) The core of computer science courses that are 
needed for an undergraduate major should be 

limited to between a third and a half of the total 
courses needed for an undergraduate degree. 
These ratios will be much higher at the graduate 
level. In any event, students at all levels should 
be encouraged to take courses in other areas. 

(b) An important part of academic planning is to 
develop (in some detail) options for combined 
studies involving computer science and other 
disciplines. Undergraduate areas of specializa­
tion should be created by combining the com­
puter science core courses with courses in other 
appropriate disciplines (in particular, with 
Mathematics, Electrical Engineering, and Man­
agement Sciences/Business Administration). This 
implies a limited core curriculum offered by the 
computer science unit, and close curriculum co­
ordination with the other academic units. Similar 
curriculum coordination should develop in 
graduate programs. One of the most effective 
ways of stimulating contact with other disciplines 
at the graduate level is to facilitate/induce proj­
ects and research which are directly related to 
advanced computer applications in these disci­
plines. 

(c) An appropriate balance (and coordination) 
should be established between the lecture 
courses, the seminars, and the project-oriented 
courses that are components of a program. Lec­
ture courses should concentrate on fundamen­
tals, on structured presentations of parts of the 
field, and on general guidance to independent 
study of the growing body of 'raw data' concern­
ing specific computer systems, languages, and 
applications. Seminars should focus on specific 
new developments in the field (exploratory cur­
rent research, attempts to develop principles and 
theories) and on discussions of broad issues (e.g., 
computers and society). Project-oriented courses 
should provide opportunities for synthesis of in­
formation obtained from various sources, for col­
laboration (with people in the field, as well as 
with others), and for extensive practical work 
within the state of the art. An important project 
course would be an undergraduate, upper-level 
"design studio" where students would work on 
substantial software designs of operating sys­
tems, language processors, interfaces, etc. 

(d) The interface between undergraduate and gradu­
ate programs in computer science should be 
flexible-with students moving relatively freely 
both ways, and courses moving steadily from the 
graduate to the undergraduate program. This 
movement of courses does not mean an increase 
in the number of undergraduate courses, but a 
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restructuring, updating and general strengthen­
ing of the undergraduate program-whose over­
all size should remain relatively stable. One of the 
reasons for a flexible undergraduate-graduate 
interface is the fact that most students entering 
graduate computer science programs still come 
from different academic disciplines, and their 
knowledge of computer science varies widely. As 
undergraduate computer science becomes more 
widespread, the nature of Masters-level pro­
grams will change, and prerequisites for graduate 
admissions are likely to become more demanding 
in areas of computer systems and applications. 
In the meantime, criteria for graduate admis­
sions should remain more flexible on questions of 
specific subject matter; the emphasis should con­
tinue to be on overall undergraduate academic 
performance (especially in mathematical sci­
ences), personal characteristics such as initiative 
and inventiveness, and motivation to work in 
computer science. Because of the dynamic char­
acter of the computer field, I expect that we will 
have for some time a process of curricular changes 
where the Masters program of today will be es­
sentially included in the Bachelors program of 
tomorrow. In general, a terminal Masters pro­
gram in computer science will continue to pro­
vide the training needed for advanced profes­
sionals in the computer field. Increasingly, 
Bachelor programs in computer science will also 
train many of the professionals in the field. 

(e) A major part of advanced graduate work in com­
puter science should be devoted to exploratory 
projects and to research. A good research environ­
ment is essential. This means an appropriate in­
tellectual climate, good communications, and 
easy access to computer resources. An important 
goal, both for faculty and for graduate students, 
would be to introduce order and cohesiveness in 
the field, to search for basic principles and gen­
eral methods, and to design better academic 
programs in computer science. As part of these 
activities, new courses should be developed, 
with the emphasis on fundamentals and also on 
ways of using computers as integral parts of the 

preparation and administration of the courses. 
It would be desirable to have doctoral research de­
velop in the context of such educational projects. 

In general, we should recognize that systematization 
of fundamentals in the computer field, and design of ap­
propriate academic programs is a key responsibility of 
computer science educators. These activities constitute 
a process of continuous self-improvement of computer 
science programs. Such a process is an essential part of 
any academic program; it is of special significance in 
computer science. Efforts toward academic planning 
and program improvement should receive support and 
recognition-the same as direct teaching and other 
types of research and development. Contributions in 
these areas will have important implications both for 
the effectiveness of computer science education, and 
also for the overall quality and efficiency of work in the 
computer field. 

REFERENCES 

1 S AMAREL 
Computer science: A conceptual framework for curriculum 
planning 
Communications of the ACM Vol 14 No 6 June 1971 

2 Undergraduate program in computer science 
Department of Computer Science Livingston College 
Rutgers University New Brunswick N J 08903 April 1971 
Available from the Department 

3 Graduate program in computer science 
Department of Computer Science Rutgers University 
New Brunswick NJ 08903 July 1971 Available from the 
Department 

4 Descriptions of graduate courses in computer science 
Department of Computer Science Rutgers University 
New Brunswick NJ 08903 July 1971 Available from the 
Department 

5 S AMAREL 
Problem solving and decision making by computer: An 
overview 
in "Cognition: A Multiple View" P L Garvin (ed.) Spartan 
Books NY 1970 

6 W FEURZEIG et al 
Programming languages as a conceptual framework for 
teaching mathematics 
Report No 2165 June 30 1971 Bolt Beranek and Newman 
50 Moulton St Cambridge Mass 02138 



Computer science education-The need for interaction 

by M. STUART LYNN 

Rice University 
Houston, Texas 

I would suggest that one of the central problems of 
computer science today is understanding what it's for. 
As a consequence, given this hypothesis, from an educa­
tional standpoint it is not clear what students are ex­
pected to represent when they graduate with degrees in 
computer science. To the potential employer, the situa­
tion becomes even more confused when (in better times) 
he believes he is recruiting one thing and finds that he 
has hired something else. 

This lack of understanding and eventual misrepre­
sentation is not surprising in a young discipline. Per­
haps one of the difficulties faced by computer science is 
what may be an over-eager attempt to formalize its 
content and boundaries, and in so doing discouraging 
the growth, change and vitality which have charac­
terized the last decade. Perhaps, also, there is an increas­
ing role being played by what may be (but should not 
be) an underlying conflict between the systematic and 
formalizing demands of science, and the engineering 
demands by which concepts are made useful to man; this 
conflict underlies much recent uncertainty in education 
in other disciplines, and it should not be surprising that 
it is becoming increasingly present where computing is 
concerned. 

An example, in the Curriculum 68 Report,! of where 
potentially harmful boundaries exist lies in the treat­
ment of numerical analysis. On the one hand, insufficient 
priority is given to this area, insofar as the proposed 
course contents are only suggestive of the field and give 
no insight as to the relationship of numerical analysis to 
the domain of computer science or to the domain of uses 
of numerical analysis in computer applications. On the 

- other hand, excessive priority is given to numerical 
analysis when compared with other uses of mathe­
matical. analysis in computer applications: statistics, 
signal analysis, pattern recognition, control theory, 
mathematical programming, operations research and 
others. The proper role of each of these and related 
areas, and of their interrelationships, needs to be deter­
mined by examining the ways in which they are put to 
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use in computer applications, with what priority, and 
then working backwards to define the appropriate edu­
cational structure. It is not clear that the existence of 
numerical analysis in the computer science curriculum 
should be an end in itself. 

Perhaps too much of computer science has been con­
cerned with formalization. To a degree, such concern is 
proper; there is clearly a need to develop and under­
stand, systematically, fundamental principles and the 
interaction of these principles with each other; and a 
further need to educate in such a way as to encourage 
growth based upon a formalized body of knowledge. 
This should not, however, be the end in itself, as appears 
to be the trend. 

This trend, if it exists, is not directly the fault of the 
Curriculum 68 Report. 1 It occurs partly perhaps because 
Curriculum 68 is too comprehensive, or too ambitious; 
and since in practice limited budgets may dictate that 
only selected parts are implemented, an unbalanced 
educational structure may be achieved. 2 Perhaps, too, 
Curriculum 68 is guilty of leaving to chance (see p. 155) 
what may be the most difficult question of all; how to 
effect the interaction with other disciplines which is so 
essential to the vital development of computer science. 
AmareP has separated computer science activity into its 
synthetic and analytic components, the former having a 
"pragmatic flavor largely responsible for major advances 
in computers and for great diversity of areas in which 
computers are being applied", and the latter " ... pro­
viding conceptual guidelines". He advocates a con­
tinuous interaction between these two components as 
essential to a vigorous rate of progress in the field. I 
would suggest that education in computer science, as 
structured in Curriculum 68, may be guilty of inhibiting 
that interaction, not encouraging it. 

lVfore positive steps need to be taken to encourage 
this interaction between the science of computing and 
the uses of computers. I am not suggesting interaction 
does not exist, only that it has received decreasing em­
phasis in recent years. Perhaps such encouragement 
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cannot be achieved solely within the definition of com­
puter science education itself, but requires closer ex­
amination of the administrative structures within which 
computer science operates. 

It is likely that the industrial employer will become 
increasingly selective in its recruiting at all levels. This 
will be dictated not only by short-term considerations, 
such as the current state of the economy, but also be­
cause he will primarily be looking for graduates who 
have the breadth to be able to understand and deal with 
a wide spectrum of his problems, graduates who have 
the flexibility to modify their areas of interest as needs 
and priorities change. To the extent that education in 
computer science prepares students for their future, and 
for a considerable number this may mean industrial 
employment, Curriculum 68 needs careful reexamina­
tion, since it is not clear that it contributes substantially 
to this requirement. 

A mathematician has been defined as one who, given 
a problem to solve, solves a whole class of problems of 
which the original is not a member. It can be argued 
that there has been a breakdown in the lengthy com-

munication channels between mathematics and the 
environment in which it operates: whether this is good 
or bad for mathematics is a matter of point of view. It 
would, however, be bad for computer science. If 
students are to be prepared for what may be ahead, they 
must be given perspective, and a realistic insight. into 
how computer science fits into and relates to the world 
around it. They should not, to reverse Oscar Wilde's 
definition of a cynic, be encouraged to know the value 
of everything and the price of nothing. 
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Operating systems principles and 
undergraduate computer science curricula* 

by PETER J. DENNING 
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INTRODUCTION 

In the years since 1969, the study of computer systems 
has assumed a role nearly equal in importance to 
"theory of computation" and "programming" in com­
puter science curricula. In contrast, computer systems 
was regarded as recently as 1965 as being inferior in 
importance to these two more traditional areas of 
study. This is a significant change in attitude. The 
harbingers of the change appear in ACM's Curriculum 
68,1 and the speed of its development is demonstrated 
in the report of Task Force VIII of the COSINE 
( Computer Science in Electrical Engineering) com­
mittee of the Commission on Education of the National 
Academy of Engineering, entitled "An Undergraduate 
Course on Operating Systems Principles."2 

The reasons for this change, the nature of computer­
system studies, and the potential impact on future 
developments will be analyzed in this paper. I shall 
begin with a brief overview of computer science itself, 
in order to place the study of operating systems in 
perspective; I shall then discuss the general need in the 
computer industry for principles, many of which relate 
to computer and operating systems; finally, I shall dis­
cuss how an operating systems principles course may 
be organized. 

ON COMPUTER SCIENCE 

Computer science is the study of the design, analysis, 
implementation, and application of information­
processing procedures.1 ,3,4,5,6 In their writings, our edu­
cational leaders have consistently stressed the impor­
tance of concepts and first principles in studying the 
material of computer science. All proposals for computer 

* Work reported herein was supported in part by NSF Grant 
GY-6586. 
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science curricula-especially undergraduate curricula­
have distinguished carefully between courses dealing 
with first principles and courses dealing with applica­
tions. Courses of the former type tend to be considered 
as "core curriculum" courses, but not courses of the 
latter type. (It is interesting to note that courses on 
operating systems were, until very recently, considered 
as being of the latter type. Even as it has been dis­
covered that operating systems has a set of first princi­
ples independent of details depending on the tech­
nology, this subject matter has increasingly been 
considered as worthy core material.) 

Courses offered in computer science curricula can be 
classified (roughly) into four categories: formal sys­
tems, programming systems, computer systems, and 
applications. The distribution of courses among the 
four areaswiil depend on the objectives of a given 
institution. (I believe they should be of equal impor­
tance.) Formal systems deals with the various mathe­
matical systems for studying computation itself. Some 
of the topics taught in courses of this category include: 
the theory of automata, the theory of formal languages, 
the theory of computability, the theory of complexity 
of computations, and the theory of numerical computa­
tions and error propagation. Programming systems 
deals with the algorithms that perform computations 
on a practical level. The topics taught in courses of 
this category include both the concepts of programming 
languages and the· problems of implementing algo­
rithms. Programming language concepts encompass 
topics like programming language control structures 
(e.g., sequencing, iteration, conditional transfers, as­
signments), representing data, use of recursion, use of 
subroutines, parsing, compilation, and assembly tech­
niques. The study of algorithms includes topics like 
language-independent algorithm specification, data 
representation, analysis of algorithms and data struc­
tures, proving a priori the correctness of algorithms, 
algorithms for searching and sorting, algorithms for 
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dynamic storage allocation, and heuristic algorithms. 
Computer systems deals with the problems arising when 
algorithms are implemented on physical devices. Some 
of the topics taught in courses of this category include 
design of hardware and logic circuits, organization and 
design of standard equipment (e.g., processors, mem­
ories, peripherals), design of software systems, design 
of complex systems, control of parallelism and con­
currency, control of processor and memory and other 
resources, analysis of system behavior, modeling the 
behavior of computing processes. As will be discussed 
shortly, these three categories deal with what I call the 
"first principles" of computer science. Topics which are 
dependent on the present-day technology, or are likely 
to be of little interest in more than, say, five years, 
are the subject of courses in the applications category; 
these include discussions of particular languages or 
particular machines or particular operating systems, 
systems programming techniques, specialized program­
ming techniques, business data processing, and informa­
tion retrieval. 

The reader will note that Artificial Intelligence has 
not been mentioned in the above. In many respects, it 
cuts across all the categories. In many respects, it is an 
entirely different approach to computer science than 
the one I have outlined. Many computer science de­
partments offer Artificial Intelligence courses on an 
elective basis and do not consider them as part of the 
core curriculum. 

When I use the term "operating systems principles," 
I mean the software, control, modeling, and analysis 
aspects of the computer-systems part of computer 
SCIence. 

Figure 1 is a very idealized overview of the evolution 
of the first principles of computer science. Topics are 
listed along the vertical axis, time along the horizontal; 

those topics below the curve at a given time are con­
sidered as core-curriculum topics at that time. Con­
ceptual approaches to numerical analysis have been 
with us since the beginning of electronic computing, 
since these were the primary purposes to which Burks, 
Eckert, Goldstine, Mauchly, von Neumann and their 
contemporaries envisioned their machines being applied. 
Although hardware and combinational logic design 
concepts using Boolean algebra to describe switching 
functions had been proposed by Shannon before 1945, 
this area received a strong impetus from the sequential 
machine work of Huffman, Mealy, and Moore during 
the early 1950's. The modern approach to the theory of 
computation, which emphasizes the relations among 
abstract machines and abstract languages and compu­
tational complexity did not evolve until the mid 1960's 
and the first texts in this area did not appear until the 
later 1960's.7.s'Programming languages were introduced 
in the later 1950's (FORTRAN in 1956, ALGOL in 
1958) but the concepts underlying them were not put 
down in systematic, textbook form until the mid-
1960's.9 Concepts about algorithms themselves, con­
cepts more or less independent of programming lan­
guages, did not become systematized until the late 
1960's.1O And finally, the concepts of computer systems 
are only recently being put in text form at a graduate 
levelll and nothing save a report exists describjng them 
at an undergraduate level. 2 Thus it is evident that the 
development of a wide range of core material-the 
first principles of computer science-is quite recent in 
the era of electronic computing. Since much of the 
material of major interest to the industry itself-pro­
gramming and system concepts-has just recently 
entered the "core area", it is no surprise that the in­
dustry has long regarded computer science as being 
somewhat irrelevant. I do think we can expect a change 
in this attitude. 

On the basis of Figure 1, one can see why the majority 
of computer science departments were not established 
until after 1965. Academia has always been reluctant 
to establish degree programs in subject areas with no 
discernible broad base of first principles. 

ON THE NEED FOR PRINCIPLES TO BE 
APPLIED IN THE COMPUTER INDUSTRY 

As mentioned, Figure 1 illustrates why the industry 
has tended to hold computer science education in dis­
regard, i.e., because the topics of interest to it (concepts 
of programming and design of systems) have not been 
treated on a sound conceptual basis in curricula. Look­
ing at Figure 1 from a different perspective turns up 
another interesting observation: For some twenty 



years, the leaders of industry (management) have had 
to proceed without a set of first principles in the areas 
of major interest to them. This perhaps explains (in 
part) why so much difficulty has been experienced in 
getting "third generation" computer systems opera­
tional: There had been no systematic set of concepts 
according to which designers and programmers could 
be guided. This had left the industry in the rather un­
comfortable situation of being accused in the public 
media of misusing, or condoning the misuse of, com­
puters. Witness, for example, the great public outcry 
with respect to privacy and protection of information. 

In many respects, then, the allegations that the 
computing industry is "adrift" and "unprincipled" 
have some basis in fact. The allegations that computer 
science education has not been of much help to the 
industry likewise have some basis in fact. We cannot, 
however, afford to wait ten or twenty years for the 
present crop of computer science students to move into 
the leadership positions of industry. Those presently in 
the leadership positions must not only be made aware 
of the existence of principles, but they must be made 
aware of the principles themselves. 

In a recent statement,I2 ACM President Walter 
Carlson recognized this problem, saying ct ••• There is 
too little systematic codification of fundamentals (i.e., 
first principles). There is almost no communication 
between the research people and system designers or 
operators. There is a widening sense of frustration 
among academics over misuse (or lack of use) of proven 
computer technology in practical operations." Figure 1 
demonstrates that at least a basis exists for reversing 
the trend addressed by Carlson's first point. 

To illustrate Carlson's third point, let me discuss 
three examples of common misconceptions attributable 
to a lack of understanding of the first principles of 
computer science: (1) The "software problem," i.e., the 
increasingly high costs of software development and 
lack of quality control over software packages, is a long 
way from being solved. (2) The "protection problem," 
i.e., that of guaranteeing the privacy, security, and 
integrity of information, is yet to be solved adequately. 
(3) The "computer utility" was a fad which, thank­
fully, is dead. It would astonish some managers to 
know the facts: Solutions to the software and protection 
problem exist now-and have existed, in computer 
utility research projects, since at least 1965! (I will 
elaborate below.) While much work remains to be done, 
I think it is safe to say that these solutions are ade­
quate for present-day purposes. The solutions to these 
problems evolved in the design and use of such systems 
as the CTSS (Compatible Time Sharing System) and 
its successor MULTICS (Multiplexed Information 
and Computing Service) at MIT. Both these systems 
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are regarded as first steps in the evolution of the com­
puter utility, and rely on the computer-utility environ­
ment for their viability; thus, the attitude that the 
computer utility was a fad is in fact an attitude hostile 
to the solutions of the two problems. That so. many 
who hold leadership positions in the computer industry 
have failed to recognize that CTSS and l\1ULTICS 
implement solutions to these problems-even as under­
graduate students exposed to an operating systems 
principles course seem to have no such difficulty­
further reinforces my conviction that the first principles 
of computer science are not widely disseminated or 
appreciated. 

The solution to the software problem in CTSS and 
MULTI CS is based on the concepts of programming 
modularity and sharing of information; the requisite 
mechanism took the forms of the CTSS file system and 
the MULTICS virtual memory. * The solution to the 
protection problem in MULTICS is based on the con­
cepts protection rings (or "domains") and on controlled 
access to information.** An important aspect of these 
two solutions is, neither can be accommodated on most 
systems presently on the market without major altera­
tions in hardware and software architecture. It is the 
failure of management to understand the principles on 
which the solutions are based that has made them un­
able to recognize that CTSS and MULTICS solve 
these problems, and has led them to market systems in 
which technically sound solutions to the software and 
protection problems are not possible. 

The foregoing criticisms of management are meant to 
be constructive in the sense that managers (and other 
elements of the computing profession as well) cannot 
play their roles to perfection without a thorough under­
standing of the principles of computer science. And, 
because it is only recently that the first principles have 
become systematized, it is difficult to expect managers 
to interpret new developments in the light of guiding 
principles. 

ON THE IMPORTANCE OF COl\1PUTER 
SYSTEMS CONCEPTS 

I have devoted a considerable amount of space to 
emphasizing the first principles of computer science and 

* A description of the CTSS file system can be found in Wilkes' 
remarkably concise 96-page book,13 a description of the 
MULTICS/ virtual memory can be found in the paper by 
Bensoussan, Clingen, and Daley.14 Both these descriptions make 
it adequately clear that these systems, in their own contexts, 
have solved the software problem. 
** The concepts of protection systems are discussed by Lampson,15 
and by Graham and Denning;16 systems implications of protection 
are discussed by Wilkes13 and by Schroeder and SaltzerY 
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analyzing the effects in the computer industry of having 
no first pIinciples. I have done this to emphasize how 
the first principles of computer systems have a natural 
place in computer science. Aside from these larger con­
siderations, there are several reasons why a systematic 
presentation of the first principles of computer systems 
is important in and of itself. 

First, the so-called case-study approach to teaching 
computer systems has been more or less unsuccessful 
wherever it has been tried: The student becomes so 
immersed in the particulars of the given system that he 
cannot distinguish important principle from irrelevant 
detail. In my limited experience, I have met only with 
success using the "modeling and analysis" approach. 
Thus, computer system principles are useful in the 
practical task of teaching others about computer 
systems. 

Second, it is increasingly evident throughout the 
computer industry that we literally can no longer 
afford to develop ever larger, ever more complex sys­
tems without solid notions of how they are to be struc­
tured or how they are to behave. We can no longer 
afford to put together systems which are extremely 
wasteful of their own resources. We can no longer 
afford not to apply the concepts and principles III 

practice; 
Third, for some inexplicable reason, the design of 

complex software and hardware systems has been con­
sidered traditionally as an "application" problem, a 
"technology-dependent" problem. In contrast, it is now 
being realized that designing complex systems-sys­
tems which operate as intended, whose correctness and 
behavior can be established a priori, whose perform­
ance can be monitored easily-is an intellectual task 
worthy of· our best minds. (In other words, the com­
puter-systems area has inherited one of the most im­
portant problem areas of computer science.) This 
realization has stimulated increasing amounts of re­
search in computer system modeling and analysis, a 
principal result of which has been the emergence of a 
teachable, comprehendable. body of operating systems 
principles. Much of "computer system theory" is con­
cerned in one way or another both with managing 
complexity in software and hardware systems and with 
complex algorithms involving parallel processes, so 
that it is relevant to many practical problems now 
facing the industry. 

Fourth, and perhaps of the most long-term signifi­
cance, there is an ever widening appreciation of the 
view that our world has become a vast real-time system 
whose complexity is beyond the reach of the unaided 
human mind to understand. It is not difficult to identify 
the essential elements of information systems in busi­
ness systems, economic systems, urban systems, and 

even social systems. Again and again we see decisions 
being taken to regulate such systems as these which, 
despite the best of intentions, often turn out to have 
the opposite of the intended effect. Jay Forrester has 
called this phenomenon the "counterintuitive behavior" 
of complex systems. I8 It is explained by the inability of 
the unaided mind fu'ly to grasp why the long-term 
effect of a policy is often the opposite of its short-term 
effect, or fully to comprehend the complexities of, and 
interrelations among, the various parameters that influ­
ence a system. Forrester's simulation experiments of 
urban· and business systems show that the intended re­
sult may normally be obtained only when all the con­
trollable parameters of a system are governed by a 
single policy, not when each such parameter is con­
trolled individually. This type of phenomenon is hardly 
new in the experience of computer system designers. 
As computer system "theorists" axiomatize information 
systems, developing systematic approaches both for 
managing complexity and for guaranteeing a priori 
that a system will operate as intended, the results of 
their efforts should be applicable to the solutions of 
problems in social, urban and other noncomputer in­
formation systems. 

ON THE APPROACH 

As I have stated, I call this the modeling-and-analysis 
approach to studying operating systems, to distinguish 
it from the case-study approach. The material can be 
organized and presented as a sequence of abstractions 
together with examples of their applications, each ab­
straction being a principle from which most imple­
mentations can be deduced. The concept-areas (in 
which teachable abstractions exist) are: 

procedure implementation 
concurrent processes 
memory management 
name management 
resource allocation 
protection 

Experience shows that the most coherent treatment is 
obtained if the topics are organized according to this 
list of concept-areas. 

The COSINE report2 goes into some detail instruct­
ing instructors how to present these abstractions; a 
COMPUTING SURVEYS paperI9 explores them in 
some detail from a student's viewpoint, the Coffman­
Denning textll treats the mathematical analysis related 
to them. Accordingly, I shall restrict myself here to 
outlining their content. 

The background required of students undertaking 



this type of course should include: a working knowledge 
of programming language features; an elementary un­
derstanding of compilation and loading processes; 
processor organization and operation, including inter­
rupts; memory organization and operation; and data 
structures such as stacks, queues, arrays, and hash 
tables. This background could be obtained from a 
course on programming languages (e.g., ACM's Course 
1-2)1 and a course on computer organization (e;g., 
ACM's Course 1-3).1 A data structures course (e.g., 
ACM's Course 1-1)1 is helpful but not necessary. 

The course itself is related to ACM's systems pro­
gramming course (ACM Course 1-4)1 but differs in at 
least two significant ways. First, the ACM outline sug­
gests a "descriptive," case-study approach whereas 
this course is organized along conceptual lines. Second, 
ACM's course emphasizes techniques of systems pro­
gramming whereas this course emphasizes the principles 
of system organization and operation. This shift in 
emphasis is made possible by new developments, since 
the ACM report predates the appearance of much of 
the modeling and analysis material on which this 
course is based. 

The instructor of this course will find it useful to 
introduce the subject by pointing out how, despite the 
wide range of operating systems types and capabilities, 
there is a set of characteristics common to these sys­
tems. These characteristics include: (1) concurrency, 
i.e., many activities proceeding simultaneously, (2) 
sharing of resources and the existence of a centralized 
resource allocation mechanism, (3) sharing of informa­
tion, (4) protection for information, (5) long-term storage 
of information, (6) multiplexing, i.e., the technique of 
switching a resource (rapidly) among many requestors 
so that it is assigned to at most one at a time, (7) 
remote conversational access, (8) nondeterminacy, i.e., 
unpredictability of the order in which events will occur, 
and (9) modularity in design and operation of systems. 
It is important to point out that, for pedagogic reasons, 
the course material is presented (more compactly) ac­
cording to the six concept-areas stated earlier, and not 
directly among the lines of these nine common 
characteristics. 

The area of procedure implementation is important 
because the reason computer systems exist at all is to 
provide an efficient environment for executing pro­
grams. The notion of procedure is important because of 
its close relation to programming modularity. The basic 
concepts-pure procedure, procedure activations and 
activation records, parameters, local and nonlocal 
references-should be presented first. Then the main 
concept, "procedure in execution" (i.e., a procedure 
which has been called but has not yet returned) and 
its implementations, is presented. An abstract descrip-
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tion of "procedure in execution" is a pair of pointers 
(i, r) where i is an instruction pointer and r an activa­
tion-record pointer (local environment pointer). Every 
implementation must solve three problems: (1) allocat­
ing and freeing storage on procedure call and return, 
(2) interpreting local references, i.e., those to objects 
in the activation record, and (3) interpreting nonlocal 
references, i.e., those to objects in other activation 
records. The implementations of "procedure in execu­
tion" in languages like FORTRAN, ALGOL, or PL/l 
can be deduced from these concepts by considering the 
restrictions imposed by these languages. 

The area of concurrent (parallel) processes is im­
portant because one of the purposes of an operating 
system is controlling many, independently-timed activi­
ties. A "process" can be regarded as a "program in 
execution" and has an abstract description much like 
"procedure in execution." "Parallel Processes" is the 
notion that, at any given time, more than one program 
will be observed to be somewhere between its initiation 
and termination points. There are four process control 
problems of principal concern: (1) determinacy, i.e., the 
property that· the result of a computation by cooperat­
ing processes on common memory cells is independent 
of their relative speeds, (2) freedom from deadlock, i.e., 
the property that allocation of resources is controlled 
so that at no time does there exist a set of processes, 
each. holding some resources and requesting additional 
resources, such that no process's request can be satisfied 
from the available resources, (3) mutual exclusion, i.e., 
the property that,· of a given set of processes, at most 
one is executing a given set of instructions ati any time, 
and (4) synchronization, i.e., the property that a pro~ 
cess, whose progress past a given point depends on re­
ceiving a signal from another, is stopped at that point 
until the signal arrives. 

The area of memory management is important be­
cause every practical computer system incorporates a 
hierarchy of storage media characterized by various 
compromises among access time, capacity, and cost; a 
set of policies and mechanisms is required to increase 
system efficiency by arranging that the most frequently 
accessed information resides in fast access memory. 
The abstractions used here are those of "virtual mem­
ory'~: address space, memory space, and address map. 
The common implementations of virtual memory (e.g., 
paging, segmentation) can be deduced from these ab­
stractions by considering factors such as efficiency of 
mapping operations and efficiency of storage utiliza­
tion. Once the implementations have been studied, one 
can study the policies for managing them. Finally, it is 
straightforward to generalize the discussion to the im­
plementations and policies of multiprogramming and of 
auxiliary memory problems. The foregoing develop-
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ment will lead to a computational storage system (i.e., 
that part of the memory system in which references 
are interpreted by the hardware) which presents to 
each programmer a large, linear address space. 

The area of name management is imp3rtant because 
a linear address space such as provided by the preced­
ing development has inherent limitations from the 
standpoint of programmers and system users. It cannot 
handle growing or shrinking objects, provide different 
contexts in which processes may operate, allow for 
sharing or protecting objects, or implement a long-term 
storage system in which objects may reside independ­
ently of any context. In other words, linear address 
space cannot support mpdular programming to the ex­
tent required by today's system objectives. These 
limitations can be overcome by extending the memory 
system to allow programmers to define objects of vari­
able size, assign names and (variable) contexts to these 
objects, allow shared access to objects, and specify 
dynamically which subset of a universe of objects 
should participate in a computation. That part of the 
memory system which implements these new objectives 
is called the "long-term storage system"; it may be 
distinct from the computational storage system or it 
may be one and the same. Computers implementing a 
virtual memory and a file system are examples of the 
former, computers implementing segmentation are ex­
amples of the latter. In either case, a global (system­
wide) scheme for naming objects must be devised (in 
order to allow sharing), the (directory) tree hierarchy 
with "pathnames" being most common (in this case 
the long-term storage system provides a tree-structured 
space of objects in addition to the linear space or 
spaces provided by the computational storage system). 

The area of resource allocation is imp 3rt ant partly 
because the complexities of the interactions among all 
the processes in the system dictate that a central pJlicy 
regulate resource usage to optimize performance,and 
partly because one effect of implementing the previous 
abstractions is to hide machine details from users, 
placing the burden of allocation decisions squarely on 
the system. One can distinguish long-term from short­
term policies, the latter being of primary concern here. 
One can model a process (from a resource-allocation 
view) as cycling among the "demand-states" ready, 
running, blocked; correspondingly one finds a network 
of queues with feedback in the computer system. Pro­
cesses are distributed among the queues according to 
demand-states, and change queues according to changes 
in demand-state. In terms of this, one can study specific 
queueing policies and overall network control policies; 
one can study the meaning of concepts like "system 
balance" and "thrashing"; and one can study what 
evaluation techniques are applicable. Models of pro-

gram behavior and the use of statistical analysis are 
important to an understanding of resource allocation 
and are used throughout. 

The area of protection is important in any system 
where there may reside procedure and data belonging to 
more than one individual. It must not be possible for 
one process to disrupt or corrupt service to others, and 
access to information (especially if confidential or pro­
prietary) must be permitted only under appropriate 
authorization. The abstract model of a protection sys­
tem includes: (1) a set of "domains" or "protection 
contexts," i.e., sets of constraints according to which a 
process may access objects, (2) a set of "objects," i.e., 
everything to which access must be protected or con­
trolled (including the domains), and (3) a mechanism 
that both specifies and enforces access rules by processes 
to objects, the type of access depending on the domain 
with which the process is associated. The mechanism 
can be specified in the form of an "access matrix" (e.g., 
if A is the access matrix, A[d, x] specifies the types of 
access a process associated with domain d has to object 
x). Most of the implementations of protection found in 
practice can be deduced from this model. 

There remain certain issues that have not been 
treated definitively in the literature but which nonethe­
less are of central importance in computer system 
operation and design. These include: reliability, per­
formance evaluation, design methodologies, and im­
plementation strategies. They must, unfortunately, be 
relegated to a pedagogically inferior position at the end 
of the course. I should emphasize that this reflects the 
absence of teachable material, not the importance of 
the issues. As viable abstractions in these areas are 
evolved, they will be welcome additions to the course. 

CONCLUSIONS 

Operating systems principles can be regarded as the 
study of complex algorithms comprising parallel activi­
ties. This paper has reviewed and analyzed the im­
portance of a significant change in attitude: The as­
sumption of computer operating systems principles into 
the core of computer science. The analysis of this 
change was done in the light of the evolution of the 
"first principles" of computer science, of the need for 
these principles to be applied in the computer industry, 
and of the increasing need for systematic ways of deal­
ing with complex, real-time information systems. An 
outline for a course on operating systems· principles 
was described, the concepts being chosen for inclusion 
in the course on the basis both of demonstrated utility 
in practice and of their being straightforward generali­
zations of widely accepted viewpoints. 



The first twenty-five years of the computer industry, 
years of remarkable achievement, have not been with­
out their problems. Now that computer science educa­
tion is maturing, we should be able to expect closer 
cooperation between universities and industry in solv­
ing these problems. 
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Theory of computing in computer science education 

by PATRICK C. FISCHER 

University of Waterloo 
Waterloo,. Ontario, Canada 

INTRODUCTION 

Theory of computing means the abstract study of the 
nature of computation and computing devices. By con­
vention, the terminology is usually applied in a nar­
rower sense to exclude numerical analysis. Thus, theory 
of computing includes the theory of finite automata, 
formal languages, computability, computational com­
plexity, and some aspects of switching circuit theory 
and logical design. The deviation from the literal mean­
ing of the term may have occurred because numerical 
analysis was already a well-established subject when 
the other components of this area were in their infancy. 
On the other hand, it may be a reflection of the empha­
sis on discrete mathematics by workers in theory of 
computing, in contrast to the preponderance of con­
tinuous methods in numerical analysis. 

In Curriculum 68, theory of computing was repre­
sented by the following courses. * 

B3 Discrete Structures 
16 Switching Theory 
17 Sequential Machines (Automata Theory) 
Al Formal Languages and Syntactic Analysis 
A7 Theory of Computability 

CURRICULUM TRENDS 

Lower-level courses 

The courses B3, 16 and 17 above have been remark­
ably stable, perhaps because of the relative distance of 
their content from the frontiers of research. Perhaps 
some minor changes might be considered: Course B3 
could include some material on the first-order predicate 
calculus rather than just the propositional calculus, and 
Course 17 still lacks a textbook which is teachable and 

* Comm. ACM 11, 3 (March, 1968), pp. 151-197. 
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has a good balance between intuition and rigor. N ever­
theless, the 1968 descriptions for these courses are still 
a very good approximation to current course offerings 
in a number of university and college departments of 
computer science. 

Formal languages 

Turning now to the advanced-level courses, one finds 
more updating needed. Developments in formal lan­
guage theory have taken place in both the area of 
parsing methods and the study of abstract families of 
languages. An updated course Al would probably do 
well to assimilate a greater proportion of the new 
material in the former area, thus shifting the· overall 
orientation of the course more toward the practical 
side. In order to, make room for this recent material, a 
few lectures worth of the most basic material, e.g., the 
notion of a formal grammar as a generator of a language 
and. some of the equivalent interpretations in terms of 
abstract machines, could be introduced earlier as part 
of the course I-X proposed below. 

Theory of computability 

A considerable amount of activity has taken place 
within the area covered by Course A7, and much of the 
new material is already entering the computer science 
course offerings of several universities. The new ma­
terial1ies principally.in three areas: 

1. computational complexity; 
2; analysis of algorithms, 
3. program schemata. 

We will discuss these areas briefly in order to define 
their scopes, but will not attempt a survey of the many 
interesting results which have been obtained. 
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CODlputational cODlplexity 

The first of these areas dates back to 1960 when M. 
Rabin suggested that one could study the classification 
of computable functions according to the degree of 
difficulty of computing them.B28 (Until then, the main 
efforts in computability theory were, in fact, directed 
toward understanding and classifying the uncomput­
able functions in order to gain insight into the founda­
tions of mathematics.) Thus, this area is the oldest of 
the three and was the first to split off from the tradi­
tional computability theory (often called recursive func­
tion theory), which began in the 1930's. 

In computational complexity studies, the most com­
mon overall approach is to consider programs which 
are "efficient" in the sense that they either do not ex­
ceed a bound on resources available at execution time 
or do not exceed a bound on those available at compile 
time. Thus, one either considers all programs which are 
sufficiently "fast" or sufficiently "small" and deter­
mines which functions can be computed by such pro­
grams. The classes of functions obtained relative to a 
given resource bound are called "complexity classes," 
and one principal aim of this area is to study their 
mathematical properties. Examples of resources related 
to execution of a program which have been studied are: 
number of steps on a Turing machine, memory cycles 
on a random-access machine, total memory space 
/needed on a typical computer, number of bitwise opera­
tions on any computer. Examples of resources related 
to compilation 9f a program are: program size (in bits) , 
depth of nesting of DO loops in a FORTRAN-like 
language, number of blocks in a program. 

In addition, the features of all computations with re­
source bounds have been axiomatized by M. Blum, 
and a number of machine-independent results have 
been proved. Thus, mathematical rigor has reinforced 
the programmer's intuition in verifying that for any 
computable function there are arbitrarily bad (e.g., slow 
or huge) programs which do, in fact, compute the 
function. On the other hand, the "best" programs for 
a function cannot always be effectively found. Further­
more, some functions simply have no best programs. 

The notion of "time-space trade off" is beginning to 
be the object of study via the consideration of com­
plexity of finite functions (i.e., functions which need to 
be evaluated for only a finite number of inputs) . Until 
recently, finite functions had been dismissed as trivial, 
since all finite functions can be computed quickly via 
programs with large tables built into them. By taking 
program size into account, a rich enough structure is 
available to permit the investigations of this subarea. 
Another related concept is that of randomness, since a -
sequence can be considered to be essentially random 

if a program to print it involves the equivalent of 
storing the entire sequence in the program. Conversely, 
a non-random sequence is one which can be predicted 
and therefore computed by a relatively short program. 

The techniques used to prove theorems in computa­
tional complexity theory tend to be closely related to 
techniques used in automata theory and recursive 
function theory. Thus, proofs may involve diagonal 
constructions, counting arguments or analysis of rate­
of-growth of resource needs. The results in this area 

, have had relatively little direct practical application in 
the sense that the algorithms produced generally com­
pute functions of only theoretical interest. However, a 
great deal of understanding about the nature of com­
putation and the relationship between machine organi­
zation and computational efficiency is being obtained. 

Analysis of algorithDls 

This area has evolved as a branch of computational 
complexity but has recently acquired its own distinctive 
character as well as a sizable group of converts. (It is 
still new enough to have no standard name; other 
names include "efficient algorithms," "optimal algo~ 

rithms," and "concrete computational complexity.") 
Again, interest is in the degree of difficulty of computing 
functions. However, one now tends to focus on a given 
function (or a relatively small class of functions) and 
to attempt to determine the complexity of the best algo­
rithms for computing it, if such exist and can be found. 
H optimal algorithms are not known, lower bounds 
on complexity measures are investigated and near­
optimal algorithms sought. Examples of functions or 
procedures considered include: sorting, determination 
of the median of a sample, polynomial evaluation, 
matrix multiplication, checking graph isomorphism. 

In analysis of algorithms, the measures of complexity 
are all oriented toward execution efficiency rather than 
program structure. Examples of measures commonly 
used are: the number of multiplications andlor divisions 
executed, number of all arithmetic operations, number 
of data references, number of data comparisons. The 
measures thus involve quantities which are basic in 
most programming systems. Furthermore, by consider­
ing only programs which compute a given function, 
rather than studying all programs possessing a certain 
degree of efficiency (regardless of what they compute 
efficiently), one limits' himself to programs computing 
functions of practical interest, and his search for an 
algorithm which is both efficient and useful follows more 
closely that of the programmer than the theoretician. 
For these reasons, analysis of algorithms has a con­
siderably more practical flavor than (other) computa­
tional complexity theory. 
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(Some of this aura of practicality is, of course illusory. 
Minimizing the number of multiplications may not 
minimize cost, when eliminating one multiplication 
adds 10 addition operations. Furthermore, simply 
counting the number of arithmetic operations tacitly 
assumes, for example, that addition of very long num­
bers costs no more than addition of short numbers. 
Such assumptions are just as idealistic as assuming 
that minimizing steps on a multitape Turing machine 
will minimize cost on a real computer, but they have 
more popular appeal since they do not limit one to 
hardware with a very low market penetration.) 

The methods used in analysis of algorithms tend at 
times to be ad hoc in nature, especially when searching 
for new and better algorithms. The techniques for es­
tablishing lower bounds tend to come from combina­
torics and numerical analysis, and a background in 
these areas appears to be more important for the algo­
rithm analyst than a background in other theory of 
computing. 

PrograIn scheInata 

Research in program schemata is also on the upswing 
although the total activity in this area is probably not 
as high as in the other two. The main objects of study 
are programs in which the particular domain of data 
and the meanings of the primitive· operations on that 
data are not specified. One example of a program schema 
would be a flow chart in which the contents of the 
various computation and decision boxes are left un­
specified. One then studies the relationships between 
the "uninterpreted schema" (e.g., the flow chart) and 
the programs resulting when various functions are 
"plugged in" to the uninterpreted portions of the 
schema (e.g., the flow chart boxes). 

In its purest form (most features of the model un­
interpreted), the study of program schemata is closely 
related to work in language definition and program 
validation. As one builds more structure into the model, 
allowing some features to have fixed interpretations 
(e.g., a box which computes Ax[2xJ) and others to be 
uninterpreted, this area tends to behave more like a 
branch of computability theory. However, instead of 
computable functions, one now considers computable 
functionals, i.e., mappings from functions to functions 
rather than from numbers to numbers. For example, a 
flow chart with two boxes in which the output of tie 
first box becomes the argument for the second might 
be viewed as the functional producing composition of 
two functions when the functions are given as inputs. 
Thus, if the first box were to be interpreted as comput-

ing a function g and a second box as computing j, then 
the whole program would compute AX[j(g(x))]. 

The techniques for proving theorems about program 
schemata tend to be similar to those of classical com­
putability theory, and the models used have their 
roots in common programming languages. 

SUGGESTED CURRICULUM 
MODIFICATIONS 

Basic computability theory 

A few minor curriculum changes were suggested at 
the beginI).ing of the previous section. However, for the 
course offerings in computability theory, the modifica­
tions should be more extensive; It is proposed that the 
more basic and machine-related material in the present 
Course A7 be combined with a short introduction to 
formal language theory and presented as a new inter­
mediate level Course I-X. The choice of material to 
put into I -X was based on an assessment of relevance 
to computer science, estimated present development 
and future stability, and availability of textbook 
material. By teaching the material in Course I-X at the 
undergraduate (or first-year graduate) level, one will 
have more flexibility with respect to the advanced-level 
Course A1 on formal languages and in new courses in 
the previously described areas of computability theory. 
Fairly detailed suggestions are made below for Course 
I -X, following the format of Curriculum 68. 

The remainder of the material in Course A7 included 
both recursive function theory and computational com­
plexity material. However, much of the new material 
in analysis of algorithms and program schemata is more 
relevant to computer science than that in recursive 
function theory. To be sure, a student would still benefit 
from the more traditional approach since understanding 
the historical origins of a subject helps place the ma­
terial in a proper perspective. Furthermore, the tech­
niques traditionally used are applicable to problems in 
computational complexity theory and often in theory 
of program schemata. However, there is now much 
more than enough material in computational com­
plexity, analysis of algorithms and program schemata 
to fill a term course, thus creating a pressure to displace 
the less relevant material. Therefore, the recursive 
function theory ought to leave the computer science 
curriculum recommendations. (It will still be taught in 
mathematics departments, of course.) It is encouraging 
that so much good work has been done on problems 
which have their roots in computer science in so short 
a period of time. 
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Course I-X: Introduction to computability theory and 
formal languages 

Approach 

This course is designed to introduce the advanced 
undergraduate or first-year graduate to formal systems 
of computation (including formal languages) and to 
give him a basic understanding of the nature of the 
unsolvability phenomena which pervade attempts to 
deduce correctness of programs, equivalence of algo­
rithms, etc. 

Prerequisite: Course B3 or a course in logic or algebra. 

Content 

1. The intuitive notion of effective computability as 
involving the existence of an algorithm. The Turing 
machine as one precise formal model for the notion. 
Equivalence of the computing power of the standard 
class of Turing machines with classes obtained by vary­
ing the control structure of the machine (e.g., Wang's 
single-address serial memory machines) and the data 
structure of the machine (e.g., more than one tape, 
multiheaded tapes, n-dimensional tapes, nonerasing 
tapes, random-access storage, etc.). 

2. Universal Turing machines, i.e., the construction 
of an interpretive program to simulate other Turing 
machine programs. 

3. The unsolvability of the halting problem; the 
effective production of counterexamples for alleged 
halting problem solvers. Some other unsolvable prob­
lems (blank tape halting problem, printing problem, 
etc.) . Some solvable problems (computations on 
bounded space, etc.) . 

4. Numerical approaches to computability. Primi­
tive recursive and recursive functions. Encodings of 
lists of integers into single integers (pairing functions) 
and encodings of computations (arithmetization). 

5. Other models for digital computation: program 
machines, loop machines, machines with pushdown 
stores, stacks, counters, etc. Simulation of Turing ma­
chines by machines with only two counters. 

6. Post combinatorial systems and formal grammars 
as a special case. Production notation for specifying 
grammars. Recursively enumerable, context-sensitive, 
context-free and finite-state gra~mars. Examples of 
languages of varying complexity, e.g., anbn, anbncn; 
Proof that anbncn is not context-free. 

7. Grammars vs. abstract machines. Representations 
of the above in terms . of Turing machines, linear 
bounded . automata, one-pushdown machines, finite­
state automata, respectively. 

8. Unsolvability of the Post correspondence problem. 
Applications to unsolvability problems in formal 
languages. 

References-Course I-X 

The richest sources of material for this course are 
Minsky and Hopcroft-Ullman.A8 •A6 The former has 
good, readable coverage of 1-5, above, and part of 6. 
The latter has a more formal approach and covers 6-8 
very well. 

Al S AANDERAA P C FISCHER 
The solvability of the halting problem for 2-state Post 
machines 
JACM 14 1967 pp 677-682 

A2 M DAVIS 
Computability and unsolvability 
McGraw-Hill New York 1958210 pp 

A3 P C FISCHER 
On formalisms for Turing machines 
JACM 12 1965 pp 570-580 

A4 S GINSBURG 
Mathematical theory of context-free languages 
McGraw-Hill New York 1966243 pp 

A5 H HERMES 
Enumerability, decidability, computability 
Academic Press New York 1965245 pp 

A6 J E HOPCROFT J D ULLMAN 
Formal languages and their relation to automata 
Addison-Wesley Pub Co Inc 1969 242 pp 

A7 S C KLEENE 
Mathematical logic 
Wiley N ew York 1967 398 pp 

A8 M L MINSKY 
Computation: Finite and infinite machines 
Prentice-Hall Englewood Cliffs NJ 1967 317 pp 

A9 J MYHILL 
Linear bounded automata 
WADD Tech Note 60-165 Wright-Patterson Air Force 
Base Ohio 1960 

AlO E L POST 
Recursive unsolvability of a problem of Thue 
J Symbol Logic 11 1947 pp 1-11 

All H ROGERS JR 
Theory of recursive functions and effective computability 
McGraw-Hill New York 1967482 pp 

A12 J C SHEPHERDSON H E STURGIS 
Computability of recursive functions 
JACM 10 1963 pp 217-255 

A13 B A TRAKHTENBROT 
Algorithms and automatic computing machines 
Translation by J Kristian J D McCawley and S A Schmitt 
D C Heath Boston 1963 101 pp 

A14 A M TURING 
On computable numbers, with an application to the 
Entscheidungsproblem 
Proc London Math Soc Ser 2 42 1936-1937 pp 230-265 
Corr ibid 43 1937 pp 544-546 

A15 HWANG 
A variant to. Turing's theory of computing machines 
JACM 4 1957 pp61-92 
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Advanced computability theory 

No single solution is proposed for taking Course A 7, 
now bereft of both basic computability theory and re­
cursive. function theory, and refurbishing it \vith more 
relevant material while retaining the computational 
complexity theory previously contained there. One 
reasonable approach would be to convert the course 
into a survey-in-depth of all three areas described 
above. The most generous answer (for devotees of com­
putability theory) would be to convert A7 into a course 
on computational complexity theory and to establish 
new courses in both algorithm analysis and program 
schemata. This, in fact, is the current situation in the 
graduate program at Waterloo. However, graduate 
course offerings are obviously highly dependent upon 
the interests and quantity of faculty members. CU ntil 
the current academic year Waterloo offered courses 
equivalent to I-X and a single graduate term course in 
computability theory. The latter course took the 
survey-in-depth approach.) 

Activity in analysis of algorithms has grown so 
rapidly that the accretion of new results and interest­
ing algorithms has far exceeded progress in determining 
underlying principles. Thus, it will be difficult to keep 
a course in this area from becoming a collection of 
programming tricks. Nevertheless, courses in analysis 
of algorithms have already sprung up at a number of 
universities and are attracting respectable enrollment 
figures. Furthermore, the potential value of such a 
course for persons who think they like programming 
and dislike all theory outweighs the difficulties due to 
the roughness of the area and lack of adequate peda­
gogical material. Thus, it is quite likely that many 
schools will choose to offer a course in analysis of algo­
rithms regardless of whether or not the computational 
complexity and program schemata theory are covered 
as well. If this turns out to be the case, the best solution 
for Course A 7 would be to embrace both of these latter 
areas. 

A list of topics and references in each of the three 
areas is given below. In view of the discussion just 
concluded, these are not to be interpreted as specific 
recommendations for courses but only as a sample of 
material in each of the areas. 

ADVANCED TOPICS AND REFERENCES 

As stated previously, the topics and references pre­
sented below are not all inclusive and are not suggestions 
for three separate courses. 

Computational complexity 

Topics 

1. Complexity classes defined in terms of Turing 
machine time bounds, space bounds, and tape 
reversals. BI4,BI8,B2I,BS4 

2. Models for real-time computation, Turing ma­
chines with many tapes vs. one or two tapes, Turing 
machines with many heads per tape vs. one head per 
tape. BI3 ,B24,B29 ,B32 

3. Random-access register machines, iterative arrays, 
n-counter machines and real-time countability, other 
computing devices. B2 ,B9 ,BI5 ,BI6 ,B36 

4. Axiomatic approaches to machine structure, 
bounded action and bounded activity machines.BIo ,B35 

5. Complexity classification by functional definition, 
primitive recursive functions, the Grzegorczyk classes, 
honest functions, loop program machines.B8 ,B26,B3o,B31 

6. Axioms for machine-dependent complexity 
theory, existence of arbitrarily bad programs and arbi­
trarily hard-to-compute functions, speed-up theorem.B3 

7. Machine-independent complexity classes, uniform 
hierarchy C compression) theorem, honesty theorem, 
gap theorem, union theorem.B2o 

8. Complexity of finite functions, expressive power 
of programs, random sequences. B4,B7 ,B25 

References-Contputational contplexity 

In general, only· material appearing in standard 
journals and written in English is given. Thus, a num­
ber of recent results and papers in foreign languages, 
principally Russian, containing relevant material have 
been omitted. Fairly comprehensive coverage of ma­
chine-independent complexity theory as well as some 
additional references are found in the paper by Hart­
manis and Hopcroft. B20 Two previous references are 
also relevant to this area. A9 ,AI2 

An extensive "Bibliography on computational com­
plexity" was compiled by M. 1. Irland and the author 
in October, 1970, but has not been published. A limited 
number of copies are available as Research Report 
CSRR 2028, Department of Computer Science, Uni­
versity of Waterloo. 

B1 A V AHO J E HOPCROFT J D ULLMAN 
Time and tape complexity of pushdown automaton 
languages 
Information and Control 13 pp 186-206 

B2 A J ATRUBIN 
A one-dimensional real-time iterative multiplier 
JACM 14 1965 pp 394-399 

B3 M BLUM 
A machine-independent theory of the complexity of recursive 
functions 
JACM 14 1967 pp 322-337 
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B4 M BLUM 
On the size of machines 
Information and Control111967 pp 257-65 

B5 M BLUM 
On effective procedures for speeding up algorithms 
JACM 18 1971 pp 290-305 

B6 R V BOOK S A GREIBACH 
Quasi-realtime languages 
Math Systems Theory 4 1970 pp 97-111 

B7 G J CHAITIN 
On the length of programs for computing finite binary 
sequences 
JACM 13 1966 pp 547-569 

B8 A COBHAM 
The intrinsic computational difficulty of functions 
Proc 1964 Int'l Cong on Logic Methodology and 
Philosophy of Science North Holland Amsterdam 1965 
pp 24 30 

B9 S N COLE 
Deterministic pushdown store machines and real-time 
computation 
JACM 18 1971 pp 306-328 

B10 S A COOK S 0 AANDERAA 
On the minimum computation time of functions 
Trans Amer Math Soc 142 1969 pp 291-314 

B11 M J FISCHER A L ROSENBERG 
Real-time solution of the origin-crossing problem 
Math Systems Theory 21968 pp 257-63 

B12 P C FISCHER 
Generation of primes by a one-dimensional real-time 
iterative array 
JACM 12 1965 pp 388-394 

B13 P C FISCHER 
Turing machines with a schedule to keep 
Information and Control 11 1967 pp 138-46 

B14 P C FISCHER 
The reduction of tape reversals for off-line one-tape Turing 
machines 
J Computer Syst Sci 2 1968 pp 136-47 

B15 P C FISCHER A R MEYER A L ROSENBERG 
Counter machines and counter languages 
Math Systems Theory 2 1968 pp 256-83 

B16 P C FISCHER A R' MEYER A L ROSENBERG 
Time restricted sequence generation 
J Computer Syst Sci 4 1970 pp 50-73 

B17 J HARTMANIS 
Computational complexity of one-tape Turing machine 
computations 
JACM 15 1968 pp 325-39 

B18 J HARTMAN IS 
Tape reversal bounded Turing machine computations 
J Computer Syst Sci 2 1968 pp 117-35 

B19 J HARTMAN IS 
A note on one-way and two-way automata 
Math Systems Theory 4 1970 pp 24-28 

B20 J HARTMANIS J E HOPCROFT 
An overview of the theory of computational complexity 
JACM 18 1971 pp 444-475 

B21 J HARTMANIS R E STEARNS 
On the computational complexity of algorithms 
Trans Amer Math Soc 117 1965 pp 285-306 

B22 F C HENNIE 
One-tape, off-line Turing machine computations 
Information and Control 8 1965 pp 553-578 

B23 F C HENNIE 
On-line Turing machine computations 
IEEE Trans on Electronic Computers EC-15 1966 pp 
35-44 

B24 F C HENNIE R E STEARNS 
Two-tape simulation of multi-tape Turing machines 
JACM 13 1966 pp 553-556 

B25 P MARTIN-LOF 
The definition of random sequences 
Information and Control 9 1965 pp 602-19 

B26 A R MEYER D M RITCHIE 
The complexity of loop programs 
22nd National Conference Association for Computing 
Machinery 1967 pp 465-69 

B27 D PAGER 
On the problem of finding minimal programs for tables 
Information and Control 14 1969 pp 550-54 

B28 M 0 RABIN 
Degree of difficulty of computing a function and a partial 
ordering of recursive sets 
Technical Report 2 Hebrew University Jerusalem Israel 
1960 

B29 M 0 RABIN 
Real time computation 
Israel J Math 1 1963 pp 203-11 

B30 R W RITCHIE 
Classes of predictably computable functions 
Trans Amer Math Soc 106 1963 pp 139-73 

B31 R W RITCHIE 
Classes of recursive functions based on Ackermann's function 
Pacific J Math 15 1965 pp 1027-44 

B32 A L ROSENBERG" 
Real-time definable languages 
JACM 14 1967 pp 645-62 

B33 W J SA VITCH 
Relationships between nondeterministic and deterministic 
tape complexities 
J Computer Syst Sci 4 1970 pp 177-92 

B34 R E STEARNS J HARTMAN IS P M LEWIS II 
Hierarchies of memory limited computations 
IEEE Conference Record on Switching Circuit Theory 
and Logical Design 1965 pp 179-90 

B35 E G WAGNER 
Bounded action machines: Toward an abstract theory of 
computer structure 
J Computer Syst Sci 2 1968 pp 13-75 

B36 H YAMADA 
Real-time computation and recursive functions not real-time 
computable 
IRE Trans on Electronic Computers EC-11 Corr ibid 
EC-12 1963 p 400 

B37 P R YOUNG 
Toward a theory of enumerations 
JACM 16 1969 pp 328-348 

A nalysis of algorithms 

Topics 

1. Matrix multiplication in fewer than n3 steps. 
Some lower bounds for matrix multiplication and inner 
product. C3,C1O,CI3 
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2. Polynomial evaluation. Optimality of Horner's 
rule in general case, preconditioning. Evaluation of a 
polynomial at more than one point. C7 

3. Lower bounds for addition and multiplication of 
integers. Methods for multiplying in fewer than n2 bit­
wise operations. Fast Fourier transforms and their 
application to multiplication. C5 ,C8,C11 ,C12 

4. Sorting and searching methods. Treesort, radix 
sorts, polyphase sorts. Lower bounds on the number of 
comparisons necessary. Finding the ith largest in a set 
of elements. Evaluation of binary searching, A VL 
trees. C2,C4,C6 

5. Graph algorithms. Planarity testing, connected 
components of a graph, transitive closure. 

6. Miscellaneous algorithms. Matrix transposing in a 
paging environment, garbage collection, g.c.d. of poly­
nomials, power of an expression, etc. Cl 

References-Analysis of algorithIlls 

A considerable amount of current material is avail­
able only in the form of course notes or technical re­
p::>rts. Such items have been omitted here although 
courses being taught in analysis of algorithms are draw­
ing up to half of their material from such sources. Thus, 
the references below serve more to give the flavor of 
this area than to constitute any approximation to a 
complete set of source material. Presumably much of 
the current material will appear in standard journals 
within a year. 

Many informal working papers in this area can be 
found in recent Proceedings of the ACM Symposia on 
Theory of Computing (available from ACM) and 
Proceedings of the IEEE Symposia on S"witching and 
Automata Theory (available from the IEEE or the 
IEEE Computer Group). Also, a "Bibliography on the 
analysis of algorithms" has been compiled by Professor 
E. M. Reingold, Department of Computer Science, 
University of Illinois at Urbana. As of the time of 
writing it has not been published. 

C1 A BRAUER 
On addition chains 
Bull Amer Math Soc 45 1939 pp 736-739 

C2 CAR HOARE 
Quicksort 
Computer J 5 1962 pp 10-15 

C3 J E HOPCROFT L KERR 
On minimizing the number of multiplications necessary for 
matrix multiplication 
SIAM J Appl Math 20 1971 pp 30-36 

C4 R M KARP W L MIRANKER 
Parallel search for a maximum 
J Combinatorial Theory 4 1968 pp 19-35 

C5 D E KNUTH 
The art of computer programming, volume 2 
Addison-Wesley Reading Massachusetts 1969 sections 
4.3.3, 4.6.3, and 4.6.4 

C6 D E KNUTH 
The art of computer programming, volume 3 
Addison-Wesley Reading Massachusetts to appear 1972 
section 5.3 

C7 V YA PAN 
Methods of computing values of polynomials 
Uspehi Mat Nauk 21 1966 pp 103-134 Russian English 
translation in Russian Math Surveys 211966 pp 105-136 

C8 A SCHONHAGE 
Multiplication of large numbers 
Computing 1 1966 pp 182-196 (German with English 
summary) See Comput Rev 8 1967 review number 11544 

C9 P M SPIRA 
The time required for group multiplication 
JACM 16 1969 pp 235-243 

C10 V STRASSEN 
Gaussian elimination is not optimial 
Numer Math 13 1969 pp 354-356 

Cll S WINOGRAD 
On the time required to perform addition 
JACM 12 1965 pp 277-285 

C12 S WINOGRAD 
On the time required to perform multiplication 
JACM 14 1967 pp 793-802 

C13 S WINOGRAD 
On the number of multiplications necessary to compute 
certain functions 
Comm Pure Appl Math 23 1970 pp 165-179 

Program schemata 

Topics 

1. Flowchart schemata. Interpretations of schemata. 
Herbrand Interpretations. Undecidability of halting 
and equivalence problems. Various notions of 
equivalence. D4,DlO 

2. Special classes of flowchart schemata: Ianov 
schemata, two-location schemata, nested-loop ('while') 
schemata. Translation of flowchart schemata to 'while' 
schemata. 

3. Recursive schemata. Translation of flowchart 
schemata to recursive schemata. Recursive schemata 
with no equivalent flowchart schemata. Decidable 
properties of monadic recursive schemata. Equivalence 
methods for recursive schemata; truncation induction. D5 

4. Models of parallel computation. Determinancy; 
deadlocks. Equivalence-preserving transformations; in­
creasing and decreasing the 'parallelism'. D3 

5. Correctness of programs, choice of predicates asso­
ciated with locations in a program. D2,D6,D9 

6. Formal definitions of program structure. Dl ,D12 
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References-PrograIIl scheIIlata 

Some papers concerned with program definition and 
programming semantics are included as well as those 
. dealing directly with program schemata. As before, 
much current material has not made its way into the 
accessible literature. 

D1 E ENGELER 
A 19orithmic approximations 
J Computer Syst Sci 5 1971 pp 67-82 

D2 R W FLOYD 
Assigning meaning to programs 
In Proc Symposia in Applied Mathematics 19 American 
Mathematical Society 1967 pp 19-32 

D3 R M KARP R E MILLER 
Parallel program schemata 
J Computer Syst Sci 3 1969 pp 147-195 

D4 D C LUCKHAM D M R PARK 
M S PATERSON 
On formalised computer programs 
J Computer Syst Sci 4 1970 pp 220-249 

D5 J McCARTHY 
A basis for a mathematical theory of computation 
In Computer Programming and Formal Systems 
North-Holland Amsterdam 1963 pp 33-70 

D6 Z MANNA 
The correctness of programs 
J Computer Syst Sci 3 1969 pp 119-127 

D7 Z MANNA R WALDINGER 
Toward automatic program synthesis 
Comm ACM 14 1971 pp 151-165 

D8 R MILNER 
Program schemes and recursive function theory 
In Machine Intelligence 5 Edinburgh University Press 
1970 pp 39-58 

D9 D PARK 
Fixpoint induction and proofs of program properties 
Ibid pp 59-78 

DlO M S PATERSON 
Program schemata 
In Machine Intelligence 3 Edinburgh University Press 
1968 pp 18-31 

D11 D SCOTT 
Outline of a mathematical theory of computation 
Tech Monograph PRG-2 Oxford University Computing 
Laboratory Programming Research Group 197024 pp 

D12 D SCOTT 
The lattice of flow diagrams 
Tech Monograph PRG-3 Oxford University Computing 
Laboratory Programming Research Group 197057 pp 
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Social science computing-1967-1972 

by HUGH F. CLINE 

Russell Sage Foundation 
New York, New York 

Social science computing continues to grow both in 
quantity and variety of problem applications. Increas­
ing numbers of social scientists are using increasing 
amounts of computer time on an increasi~g array of 
machines. Social scientists have upgraded their compe­
tence in computing and produced a number of program­
ming systems for use in their research and instructional 
activities. Each year more social science graduate stu­
dents are trained in the use of computers, and more 
social science departments now have at least one faculty 
member who is competent in computing. Of course, all 
these developments did not occur in the past five years. 
Important preliminary steps were taken as early as fif­
teen years ago. But during the period 1967-1972, social 
science computing has made significant progress and is 
now recognized as a member of the computing com­
munity. 

In addition to increasing the amount of use, the num­
ber of programming systems, and the level of compe­
tence,. social scientists have also vastly improved the 
exchange of information among computer users. Five 
years ago most social scientists were completely ig­
norant of computing activities outside their own insti­
tution. Many graduate training centers had developed 
a set of standardized, second-generation computer pro­
grams for social science research, but very few of these 
were ever exported to other universities. This was par­
tially due to the difficulties of producing machine-inde­
pendent programs, but patriotic zeal for the "local 
product" also created a reluctance to learn about other 
programs or systems. Many of these locally developed 
programs became obsolete with the distribution of third­
generation machines, and social scientists, who were 
unwilling to make the effort to redesign and reprogram, 
took their heads out of the sand and began to look else­
where. The transition from the second to the third gen­
eration caused many problems for social scientists as 
well as others, but it did lift the self-imposed intellectual 
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quarantine among social scientists and created the cli­
mate for effective exchange of information on computing 
activities. 

The most notable development in this regard has 
been the establishment of the SIGSOC Bulletin, a 
quarterly publication of the Special Interest Group for 
Social and Behavioral Science Computing of the As­
sociation for Computing lVlachinery. Under the editor­
ship of John Sonquist, University of California, Santa 
Barbara, the SIGSOC Bulletin has become a major 
source of communication among the 450 subscribers. 
In addition, the activities of such organizations as the 
Inter-University Consortium for Political Research at 
the University of Michigan, the Roper Public Opinion 
Research Center at Williams College, and the National 
Program Library/Central Program Inventory Service 
for the Social Sciences (NPL/CPIS) at the University 
of Wisconsin have all contributed to the production of 
the new social scientist computer cosmopolite. 

Despite all these promising developments over the 
past five years, it is not correct to state that social 
science computing is problem free. There are a number 
of very serious problem areas which require concerted 
attention in the next five years. In order to highlight 
these questions, I will present some findings from a study 
of computer uses in the social sciences which I have 
undertaken for Russell Sage Foundation. The study in­
cludes a description of current social science computing 
activities and an examination of the influence of com­
puting on substantive social science problems. 

Before turning to the results of the study itself, it 
should be useful to describe briefly in what ways social 
scientists are using computers. I have found it con­
venient to distinguish among four general types of com­
puting applications: data processing and statistical 
analysis; simulation; computer-controlled experimenta­
tion; and large data file management. The most com­
mon application, data processing and statistical analy-
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sis, has often been referred to as the "bread and butter" 
of social science computing; for it typically accounts for 
the bulk of social science department computing budg­
ets. Although most such applications involve numer­
ical data, the analysis of textual materials is increasing. 
Typically, the investigator first puts the raw data into 
machine-readable form, i.e., on punched cards or mag­
netic tape; and then the computer is used for error de­
tection, correction, and data reduction. Subsequently, 
canned programs, i.e., previously written general­
purpose programs, are used to perform the more stand­
ard techniques of statistical analyses. For the most 
part, these applications of computers involve procedures 
which previously were accomplished on punched-card 
equipment and desk calculators. Although other types 
of computer applications in social science research will 
undoubtedly increase in the near future, data processing 
and statistical analyses will continue to be the modal 
type of computer usage for some time to come. 

Simulation, the second type of computer use1 is con­
sidered by many to be the most promising. Social science 
simulation is the construction and manipulation of an 
abstract operating model of a social system or process. 
Physical operating models such as wind tunnels and 
flotation tanks are well-known in scientific research, but 
all social science models of systems are abstractions 
stated in mathematical equations. The investigator de­
signs his model by breaking a system down into sub­
units and describing both the subunits and the relation­
ships between subunits in quantitative terms in a simu­
lation programming language. The computer is then 
used to provide artificial blocks of time in which the 
system operates and subunits interact and are modified 
according to the model. The investigator usually com­
pares initial and final values describing system subunits. 
During the course of the research, different initial 
values and relationships between subunits may be tried 
in the model to produce a better fit to data observed 
from the real world. Simulations have been done on 
many different types of problems with varying degrees 
of success including such things as racial integration in 
suburban housing tracts, old age pension programs, 
federal aid to state education programs, and interna­
tional relations problems. Of course, the value of a 
simulation depends upon the investigator's ability to 
break a system into its subunits and realistically state 
initial values and relationships between subsystems. 

The third type of computer use in social science re­
search, computer-controlled experimentation, is for the 
most part still limited to the discipline of psychology. 
Real-time computers are being used by a small number 
of innovators to control, monitor, and change labora­
tory conditions. The feeding schedules for animals, the 
timing and sequencing of presentation of stimuli to sub-

jects, and the monitoring and recording of communi­
cations between subjects in experimental settings are 
all now being done with the assistance of computers. In 
contrast to the other types of social science computer 
use, computer-controlled experimentation usually re­
quires a machine that is used exclusively for this pur­
pose. These computers are usually smaller and slower, 
but they require special-purpose input/output devices 
which are often unique and expensive. Using computers 
to monitor, modify, and in some cases to supervise 
research certainly will open new areas for social science 
research. 

The use of computers for large data file management, 
the fourth type of application, is a new phenomenon in 
social science research. Many investigators are now us­
ing very large data files, such as the one-in-a-thousand 
sample of the census which contains over 15 million data 
items. It is virtually impossible to use these files for re­
search without the aid of computers, and the problems 
of manipulating large data sets in an efficient manner 
ar~ gaining increasing attention. Alternate methods of 
formatting and storing data files to match the input re­
quirements of the standard analysis routines and new 
programs for large data files are being developed. In 
addition, social scientists are continuing to merge 
copies of sample surveys for secondary analyses. The 
problems of storing, searching, and retrieving subsets of 
data from these archives are now being handled on 
computers. 

The survey of social science computing activities was 
limited to academic settings. Although it is quite true 
that important innovations in social science computing 
have occurred in independent research institutes, such 
as The Brookings Institution, the National Bureau of 
Economic Research, and The RAND Corporation, as 
well as in the research departments of large business 
corporations, it was decided to restrict the study to 
universities; because obtaining a comprehensive list of 
non-academic research institutes would have been a 
major research undertaking itself. The survey data were 
collected at the midpoint of the half decade, May 1969, 
with a four-page questionnaire mailed to the chairmen 
of the 517 departments which have granted at least one 
Ph.D. degree since 1960 in the following disciplines: 
anthropology, economics, agricultural economics, politi­
cal science, psychology, educational psychology, and 
sociology. After two follow-up mailings and telephone 
calls, 421 completed questionnaires were received, giving 
an overall response rate of 81.4 percent. Table I pre­
sents the response rates for the disciplines, which range 
from 75.0 percent to 92.6 percent. 

The 517 departments are located on 134 campuses. 
At least one department responded from 130 campuses; 
and this means that we have some data on social science 



TABLE I-Disciplines and Response Rates 

Questionnaires Questionnaires Response 
Disciplines Mailed Returned Rate 

Anthropology 47 36 76.6 
Economics 99 78 78.8 
Agricultural 27 25 92.6 

Economics 
Political Science 95 80 84.2 
Psychology 121 97 80.2 
Educational 36 27 75.0 

Psychology 
Sociology 92 78 84.8 

517 421 81.4 

computing from 97.0 percent of the universities included 
in this study. Although the questionnaires were mailed 
to the chairmen, the cover letter encouraged them to 
seek the advice and assistance of their colleagues in 
answering the questions. The data should therefore be 
interpreted as organizational, i.e., department responses. 
This is appropriate, for the items were designed to col­
lect information on computing activities and not the 
opinions or attitudes of any particular individual. The 
questionnaire elicited information on hardware, soft­
ware, instructional programs, and levels of computing 
competence. 

Turning first to hardware, Table II shows the pro­
portions of departments reporting access to punched­
card equipment and desk calculators. The first column 
headed "Department" reports the proportion of de­
partments that had such equipment available for their 
exclusive use, and the second column gives the propor­
tion of departments which had access to the machines 
in the central university computer center. 

This data indicate that keypunches, sorters, re­
producers, and card printers were more widely available 
in university computing centers and that desk calcula­
tors and programmable calculators (Wang, Monroe, 
Olivetti, and Marchang) were more frequently available 
for exclusive departmental use. Despite the fact that 
departments had somewhat limited punched-card facil-

TABLE II-EAM Equipment 

Machines 

Keypunches 
Coun ter /Sorters 
Reproducers 
Card Printers 
Desk Calculators 
Programmable Calculators 

Departments 

41.6 
24.7 
9.7 
3.6 

87.4 
15.9 

Computer Center 

85.0 
82.7 
75.1 
67.5 
35.8 
1.2 
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ities, most did have access through their computer 
centers. 

A total of 358 computers were reported available for 
social science research and instruction. This is an aver­
age of 2.8 computers per campus. (These figures on 
number of computers are combined from department 
responses for each campus, and machines reported by 
several departments are counted only once.) Table III 
presents the distribution of computers by manufac­
turers reported in the study. 

IBM computers accounted for 66.5 percent of the 
total. Approximately 50 percent of the IBlVf machines 
were third-generation, i.e., System 360; and about half 
of the third-generation machines were Models 50 or 
larger. Digital Equipment Corporation computers were 

TABLE III-Computers by Manufacturers 

Number of 
Manufacturer Computers Percent 

International Business Machines 238 66.5 
Digital Equipment Corporation 59 16.4 
Control Data Corporation 28 7.8 
UNIVAC 11 3.1 
Honeywell 6 1.7 
Burroughs 5 1.4 
General Electric 4 1.1 
Xerox Data Systems 4 1.1 
RCA 2 0.6 
Philco 1 0.3 

Total 358 100.0 

the second largest type available to social scientists, but 
this manufacturer and all others were far below IBM 
in social science computing. Of all reported computers, 
16.4 percent were DEC machines; and about 60 percent 
of these were PDP 8's. The Control Data Corporation 
was the third largest manufacturer with 7.8 percent of 
all the computers reported, and almost half of the CDC 
machines were 6000 series computers. Finally, UNIVAC 
was the fourth largest manufacturer with 3.1 percent, 
and about half of these machines were UNIVAC 1108's. 
All other manufacturers were under 2 percent, and these 
included Honeywell, Burroughs, General Electric, 
Xerox Data Systems, RCA, and Philco. 

Dominance of IBM in social science computing is of 
course no surprise. However, the fact that two-thirds 
of the computers available to academic social scientists 
were manufactured by one supplier should not be in­
terpreted as ;widespread uniformity in social science 
computing systems. Over 22 different types of IBM 
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TABLE IV-IBM Computers 

Number of 
IBM Model Computers Percent 

1130 25 10.5 
1401 35 14.8 
1500 2 0.8 
1620 22 9.2 
1710 1 0.4 
1800 8 3.4 
7040 6 2.5 
7044 3 1.3 
7072 2 0.8 
7700 1 0.4 
7094 16 6.7 
360/20 16 6.7 
360/25 1 0.4 
360/30 8 3.4 
360/40 22 9.2 
360/44 5 2.1 
360/50 27 11.4 
360/65 15 6.3 
360/67 9 3.8 
360/75 11 4.6 
360/91 3 1.3 

Total 238 100.0 

machines were reported. Table IV shows the distribu­
tion of IBM machines by model. 

These machines vary widely in cost, instruction sets 
speed of the central processing units, size of memories 
and available inputj output devices. This variation 
shows very clearly why it has been extremely difficult 
to produce programs which can be widely used on many 
different types of machines. 

The average number of computers per campus was 
2.8. This figure is somewhat misleading, for these com­
puters were not evenly distributed across all universities 
or departments. It is often the case that members of one 
department have access to a computer; but due to fund­
ing or administrative restrictions, members of other de­
partments on the same campus may not have access. 
Table V lists the distribution of the number of com­
puters reported available to the 421 departments. 

Notice this distribution is quite uneven. The modal 
category of one computer includes 35.9 percent of the 
departments. A very small proportion, 3.8 percent, of 
the departments were comparatively quite wealthy, 
having access to six or more computers; and 28 de­
partments, or 6.6 percent, reported they still did not 
have access to any computer. 

In addition to the type and number of computers 
available, the location and administrative auspices of 
the machines also influence their utility for research 

and instruction. Almost 70 percent of the computers 
were located in a central university computing center. 
The remaining 30 percent were widely distributed 
among other university computer centers, research 
institutes, departments, commercial service bureaus, 
and combined social science department computing 
centers. Despite the many recent debates over the ad­
visability of centralization or decentralization of uni­
versity computing facilities, the data show that the 
pattern of centralization had not changed very much; 
and only in a very small proportion of cases, 5.3 per­
cent, was there a computing facility for the exclusive 
use of the social scientists. 

University-based scholars in many disciplines have 
recently expressed enthusiasm for the possible applica­
tions of time-sharing systems in their research and 
instruction. Some type of time-sharing system was re­
ported at 33, or 25.4 percent, of the universities included 
in this study. Most of these were interactive compilers, 
which can be used for finding ~rrors in programs but not 
for data processing and analysis. Only ten universities 
had fully operational time-sharing systems, which can 
execute programs; and most of these had severe restric~ 

. tions on the size of the data files they can handle. In 
addition, 29 universities reported using some type of 
commercial time-sharing service. It is not surprising 
that time-sharing has not been more widely used in the 
social sciences, for very few of the existing systems are 
capable of efficiently handling large input or output 
files. Since many social scientists typically have medium­
to large-sized data files, they find that most existing time­
sharing systems simply cannot be used. 

Regardless of whether a computer is used in a time­
sharing or conventional manner, the hardware, includ­
ing the central processing unit, the memory, and the 
inputj output devices must be provided with the soft­
ware or programs to execute the symbol manipulations 
the scientist requires for his problem. Although software 
usually refers to operating systems, compilers, as­
semblers, and applications programs, this study of com-

TABLE V-Number of Computers Available to Departments 

Number Percent 

None 6.6 
1 35.9 
2 29.0 
3 13.8 
4 6.2 
5 4.7 
6+ 3.8 

100.0 



puter uses in the social sciences has been limited to 
higher-level languages and packages of programs. Table 
VI presents the higher-level languages most commonly 
reported by the departments. 

FORTRAN IV comes close to being a universal 
language, but the fact that 98 percent of the depart­
ments with access to computers reported the availabil­
ity of FORTRAN IV does not automatically produce 
uniformity and standardization, for there are many 
variations of the language. Limited instruction sets and 
maximum permissible program sizes are two of the 
major sources of variability. The languages most com­
monly available are those which the major manufac­
turers support with continuous error correction, docu­
mentation, and further development. The fact that 
FORTRAN and COBOL are so widely available to 
social scientists is for the most part a result of IBM's 
policy to support these two languages on most of their 
computer systems. 

TABLE VI -Languages Available 

Language 

FORTRAN IV 
COBOL 
ALGOL 
PLjI 
FORTRAN II 
WATFOR 
SNOBOL 
BASIC 
OTHER 

Percent 

98 
77 
62 
51 
49 
44 
38 
28 
55 

Over ninety different languages were reported in this 
study. Some of these have been developed locally at the 
universities, and others have been produced by small, 
commercial software companies. One can quite legiti­
mately question the extent to which these languages are 
thoroughly debugged and documented, for very few 
universities or commercial software houses have the 
manpower and expertise necessary for the adequate 
support of languages. 

The distribution of higher-level languages available 
to social scientists is more easily understood by examin­
ing the number of languages reported by each depart­
ment, as shown in Table VII. 

The average number of languages reported by each 
department was 5.9. The typical pattern for a depart­
ment was to have two or three languages maintained by 
the hardware supplier and several additional, special 
purpose languages maintained locally. It should be 
pointed out that these data refer to the number of lan­
guages reported available to social scientists. In a mail 
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TABLE VII-Number of Languages 

Number Percent 

1-2 10.5 
3-4 23.6 
5-6 29.9 
7-8 18.9 
9+ 17.1 

100.0 

questionnaire, it was not possible to assess the extent 
to which these languages were used. However, on the 
basis of personal visits to over a dozen major social 
science graduate training centers, it is my clear impres­
sion that most social scientists use a subset of the avail­
able languages. Many social scientists adopt one and 
only one computer language, and they sing praises to 
this language with the same intense emotional com­
mitment as the immigrant who extols the virtues of his 
new country. 

Departments were also asked to report on the data 
processing and statistical analysis packages of programs 
available to the members of their departments. The 
distribution of the most commonly reported packages is 
listed in Table VIII. 

The BlVID Package, developed under the direction of 
Professor W. J. Dixon at the Health Sciences Computing 
Facility, University of California, Los Angeles, comes 
closest to being the universal social science statistical 
package.1 Of the departments using computers, 76 per­
cent report having access to the BMD Package. The 
various computer programs included in this package 
have proved useful in the past in many types of bio­
medical research projects at UCLA. Written in FOR­
TRAN IV, and therefore relatively easy to export to 
other computer systems, the programs in this package 
include routines for data description and tabulation, 
multivariate analyses, regression analyses, time-series 
analyses, variance analyses, and a series of special pro­
grams for data transformation and scaling. Although 

TABLE VIII -Packages Available 

Package Percent 

BMD 76 
SSP 52 
SPSS 16 
OSIRIS 16 
Data-Text 13 
Other 87 
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created in response to the needs of biomedical re­
searchers, this library of programs has been more widely 
distributed to social scientists than any other package. 

The second most widely available statistical package 
was the Scientific Subroutine Package (SSP). 2 It is a 
collection of over twenty different statistical routines 
maintained and distributed by IBM. Because it is 
written in FORTRAN IV, it is also easily exported. 
However, the Scientific Subroutine Package is not easily 
used by most social scientists. As the name implies, this 
package is a collection of subroutines; and the user must 
write a FORTRAN main or calling program for the sub­
routine he requires. Very few social scientists are able 
to write a FORTRAN program with appropriate link­
ages to subroutines. Despite the fact that our data show 
that 52 percent of the reporting departments had access 
to the Scientific Subroutine Package, I seriously doubt 
the extent to which this package is heavily used by social 
scientists. 

The remaining three packages most commonly re­
ported by our respondents were the Statistical Package 
for the Social Sciences (SPSS) developed by Norman H. 
Nie of the National Opinion Research Center and Uni­
versity of Chicago,3 the statistical package OSIRIS de­
veloped at the Institute for Social Research at the Uni­
versity of Michigan, under the direction of Ralph Bisco, * 
and Data-Text, developed by Arthur Couch and David 
Armor at Harvard University. SPSS and OSIRIS are 
both written in FORTRAN IV and are relatively easy 
to export. The Data-Text Package was originally writ­
ten in FAP, the assembly language of the IBM 7094, 
and operates only on the few remaining 7094 installa­
tions. Under Armor's direction, Data-Text was being 
reprogrammed in FORTRAN IV, and an expanded 
version was distributed in 1971.5 Both Data-Text and 
SPSS implemented a user-oriented language in which 
job parameters are specified in a format similar to the 
natural language social scientists use in discussing data 
processing and statistical analyses. For example, one 
requests cross-tabulations by preparing a control card 
which states: COMPUTE CROSSTABS SEX BY OC­
CUPATION. OSIRIS has recently substituted for 
numerical job parameters a similar user-oriented lan­
guage. 

Eighty-seven percent of the departments reported 
packages other than the five mentioned above, and there 
were over 170 different packages. One can, of course, 
question the extent to which these are completely dif­
ferent packages. In many cases, universities have made 

* Documentation for OSIRIS is maintained in machine-readable 
form for frequent updating and is available upon request from 
the Institute for Social Research, The University of Michigan. 

minor modifications in existing packages and merely 
given them a local name. Nevertheless, it has become a 
common practice for many universities, and in some 
cases even for departments, to develop a set of programs 
which have a common input/output format. These 
packages are locally used and maintained. Typically the 
documentation is exceedingly poor. Efforts to support 
these programs are not well funded; and most of the 
programs have never been thoroughly debugged. 

Despite the fact that over 170 packages were reported 
by the departments, the number of packages available 
to each department was quite small. Table IX lists the 
distribution of the number of packages. 

'I;he average was 3.0 packages per department, and 
the distribution was highly skewed in the direction of 
one, two, and three packages per department. Given the 
problems of importing, documenting, and maintaining 
these packages, it is not surprising that the number is 
quite small. Furthermore, since most of these packages 
include similar routines, there is very little to be gained 
by increasing the number of packages available. 

Both the excess of localiy developed packages and the 
small number of packages available to any given depart­
ment point to some of the major problems in social 
science computing. Firstly, many of the packages leave 
a great deal to be desired in terms of accurate and effi­
cient algorithms. Furthermore, a social scientists who 
develops expertise in using only local packages typically 
finds himself completely ignorant when he moves to 
another university. 

Finally, and most importantly, the distribution of 
existing statistical packages has significant implications 
for substantive social science research problems. Despite 
the fact that most departments have access to more 
than one package, it is my clear impression that social 
scientists still prefer to use the locally developed pack­
age. Drawing from either a sense of comfort in using the 
package developed by someone they personally know or 

TABLE IX-Number of Packages 

Number Percent 

1 24.3 
2 25.4 
3 21.7 
4 9.5 
5 9.0 
6 4.6 
7+ 5.5 

100.0 



from some sense of pride in "our thing," most social 
scientists avoid using the more widely distributed pack­
ages. This preference for the local package becomes a 
more serious problem when it is limited in the number of 
data analysis routines offered to the user. For example, 
many of the local packages only have routines for cross­
tabulations. This means that both students and faculty 
are indirectly encouraged to conceive all their sub­
stantive problems in a cross-tabulation research design. 

Despite the excessive duplication of insufficient ef­
forts in producing packages, there are still many uni­
versities that are attempting to design new packages for 
data processing and statistical analysis. Clearly there 
is a need for some duplication and competition; but 
what seems more critical now is leadership in establish­
ing some cooperation, uniformity, and standards in the 
development of these packages. 

Of course, the availability of adequate hardware and 
software is not sufficient for solving the problems of ef­
fectively using computers in social science research and 
instruction.lVIost social scientists have become painfully 
aware of the fact that it is necessary to develop some 
competence in computing to use these machines in pur­
suing substantive research problems. In order to assess 
the extent to which social scientists are gaining some com­
petence in computing, the respondents were asked to 
indicate separately for undergraduates, graduates, and 
faculty members the proportion who: (1) can write pro­
grams in higher-level languages; (2) can use statistical 
package programs; and (3) use computers in research 
problems. Table X lists the average proportions re­
ported. 

Among the undergraduates, only 15.2 percent could 
write programs in higher-level languages; 18.8 percent 
could use statistical packages; and 16.4 percent used 
computers in research. For graduate students the figures 
are slightly higher. Roughly one-quarter, 23.6 percent, 
knew a higher-level language ; almost one-half, 41.3 per-

T ABLE X-Levels of Competence 

Proportion of 
Individuals Who 

Can Write in High Level 
Languages 

Can Use Statistical 
Packages 

Use Computers in 
Research 

Percent 

Undergraduate Graduate Faculty 

15.2 23.6 16.9 

18.8 41.3 32.7 

16.4 50.6 48.7 
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cent, could use statistical packages; and slightly over 
one-half, 50.6 percent, used computers in their research. 
On the other hand, faculty members really possessed no 
more competence in writing programs than under­
graduates, 16.9 percent. Fewer faculty, 32.7 percent, 
than graduate students were able to use statistical 
packages. Finally, just under half, 48.7 percent, of the 
faculty members were reported as using computers in 
their research. 

Without getting into the old argument as to whether 
or not the social science disciplines should be using 
quantitative analyses in their research, it is still quite 
interesting that in these disciplines, where at the most 
basic level research involves symbol manipulation, only 
one-half of the faculty members are currently using 
computers in their research activities. In addition, the 
graduate students are more competent than the faculty. 
At the minimum, one can conclude from these data that 
social scientists have been slow in building computer 
competence in their disciplines. 

It is often the case that effective use of computers in 
social science research depends upon the availability of 
at least one individual who can serve as a liaison between 
his colleagues' substantive problems and the computer. 
This individual can frequently be of great assistance in 
preparing data and programs for computer processing. 
In an effort to assess the extent to which such individuals 
were available, the chairmen were asked a series of short 
questions concerning the computing skills of the most 
competent member of the department. 

Only 26.1 percent of the departments report that they 
have someone who is able to instruct himself on the use 
of statistical packages; only 21.4 percent of the depart­
ments report the availability of anyone who is able to 
·write computer programs; and only 18.1 percent of the 
departments report one member who can interpret error 
messages and memory dumps to determine the reasons 
for unsuccessful runs. This very low report of computer 
competent colleagues accounts for some of the difficulty 
which many social scientists experience in trying to use 
the computer in their research. 

Given this low level of computer competence, one 
could expect some evidence of concerted attempts to 
introduce new instructional programs to produce schol­
ars with some training in computing skills. The chair­
men of the departments were asked to indicate sepa­
rately for their undergraduates, graduate students, and 
faculty members, the options available for obtaining 
instruction in computing. The proportion of depart­
ments which reported the different ways in which mem­
bers can learn about computing is listed in Table XI. 

The data show clearly that most of the computer in­
struction given to social scientists at all levels· comes 
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TABLE XI-Computer Instruction 

Percent 

Instruction Available Undergraduate Graduate Faculty 

Department Computer 7.9 12.6 7.6 
Course 

Department Research 4.6 19.8 4.9 
Course 

Other Department 47.0 27.5 16.6 
Computer Course 

Non-credit Computer 31.8 31.4 50.3 
Center Course 

Self-instruction 2.6 2.9 9.7 

either from other departments or the university com­
puter centers. This is reminiscent of the debate popular 
some years ago on the question of who should teach so­
cial scientists in statistics courses. The consensus on that 
issue now seems to be that the instructors should be 
individuals who know social science research. It seems 
unlikely that the staff of other departments or computer 
centers will have this knowledge. Yet, very few depart­
ments taught undergraduates any computing in courses 
taught within the department. A slightly higher but still 
disappointingly low proportion of the departments re­
ported that their graduate students learned in either a 
departmental computing course or a departmental re­
search course, 12.6 percent and 19.8 percent respec­
tively. Both the non-credit computer center courses and 
courses taught in other departments were the most com­
mon options available to all social science students. The 
most common option for faculty members, on the other 
hand, was only the short non-credit course at the com­
puter center. These courses are typically crash courses 
which either teach one higher-level language, most 
commonly FORTRAN, or the details of job submission 
and operating system control languages for that particu­
lar computing facility. 

Given the problems noted above concerning the avail­
ability of computer hardware and software for the social 
sciences, it also appears that there is a critical shortage 
of individuals who understand both substantive social 
science problems and computing. A very low proportion 
of departments reported that undergraduates, gradu­
ates, or faculty members are learning about computing 
either within their own departments or elsewhere, and 
apparently very little is being done to solve the man­
power probJem. Graduate students are the most compe­
tent group of social scientists in computing, and even 

they are severely limited to the use of packages in pur­
suing substantive problems. 

Although much progress has been made in social 
science computing in the past five years, the data from 
this study indicate that there are a number of major 
problems which severely restrict more effective com­
puter-assisted research. These include providing more 
equal access to adequate hardware, decreasing the num­
ber of packages under development, and providing bet­
ter support for the documentation and debugging of the 
more widely used packages. In conclusion I should like 
to point to two additional problems, whose successful 
solution I consider as critical. 

Perhaps the most immediately pressing problem is the 
low level of competence. Social scientists must insure 
that adequate instructional programs are offered in all 
graduate departments, and students should learn more 
than simply how to use the locally developed software. I 
would argue that it is irresponsible to produce profes­
sional social scientists today who will have an active 
career in social science research for the next forty years 
without at least some introduction to the basic design 
and logic of computers. 

A second very pressing problem which is still not 
satisfactorily resolved is that of compatibility. It is still 
true that most computer programs and data files cannot 
easily be exchanged among social scientists using dif­
ferent computers. Very few of the early pioneers in 
social science computing appreciated the need for pre­
paring programs and data files for export to colleagues 
using different computers. Today, the problem of ex­
portability has reached staggering proportions. Indi­
viduals find that many programs and data prepared for 
initial processing on one computer simply cannot be run 
at another computer center which uses exactly the same 
model and manufacturer. Local variations in peripheral 
devices and programming procedures make it extremely 
difficult and sometimes impossible to move· from one 
computer to another. 

Although one may place the blame upon the designers 
of the early computing systems for not having the fore­
sight to think in terms of standardized data files and 
programming cOIwentions, or one may cite the commer­
cial manufacturers for not establishing industry-wide 
standards, the problem still remains; and social scien­
tists cannot now realistically look to others for solutions. 
They must among themselves agree upon common 
standards for program design and data file preparation 
which will minimize the problem of exportability. 
Granting agencies, both public and private, which sup­
port the development of social science computing can be 
of great assistance in insisting upon adherence to stand­
ards; but the original impetus for this movement must 
come from the social science community. 
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Future developments in social science computing 

by GEORGE SADOWSKY 

The Urban Institute 
Washington, D.C. 

INTRODUCTION 

The set of computer related activities characterized by 
the term "social science computing" is both diverse and 
extensive. During the past 15 years, such activities 
have· grown substantially both in scope and in volume 
and have become increasingly important both for basic 
research in the social and behavioral sciences and for 
public policy formation and evaluation. 

In this paper I will present an overview of the 
evolution and present status of social science computing 
and examine several factors that are likely to have a 
significant effect upon its development during the 
next 10 years. Predicting the future is generally hazard­
ous and is complicated in this instance by being de­
pendent upon the development of future computing 
technology. During the relatively short history of 
automatic digital computing there have been many 
predictions-both optimistic and pessimistic-that 
have returned in short -order to plague those who made 
them; Despite the high risk of error, attempts to 
predict the future have some value in planning for that 
future state. Attempts to forecast the future also can 
often provide a more accurate assessment of the 
present, a process from which social science computing 
might benefit considerably. 

The term "social science computing" is somewhat 
misleading in that it implies a homogeneity of com­
puting activities that does not now exist. Activities 
as diverse as process control in computer controlled 
experimentation laboratories, dynamic macroeconomic 
simulation, large survey data collection and analysis, 
simulation of alternative social policies, dissemination 
of census results, multivariate statistical techniques, 
and natural language text processing for content 
analysis and concordance production are all included. 
Social science computing activities may be observed as 
a part of research activity in universities and research 
institutions, in commercial organizations· that produce 
social science computing products and in those that 
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use them, and in government administrative processes 
and policy evaluation functions. Statements regarding 
social science computing generally are true of a subset 
of these activities only. To the extent that there is a 
commonality among activities in the field, it is that 
they are a collection of processes centered upon observed 
data relating to behavioral phenomena. 

l\1any aspects of social science computing enjoy an 
independent tradition. The methodologies of com­
mercial data processing, information retrieval, source 
data capture, statistical inference and digital system 
simulation all apply to social science computing 
activity, yet professional and methodological develop­
ment in these fields generally occurs independently of it. 
The dependence of social science computing upon a 
variety of existing methodological traditions reduces 
its cohesiveness as a discipline and complicates the 
process of training social scientists for research careers 
in which a knowledge of quantitative methodologies is 
becoming increasingly important. 

HISTORICAL OVERVIEW 

Social science automatic computing activity dates 
from the introduction of automatic data processing 
equipment in the 1880s by Herman Hollerith. Hol­
lerith's machinery was initially used in 1887 by the City 
of Baltimore to tabulate mortality statistics,17 and was 
later used by other local governments for similar func­
tions. However, its use in sorting and tabulating the 
results of the 1890 U. S. Decennial Census of Popula­
tion marks the beginning of large scale social science 
computing. Hollerith's initial innovations led to the de­
velopment of a family of "unit record" electromechani­
cal accounting machinery for general data processing 
applications. A primary use of these machines was to 
collect, process, and disseminate statistics for public 
purposes. The introduction of Hollerith's automatic 
machinery in the census process was followed by a pe-
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riod of increasing use of automatic accounting machin­
ery by government for processing social and economic 
statistics. Shortly after the production of electronic 
digital computers, the first computer produced com­
mercially-a Remington Rand Univac I -was installed 
at the U. S. Bureau of the Census in 1951 for processing 
data collected during the 1950 U. S. Decennial Census 
of Population. l9 

The automation of statistical computing activities 
began well before the invention of the automatic digital 
computer. l\rlany statisticians made intensive use of the 
commercial unit record equipment available prior to the 
digital computer. Despite the fact that calculations 
performed using this equipment were slow, required 
extensive wiring of plug boards, and required repetitive 
use of different specialized machines, the resulting 
procedures were generally more accurate and faster than 
the corresponding calculations performed by hand. 
Thus statisticians quickly took advantage of the op­
portunities offered by automatic digital computation. 

During the initial years of automatic digital· computer 
use, social science computing tasks were similar to many 
other computing tasks. Computers were programmed 
almost exclusively in primitive assembly languages, 
the programmer often operated the computing equip­
ment himself, and computing activity was localized 
around the few computer installations then available. 
Survey research centers and individual social scientists 
analyzing empirical data continued to rely heavily 
upon unit record processing equipment, especially 
specialized equipment such as the IBM 101 Counter­
Sorter. The development of higher level programming 
languages such as Fortran and Comtran allowed pro­
grammers to write programs that were more easily 
understandable by non-programmers and more easily 
exportable to colleagues using different computing 
equipment. During this period the initial "general 
purpose" statistical and data processing programs 
were produced; such programs were often referred 
to as "canned" programs or "program packages." 
They were characterized by being machine dependent, 
having numeric field control cards and fixed field 
punched cards as input, and producing a limited range 
of outputs, usually sparsely labelled. Substantial 
emphasis was placed upon internal execution efficiency. 

An initial milestone in the development of statistical 
computing was achieved when VV. J. Dixon and his 
colleagues at UCLA created the original set of bio­
medical statistical programs6 in 1962. This set, initially 
known as the BIMD series, provided the user with an 
integrated set of programs containing a large number 
of statistical procedures; the series included such 
features as a common vocabulary across programs, a 

comprehensive method of specifying data transforma­
tions, adequate user documentation, and readable and 
intelligible printed and graphic output. The BIMD 
series surpassed previous products by its completeness, 
increased user orientation, and emphasis upon exporta­
bility to other computer centers. While some aspects 
of the original BIMD programs now appear primitive, 
the initial impact of this set of programs upon statistical 
computing was substantial. The BIMD programs were 
developed during a time of intense batch program 
construction activity; some of the batch systems 
that followed BIJ\lID such as P-STAT2 and DATA­
BANK-MASSAGERla were oriented specifically to 
social science users. 

Another milestone in the development of social 
science computing was the creation and implementation 
of higher level languages oriented specifically to tasks 
in the field. Shortly after the concept of higher level 
languages became generally accepted, a number of 
social scientists began to develop languages oriented 
specifically to social science computation. I believe 
primary credit should go to Arthur Couch and David 
Armor at Harvard University for their development of 
the Data-Text language. 8 Although implemented orig­
inally in assembly language, Data-Text provided social 
scientists with free form statement types linked directly 
to behavioral science computing procedures.· Con­
siderable effort was spent upon organizing printed 
output to the user's specifications. The development of 
Data-Text led to other efforts such as BEASTl and 
SPSS16 which have been useful as system design 
experiments and as applications programs for obtaining 
statistical outputs and tabulations from rectangUlar 
data files. 

A third milestone in social science computing was the 
successful exploitation of interactive computing systems 
for research and instruction in the social sciences. Using 
computer systems that support economical interactive 
computing, a number of such programs have been 
developed. These include IMPRESSl5 for on-line 
instruction in social science computer based research 
methods, BASIS20 for on-line statistical ~nalysis, 

TROLLl2 for on.;.line time series analysis, equation 
system estimation, and econometric simulation, and 
others such as TRACE-IlI,a OPS-3,1 and ADMINS.14 
These systems are examples of the manner in which 
interactive environments have been used to support 
powerful tools for social science computing tasks. 

Most social science computing activity has depended 
critically upon access to behavioral data in machine 
readable form. Government agencies and survey re­
search organizations pioneered in developing techniques 
for recording survey data on punch cards and analyzing 



these data mechanically. Universities and private 
survey research centers today have substantial holdings 
of sample survey data, and much of this material is 
available for secondary analysis. Several specialized 
data distribution networks have evolved; for example, 
the Inter-University Consortium for Political Research 
at the University of l\fichigan distributes political 
data by mail from its archive to over 100 member 
academic organizations, and the National Bureau of 
Economic Research makes available its on-line data 
bank of aggregate economic time series to its 
subscribers. 

Government statistical agencies have historically 
been important sources of data for quantitative social 
science research. The publications of these agencies 
were an important source well before the widespread 
availability of automatic computing machinery. The 
U.S. Bureau of the Census provided a wide variety of 
population, housing, labor force and manufacturing 
data on an aggregated basis for many years; and after 
the 1960 census the Bureau initiated a policy of dis­
seminating population microdata on magnetic tape for 
1/10000 and 1/1000 random samples of U.S. families. 
Since 1969, microdata collected by the monthly Current 
Population Survey have been available in machine 
readable form to qualified researchers. Availability of 
public data in machine readable form has increased 
in recent years as government statistical operations 
have become more mechanized and as social scientists 
have learned to obtain and use the data eS'ectively. 

CURRENT STATUS 

Social scientists have available to them today a wide 
variety of computer programs for their use. Batch­
oriented programs for statistical analysis of rectangular 
file structures are most common; i:q, addition to the 
better known and more reliable of these programs, 
there exist many locally developed programs that 
perform frequently used statistical procedures. The 
quality, accuracy and documentation of these pro­
grams vary substantially, and recent evidence presented 
by Longleyll and Wampler21 indicates that increased 
quality control is needed in their production. Com­
puting languages for the social sciences are relatively 
new; however, there has been sufficient development to 
indicate the power that such languages provide, and 
their continued development seems warranted. More 
recently, interactive programs have been developed that 
give social scientists flexible control over their pro­
cedures and their data. Some very useful interactive 
tools have already been produced, but much work will 
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be required to exploit current interactive computer 
systems in a truly productive manner. 

An increasingly copious flow of behavioral data is 
now generated by individual researchers, private 
firms, public organizations and governmental organiza­
tions, and much of it is in machine readable form. 
The increase in complexity of the processing operations 
now being used require the input data to be more error 
free than was required in the past; present consumers of 
micro data especially must be much more sensitive to 
noise in their data. There is now increased demand for 
government data by private researchers, and the 
conflict between the use of individual data for legiti­
mate public purposes and the confidentiality of such 
data has yet to be resolved in a satisfactory manner. 

Major problems currently exist within the field of 
social science computing. Among the most serious 
appear to be: (1) inadequate standards for data docu­
mentation and problems of data transfer; (2) the low 
level of computational knowledge among social scientists 
and the lack of adequate training available; (3) the 
slow rate of diffusion of computing innovations into 
social science computing, especially in government; 
(4) problems of program inaccuracy, documentation 
and transfer; (.5) lack of adequate software tools for 
many types of complex processing operations; and (6) 
the low level of professionalism in social science com­
puting activities generally. 

Some of the problems that exist in social science 
computing are common to most areas of computing 
and will be ameliorated by advances in computing 
generally. Other problems have been aggravated by the 
lack of resources allocated to the social sciences relative 
to other disciplines. Still others can be traced to mis­
allocation of those resources made available. Finally, it 
appears that the current organization of the social 
science computing industry has itself produced or 
aggravated a number of present problems. 

INDUSTRIAL ORGANIZATION 

It seems both appropriate and relevant to employ 
one of the social sciences, economics, to study the 
industrial organization of the social science computing 
industry. For the totality of social science computing 
activity is an industry; it encompasses a variety of 
products, their producers and consumers, the markets 
in which they interact, the mechanisms for distributing 
goods, the reward structure for producers, the rate of 
investment in capital, incentives for investment, the 
rate of technical progress, and other industry character­
istics. The institutional structure of social science 
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computing directly affects the manner in which in­
dividuals and organizations allocate resources to pro­
duce a wide variety of products. Solutions to current 
problems in social science computing are as likely to 
result from organizational change as from technical 
advances or increased resource supplies. 

1\10st products within the social science computing 
industry fall into four general groups: (1) computer 
programs; (2) numeric data files; (3) knowledge 
regarding numerical methods, statistical procedures and 
computing techniques; and (4) personal services. Within 
each of these groups, the products produced are 
heterogeneous, although there is some evidence of 
product differentiation that is largely artificial. 

Computer programs range in generality from spe­
cialized applications programs to general purpose 
applications systems and translators for high level 
programming languages. The former are final goods; 
they represent unique products designed to satisfy 
specific requirements. General purpose programs are 
intermediate goods, or producer goods; once created, 
they are then used repeatedly to produce a variety of 
final goods specified by non-programming computer 
users. Data files vary in size and complexity from those 
having a rectangular structure with few observations 
and variables to those resulting from the 1970 Decen­
nial Census of Population and Housing. 

The market for social science computing products 
appears to have four important dimensions: (1) locality; 
(2) computer type; (3) substantive focus; and (4) 
profit/non-profit. Markets have a strong local com­
ponent because computing installations serve as centers 
of knowledge and expertise for their users, and rapid and 
inexpensive access to assistance is often essential for the 
success of computer related work. In addition, an 
organization having a computer center within its 
administrative jurisdiction frequently raises barriers 
to use of other centers by their staff. Also, the market 
is divided according to the manufacturer, model, and 
configuration of computing equipment available be­
cause programs, data and technical information can 
often be transferred at low cost between quite similar 
computers but not between dissimilar computers. The 
market is also stratified by substantive social science 
discipline or research or policy focus, especially with 
regard to machine readable data files and computer 
programs and hardware configurations that perform 
specialized processes within that discipline. Finally, 
there is infrequent interchange of programs be­
tween commercial firms and academic and research 
insti tutions. 

There are a large number of producers of social 
science computing products, many of whom are 

individual social scientists and programmers. In addi­
tion, producers include social science computing groups 
within research organizations and universi ties, survey 
research centers, private firms, and various agencies of 
federal, state, and local governments. lVlany of these 
producers are also consumers; often production is initi­
ated primarily or wholly for internal consumption. 
IVlost producers are active primarily within one of the 
above markets, although private firms can generally 
respond quickly to changes in demand by acquiring and 
reallocating resources. 

With one outstanding exception, the subsets of the 
industry corresponding to the above broad product 
groups exhibit a low degree of industrial concentration, 
i.e., no small number of producers comma.nd a major 
share of these sub-markets. There currently exist a 
large number of producers of social science software, 
and except for large applications systems barriers to 
entry into the industry are almost non-existent. The 
number of producers (suppliers) of data is smaller, and 
entry into this industry generally requires a higher 
level of investment than entry into program production. 
Several organizations have made an investment in 
data banks containing economic time series, and com­
petition to provide these data and associated computer 
software is now vigorous. Government agencies enjoy a 
natural monopoly position in collecting and disseminat­
ing data when the data must be made available to the 
government by law and is unlikely to be disclosed' 
otherwise; examples include population census informa­
tion and individual and corporate tax return data. In 
addition, government agencies enjoy substantial com­
petitive advantages in collecting such data when it 
results as a byproduct of on-going administrative 
procedures or when the resources required to produce 
the data are larger than most potential producers can 
mobilize. 

The performance of government in producing data in 
such a quasi-monopoly position has not been without 
fault. Under monopoly conditions, economic theory 
would predict that prices would be higher than if 
competition existed and the single producer would 
earn monopoly profits because of it. Government agen­
cies are generally prohibited from pricing their products 
above average cost at most; but· instead the monopoly 
position appears to encourage inefficient use of resources 
and technology and a lack of responsiveness to consumer 
demands. This results in higher prices for the consumer 
than would have prevailed in a competitive environ­
ment, a sluggish rate of innovation and less consumer 
choice. 

The distribution mechanism for social science 
computing products is in the process of substantial 



change. Products have been generally recorded on phys­
ical storage media such as punch cards, printed paper, 
and magnetic tape and these media were physically 
distributed to consumers. In the past, high costs asso­
ciated with this distribution technology were partially 
responsible for product markets being segmented by 
computer installations and by hardware type. lViore 
recently, an increasing number of products are being 
distributed by transmitting digital data over common 
carrier telephone networks and specialized communica­
tions networks, and it appears that this growth will 
continue both in relative and absolute terms for some 
time. 

Knowledge about social science computing products, 
statistical procedures, and related computing techniques 
reaches potential consumers in a number of ways. 
Inter-personal communication now forms one of the 
most important means of transmitting such knowledge. 
Some dissemenation of this information is made in 
publications of computer societies, social science 
professional societies, research institutions, and various 
related academic disciplines. Informal publications, 
workshops and conferences also play an important part 
in collecting and distributing knowledge. However, at 
the present time there are no information centers or 
professional societies focused primarily upon social 
science computing.SIGSOC, the Special Interest Group 
for Social and Behavioral Science Computing of the 
Association for Computing lVlachinery, is a likely 
candidate for this position, but its development into a 
professional society will take at least 5 to 10 years. 

Social science computing products are created in 
accordance with the production processes available 
to the industry at the time of production. A production 
process or function is a set of technical rules that specify 
how goods and services called inputs may be trans­
formed into other goods and services called outputS. I9 

The levels of knowledge and technology available 
dictate what production functions are available for 
obtaining specified outputs. If a production process 
requires more than one input, there are usually a variety 
of combinations of inputs that are capable of producing 
the same set of outputs, i.e, the production function 
may allow input substitution. In computing, a typical 
example of input substitution is provided by the fre­
quent tradeoff in program design between the use of 
main memory and processor time; using more of one 
generally provides savings in use of the other. Resource 
constraints and the relative prices of the inputs enter 
into the choice made by producers of which production 
process to use for obtaining output. 

For mttny social science computing products, the cost 
of producing the first unit of a specific output is high 
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relative to the marginal cost of producing subsequent 
duplicate units. The cost of duplicating a computer 
program or a machine readable data file, once the prod­
uct has been created, is low and requires only the use 
of well-known duplication procedures. However, the 
costs paid by social scientists to import programs and 
data are generally much higher; the principal reason is 
that the distribution technology for these products 
is still rather primitive since the products often do not 
adapt easily to computing environments other than 
those very similar to the environment in which they 
were created. The total costs of distribution are there­
fore often much higher than the costs of duplication. 

If the marginal cost of a unit of production is low 
relative to the initial investment required to produce 
the first unit, then resources are allocated more effi­
ciently if there exist a few large producers rather than 
many small producers. Yet with the exception of the 
production and distribution of large data files and a 
few other products, it appears that the market is 
dominated by small producers. There are a number of 
factors that help to explain this phenomenon. First, 
many of these products are differentiated slightly but 
meaningfully for their consumers. Second, computing 
products may be one of a number of outputs of a joint 
production process; often another output is increased 
education for the producer. Also, the very low barriers 
to entry encourage new producers into these markets 
at low cost to the new entrants. 

The above factors help to explain the existence of 
small producers of social science computing products, 
but they do not explain the relative absence of larger 
producers who are able to make substantial investments 
in more general and more powerful products. Even 
for the first unit of production, there appear to be 
substantial economies of scale. That is, there are some 
fixed costs in program preparation that must be 
incurred regardless of program size. Examples of such 
fixed costs in social science computing systems are code 
to read the data file and interpret its values, code to 
provide elementary output displays and code to 
perform standard data transformations; they are almost 
always included regardless of how the data are pro­
cessed. To the extent that fixed costs influence the 
production process, a more comprehensive and more 
general program appears to be cheaper to construct 
than the many smaller programs that duplicate its 
functions. 

A very important factor limiting substantial invest­
ment in computing products is that although the 
return to such investment may be high for the industry 
as a whole, most of the return cannot be captured by the 
investor. Another factor is the segmentation of the 
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market discussed previously; if individual markets are 
limited in size, then the cost of sales increases and 
potential returns are more limited. 

Much social science computing activity occurs in 
universities, research organizations, government agen­
cies and other environments that often do not enter 
the commercial marketplace to buy and sell these 
products. Within these organizations, producers are 
generally individuals, and the rewards sought are 
primarily nonfinancial; rather they are prestige and 
recognition for the producer's accomplishment. At the 
present time, however, the technical activity associated 
with producing computer products for social scientists 
does not enjoy high prestige or substantial recognition 
for the individual involved. "Tool using," or sub­
stantive activity, has higher status within social science 
professions than "tool building," or technical activity. 
Thus, although changes in the level and allocation of 
investment in computing tools for social scientists would 
lead to a more efficient allocation of individual skills 
and technical resources and would be expected to 
provide substantial externalities to social science as a 
whole, the reward structure of academic social science 
disciplines prevents the individual innovator from col­
lecting his rewards. The lack of a satisfactory reward 
structure for non-commercial producers of social science 
computing tools is very unfortunate, since it discourages 
innovative investment in production for those who are 
often able to make substantial contributions to the 
field. The inadequate reward structure contains 
another unfortunate aspect; it perpetuates a lack of 
interest and involvement in computer oriented training 
by persons in the social science professions. 

THE FUTURE 

During the next ten years, continued substantial 
growth in social science computing activity is likely to 
occur. Social scientists currently being trained are 
taught quantitative methods to a greater degree than 
any of their predecessors. The amount of data in ma­
chine readable form is increasing rapidly. The de­
creasing cost of computation is shifting the balance in 
favor of using computers rather than using manual 
labor or not performing a task at all. Furthermore, as 
inventories of data and quantitative methods grow 
and as the number of practitioners in social science 
computing increases, important issues in social and 
economic policy become more tractable using the 
computer. Although growth in social science computing 
will not be uniform and will be unevenly divided 
among disciplines and applications, there is little doubt 
that it will occur. 

Advances in computing hardware and software 
during the past 15 years have been responsible for a 
dramatic decline in the cost of computing. Current 
evidence suggests that logic and memory costs will 
continue to decline substantially during the next 
decade. These declines in cost will benefit social science 
computing activity by reducing the cost of those 
computing inputs. 

In addition to declines in computing cost, three 
specific areas of development within the computer 
industry are likely to benefit social science computing 
substantially and should be assisted and encouraged. 
These areas are: (1) communications terminal tech­
nology and interactive system development; (2) 
digital data networks linking computers; and (3) data 
storage technology. Developments in these three areas 
will impact different aspects of the social science com­
puting industry. 

The development of reliable and responsive inter­
active computing systems has already had an impact 
upon the manner in which social science computing 
is performed. Previous reliance upon batch computing 
systems forced social science programs into a mold in 
which output decisions had to be made simultaneously 
rather than sequentially, computations producing 
large amounts of (often unread) output were the rule, 
and errors in input preparation resulted in increased 
computer costs and turnaround time delays that 
were generally large relative to the magnitude of the 
error. In general, batch systems have had the effect of 
separating a non-programming investigator from his 
procedures and his data. 

Recent uses of interactive systems provide con­
vincing evidence that it is possible to exploit such hard­
ware in a manner that allows a user considerably more 
freedom and flexibility with his data and the pro­
cedures he employs. The TROLL system12 provides an 
example of such a use. Furthermore, in some general 
interactive systems including the first, CTSS,4 batch 
and interactive modes of computation are not anti­
thetical but combine naturally to use common system 
resources. The appropriate mode of computation may 
be chosen according to the characteristics of the task 
and the preferences of the user. Recent systems such 
as Digital Equipment Corporation's PDP-10 include 
interactive-batch compatibility as a basic design 
feature; such a feature is not costly relative to the bene­
fits it provides and should be more common in the 
future. 

The widespread availabilit,y of interactive systems 
plus the development of faster and less expensive user 
terminals should cause a shift of much social science 
computing to these systems. Among the reasons are: 
(1) the ability to specify tasks of analysis incrementally 



rather than collectively; (2) the potential of on-line 
interaction with data bases and the ability to browse 
through them with flexible computer support functions; 
(3) the generally lower cost of making a mistake in 
procedure and the ability to detect it more rapidly; and 
(4) the resynchronization of the user's processes of 
hypothesis formulation, testing, and analysis and the 
computer's use in supporting these functions. Batch 
processing will not and should not disappear; it will 
continue to be used for routine tasks in which inter­
action is not required or is inappropriate. 

The computer terminal market has just begun a 
period of rapid development. In the past the terminal 
industry was dominated by two large firms, AT&T 
and IBM, and the market for terminals grew slowly; the 
rate of innovation in the industry was sluggish. As 
interactive computing began to increase, the market for 
terminals grew rapidly and many new firms entered the 
industry. The results have been increased competition, 
more product variety for consumers, lower costs, and 
anincrease in the rate of innovation. If the growth in 
interactive computing continues, the terminal market 
should continue growing rapidly. Bigger markets should 
lead to increased specialization, some of which will 
benefit social science computing directly. For example, 
a low cost interactive graphics terminal having moder­
ate power is well within the scope of present technology. 
Only a larger market is required for it to be introduced 
commercially. Cheaper, faster and more powerful 
terminals will make widespread use of terminals 
economically feasible and will allow enchancement of 
the quality and power of interaction. 

The development and availability of general purpose 
computer networks is important because they will 
remove significant limitations on market size for social 
science computing products. By a general purpose 
network I refer to a network that can transmit digital 
data between any two of its members without knowing 
the content of the transmission. Such a network might 
exist on a permanent basis, such as the ARPA network18 

with its dedicated interface message processors and 
reserved communications circuits, or it might consist 
only of interface protocols between its members with 
common carrier transmission initiated whenever any 
member wants to activate a part of the network. 

Social science computing product markets are now 
segmented by locality and by machine type. One 
of the major reasons for this segmentation is the high 
cost of importing both programs and large files con­
taining behavioral data. One of the major effects 
of such segmentation is that investment in each market 
is limited by its size. Thus, investments in special 
products are made and replicated in many small 
markets. 
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The existence of general purpose networks should 
alter this resource allocation pattern. Suppliers of 
programs and data bases will have access to a much 
larger market for their products; the prospect of larger 
returns should serve to increase both the degree of 
specialization of those producers and the amount of 
investment they are willing to make in their products. 

For consumers of social science computing products, 
such networks will increase substantially the number 
and variety of products available to them. As an ex­
ample, consider the problem of accessing data files 
residing at a remote computer center. In the past, 
data have generally been exported by moving the 
data file from its initial computing environment to the 
data requestor's computing environment; usually the 
environments are technically and administratively 
dissimilar. The technical problems involved in such 
transfers are solvable, but they are generally time con­
suming and tedious. Computer networks offer viable 
technical alternatives to this procedure. Using a 
network, it would be possible to transmit a request for 
processing and output to the computer environment 
in which the data are stored and transmit the results 
back to the requestor. If the cost of transmission is 
low and there are few administrative barriers to access, 
every user can regard any program or data file on the 
network as being within his own facility and available 
to him at only moderately higher cost. Alternatively, 
the data could be transferred directly to the user's 
computer, since the existence of the network implies 
functional interfaces between each computer in the 
network and the network circuit itself. 

The availability of computer networks should 
substantially reduce the inconvenience and costs of 
accessing remote computers, provided that the in­
stitutional and administrative problems of inter­
organizational computer access can be solved. This 
will create larger markets for social science computing 
tools and will lead producers to raise their level of 
investment in the products they offer. In addition, 
there should take place a trend toward specialization 
in the construction of tools for use, and collection and 
maintenance of specialized data bases at various re­
search-oriented computer centers. An example of this 
process is provided by TROLL,12 an on-line system 
for macroeconomic estimation and simulation. TROLL 
is available to its customers on-line using the AT&T 
telephone network. Partially as an outgrowth of the 
development of TROLL, a Computer Center for 
Economics and ]Hanagement Sciences has been estab­
lished by the National Bureau of Economic Research 
to continue and extend the production of quantitative 
methodology and computing tools. I t is anticipated 
that access to programs and data will be made on-line, 
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using the telephone system to support network 
communication. 

Initially, the existence of network communication 
links will be far more important than how the network 
is implemented. The existence of some form of inter­
processor communication will allow substantial changes 
in how and where social science computing is ac­
complished. The configuration and the nature of im­
plementation of the network is a matter of economics; 
it depends upon such factors as anticipated pattern 
and volume of traffic, number and location of sub­
scribers, and required response characteristics. Until a 
general purpose network becomes available, more 
primitive network communication can be supported 
using the existing telephone network. It seems unwise 
to build a computing network dedicated to social science 
compu ting traffic either now or in the near future. Such 
an act would be comparable to allocating some of the 
industry's limited resources to design special computer 
architecture that would be dedicated to social science 
computing. 

Of all components of computer hardware, the current 
status and use of data storage technology represents a 
maj or constraint on the fashioning of better social 
science computing programs. As social science programs 
grow in scope, they grow in memory required alBo. 
I t is now common for large social science applications 
systems to use elaborate manual segmentation systems 
to accommodate themselves to a small amount of 
address space. Either the memory resources for amel­
iorating these restrictions do not exist, or the techniques 
for accessing them are not known or available. 

In the absence of a fundamental breakthrough in 
providing substantially lower cost immediate access 
memory, computers with virtual memory organization5 

appear to offer a solution to this problem. Virtual 
memory machines provide both increased program 
address space and data address space; the latter would 
provide the ability to process more complex data 
structures without making a substantial investment in 
file manipulation software. Virtual memory environ­
ments for building and using social science computing 
tools should obviate some of the ungraceful degradation 
characteristics which many social science computing 
programs exhibit upon reaching a capacity constraint. 
Perhaps most important, the availability of virtual 
memory would remove most memory management 
concerns from programmers and allow them to con­
centrate upon producing more useful computing tools. 
The opportunity cost of not using automatic memory 
management techniques is measured in terms of 
programmer time used in its place and investigator 
time waiting longer for results. This cost is already 

substantial in some cases, and it will increase as the 
cost of hardware declines relative to the cost of labor. 

If the technical developments described above 
materialize, then their impact upon the social science 
computing industry should have very beneficial effects 
upon its performance. However, several problems 
exist within the industry that detract from its per­
formance and that are not likely to be altered by 
changes in technology. 

The first problem concerns access to data. While 
there has been much progress in recent years by private 
firms making data available in machine readable form, 
most behavioral and economic data generated by 
government agencies and private researchers is un­
known to other potential users or underutilized by 
them. The principal reasons appear to be that: (1) 
within government agencies, quasi-monopoly positions 
have discouraged efficiency in both production and 
distribution; and (2) in academic and research institu­
tions, the prevailing reward structure offers few 
professional rewards for data production alone. As a 
result, it is common to observe much duplication of 
data collection activity, underutilization of existing 
data sources, and lack of availability of existing timely 
and detailed data for research and policy analysis. 

Another problem is closely related. Social science 
disciplines currently assign lower status to most 
"technical" work and higher status to "substantive" 
work. To the extent that this status difference is per­
ceived, new entrants into social science professions 
are more likely to elect to do substantive work. Those 
entrants with strong preferences for the computational 
aspects of the social sciences are more likely to gravitate 
toward academic computer science rather than toward 
involvement in a service role in which room for pro­
fessional growth appears limited. 

Within the present industry structure, academically 
oriented producers of both programs and data find it 
difficult to obtain academic rewards for their output. 
The production of a useful, accurate and well-docu­
mented social science computer program or machine 
readable data file may generate substantial externalities 
for social science as a whole, yet there is no adequate 
mechanism that allows its producer to capture these 
externalities. The long run effect of this situation must 
be to discourage production by those able to produce 
successfully in other fields. 

The problem of developing a reward structure for the 
social science computing industry is not a new one. 
Its solution could result in substantial benefits to 
social scientists in terms of substantially more efficient 
use of the computing and data resources available to 
them. 



CONCLUSION 

During the next ten years there will be a substantial 
increase in demand for social science computing prod­
ducts from government, universities, research institu­
tions and private businesses. A continued decli:le in the 
cost of computing will benefit all these consumers. In 
addition, the development of reliable general purpose 
interactive systems and inexpensive terminals will 
enhance the quality and power of social science com­
puting activities; general purpose networks will en­
large traditional markets and lead to increased competi­
tion and better consumer choice; and the development 
of quite large addressable memories should remove an 
important existing constraint on the development of 
large applications systems and complex file processing 
tools. These developments should be supported by the 
social science computing industry. Problems concerning 
access to data and achieving a reward structure for 
social science computing exist and are important, 
but remain to be solved in a satisfactory manner. 
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A computer model of simple forms of learning in infants 

by THOMAS L. JONES 

National Institutes of Health 
Bethesda, Maryland 

INTRODUCTION AND SUMMARY 

Many workers have studied the problem of getting 
machines to exhibit aspects of intelligent behavior. It 
has become clear that a major limitation of the arti­
ficial intelligence field is the cost and difficulty of pro­
gramming, which remains essentialJy a handicraft 
technique. What we need in artificial intelligence re­
search are methods for the machine to be self-program­
ming in a much deeper sense than the compilation 
process in use today. Briefly, we would like for the 
machine to "learn" to solve a problem, rather than 
being programmed in the usual laborious way. This 
report presents a computer program, using what I will 
call an "experience-driven compiler," which is able to 
program itself to solve a restricted class of problems in­
volving cause-and-effect relationships. Although the 
program is not yet able to learn to solve problems of 
practical significance, it is hoped that the technique 
will be developed to the point where this can be done. 
I am in agreement with Turing's suggestion (1950) 
that the best way to achieve artificial intelligence is to 
find out what an infant has in his brain that alJows him 
to become intelligent, put this capability into a com­
puter, then allow the machine to "grow up" in much 
the same way as the baby does. (Of course, this is a 
statement of the problem rather than an explanation 
of how to solve it.) An additional purpose of the work 
is in psychology: we would like to have computer 
methods for testing theories of how learning might occur 
in living creatures. 

There have been many reports of techniques for 
getting machines to exhibit various forms of learning 
(Friedberg, 1958; Samuel, 1959; Waterman, 1970). 
Usually they are concerned either with coefficient 
learning, where some parameter given by the human 
programmer is optimized, or with rote learning, involv­
ing the formation of some table or file of data. This re­
port describes a different form of learning, program 
learning, where the output of the learning process is a 
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computer program. Greene and Ruggles (1963) de­
scribed a computer model of behavior in human infants. 
In psychology, Piaget (1952) and Hull (1952), among 
others, have studied the process of behavior acquisition. 
The methodology used in the present report can be 
considered an extension of Hull's method of formulating 
assumptions in a precise, formal way, deducing the 
consequences of the assumptions, and comparing the 
results with observed behavior. The computer permits 
us to evaluate a learning model by turning it on and 
running it; the model's capabilities are there for all to 
see, and its weaknesses are glaringly obvious. The 
model may be made more like the real organism by 
improving it in an engineering sense, since a dissimi­
larity is almost always something which the living or­
ganism can do and the model cannot. 

This report describes a computer program called 
INSIM (for "INfant SIMulator"), written in LISP 
(McCarthy, 1960) for the PDP-I0 computer. The pro­
gram operates by learning cause and effect relation­
ships, such as "turn head" causes "mouth touch." A 
cause-effect chain is formed; if A causes B, and B 
causes C, and if C is pleasurable, the program will 
work backward along the chain until it reaches some­
thing it can control directly (a muscle pull). The 
simulated infant's behavior is under the control of a 
so-called performance program. The performance pro­
gram is, in turn, written, as learning proceeds, by a 
section of the learning program called the "experience­
driven compiler." 

A typical problem solved by INSIM involves a be­
havior pattern which is all too familiar to parents of 
small children: That of sucking the thumb. (We will 
soon see that this involves quite a virtuoso feat of in­
formation processing.) The problem can be described 
in logical notation as follows: 

(1) object touching mouth~pleasure 

(2) (left cheek touch AND turn head left)~ 
mouth touch 
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Figure 1 

(3) (right cheek touch AND turn head right)~ 
mouth touch 

(4) (left cheek touch OR right cheek touch) = 
face touch 

(5) face touch~mouth touch (sometimes) 
(6) lift hand~face touch 

(See Figure 1.) 
After the program has learned these connections, it 

will emit the behavior sequence, "lift hand, turn head 
(left or right) ," resulting in pleasure. 

Figure 2 is a block diagram of INSIM : 

The performance program has the direct responsibility 
for synthesizing behavior. It is written in an interpre­
tive language called PSIM (parallel simulator). The 
performance program receives stimuli from and sends 
responses to a body and environment simulator. The dis­
play section provides monitoring on the cathode-ray 
tube. The motivation section activates the main goal 
(oral gratification or curiosity). 

Relatively little of the performance program is innate. 
Most of it is generated by an experience-driven compiler 
which is the core of the learning part of the program. 

Causality is detected by statistical correlation; if a 
signal occurs on line A followed by one on line B, and 
if this sequence is repeated sufficiently many times, the 
program assumes that A causes B. The program is 
equipped for the simplest type of pattern recognition 
and concept formation: the formation of logical AND's 
and OR's of previously known variables. The program 
has an intellectual motivation system which causes it 
to exhibit simple forms of curiosity, play, and explora­
tory behavior. 

THE PERFORMANCE PROGRAM 

As described above, the performance program has the 
direct responsibility for receiving cues from the environ-

ment and emitting properly timed and sequenced be­
havior. The performance program consists of a set of 
PSIM statements arranged in a goal tree, each node of 
which is a variable cluster. A variable cluster consists of a 
basis variable such as "mouth touch," together with 
variables which indicate the status of the goal defined 
by the basis variable (e.g., achieving mouth touch). 
These include: 

(1) The PR of the goal. This is defined as the proba­
bility that the goal can be achieved "soon" (in a 
sense to be defined precisely below), provided 
that an attempt is made by the infant to achieve 
it. 

(2) The C (cost) of the goal. This is the program's 
estimate of the time delay required to achieve 
the goal. 

(3) The WANT of the goal. This is TRUE or 
FALSE depending on whether or not the pro­
gram is trying to achieve the goal. A goal is de­
fined to be active if its WANT variable is TRUE: 
i.e., if the program is trying to achieve it. 

In addition, the variable cluster associated with a goal 
contains other variables as described below. 

The performance program, then, consists of a set of 
variable clusters for various goals, with connections be­
tween variable clusters for goals which are causally re­
lated. Thus, there will be a connection between the 
variable clusters for "turn head left" and "mouth 
touch." Figure 3 shows the goal tree for the thumb­
sucking problem, with the variable clusters shown 
explicitly. 

Psychologists will wish to compare this setup vvith 
Guthrie's "connectionism" concept (1952). Note again 
the resemblance to a nerve net. INSIM may be inter­
preted as a neurological model of how learning might 
take place in the brain, although, of course, it is a very 

Response I.... . M 

signals -tJl--ll-
Body and 
envi ronmen t 

fP.:~:::;;:::iI====~===~ simulator 

Cue signals 

Figure 2 
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imperfect model and one for which no direct neuro­
logical evidence exists. 

The performance program operates by activating 
various branches of the goal tree at the appropriate 
times. Recall that the active nodes of the tree are the 
nodes which define goals which the machine is trying 
to achieve at the current time. In the thumb-sucking 
problem, assume that the motivation section has acti­
vated the main goal "oral gratification." The per­
formance program will activate the extreme left branch 
of the goal tree (see Figure 1), ending in "lift hand." 
The "lift hand" response will be emitted to the body 
and environment simulator. After a delay of roughly 
two simulated-time seconds, a cue, e.g., "left cheek 
touch," comes back, indicating that the simulated 
hand has been lifted to touch the (simulated) left 
cheek. Next, the branch ending in "turn head left" is 
activated. A "mouth touch" signal comes back from 
the body and environment simulator, indicating that 
this goal has been reached, and the motivation section 
turns on the oral gratificatic n flag, "rewarding" the 
program for its successful effort. 

The basic problem is to decide which branch of the 
goal tree to activate. (INSIM performance programs 
allow only one branch to be active at a time; hence 
there is no way to work on two goals simultaneously.) 
In a given situation, the decision is made in two phases, 
a feasibility study phase and a choice phase. In the 
feasibility study phase, each branch of the tree is as­
sessed, and an estimate is made of which branch is the 
quickest and surest way to the main goal. In the choice 
phase, this branch is activated. During the feasibility 
study phase, the PR (probability) and C (cost) are 
computed for each goal. 

Pleasure 

touch 

c-------' 

Figure 3 

_To right 
cheek, etc. 

000/. Turn 
head 
left 

Figure 4 

Computation of PR and C 

This section is devoted to a detailed discussion of how 
PR and C are computed. On a first reading, readers 
may skip to the section on the choice phase. 

PR is defined recursively as follows: 

(1) For a "response" (directly controllable) vari­
able, such as "lift hand" or "turn head left," 
PR=l. 

(2) Suppose that A is one of several OR'ed subgoals 
of B (see Figure 4). 

If A is the "best" subgoal according to a criterion to be 
presented momentarily, then PR(B) =PR(A) 
Pr(B I A), where Pr(B ! A) is the conditional proba­
bility of B given A (i.e., the probability of getting 
from A to B) as estimated by the coefficient learning 
program PRDLRN, discussed below. 

The "best" subgoal is selected so as to maximize the 
Slagle coefficient (1964) 

PR(B) 

C(B) 

This subgoal may not really prove to be the best one, 
if, say, the probability or cost estimates turn out to be 
incorrect. The performance program is a heuristic pro­
gram and is forced to make decisions based on imperfect 
evidence. 

A more sophisticated program would take into ac­
count the possibility of trying to achieve A, failing, 
then trying to achieve A' and succeeding. Thus a goal 
with several good subgoals would have a larger PR for 
this reason. However, INSIM considers only the one 
best subgoal. 

(3) Suppose that Al and A2 are components of the 
ordered-AND goal Al THA2 (AI then A2). Then 
PR (A1THA2) =PR (AI) PR (A2). 

( 4) Notwithstanding any of the above, if a goal has 
already· been achieved, its PR = 1. A goal is de,;, 
fined as "already achieved" if the corresponding 
signal has occurred within the last five seconds. 
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Similarly, the C (cost) of a subgoal is defined re­
cursively as follows: 

(1) For a response variable, C = o. 
(2) If A is the best of several OR'ed subgoals of B, 

then C (B) =C (A) +PR (A) Delay (A~B). 
(3) The C of an ordered-AND goal AlTHA2 (AI 

then A2) is C (AlTHA2) =C (AI) +PR 
(AI) C (A2) 

(4) Notwithstanding any of the above, the C of a 
goal is 0 if the goal is already achieved (in the 
past five seconds). 

To summarize, in the feasibility study phase, estiw 
mates are made of the success probability and time 
delay of each path to the main goal. 

The choice phase 

The next step is to activate the goal tree branch 
which is estimated, according to simple heuristics, to be 
the quickest and surest path to the main goal. A goal is 
active if, and only if, its WANT variable has the value 
TRUE. 

(On a first reading, readers may skip to the section 
on the inner loop.) The WANT variable of a goal A is 
defined recursively as follows: 

(1) If A is a main goal, WANT (A) is TRUE or 
FALSE as set by the motivation system. 

(2) If A is one of several OR'ed subgoals of B, 
WANT (A) = (WANT (B» AND (A is not 
already achieved) AND (A is the best subgoal 
of B» OR 

(A is a curiosity goal (see below». 
(3) If Al THA2 is the ordered-AND subgoal "AI 

then A2," 
WANT (AI) = WANT (AlTHA2) AND (AI 
is not already achieved) 
WANT (A2) = WANT (AI THA2) AND (AI 
is achieved) AND (A2 is not achieved). 

( 4) If G is a response (directly controllable) vari­
able, WANT ( G) causes the response to be 
emitted. 

The inner loop 

Since the computation of the PR, C, and WANT 
variables is under control of PSIM, they will be re­
computed in a wavefront-like manner, with the stimu­
lus variable as the starting point of the wave. Thus the 
PR and C and the program's decisions are constantly 
being updated on the basis of changing conditions. 

PSIM will update only those tree branches which de­
pend on some variable which has changed since the 
last TCLOCK time. 

Discussion 

INSIM performance programs incorporate simple 
heuristics which work well in cases where the assump­
tions on which they are based hold true. 

Among the assumptions are: 

(1) Success probabilities and time delays are as­
sumed to be statistically independent. If this is 
not true, the chaining formulas used in comput­
ing success probabilities and time delays will not 
be accurate. 

(2) It is assumed that goals do not conflict; i.e., 
that the achievement of one goal does not de­
crease the probability of achieving another goal. 

Removing these performance limitations would re­
quire additional machinery beyond the scope of the 
INSIM project, such as a look-ahead method of the 
type used in chess programs. 

THE EXPERIENCE-DRIVEN COMPILER 

As mentioned previously, most of the performance 
program is coded by an internal compiler which, in­
stead of using as its input a source code prepared by a 
human, is controlled by the experience acquired by the 
program as it interacts with its (simulated) environ­
ment. In keeping with the dictum that in order to 
learn something, one must know something already, the 
compiler incorporates the probability and delay formu­
las described above, plus knowledge of basic aspects of 
the physical world, including time and causality (see 
Figure 5). 
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The plausible move generator is used instead of 
testing for causality between an possible variables A, B. 
The latter approach would involve on the order of n2 

tests, where n is the number of variables. 
I t is the compiler which sets the upper limit on the 

program's ability to learn. For example, INSIM could 
never learn to play chess even with very long training, 
because the necessary pattern recognizers and code 
generators are not present. 

The experience-driven compiler operates as follows: 
The program starts out with an innate main goal which 
is "oral gratification" in the thumb-sucking problem. 
First, the plausible move generator is caned to generate 
a list of variables which are likely to be "relevant" to 
the oral gratification goal, and causality test links are 
formed. (The plausible move generator is discussed 
below.) 

N ext, the causality pattern recognizer learns which 
test links represent actual causal relationships. The 
pattern it is looking for is shown in Figure 6. 

If a pulse on variable A is followed by a pulse on 
variable B sufficiently often, A is assumed to cause B. 
More precisely, if Pr(B I A) >0.20 after at least 15 
pulses on A and 15 pulses on B have occurred, A is as­
sumed to cause B. The pulses on A and B must be less 
than five simulated-time seconds apart. (If there are 
any pulses at all on B, then a pulse on A will always be 
"followed" by a pulse on B if we wait sufficiently long.) 
Pr(B I A) is estimated by the probability-delay learner, 
discussed below. 

The simple heuristics will miss some actual causal 
relationships when the delay is more than five seconds. 
It would not be hard to make the program "adaptive" 
to this arbitrary parameter, say by matching the time 
delay to the recent density of pulses on the two lines. 

- ~ t--

A 

.-- - r--

B 

Figure 6 

Thus, if there were only one pulse on B about every 15 
minutes, the allowable delay might be five minutes 
rather than five seconds. Also, the heuristics will some­
times "identify" a causal relationship where none ac­
tually exists. E.g., if the allowable time delay were 
long enough, the program would think that day causes 
night. (Piaget has found that small children also think 
that day causes night.) 

In some cases, it is sufficient to wait passively for a 
pulse on A. In other cases, the curiosity section of the 
performance program sets WANT (A) to TRUE, 
activating some goal tree branch ending in A and initi­
ating behavior which hopefully will lead to a pulse on 
A, in order to see if B follows (e.g., it activates "turn 
head left" to see if "mouth touch" follows) : this is the 
"play" or "exploratory behavior" mentioned above. 
The curiosity section attempts to test links which are 
new and have not been tested many times; links where 
the initial variable, A, is reasonably easy to obtain; 
and where the final variable, B, is "biologically useful" 
in that ability to obtain B would contribute to the pro­
gram's ability to obtain pleasure (primary reward). 
Specifically, the curiosity section tests the link A~B 
which maximizes 

(PR(A)/C(A)) *Satfunc(A, B) *Need (B) 

where Satfunc (A, B) (saturation function) decreases 
linearly from 1 to 0 as the number of times when A~B 
has been tested increases from 0 to 15. Need (B) is an 
index of how much the ability of the program to obtain 
primary reward would be improved by improvements 
in its ability to obtajn B. See Jones (1970) for a de­
scription of the heuristics used to compute Need (B). 
Only links which have been designated as "plausible" 
by the plausible move generator are tested. 

When the causality pattern recognizer detects that 
two variables, A and B, are causally related, the corre­
sponding code generator is called to compile the link 
A~B in the goal tree, provided that the connection has 
not already been made. This code generator is a LISP 
function called MAKEORGOAL (A, B), so named be­
cause it also handles the case where A is one of several 
logically OR'ed goals. In LISP, the code generator 
turns out to be a straightforward and rather prosaic, if 
slightly long, program. Separate sections are provided 
for compiling the entries for WANT, PR, C, and each 
variable associated with the curiosity system. Each 
section looks up the names of the variables involved in 
the formula in question and substitutes them in the 
formula, using LISP's symbol-substituting capability. 

In the thumb-sucking problem, the program first 
learns the links shown in Figure 7. 
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Figure 7 

Although this version of the performance program will 
sometimes succeed in obtaining "mouth touch," it does 
not yet know which way to turn the (simulated) head. 
Next, the plausible move generator is called to provide 
a list of variables to be THEN'ed with the partially 
successful subgoals. Causality test links are compiled 
for the ordered-AND variables. Among them are the 
ones shown in Figure 8. 

VI correlates very poorly with mouth touch; V2 cor­
relates very well. Since Pr (mouth touch V2) is very 
high, the performance program will activate this branch, 
rather than the others, and the simulated infant will 
emit "turn head left" in response to "left cheek touch." 
Similarly, it learns to emit "turn headright" in response 
to "right cheek touch." Finally, "face touch" is identi­
fied as a "biologically useful" variable, and the program 
,learns to activate "lift hand"; when the (simulated) 
hand touches the face, the previously learned program 
takes over and completes the thumb-sucking opera­
tion. 

One way of looking at the learning process is that 
the program builds a subroutine hierarchy. Each node 
on the goal tree defines a subroutine, the process of 
achieving a stimulus on the variable defined by the 
node; e.g., the "obtain mouth touch" subroutine. Each 
link on the tree defines a subroutine call. Thus, the 
"obtain face touch" subroutine calls the "lift hand" 
subroutine. 

See Jones ( 1970) for a fuller discussion of how 
the experience-driven compiler is organized and 
programmed. 

It is interesting to note the similarity between the 
learning sequence and Piaget's observations on the 
learning of human infants. Although the real infant's 
learning is much more complicated, it follows the same 
gross sequence of stages; the real infant first learns to 
search from left to right with its head; then it learns 
which way to turn; then it learns to lift its hand and 
suck its thumb. (Real infants also show considerable 
variability in their learning; for example, some have 
been observed to suck the thumb in the womb.) 

PSIM 

Ir: order to simplify the experience-driven compiler, 
an mterpreter called PSIM (parallel simulator) was 
written. The experience-driven compiler "sees" a 
pseudo-machine which is quite different from the actual 
PDP-I0 for which the program is written. The pseudo­
machine is much like an analog computer in which 
each component has the versatility of a digital com­
puter, but where one does not need to worry about the 
sequence of computations; instead, each component 
"continuously" monitors its input lines and responds to 
whatever signals it finds there. Thus PSIM is a 
"stimulus-response" oriented interpreter which is con­
venient for writing programs which simulate actions in 
the real world. 

More precisely, a PSIM program consists of a net­
work of variables whose values change with simulated 
time and functional relationships which describe the 
way the variables depend upon each other. There is a 
simulated-time clock, TCLOCK, calibrated in seconds, 
which is set to zero at the start of a simulation and ad­
vances as the simulation proceeds. There is an event file 
which contains computations which are scheduled to 
occur at a future TCLOCK time. Each PSIM entry is 
of the form V AR = EXPR, where the EXPR is a LISP 
expression which is evaluated to get the value of the 
variable V AR. 

If a variable V2 depends on another variable VI, and 
VI changes, V2 is automatically updated. This process 
occurs in an interesting way: In addition to the variable 
TCLOCK, which records simulated time, there is 
another "clock," called BTIME (base time) which 
cycles from one up to some maximum value during 
each TCLOCK time. Each variable has a base time at 
which it is updated. The base time of a variable is set 
as follows: 

(1) If a variable depends on the other variables only 
through a TCLOCK delay, its base time is l. 

(2) Otherwise, its base time equals one plus the 
maximum of the base times of the variables on 
which it directly depends; i.e., the variables in 
its EXPR. 

Figure 8 
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Variables with base time 1 are updated first, then 
variables with base time 2, etc. This arrangement en­
sures that a variable is not updated until after the cor­
rect values of all variables in its EXPR are available. 

During most TCLOCK events, only a few variables 
change their values. PSIM ensures reasonable efficiency 
by recomputing only those variables which depend on 
a variable which has changed at the current TCLOCK 
time. The updating proceeds in a "wave-front like" 
manner, starting with a variable X which has been 
changed through a TCLOCK delay, then updating the 
variables Vi which depend on X, then the variables 
which depend on some Vi, etc. (See Figure 9). 

Note the resemblance to a hard-wired device or a 
nerve net. 

THE PROBABILITY-DELAY LEARNER 

Conditional probabilities and time delays are esti­
mated by a rather orthodox coefficient learning pro­
cedure (Samuel, 1959). Suppose there is a link between 
A and B. Whenever A occurs, followed within five 
seconds by B, Pr (B I A) is incremented by an amount 
o (I-old value of Pr (B I A)), and Delay (A~B) is in­
cremented by 0 (actual delay-old estimate of delay). 
If A occurs, but not B, Pr (B I A) is decremented by 
an amount 0 (old value of Pr (B I A)) and Delay 
(A~B) is incremented by 0 (five seconds-old estimate 
of delay). It can be shown that this procedure gives 
unbiased estimates of Pr (B I A) and DeJay (A~B), 
with an exponential weighting such that old occurrences 
of A affect the estimates less than new ones. 0, the 
decay coefficient, is currently 0.1. The initial estimate 
of Pr (B I A) is obtained by observing the first 10 oc-

= 4 

= 3 
V6 

= 2 

base time = 1 

Variable changed through a TCLOCK delay 
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currences of A. Pr (B I A) is set to 

(Number of A's followed by B's)j(Number of A's) 

The initial estimate of Delay (A~B) is the observed 
average over the first 10 occurrences of A. 

THE PLAUSIBLE MOVE GENERATOR 

Recall that, mention was made of a not yet imple­
mented plausible move generator which was to be called 
to make hypotheses about which variables might be 
causally related to some goal B. These variables are 
defined as "relevant" to B; the causality pattern 
recognizer will determine if an actual causal relation­
ship exists. (At present, the program is running with 
a patch which merely looks up plausible variables 
in a manua1ly prepared table.) If we tested all possible 
variable pairs, the machine time needed would increase 
on the order of n2 where n is the number of variables, 
constituting an intolerably large CPU and core storage 
load for large n. The plausible move generator wi1l use 
three relevance heuristics: 

(1) (implemented) Innately known relevance-A 
variable A is innately known to be relevant to a 
variable B if A appears under B in an innately 
known file (i.e., a manually prepared file). 

(2) The diagonal search-This will be used to associ­
ate variables which are very "important," such 
as a "large moving visual stimulus" and "arm 
motion," and will be used to make the initial 
connections between sensory modalities (e.g., 
vision and hearing) and motor units such as the 
arms or the head. The "important" variables 
will be placed on an innate list in decreasing 
order of importance. Let V k be the kth most im­
portant variable. Make a square matrix as shown 
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" / 

Figure 11 

.,.,1 

in Figure 10. Now let a dot represent a matrix 
entry and search the matrix.in the order specified 
by the arrows in Figure 11. Roughly, the concept 
is that the most important variables are associ­
ated with each other first. 

(3) The relevance chaineI' and the innate net-The 
innately known relevance subroutine and diag­
onal search subroutine will be used to get the 
learning process started. To continue it, the 
relevance chainer section of the plausible move 
generator will be used. The relevance chaineI' 
will incorporate two heuristics: (1) If x is rele­
vant to y, then y is relevant to x (symmetry). 
(2) If x is relevant to y, and y is relevant to z, 
then x is relevant to z (transitivity). A depth 
cutoff will be used, so that all variables are not 
relevant to each other. 

The relevance chaineI' will be used with an innate net 
which will incorporate innate knowledge about which 
sensory modality a given signal belongs to and innate 
information about space (which signals "belong to-

Face touch 

Input level variables 

Figure 12 

Left Center Right 

Figure 13 

gether"). For a simple example, assume a one-dimen­
sional space of touch receptors. The receptors will be 
arranged in an OR tree with a hierarchy of larger and 
larger sectors (see Figure 12). (Do not confuse this 
with a goal tree; the upper level variables are defined 
as OR's of the lower level variables.) 

EXPERIMENTAL RESULTS 

INSIM was tested with a simple body-and-environ­
ment simulator, with a problem environment which is 
a simplified version of that seen by a newborn human 
infant. Let us follow the growth of the simulated infant 
as it develops, starting from a state of passivity, then 
learning gradually to distinguish right from left and 
turn its head in the proper direction. Its ultimate 
achievement is to suck its thumb. 

The simulated infant has a head with three positions, 
left, center, and right (see Figure 13). It has a blanket 
(Figure 14) and a bottle (Figure 15). The blanket and 
bottle are under the control of special manually pre­
pared subroutines in the test package. 

The simulated infant begins its life with an essen­
tially blank performance program. At first it is com­
pletely helpless and does not move at all, since there 
are no motor operators in the goal tree. When it gets 
hungry, or, more precisely, wants pleasure, it must 
wait passively until its bottle appears. Although it is 
immobile, the infant is learning the connection "mouth 
touch" yields "pleasure." 

Figure 14 
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At age 605 seconds, the experience-driven compiler is 
activated. The new performance program contains ad­
ditional Jines of PSIM code which express the goal 
tree link "mouth touch" yields "pleasure." The new 
PSIM code is then fed to the assembler-scheduler, 
which makes up, for each variable V, a list of variables 
which depend on V and a list of variables which V de­
pends upon. Next, the scheduler assigns a "btime" 
(base time) to each variable, starting with btime = 1 for 
input variables such as mouth touch. The new per­
formance program contains the connection "mouth 
touch" yields "pleasure." Mouth touch has become 
"important" to the infant; hence the new performance 
program is "curious" about things which are plausibly 
related to mouth touch. Among these are the head­
turning responses. There are two head-turning opera­
tors, "turn head left" and "turn head right." After 10 
seconds, the head automatically returns to the center 
position. This version of the performance program 
turns the head only out of curiosity; when it actually 
activates the mouth touch goal, it is unable to turn the 
head. Meanwhile, the connection "face touch" yields 
"mouth touch" has been made, and the "lift hand" 
response is enabled. Whenever the hand control sub­
routine receives a "lift hand" response, it computes a 
pseudo-random number and uses it to determine the 
outcome of the lift-hand operation; the hand winds up 
at either the left, center, or right positions relative to 
the infant's face. 

At age 1405 seconds, the head-turning operators be­
come subgoals of mouth touch. In this stage, the pro­
gram exhibits for the first time a simple form of what 
psychologists call "operant conditioning" (Skinner, 
1953). In the past, the program has been rewarded by a 
mouth touch for turning its head. Now, when it wants 
mouth touch, it turns its head. The program is still 
not very successful. It exhibits a stereotyped behavior 
pattern, first turning right, then left, without regard to 
where the object is, or, indeed, whether there is an ob­
ject present or not. During this phase, the program is 
keeping records of the conditions under which "turn 
head left" and "turn head right" succeed in achieving 

Figure 15 

mouth touch, laying the groundwork for the next phase 
of development. 

At age 2405 seconds, the sixth and final version of the 
performance program is compiled. When an object is 
present, the program can reliably turn the head in the 
proper direction. Thus the program exhibits a simple 
form of what psychologists call "discrimination learn­
ing"; it responds appropriately to the stimuli "left 
cheek touch" and "right cheek touch." The program's 
most advanced behavior involves providing its own 
stimulus object: its hand. This exhibits what psycholo­
gists call "chaining." Let us review the operating 
principles of the program by tracing in some detail what 
happens when, say, a "left cheek touch" pulse is re­
ceived from the body-and-environment simulator. 
Variables which depend on "left cheek touch" are re­
computed in a "wave-like" fashion, starting with vari­
ables which depend djrectly on "left cheek touch," 
then variables which depend on the latter class of 
variables, etc. Before the "left cheek touch" signal is 
received, the program assigns a low PR to achieving 
"left cheek touch." After the signal is received, the PR 
is set to one. Now the program assigns a high success 
probability to the composite goal "left cheek touch 
then turn head left"; previously, the composite goal 
also had a low success probability. This composite goal 
now has a higher success probability and figure of merit 
than the other subgoals of mouth touch; hence it is 
activated. Since the first half of the composite goal 
(left cheek touch) has already been achieved, the goal 
(and response) "turn head left" is activated. 

ANALYSIS 

The fundamental scientific issues to which the 
INSIM work addresses itself are: 

(1) Can one make use of a relatively small amount 
of very general innate knowledge in order to 
obtain a much larger amount of specialized 
knowledge, and, if so, how? 

(2) What should the innate knowledge be? 
(3) How should the innate knowledge be incorpo­

rated into an information-processing system? 

These issues are as old as epistemology itself, but the 
first really careful analyses were by Hume (1777) and 
Kant (1781). Hume took the position that the human 
mind was a "tabula rasa" (blank tablet) at birth and 
that all knowledge was acquired through the forming 
of associations (compare Hebb's [1949] synaptic con­
nections). Kant, on the other hand, believed that the 
infant had a store of innate (categorical, or "a priori") 
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knowledge at birth and that this was necessary to make 
the learning process work properly. The INSIM re­
search supports Kant's viewpoint, based on practical 
engineering experience with information processing sys­
tems of this type. INSIM is associationist ("turn head 
left" is associated with "mouth touch"); however, in 
order to make the association proceed properly, innate 
knowledge had to be incorporated into the learning 
program, knowledge that there are such things as 
causality and time, and that causaJly related events are 
likely to occur in close temporal sequence. 

A question immediately arises as to Just what is 
meant by statements such as "INSIM knows that 
there is such a thing as causality." The word "know" 
can be used in several senses. Obviously INSIM does 
not know about causality in the same sense that an 
adult knows about causality; the program cannot ex­
plain causality, cite examples, or answer questions 
about causes and effects; it has no verbal behavior at 
all. Instead, to say that INSIM knows about a certain 
type of causality is to say that the INSIM program is 
optimized to a universe in which certain types of causal 
relationships exist. Thus, in a universe where there 
were no such things as causality or time, or where 
cause and effect were always separated by hours or 
days, INSIM would not work properly. In other words, 
the innate knowledge of INSIM is incorporated in the 
form of algorithms rather than as facts. 

The learned knowledge is also incorporated into the 
system in the form of algorithms rather than facts. 
Thus the final version of the performance program 
knows right from left in the sense that it can turn its 
head in the proper direction if stimulated; yet it has no 
verbal knowledge of space at all. Expressing knowledge 
as algorithms, as in program learning, is meritorious in 
that it is algorithms which we know best how to com­
bine into complex integrated systems. Thus INSIM 
learns a nursing subroutine, then adds additional code 
to form a thumb-sucking subroutine. By contrast, for 
a machine to learn facts is at present often" like adding 
more books to a library; the machine cannot do much 
with them. Many of the theorem-proving efforts suffer 
from this problem. Expressing knowledge as facts has 
its complementary merits, as discussed by Hewitt 
(1969) and the present author (1966). 

Given the concept of using a base of very general 
innate knowledge to obtain a much larger repertoire of 
learned knowledge, what can we say about what the 
innate knowledge (innate algorithm) should be; in 
particular, how much innate knowledge is needed and 
how problem-specific should it be. Why was the innate 
knowledge basis of INSIM chosen the way it was? For 

several reasons: 

(1) The INSIM program has a high "bootstrapping 
leverage" ratio: 

(learned problem solving ability) 
(innate knowledge) 

where the "amount" is to be indexed by some 
criterion or other. Although this is not a fact 
which can be easily demonstrated now, since the 
learning is severely limited by the body-and­
environment simulator, INSIM is capable in 
principle of synthesizing very large trees of 
OR'ed and THEN'ed goals (limited by core 
storage), implementing long chains of behavior. 

(2) INSIM is based upon a strong general theory of 
problem-solving, means-end analysis (N ewell, 
Shaw, and Simon, 1959), and one can be confi­
dent of the program's ability to be extended to 
other goal types and to solve harder problems. 

(3) INSIM performance programs are free to some 
extent from the "exponential explosion" prob­
lem which plagues many problem-solving sys­
tems. The simulated time to learn a tree grows 
only linearly with the length of the tree; the 
CPU time per simulated time second grows a 
little worse than linearly with the number of 
branches on the tree, and the number of branches 
is limited by the causality pattern recognizer. 

(4) Lastly, the INSIM setup was chosen because it 
works; i.e., it constitutes an integrated learn­
ing-behaving system. This requirement is 
harder to meet than appears on the surface; I 
have 1100 pages of notes on setups which did not 
work, developed before arriving at INSIM. The 
incompletely successful efforts of Pavlov and 
Hull are also testimony to the difficulty of 
getting anything which will work at all. 

Among the additional capabilities \vhich are being 
considered for inclusion in INSIM are the ability to 
handle binary (non-pulse) goals, goals involving con­
tinuous valued variables, goal conft.ict situations, goals 
stated in terms of objects with property lists one-trial 
learning, and a look-ahead system of the type used in 
chess programs. An important lesson to be learned 
from a program of this type is that learning, rather than 
being a single process, actually involves a variety of 
ways for improving behavior based on experience. 

A future objective of this work is to make it easier, 
in certain cases, for the machine to learn for itself how 
to do something than to write a program in the usual 
way. The learning program would need to be equipped 
for more advanced types of learning, including one-
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trial learning, and it would be restricted to problems 
involving long chains of cause and effect, such as robot 
control problems. In psychology, the objective is to use 
computer modeling, in conjunction with research on 
living creatures, to gain insight into that fascinating 
enigma-the human mind. 
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An information management system for scientific 
gaming in the social sciences 

by ROBERT C. NOEL and THOMAS JACKSON 

University of California 
Santa Barbara, California 

INTRODUCTION 

During the past decade, the use of gaming techniques 
has spread among social scientists. Beginning primarily 
in the fields of international strategic studies and busi­
ness management, gaming is now used in such areas as 
urban studies, general economics, political science, en­
vironmental studies, educational administration, and 
sociology. The purposes to which gaming techniques 
have been put are varied. Education and training ap­
plications have been by far the most numerous, and 
these continue to be the areas of broadest consensus 
about the value of gaming. Second most common are 
policy-analytic applications wherein present and future 
problems of policy choice are examined through gaming 
by expert analysts and policymakers. Finally, there 
have been basic research applications in which gaming 
exercises are used as settings for more or less controlled 
experimentation dealing with social psychological, socio­
logical, and political variables. 

The computer has played a role throughout most of 
the history of gaming. Computer support has usually 
taken the form of discrete, man-model simulation. That 
is, a computer-based model of some object system is 
solved reiteratively, taking the decisions of human 
participants as inputs and reporting changes in system 
states as stimuli for subsequent human decisions. 
Another kind of computer supported gaming differs 
from simple man-model simulation in that it involves 
two or more participating entities (teams) who, while 
interacting with each other directly in writing and/or 
face-to-face, also interact with each other indirectly 
through their interactions with a common computer­
based model (for example, a multi-firm business game or 
an n-player international political game). Various names 
have been applied to such games, including "game­
simula ti ons." 

Beyond performing these simulation functions, com-
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puter support for gaming has been far less common. 
Bloomfield has experimented with computer-based in­
formation retrieval as an aid to decision-makers in an 
all-man international strategic exercise, a so-called 
"free-form game," in which expert judgment performs 
functions analogous to the computer model in a man­
model simulation (Beattie and Bloomfield, 1969).1 
Gerald Shure developed a system for team-to-team 
written communications on a time shared computer.2 
But, to our knowledge, no comprehensive computer­
based system has yet been developed for the overall 
administration of gaming exercises. 

The purpose of this paper is to describe such a system. 
It is under development at the POLIS Laboratory at 
the University of California, Santa Barbara. * Its first 
version is operational on a dedicated PDP-II. It is cur"'" 
rently undergoing major revision; an expanded version 
should be completed within a year. Part 1 will give a 
non-technical description of the system, and Part 2 
will provide technical information about the architec­
ture of the system. 

GENERAL DESCRIPTION OF THE POLIS 
SYSTElVI FOR THE ADIVIINISTRATION OF 
GAMING EXERCISES 

The system performs a variety of information man­
agement functions for gaming. First, it provides chan-

* The acronym "POLIS" stands for "Political Institutions 
Simulation." The POLIS Lab is a state-of-the-art facility for 
social gaming and simulation (see Robert C. Noel, "The POLIS 
Laboratory," AMERICAN BEHAVIORAL SCIENTIST, vol. 
XII, no. 6, (1969), pp. 30-35). The Lab was established under 
funding from the Regents of the University of California, the 
National Science Foundation (GY-6345), and the Chancellor's 
special funds at UC Santa Barbara. This support is gratefully 
acknowledged. 
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Diagram I-Message-handling: Manual intercept mode 

nels for written communications among player teams. 
Physically, the teams may all be at one site, or they may 
be dispersed at remote locations. In this sense, the sys­
tem is essentially the same as a computer controlled 
teletype network. Second, the system provides control 
capabilities for the game director(s), including the 
capability to define specific communications networks, 
the capability to monitor communications content, and 
the capability to maintain complete game data files. 
Third, the system interfaces both game players and 
control staff interactively to man-model simulation pro­
grams. 

In the following sections, the component programs of 
the system are briefly described. These descrip~ions are 
organized around two perspectives, that of the player 
and that of the game control staff. 

Player oriented programs 

The program modules described in this section per­
form a variety of functions for the players in a gaming 
exercise. They include a message handler, a text editor, 
and a simulation program interface module. 

Message-handling 

The message-handling programs in the system are 
designed according to an "inbasket/outbasket" princi­
ple. The system accepts a message from a user terminal 
when a user request is made for "OUTBASKET." 
The message is routed to an intervening file structure 
where it stays until its recipient makes an "INBAS­
KET" request; at that time the message is printed on 
his terminal. These input and output events may occur 
at any time; they may be nearly simultaneous or hours 
or even days apart. How often a player interrogates his 

INBASKET may be left to his discretion or scheduled 
as part of a game's operating procedures. Straight­
through, real-time communications will also be pos­
sible as a result of scheduled system revisions; 

The message handler has capabilities for three modes 
of operation: the manual-intercept mode, the automatic 
mode, and a mixed mode. In addition, it embodies flex­
ible addressing capabilities. 

Message-handling: Manual-intercept mode 

Diagram 1 depicts two player terminals interacting 
within the framework of the message handler. The rout­
ing of a message, say, from terminal A to terminal B is 
as follows. The message is input via A's OUTBAS­
KET, which, in effect, stores it in a "pending file." It 
will remain in the "pending file" until it is acted upon by 
a control terminal. The system permits two or more 
control terminals to have this function; one or more 
might serve as an umpire terminal and another as an 
observer terminal. As will be discussed below, an opera­
tor at a control terminal can do three things to a mes­
sage. First, he can reject it as is; that is, the message 
will be returned to A by way of A's INBASKET. 
Second, he can forward the message as is. Third, he can 
forward or reject the message after making editorial 
comments and changes on it. 

Diagram 1 also depicts the fact that each message is 
entered into a permanent game file automatically as it 
is handled. 

The idea of having control terminals as part of the 
communications channels stems primarily from the re­
quirements of free-form games in which judgments by 
the game control staff (umpire) play an important role 
in the game. It also pertains to messages and documents 
sent from player teams to the game control staff, for 
example, position papers and moves. 

MESSAGE HANDLING SOFTWARE 

CONTROL TERMINAL (S) 

Diagram 2-M essage-handling: Automatic mode 
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Message-handling: Automatic mode 

When the message handler is set for automatic mode, 
all messages are routed to their destinations without 
being intercepted by control terminals (Diagram 2). 
As with the manual-intercept mode, each message is 
entered into a permanent game file automatically as it 
is routed through the system. 

Message-handling: Mixed mode 

The system provides the capability of having some 
sets of teams linked together in the automatic mode 
and other sets of teams linked in the manual-intercept 
mode, all within the same gaming exercise. 

Message-handling: Addressing options 

The message-handling software also provides the user 
with several addressing options. Of course, he may ad­
dress a message to any other team in an exercise and to 
the control terminal(s). Additionally, he may input 
messages with multiple addresses; the system will route 
them accordingly. At the discretion of the primary con­
trol terminal, a particular exercise may include collec­
tive actors with group names. For example, the address 
"Security-Council" may include all members of the 
Council who are represented by teams in the game; each 
member of this group will receive the message accord­
ingly. A special case of a group name is "ALL," in 
which case all active terminals will receive the message. 

The system is able to accept player team names in 
natural language ; it does not require numerical designa­
tions for the teams. 

Message-handling: formatting 

The system also embodies a few features which are 
designed to assist the participants in exercises in main­
taining their own records. One such feature is the 
"paginator." At the present time it has been imple­
mented only for messages being retrieved from one's 
inbasket. It prints each message on a separate page, 
which it measures to eleven inches in length and num­
bers in serial order. Anyone who has attempted to 
maintain order among the myriad scraps of paper which 
accumulate in a busy game will appreciate this feature. 

Another aid to the participants and to one who is 
trying to reconstruct game events after the game is over 
is the "date/time clock." It prints a calendar date and 

zulu time on all incoming and outgoing messages. The 
clock may be set to print actual times or any past or 
future times desired by the game control staff. 

User text editing 

A second set of player oriented capabilities comple­
ments the message-handling programs. A text editor 
will be made available to player terminals in the future 
revision of the system. It will serve as an aid in the on­
line composition of messages. It allows the user to delete 
and rewrite all or part of the line of text on which he is 
currently working and to delete and rewrite the entire 
message so long as it has not become input to the system 
through an "END" command. 

With the scheduled revisions, the system will also ac­
cept paper tape input of messages composed off-line. 

Player interaction with simulation models 

A third set of player oriented capabilities allows the 
user to call a particular simulation program from a 
simulation program library. The user's request is 
"LIBR." The system responds with an interactive 
version of the particular man-model simulation called 
from the library. The player is given data upon which to 
base his decisions and the simulation program leads him 
conversationally through the decision sequence ending 
with a printed report of the results of his decisions. 
From each team's point of view, this capability is very 
much like having access to a time-shared system which 
computes only its portion of the simulation model. 
Game procedures determine the timing of these interac­
tions. The model itself is initialized and updated by the 
game control staff. 

Control-oriented programs 

A more extensive set of control capabilities have been 
programmed into the POLIS game-administration sys­
tem. They include programs for defining and modifying 
particular gaming communication structures, programs 
for monitoring and editing player interactions, and 
programs which assist in the reconstruction and analysis 
of games after they have been completed. These capabil­
ities are described briefly in the following sub-sections. 

Creating a game 

Both logically and temporally, the primary control 
oriented capabilities of the system have to do with the 
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creation of a game. These capabilities are embodied in 
the system's "CREATE" functions. These CREATE 
functions are the only control functions that cannot be 
delegated to any participating entity other than 
"POLCON," (POLIS Control), the primary control 
terminal. 

The CREATE function enables POLCON to do the 
following. 

(a) Set the date/time clock for the game. 

(b) Specify up to forty-eight participating entities 
(player-teams, control teams, etc.) in a game by 
proper name and user code. These names may 
include group names, including specification of 
which teams belong in which groups. 

(c) Restart from a previous game (the same game, in 
case of system failure), which eliminates the 
need to recreate the game. 

(d) Assign functions to participating terminals, in­
cluding delegating control functions. For each 
entity in the game, including both player termi­
nals and control terminals, POLCON may desig­
nate: 

(1) whether it is to be able to send messages 
(outbasket function) and/or to receive mes­
sages (inbasket function); 

(2) whether its messages will be handled in the 
automatic or the manual-intercept mode; 

(3) whether it is to be able to "CALL" Control 
in real-time, bypassing the outbasket/in­
basket message-handler; 

(4) whether it is to be able to call "LIBR" in 
order to interact with a particular man­
model simulation program; and 

(5) whether it is to have such control functions 
as: "STATUS," "RETRIEVE," and "UM­
PIRE" (described below). 

Updating a gaIne 

Another control oriented program complements the 
CREATE functions. It is an UPDATE program. It 
permits the dynamic modification of most CREATE 
functions, including the addition of new participating 
entities (by proper name), resetting the date/time clock 
(forward or backward), and the reassignment of mes­
sage-handling functions. 

"Con trol's" Inessage InanageInen t functions 

When the system is in manual intercept mode, several 
message management capabilities are at the disposal of 
the game control staff. 

(a) A "STATUS" request enables the game control 
staff to determine the contents of the game file 
for any time period and any set of participating 
teams. All messages are listed by time, parties, 
and subject matter. Their status is noted, that is, 
whether they are pending or whether and at 
what time they were forwarded or rejected. 

(b) A "RETRIEVE" function is also available to 
the control staff. It extends monitoring capabili­
ties to enable complete messages to be examined 
after they have been identified via a STATUS 
check. 

(c) Control terminal(s) can also perform "UM­
PIRE" functions. These pertain to any message 
in the pending file. They include "EDIT" and 
"FORWARD /REJECT" options. That is, mes­
sages may be forwarded without alteration; they 
may be commented upon and edited (deletions, 
insertions); and messages and papers may be 
returned to their points of origin. 

"Control" interface to siInulation 
library prograInS 

From a control point of view, simulation interface 
primarily involves calling up the appropriate simulation 
model from the program library, initializing the model's 
variables and parameters (analogous to, but different 
from the CREATE function), and establishing files for 
recording time-series data on the model in operation. 

"Control's" data-Inaking functions 

The system also provides some textual analysis capa­
bilities for the game control staff. Supplementary control 
terminal(s) may be established from which observer(s) 
may engage in real-time content analysis and com­
mentary. This is done through a part of the umpire 
function. The request, "CODE," elicits a system re­
sponse providing the observer with up to six empty 
coding categories which he may use to define content 
dimensions (for example, a threat) and to assign numer­
ical rating for a particular message on that dimension. 
The request "COMMENT" enables the observer to 
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append open-ended commentary to a message-perhaps 
an explanation of his coding judgments, or perhaps some 
information about the context surrounding the particu­
lar message. Neither observer coding nor observer com­
mentary information is seen by the players; both kinds 
of information become part of the game file. 

SYSTEM ARCHITECTURE 

Hardware configuration 

The POLIS system for the administration of gaming 
exercises was designed and programmed to execute in a 
hardware environment consisting of the following: 

(a) PDP 11/20 CPU (with 60 Hz Clock Interrupt) 

(b) 8K (16 Bit) Words Core lVlemory 

(c) 2 Magnetic Tape Drives (Dual "Dectape")* 

(d) Primary Teletype Console 

(e) Alphanumeric Television Display 

(f) 2 Acoustic Couplers with telephone answerers 
and associated control and interface logic. 

Although the current system executes in the above 
configuration, extensive modifications are under way to 
take advantage of a recently acquired 64K word fixed 
head disc. This will result in a revised version of the 
system which will have features identical to the present 
version, but will eliminate some long interaction delays 
(up to 30 seconds) currently caused by frequent accesses 
to magnetic tape. 

There is no limit to the number of acoustic couplers 
which can be simultaneously accommodated by the 
software. The number specified above reflects a core 
memory limitation only,that is, each additional 4K 
words of core above the basic 8K would allow eight 
more couplers to be accommodated. This is a result of 
the fact that 512 contiguous words of core memory are 
required for each coupler. 

System-management software 

Hardware drivers 

Two peripheral-device drivers are employed by the 
system to manage asynchronous, interrupt-controlled 

* Copyright Digital Equipment Corporation. 

I/O, a teletype driver and a magnetic tape driver. Both 
drivers operate in conjunction with a TASK SWITCH­
ING PROGRA:\l (discussed below) to initiate an I/O 
transfer, to set the appropriate interrupt status bits, 
and to relinquish control to some other user. When the 
I/O transfer is complete, a hardware interrupt returns 
control to the particular driver which then processes 
errors if necessary, sets the "I/O Done" bit associated 
with this user and returns control to the TASK 
SWITCHING PROGRA:\I. Both drivers can manage 
I/O transfers simultaneously for any number of users. 

Initialization and systelll restart 

These programs operate together to initialize the fol­
lowing information for the system after either an initial 
start-up or a start-over from a system or power failure. 

(a) An entity called "POLCON" (POLIS Control) 
is specified and allocated all of the available sys­
tem functions. 

(b) A Task Control Block (TCB) is created for the 
primary teletype console and each acoustic 
coupler. 

(c) A Master Reset is executed to remove all inter­
rupts pending, and control is passed to the 
USER REQUEST DISPATCHER. 

This minimum system state is sufficient to allow 
POLIS Control (POLCON) to log-in and create a new 
game environment or reestablish the environment that 
existed before a system failure. 

Tasli switching progralll 

This program "time-shares" the use of the system 
among all of the I/O drivers. Control is relinquished to 
the TASK SWITCHING PROGRAlVI, \vhich then 
checks sequentially the "Done" bit in each Task Con­
trol Block (TCB) and transfers control (back) to the 
first user it encounters whose "Done" bit is set. Thus, 
the following sequence of activity occurs (assuming, for 
example, that only two consoles are active). 

(a) The program being executed by User "A" re­
quests an I/O transfer. 

(b) Control is transferred to the appropriate driver 
which clears the "Done" bit in the TCB as­
sociated with User "A's" console and the I/O 
transfer is initiated. 
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(c) Control is transferred to the TASK SWITCH­
ING PROGRAM which then checks the "Done" 
bit in each TCB until it finds one that is set. If 
the "Done" bit in the TCB associated with 
User "B's" console is set, control is then re­
turned to the program being executed by 
User "B." 

(d) While User "B" is executing, the I/O transfer 
requested by User "A" is terminated under inter­
rupt control and the "Done" bit in his associated 
TCB is set. When the program being executed 
by User "B" requests an I/O transfer, steps 1-3 
again take place and User "A's" program will 
again gain control. 

Since the system is inherently I/O-bound, this 
method permits each user to consider the system to be 
dedicated to him alone. 

Clock interrupt handler 

This program maintains an internal calendar/clock 
which is initialized and updated via "CREATE" and 
"UPDATE" functions. 

User-interactive software 

User request dispatcher 

This program permits a user to log-in and execute 
those system functions which he requires. 

The user initially gains access to the system by typing 
in "CTRL/P". This program then requests that the 
user enter his game name and two-character protection 
code. After validity-checking this information, the pro­
gram then asks the user for the system function he 
wishes to execute and, if this user has been allocated 
this function by POLIS CONTROL, control is passed 
to the requested program. 

All of the user-interactive programs discussed im­
mediately below are executed as subroutines of the 
USER REQUEST DISPATCHER. 

Message switching prograDls 

The primary function of the POLIS system is to 
route messages from one user to another. Each message 
entered into the system is recorded on magnetic tape 
before being routed to its destination. 

(a) Send Message Program. This program allows a 
user to enter a message into the system to be 
delivered at a later time to another user. The 
program first asks for the address of the message. 
This may be a single name, a group of names, a 
special name which represents a group of names, 
or all players in the game. Next, the user is asked 
to enter the text of the message. 
The program then records on magnetic tape the 
addressing information, the text, and the time 
that the message was input. 
A particular user may operate in one of two 
modes: manual or automatic. In the former, any 
message input by the user will be given a pend­
ing status and will not be made available to its 
recipients until POLIS CONTROL has taken a 
specific forwarding action. In the later mode, 
any message input by the user will be made im­
mediately available to its recipients. 

(b) Receive Message Program. This program allows a 
user to receive all non-pending messages ad­
dressed to him since the last time he executed 
this program. The program prints out the body 
of the text as well as the time it was received. 

(c) Console-to-Console Communication. This function 
is not implemented in the present version, but it 
will be made available in a revised version. The 
purpose of the program is to link POLIS Con­
trol's (POLCON) console with that of some other 
user in order either to carryon a telephone-like 
conversation or to monitor the user's inputs to 
the system. 

Control prograDls 

(a) Create Game. This program allows POLIS Con­
trol initially to specify the entire environment 
for a game. The environment includes the follow­
ing information. 

(1) the date and time 

(2) the simulation names of all users in the game 

(3) the two-character protection code associated 
with each name 

(4) any special group names (i.e., names which 
represent groups of users) 

(5) the system functions which each of the users 
will be allowed to execute during the course 
of the game 
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This information is stored in the system tables 
discussed below. The program also makes a copy 
of this information on magnetic tape to permit a 
recovery in case of a system failure or to run an 
identical g;ame at some later time. This function 
cannot be allocated to any user except POLIS 
CONTROL. 

(b ) Update Game. This program allows a (control) 
user to make dynamic changes in the game en­
vironment (such as the date-time). The game 
environment may be changed in any way, with 
the exception that names may not be deleted. 

(c) Message Tape Status. This program allows a user 
to get a report of the messages stored on the 
magnetic tape. The report may be requested for 
any time period from the beginning of the game 
to the present, for any subset of senders, and/or 
for any subset of recipients. The report consists 
of the following information about each mes­
sage. 

(1) the sender 
(2) the recipients 
(3) the time sent 
(4) the status of the message (i.e., pending, for­

warded, or rejected) 
(5) the sequential number assigned to the mes­

sage by the SEND program 
(6) the capsule summary of message content 

(d) Retrieve lVI essages Program. The execution of this 
program is identical to that of the message Tape 
Status program except that, in addition to the 
information reported, the entire text of the mes­
sages is printed. This function is used in con­
junction with the program discussed next to al­
low a controller to effectively monitor the course 
of a game. 

(e) Umpiring Program. This program provides the 
means for a controller (such as POLIS CON­
TROL) to monitor the course of a game and to 
make significant modifications to the messages 
that are routed between the participants in the 
game. Specifically, the controller is allowed: 

(1) to forward a message to its recipients or, if 
the message is deemed to be inappropriate, 
reject it back to its originator; 

(2) to delete and/or insert text in the body of a 
message; 

(3) to encode a group of categories pertaining to 
the content of a message; and 

(4) to append an opaque comment about the 
message to be used in a post-game analysis 
of the game. 

Whenever a message is modified in any way, a 
copy of the original is retained in order to main­
tain the continuity of the game for subsequent 
analysis. 

POLIS network explanation 

This program allows a user to interrogate the system 
to get a brief description of any or all aspects of the 
system. 

N on-system software 

The POLIS system is designed to allow execution of 
non-communication system programs in either of two 
modes; stand-alone or interactive. 

Stand-alone (Library) programs 

In this mode, man-model simulation programs which 
require the facilities of the entire computer are stored 
on a library tape and, when requested, preempt the 
execution of the system. A core image of the system is 
saved and the requested program is swapped into core. 
After completion of the program the system is restored 
and any game which was in progress can continue as 
though no break had occurred. 

Interactive programs 

In this mode, simulation models may interact with an 
on-going game in much the same way as a live partici­
pant. That is, inputs to and outputs from the model will 
be stored on the message tape as though they were actual 
messages. This function will be implemented in the 1972 
revisions of the system. 

Data-base structures 

Task control block (TeD) 

The TCB is a table of 512 core words which contains 
all of the information associated with a particular user 
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console. In the current configuration there are three 
TCB's, one for the primary teletype console and one for 
each of the acoustic couplers. 

The TCB contains the following information. 

(a) a pointer to the next TCB 
(b) the contents of the stack pointer (relative to this 

user's stack) at the time this TCB last lost con­
trol due to an I/O request 

(c) this user's stack (64 words) 
(d) the program restart address for this user 
(e) the device number associated with this TCB 
(f) the status of the I/O device associated with this 

TCB 
(g) an input buffer (72 bytes) 
(h) items for the address of a message to be output 

and the length of the message 
(i) Dectape status 
(j) Dectape block number to be input/output 
(k) Dectape buffer (512 bytes) 
(1) the entry· number in the name table of the user 

currently using this TCB 
(m) work space for the various programs which this 

user may execute (139 words) 

SysteIll tables 

The system tables contain all of the information 
about the current game which was initialized by the 
Create Game program. 

(a) Permanent Bit-Map, which maintains an account 
of the currently available blocks on the message 
tape. There are 576 blocks of 512 bytes on a 
Dectape. A zero bit indicates that the associated 
block is available. A one bit indicates that the 
associated block has been used. 

(b) Date and Time calendar / clock, consisting of 
twelve numerical ASCII characters which repre­
sent the date/time (formatted as: 11/1/71-
09:30:30). 

(c) Name Table, consisting of a packed table of 
ASCII characters which comprise the names of 
all of the users in the game. The names may be 
composed of any ASCII characters and may be 
of any length. 

(d) Protection Codes (two characters), associated 
with each name in the Name Table. 

(e) Privilege Table, consisting of a table of 16-bit bit­
maps indicating the system functions which have 

been allocated to the associated name in the 
Name Table. 

(f) Subordinate Name Table, which links the entry 
numbers of group names with the entry numbers 
of the participant names which they represent. 

Magnetic tape files 

Files on the magnetic message tape are composed of 
linked blocks. The first word in each block is a pointer 
to the next block in sequence. Files may be of any 
length, and a block-pointer of Zero indicates the last 
block in the file. Consecutive blocks in a file are physi­
cally at least four blocks apart. Each file contains the 
image of one message. 

The Tape File Directory consists of ten blocks on 
the tape and is composed of 226 entries of eleven words 
each. Each entry contains the following information 
about the message contained in the file. 

(a) the number of the first tape block in the associ-
ated file 

(b) the status of the message (e.g., PENDING) 
(c) the Name Table entry number of the sender 
(d) the date/time that the message was sent (coded 

as twelve 4-bit segments) 
(e) a bit-map indicating which of the original re­

cipients have not yet received the message 

SUMlVIARY 

In this paper we have tried to identify the main char­
acteristics that should be incorporated into a compre­
hensive, computer-based system for the administration 
of social gaming exercises. We have described, first 
functionally and then technically, the game adminis­
tration system developed at the POLIS Laboratory. 
Our system design combines information management, 
simulation, and data structuring and analysis capabili­
ties into an integrated, user-oriented package. A limited, 
first version of the system is currently operational on 
the Lab's PDP-II system. Realization of the full design 
is our development goal for 1972. 
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The development of process control software 
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INTRODUCTION 

The use of on-line, real-time computers for control of 
industrial processes has been increasing rapidly during 
the past ten years. That the cost of the software neces­
sary to implement such systems exceeds even the hard­
ware costs became clear in the initial installations. As a 
consequence, much effort was devoted to the develop­
ment of efficient, economical software and software ap­
proaches for use in industrial process control applica­
tions. During the past five years, there has emerged 
from these efforts the realization that process control 
software is different from software for large scale batch 
processing, time-sharing, message switching, or any 
other computer applications. It contains its own require­
ments and problems and leads to a distinct set of solu­
tions. Moreover, this difference is due to more than the 
size of the computers involved in industrial process 
control. The objective of this paper is not to catalog the 
significant features of various software systems in 
existence today for this has been done very well in a 
number of recent survey papers. Rather, the objective 
is to describe the basic structure of current industrial 
process control software, emphasizing the unique struc­
ture of that software, how it evolved, and its current 
points of controversy and problems. 

THE PROCESS CONTROL APPLICATION 

The source of the uniqueness of process control soft­
ware is due to the nature of the application, environ­
ment, vendors, and users. There is a large variety of 
processes in the paper, rubber, chemica], petroleum 
primary metals industries. Control of such processes 
generally involves a set of plant instrumentation in­
cluding sensors, transmitters, and special instruments 
which provide measurements of physical and quality 
variables important in the process application. Such 
measurements may be continuous in time (tempera-
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tures, pressures, flows, thickness, speed) or discrete in 
time (concentrations of a stream as measured by an 
on-line chromatograph from periodic samples from the 
stream, average cross machine basis weight as measured 
by a scanning beta gauge, quality variables which are 
measured off-line in a laboratory). Process control in­
volves the use of these measurements in order to help 
the human operator more economically run the process. 

This objective may take one of several specific forms. 
For example, regulation or direct control has as its ob­
jectives the maintenance of critical process variables at 
prescribed values called operating or setpoints. The 
need for regulation of pressures, temperatures, speeds 
and the like, are obvious. Quality variables too may be 
regulated as for example maximum moisture in a sheet 
of paper or thickness of sheet steel. Regulation involves 
the basic feedback process: the comparison of measured 
and desired values (set points) to produce an error and 
the use of that error signal via a control algorithm to 
change some manipulated variable by a physical actu­
ator. For example, the regulation of tank liquid level 
might be carried out by manipulating the position of a 
valve in an input stream. Such control is relatively fast, 
involving sampling of hundreds of variables several 
times per second, and outputting to actuators at the 
same rate. The periodic nature of this task is one of the 
dominant features of industrial process control in that 
the time sharing of the computer among many such 
tasks results in critical response requirements on the 
hardware and software. 

Control is a tool rather than the end in itself and 
necessarily is modified from time to time as the process 
needs or physical structure change. The application, 
however, does not permit the taking of the computer 
off-line for program preparation but rather demands 
that the software be capable of modification while the 
process is running on-line with attendant guarantees 
and assurances of safe reliable bug-free operation. 
Hence, an essential ingredient in process control appli­
cations is operator integration which takes place 
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through special purpose consoles oriented toward the 
particular application. From these consoles, an operator 
may examine any variable in the system, produce sum­
mary logs of the operation of the process, demand 
changes in parameters being used for control of the 
process (setpoints for example), and may even call for 
changes in the structure of the control system: adding 
variables to be scanned, adding control calculations for 
regulatory purposes, or deleting control loops. This im­
plies that all of the parameters and data associated with 
the process control regulafon program must be in a 
form which can be mnemonically referenced and modi­
fied by an operator. Thus, the data base associated with 
regulatory control cannot be imbedded in the programs. 
This leads to the special structure of this software. 

Supervisory control differs from regulatory control 
in that the objectives are not the maintenance of pro­
cess variables at particular values but rather the de­
termination of those operating or set points. For ex­
ample, operating guides are operating conditions which 
have been deduced during previous successful opera­
tions of the process. When similar conditions hold, the 
computer directs the operator to use these operating 
points or else justify any deviations. This takes away 
the option of operating the process in a safe but un­
economical manner. 

Optimization of operating conditions may be the 
goal of the supervisory control system. Optimizing con­
trol is the determination of set points from an analytical 
performance criterion plus a mathematical model of the 
process. Successful optimal control has been carried out 
in the petroleum, steel, and electrical power industries 
among others. Supervisory control is characterized by 
much more complex programs than regulatory control 
but carries with it the same demands on reliabi1ity, 
centralized data base, and operator communication. 
That is, mathematical models of the process imply 
knowledge of the process state which in turn implies 
knowledge of all the variables, scale factors, offsets, 
calibration factors and other parameters which make 
up the process data base. The operation or status of 
every instrument, actuator, and control in the process 
is needed to determine the current state of the process. 
All of this information must be made available to the 
operator on demand and so it too must be organized in 
a central, accessible data base. 

Many special purpose programs are necessary to sup­
port the basic application including caJibration, hard­
ware checkout, special logging and data reduction pro­
grams, startup and restart routines, and general pro­
grams to maintain and update the data base, including 
tables of mnemonics. In addition, the functions which 
are not automatically scheduled according to time or 

event information must be available on demand of the 
operator, implying an on-line, interactive command in­
terpretive program. All of these many programs must 
co-exist, interact through the data base and executive 
control programs and hence lead to a far from trivial 
implementation problem. The result is the current pro­
cess control software organization described in the fol­
lowing sections. 

PROCESS CONTROL SOFTWARE 

For a very brief interval, it was thought that process 
control software would, after initial debugging, run 
without change for a long period of time. If this were 
true, many of the problems of the initial systems would 
not have existed and the current structure of process 
control software might be radically different. The pro­
cess changes often, necessitating similar changes to 
the software. The chief characteristic of modern process 
control software is its ease of change, permitting on-line 
modification of control algorithms and even addition 
and checkout of programs while the system is running. 
The typical computer used for industria1 process control 
during the last five years is what today would be con­
sidered a medium-sized machine, significantly larger 
than today's minicomputer in the sense of attached 
peripherals. As a consequence, it was necessary to pro­
vide an executive control program to oversee the mul­
tiple interacting programs operating in a real-time, con­
current manner. This need, plus a desire for ease of 
modification and the demand for a flexible, general 
process data base leads to the structure shown in Figure 
1. 

That figure shows a conventional real-time executive 
control program (a monitor) along with a process data 
base and application programs. The distinctive part 
which makes it uniquely process control software is the 
set of application packages which are designed to carry 
out specific tasks in a very efficient manner while at the 
same time permitting easy communication among them­
selves, the executive, and the application programs. 

Process control executive 

Successful process control involves the implementa­
tion of many concurrent tasks. Process control programs 
doing data acquisition, control calculations, analog and 
digital output, operator communication and the like 
call for some multiprogramming capability. Executive 
control programs recognized this and incorporated the 
multiprogramming in one form or another. Early execu­
tives organized core into two partitions, one containing 
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permanent resident programs (those requring fast re­
sponse or maintaining control system integrity in case 
of failure of the bulk storage system) and the second 
being used to swap program modules called coreloads in 
and out of core. A coreload consists of one or more main­
line application programs plus subroutines used by these 
programs and not contained in the permanent resident 
software. Coreloads may have different priorities in 
which case the executive often interrupts execution, 
swaps the coreload out (saving it on bulk storage), 
swaps in and executes the higher priority coreload and 
later restores execution of the interrupted core load. 

Multiprogramming based on coreload swaps proved 
too slow for many applications. This led, of course, to a 
need for large and larger core storage so that critical 
programs could be permanently core resident. This 
motivated a change toward a more dynamic allocation 
of memory. The most common system is a multiparti­
tion system in which all programs assigned to a parti­
tion run with the same priority. This implies that a pro­
gram, once loaded into a given partition and execution 
begun remains in that partition until its task is com-

pleted. Then the next scheduled task for that partition 
is swapped in to replace the completed program. 

The partition system recognized a perhaps nonob­
vious fact of life of process control systems: the critical 
resource is not main memory but rather the bulk stor­
age channel (usually the disk). This is especially true of 
systems based on moving head disks of course. Running 
tasks to completion minimizes the number of bulk 
storage swaps while maintaining the priority levels of 
tasks. 

The multipartition system requires the allocation of a 
progra,m or task to a partition and the assurance that 
all such programs fit in a given partition and have the 
same priority. This requires a careful analysis of the 
application but results in a smooth, controllable real­
time implementation. 

Most machines today are of the 16 or 24 bit word 
length variety. The 16 bit machines in particular take 
advantage of the partition system because there is no 
need for dynamic. relocation of programs. The 24 bit 
machines can relatively address ±8K of core, a value 
sufficient to permit dynamic relocation of most process 
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control programs (but not of the data base). In some 
executives, core is divided into partitions with some of 
the partitions being used as indicated above but with 
one dynamically allocated by the executive. The latter 
facilitates background Fortran-level processing. 

Process control executives contain extensive error re­
covery capability because of the difficulty of restarting 
the system in case of a crash with critical data in core. 
Error recovery includes backup of I/O devices where 
feasible, specification of alternative devices, multiple 
tries at attempting reading of bulk storage, automatic 
power fail program backup, and automatic maintenance 
of copies of critical files like the process data base. 

Such executives permit m~ltitasking in one form or 
another but not usually in the completely general case. 
That is, tasks in a partition are permitted to schedule 
(turn on, turn off, delay, or queue) other tasks in that 
and other partitions. However, the allocation of the task 
to core is predetermined and its priority is not dynamic, 
but rather pre-assigned. This has proved necessary not 
only because of the difficulty of dynamic relocation but 
also because of the need to guarantee a maximum re­
sponse time for critical real-time programs. 

I/O in these executives is handled in the straight­
forward manner, using I/O drivers and I/O request 
subroutines. Drivers are responsible for the maintenance 
of the interrupt driven I/O with the actual device, out­
putting or inputting one character or word at a time 
usually with one interrupt per data item transferred. 
Little I/O is done through direct memory channels 
except in the case of bulk storage devices. The I/O re­
quest subroutine is used to control the competition 
among many tasks at different priority levels from in­
terfering with one another. Such routines queue re­
quests, notify routines (reschedule them) when a re­
quested I/O operation is complete, test device status, 
etc. 

As long as the volume of I/O is low or the response 
time of tasks not critical, such an organization is quite 
sufficient and essentially like any other application. 
That is, none of this software is unique to process con­
trol. 

Two situations arise, however, which call for unique 
process control software. They are: the need for high 
volume, very flexibly organized process I/O; and the 
need for mnemonically oriented operator communica­
tion. These require special packages for their imple­
mentation and are discussed below. 

Special packages for data acquisition and control 

The need for generality and flexibility in the typical 
industrial data acquisition system is paramount. Not 

only is it desirable to be able to change the parameters 
of the data acquisition loop or the status of a sensor from 
active to inactive, but also to be able to add and delete 
from the list of points in a flexible fashion. Thus, if a 
sensor is added to the system, it is desirable that the 
operator be able to add the point to the list of converted 
values, including all the appropriate parameters neces­
sary for the conversion and all the linkages to control 
programs associated with the variable out of limits, 
bad data, and so on. This, of course, can be done by re­
programming the routine, but is undesirable and not 
necessary. The basic operations involved in converting a 
point are similar from point to point. The scan routine 
uses the address of the point, values for the amplifier 
gain, limits, etc., and in effect, applies similar sequences 
of algorithms to each of the points to be converted. A 
data acquisition package takes advantage of this as 
shown in Figure 2 which shows an interpretive scan 
program and a set of data structures called loop records, 
with one loop record associated with each point to be 
converted. All the data and parameters associated with 
a particular point is stored in the record, including the 

Table of Loop Records (part of process data base) 

Data Acquisition and Direct Digital 
Control Package 

Interpreter Program 

Scan each loop record 

periodically 

Carry out appropriate 

actions by calling 

corrunon routines 

using data and 

parameters from the 

loop record 

--0 
--0 
--0 
--0 

&..------0 
Corrunon Routines 

kth loop record 

containing all data 

and parameters for 
data acquisition and 

control loop 

Analog input ~1odule 

Scan Alana Module 

Engineering Units Conv. 

Control Algorithms 

Filtering Algorithms 

and others 

Figure 2~ Example of data acquisition and direct digital control 
package 



period or time between conversions, status of the point, 
external names, etc. The interpretive program scans the 
records in some sequence until it finds one which is 
scheduled for conversion. It then examines the loop 
record to determine the appropriate dat.a and algorithms 
to be carried out on that data point. Pointers to the 
individual algorithms to be carried out on the point, 
followed by the parameters to be used by that algorithm, 
are stored in the loop record. If any error is detected in 
the conversion, an error recovery routine is entered and 
executed. This might include an attempt to reconvert 
the point or to estimate the current value in terms of the 
previous value (which is stored in the loop record), or 
preparation or notification of either a program or the 
operator. The interpretive program then continues 
through the loop records, is offset and scaled. After 
conversion to engineering units, the data is limit 
checked for validity, alarm checked, and perhaps digi­
tally filtered by a moving average filter involving the 
current value and the previous several values. The set of 
loop records is a very well organized process data base. 
The loop record concept is a very flexible one in that the 
actual algorithms carried out on any particular data 
point may vary considerably by simply changing the 
parameters and pointers in the loop record. 

The only portion of the program particular to a 
specific set of data points to be read is the information 
stored in the loop records. It follows that the interpre­
tive scan program can be written and debugged with­
out actual knowledge of a particular application except 
that all algorithms which might be needed in the appli­
cation must, of course, be provided. Individual points 
can be added or deleted by creating or deleting one of 
the loop records. Because of the fixed format of the sys­
tem, it is possible to organize the various loops so that 
not all points with the same conversion period need be 
carried out at exactly the same instant of time. That is, 
points with the same conversion frequency can be sub­
divided into smaller groups which are converted at the 
correct frequency but offset or phased with respect to 
one another in time. 

The efficiency of such a system must be considered. 
The interpreter scans through items in a loop record and 
in effect calls small modules or sub-routines to carry 
out the desired operations. There is a certain amount of 
overhead associated with scanning through the loop 
record, determining which routine is to be carried out, 
transferring to this module or routine, as well as extract­
ing from the loop record the parameters and data needed 
by that algorithm. If the module or algorithm is too 
small, it follows that this overhead involved in scanning, 
transferring and extracting parameters, may be com­
parable to or even large compared to the time to carry 
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out the algorithm. The result would be excessive over­
head, for inline code to carry out the same task would 
be more efficient. The objective is, of course, to use 
modules whose execution time is large compared to the 
overhead or scan time so that no real overhead penalty 
is incurred. The overhead associated with interpreting 
the loop records is offset by the flexibility of the system. 
Most important is the ease of operator communication 
with the data base. 

If this can be done, of course, the generality and flexi­
bility of the interpretive loop record organization can 
be achieved without discernible overhead penalties. 
Whether or not this can be done is dependent upon the 
organization of the loop record, the instruction set of 
the computer, and the addressing modes available in the 
computer. 

Control loops lend themselves to a simi1ar loop record 
organization. Additional functions (filtering, control 
algorithms, error checking, outputting, etc.) are listed 
in loop records often along with the data acquisition 
information and interpreted by the same or a similar 
routine. The result is a separate data base and data ac­
quisition and control package which may be interrupt 
driven independent of the executive or possibly as­
signed a high priority level and controlled by the execu­
tive. 

The special purpose packagi:\ relieves the application 
programs from considering the data acquisition and 
direct control task in great detail including error check­
ing, organization of operator communication, and 
startup. Other applications are similarly best handled 
by special purpose packages. These include sequencing 
control-monitoring the state of the process and caus­
ing events to occur (turn on burners, valves, etc.), in 
the correct sequence and when prescribed conditions 
are met. Examples include batch processing of chemical 
processes, control of annealing lines, and the like. 

Operator communication becomes a straightforward 
task with a data base arranged as described above. 
Interface routines to the data base provide application 
programs the ability to read or write any particular 
item in any record (including a full complement of error 
checking). Copies for backup and restart are available 
because of the centralized location of data as opposed to 
its distribution throughout application software. 

Operator interaction through a console limits the 
amount of error checking necessary and makes a very 
acceptable system for use in an on-line situation with 
operators who are not trained computer operators. 
Function keys are the most common communication 
scheme with labeling in industry-sensible terms. Func­
tions limit the complexity of the operator console sup­
port routines but nonetheless are nontrivial in size. 
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In larger systems, it is convenient to separate the 
data base into two parts, that which is essential to in­
core reliable operation in case of disk failure and the 
remainder which is then swapped in and out of core 
(perhaps on a single record basis) as needed. 

In addition to special packages which are unique to 
process control, other application programs are provided 
which may interface to the executive and the special 
purpose packages. Optimization is an example, permit­
ting optimal control of a process unit provided a 
mathematical model and sufficient measurements are 
available. These differ from other application programs 
only in that they are "canned" rather than written 
by the user in a higher level language. Typically, they 
interact considerably with the data base and its support 
routines. 

SOFTWARE PREPARATION FOR PROCESS 
CONTROL 

Current medium-sized and larger systems universally 
provide the ability to write application programs in 
higher level languages, most notably, extended Fortran. 
This is both to limit the level of expertise of program­
mers but also to permit control engineers to produce 
application software. With intelligent use of data ac­
quisition and control data base packages provided by 
the vendor and the general process control real-time 
executive control program (including all its entries for 
scheduling, error checking, I/O control, etc.), higher 
level language programming becomes quite feasible, 
especially in applications which involve significant com­
putation. Other applications are developed more ef­
ficiently via packages like the data acquisition or direct 
digital control packages described above. These are 
usually programmed in assembly languages and linked 
tightly with the executive. In some cases, they are as­
sembled as part of the executive. 

The net result in Figure 1 is an executive which does 
not control all I/O but only that which is shared among 
application programs. Special purpose packages main­
tain a centralized data base and perform specialized 
control functions. Application programs perform tasks 
on a somewhat slower basis, but interface extensively 
to these packages through normal system subroutines. 

Because of the need for flexibility and change, on-line 
program preparation is needed in most process control 
systems. This takes the form of a background command 
processor, compilers and assemblers and library mainte­
nance routines as well as link edit routines. Program 
preparation including debugging can be done in a con­
trolled manner in one of the partitions, without up­
setting the remainder of the software system. 

In recent systems, macro assemblers have become 
available, even including libraries of system macros 
which permit a user to custom tailor the operating sys­
tem software to his particular application (at least in 
the minicomputer process control systems). At present, 
few cross assemblers are available and even fewer cross 
compilers for software preparation on time-sharing or 
batch data processing systems. 

Much more significant is the preparation of data in­
puts for the dedicated application packages. The data 
base contains all the information needed for the carry­
ing out of these dedicated tasks. The operator console, 
with its function keys, provides on-line data entry, 
program change, control application modification, and 
the carrying out of operator commands. Off-line pro­
gram preparation is through translators of one form or 
another. The natural language for the application might 
be a block diagram indicating the interconnection of the 
measurements, setpoints, filtering, control and feed­
forward algorithms. Specified this way, they must be 
translated to data to be stored in the internal data base 
for interpretation. 

lVlany such communication languages have been de­
veloped in order to provide a means for process engi­
neers who are not trained programmers to set up and 
maintain an application involving hundreds and even 
thousands of variables. Such systems specify the appli­
cation in an English language fashion which is then 
translated to internal data storage. Others are of the 
"fill in the blanks" form which is a questionnaire which 
is completely self documenting (and 100% of the docu­
mentation) and which, when punched line for line on 
cards, provides input to a translator which generates 
interval entries in the tables of the various packages. 

With these programs, an application can be put on­
stream very rapidly since the essential programming is 
done and debugged independently of the particular ap­
plication. l\10reover, the change from one control 
structure to another (one startup procedure to another, 
etc.) is very straightforward, amounting only to change 
of data but no essential reprogramming. There is little 
penalty incurred in changing the control software, even 
less than in the case of Fortran programming of applica­
tion programs. As mentioned in the next section, this 
package concept is less economical today because of the 
introduction of minicomputers. 

The other trend today is toward the use of "real­
time languages" for process control, even involving an 
attempt at a worldwide standard. There is a difference 
of opinion as to the economics of standard process con­
trollanguages. As noted in Figure 1, the bulk of process 
control software lies in the executive and the application 
packages. Application programs tend to be written to 
use these programs and hence are less expensive (the 



complexity of the real-time application is imbedded in 
the application packages and the executive). One school 
of thought advocates the need fpr a higher level system 
programming language for the economic and efficient 
production of the executive and the application package 
or at least the tailoring of these standard packages to a 
given configuration and application. The other school 
of thought argues that these should not be specialized 
or customized but be standard so that they can be sup­
plied by any vendor (and at reasonable cost since they 
can be written off over a large number of installa­
tions). This school of thought then argues that the 
remaining cost is in the application programs and 
that a language ought to be adopted for this purpose 
(extended Fortran, or some modification of PL/1 or 
Algol are among the suggestions). 

It appears that no economic study has actually been 
carried out to determine the savings which might result 
from either of these approaches. The latter case already 
provides extended Fortran so that only incremental 
gains can be expected. The former case is difficult to 
assess because it depends upon the need for changing of 
standardized software packages or adaptation of these 
to various configurations of computers. If it were not 
for the minicomputer, data could eventually be 
gathered. However, as indicated in the next section, the 
minicomputer is changing the economics of process con­
trol software significantly. 

CURRENT PROBLEMS IN PROCESS CONTROL 
SOFTWARE 

The development of process control software over 
the past five years or so was directed toward the or­
ganization of Figure 1. Recently, packages for data 
acquisition and direct digital control, sequencing con­
trol, batch processing, process optimization, model 
identification, graphic operator communication, and 
others were developed. If the use of medium-sized 
machines continued, this software would have resulted 
in significant decreases in costs of process control soft­
ware implementation. Several problems, however, indi­
cate that further development is necessary. 

First, the use of a medium-sized machine is difficult to 
justify economically in many applications. The capabil­
ity of such machines is such that many tasks can be 
carried out by a single machine. This, in turn, places 
severe demands on the executive and application soft­
ware in order that the installation can be carried out 
smoothly. Moreover, the process itself must be large 

. enough to justify such a machine and such extensive 
software costs. 

The advent of the minicomputer with its low cost has 
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changed the picture considerably. The lower cost of 
small configurations implies that several tasks need not 
be implemented in a single machine in order to justify 
the use of a computer for control. This, in turn, implies 
that perhaps the extensive software developments of 
Figure 1 are not necessary for any smaller applications. 
The result has been the use of minicomputers for many 
small applications which in previous years had used 
larger machines. This, in turn, implies that the number 
of systems to write off software package development 
has decreased considerably. Hence, larger systems with 
very sophisticated software packages have recently 
been more difficult to economically justify. 

The minicomputer poses a set of problems which are 
considerably different. First, the varied configurations 
and applications do not always require complex execu­
tive or monitor systems. Consequently, there is less 
justification for the development of extensive executives 
on the part of vendors. The result is sometimes more 
software development for the minicomputer system 
than for a larger installation, robbing the system of its 
apparent economic advantage over the larger system. 

A second source of difficulty is the multicomputer con­
figuration. The use of minicomputers for dedicated ap­
plications still requires the coordination of the systems 
to achieve overall process control including scheduling 
and higher levels of control. Hooking together a number 
of small machines each implementing a portion of the 
application is far from trivial for there is still a need for 

'a coordinated data base and operator communication 
even if the application is distributed over a number of 
machines. 

A related problem affecting the development of soft­
ware for smaller machines is the rather commonplace 
prediction that the bulk of sales for systems will lie in 
discrete parts manufacturing rather than process con­
trol. The software necessary for this application has not 
been widely developed and agreed upon but will cer­
tainly affect the organization and structure of future 
minicomputer process control software. 

The current question in process control software is 
how to economically produce the special purpose real­
time programs necessary for a low cost but efficient 
implementation in a stand-alone minicomputer. In ad­
dition, how can the advantages of packages for specific 
applications be gained since it is difficult to develop 
them such that they are compatible with the varied 
configurations and computer systems arising today? 
Perhaps the answer is a higher level systems program­
ming language with program preparation on a host 
machine. Perhaps the answer lies in generalized soft­
ware preparation schemes such as are used to generate 
execution programs for large data processing machines. 
Perhaps the answer lies in the use of sophisticated 
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template macro assembly languages. Whatever the 
answer, the well developed process control software 
concept is today facing a period of rapid change similar 
to that of five years ago. 
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Future trends in software development 
for real-time industrial automation 

by H. E. PIKE 

General Electric Manufacturing & Process Automation Advanced Development Operation 
Lynn, Massachusetts 

INTRODUCTION 

"The is a desk-size, stored program com­
puter. It has a medium-scale capacity and uses a single 
add~ess system. The has all the advantages 
of hIgh component reliability, automatic operation, and 
ease of programming." 1 
. These words are from the introduction of the opera­

tIOns manual for one of the first minicomputers-the 
"LGP 30 Royal Precision Electronic Digital Com­
puter." The manual was written in 1959. In twelve 
years we have just barely begun to understand the 
impact of this size computer upon the industrial 
automation. 

In this paper we will examine future trends for pro­
gramming for process control and real-time applications 
of industrial automation. Although blind forecasting is 
exciting, we will take the more conservative approach 
of examining past history and our current environment 
for factors which will lead to future developments. A 
short definition of the scope of applications considered 
will be followed by examination of current technological 
and economic trends. A brief recap of the companion 
survey paper by Schoeffier2 will serve to establish the 
current state-of-the-art and a survey of current active 
development and/or standardization activities will be 
followed by predictions for the future. These predic­
tions will be made from the fundamental viewpoint 
that future developments are determined by three fac­
tors: the current state-of-the-art, current problem 
areas, and new technological tools available for reduc­
tion to practical use. An underlying assumption is that 
there is or will be sufficient economic motivation to 
undertake the developments required, with timing 
being the only uncertainty. 

RANGE OF APPLICATIONS 

I t is necessary to be more specific about the range of 
applications to be discussed. Future trends in real-time 
industrial automation will be discussed, rather than the 
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more encompassing possibility of all real-time applica­
tions. Not included in our considerations are the appli­
cations typically called command and control, tele­
processing and interactive management information 
systems (certain portions of our discussions will, of 
course, apply to these areas). 

Typical real-time industrial automation applications 
span a range from direct numerical control to load flow 
control and economic dispatch in the electric uti1ity 
industry. Also included are direct digital control of 
chemical processes, supervisory control of chemical 
processes, sequencing control on assembly lines, control 
of batch chemical processes and computerized numerical 
control (see References 3-13). 

In direct numerical control a small, fast, dedicated 
computer is used to control a machine tool directly. 
Typical required response times are on the order of 
milliseconds. Load flow control calculations on the 
other hand involve large data-handling requirements 
because of large matrix inversions, and involve re­
sponse times of minutes.14 

In direct digital control the computer directly manip­
ulates the positions of control elements such as valves 
without an intermediate mechanical control device. 
Direct digital control requires response times on the 
order of seconds to disturbances in the controlled 
variable.15.16.17 

In supervisory control the computer is used to pro­
vide set points which are then actually controlled by 
hard-wired analog equipment. In this case the real-
. ' tIme response capability of the control system is on the 

order of minutes. 
We could go on, but the point is clear: there exists a 

tremendous range of application requirements in this 
area which we have labeled industrial automation. 

PRESENT STATE-OF-THE-ART 

Schoeffier2 has assessed the current available tools 
for software development. To summarize, in practical 
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use today we have as wide a range of software ap­
proaches as there are applications,18,19 about which the 
following statements seem to hold. 

• Most of the real-time programming is still done in 
assembly language. 

• Various dialects of Fortran have been tried, with 
mixed results. They have been most successful 
where a high content of engineering calculations is 
included (References 20 through 27). 

• Initial experiences with problem-oriented pro­
gramming systems appear very promising, particu­
larly when two conditions are met: 
-functional similarity between installations, al­

lowing a reasonable match between program­
ming system and control problem (References 
28 through 38) . 

-sufficient economic base to merit development of 
general purpose packages. 

• Various attempts at general purpose real-time lan­
guages have shown the concept to be feasible, but 
have remained as academic exercises, in part be-

cause of the inherent restrictions due to program­
ming architectures of current computers (Refer­
ences 39-47). 

CURRENT TRENDS 

Two current trends will combine to motivate future 
development of improved programming techniques: 
microelectronics, and recognition of the cost and com­
plexity of the software production process. 

Microelectronics 

The dramatic downward trend in price/function in 
microelectronics is widely recognized. Figure 1 is typical 
of the current extrapolations of this trend. An easily 
customized MOS/LSI desk calculator chip has been 
recently announced at a reported volume price of less 
than $20.48. Our colleagues in the hardware design area 
confirm that this device is comparable in logic power 
(in terms of gate equivalents) to the LGP /30 of ten 
years ago discussed above. 

If this isn't enough, a major manufacturer has an­
nounced a CPU on a chip, of perhaps five times the 
complexity of the LGP /30, and our R&D associates 
advise us that such devices with electrically alterable 
ROM's are feasible, for the ultimate in flexibility. 

The message is clear-Software functions will dis­
appear into hardware (or firmware) and modest invest­
ments in increased hardware capability (if made cor­
rectly) will reap outstanding software cost savings. 

The software development process 

Another important trend is increasing recognition of 
the difference between "programming" and "software 
development." Examining the following breakdown of 
the software production process makes this distinction 
clear: 

1. Problem analysis 
2. System structure design 
3. Logic design 
4. Program coding 
5. Language processing 
6. Unit test and debug 
7. System test and debug 
8. Installation 
9. Maintenance 

Although we all agree that the cost of software de­
velopment exceeds the cost of hardware, we cannot 
find any common agreement as to particular areas of 



concentration of cost within this breakdown of the 
software development process. 

CURRENT ACTIVE DEVELOPMENT AND 
STANDARDIZATION ACTIVITIES 

A number of industry-wide and university related 
standardization and development activities are taking 
place which will influence trends for process control 
programming. Among these are the Purdue Workshop 
on Standardization of Industrial Computer Languages,49 
the American National Standards Institute's PL/I 
Standardization and Development effort, and several 
university programs in industrial automation. 

Purdue workshop 

The Purdue Workshop on Standardization of in­
dustrial computer languages has stated as its objectives: 

1. To make procurement, programming, installa­
tion and maintenance of industrial computer 
systems more efficient and economical through 
the development and standardization of in­
dustria] computer languages. 

2. To minimize educational and training require­
ments for the use of industrial computer 
languages. 

3. To promote program interchangeability of appli­
cation programs between different computer 
systems. 

The standing committees of the workshop include: 

1. Long Term Procedural Language Committee 
2. Problem Oriented Language Committee 
3. Glossary Committee 
4. Fortran Committee 
5. Steering Committee 

The workshop met first in the spring of 1969 and 
approximately every six months thereafter. 

AMERICAN NATIONAL STANDARDS 
INSTITUTE SUB-COMMITTEE X3J1 

X3Jl is a sub-committee of Committee X3 of the 
American National Standards Institute whose scope is 
the proposal of a draft American N ationaljISO Stan­
dard Composite Programming Language based on PL/I. 
X3J1 is organized into four working subcommittees 
which are responsible for: 

1. Standardization 
2. Development 
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3. Subsets 
4. Development for Industrial Computers 

The scope of Committee X3J1.4, PL/I Development 
for Industrial Computers, is the development of a version 
of PL/I suitable for application to process control and 
manufacturing automation by defining and fulfilling 
the functional requirements of this application area. A 
basic rule governing this activity is that any string of 
characters which has validity in the language being 
developed and the PL/I that X3J1 proposes as a 
standard must have the same semantics. 

X3J1.4 and the Long Term Procedural Language 
Committee of the Purdue Workshop are currently co­
operating to determine if the production of a single 
result is feasible. 

UNIVERSITY AND OTHER ACTIVITIES 

Various university laboratories both within the 
United States and abroad are active in the develop­
ment of real-time languages and/or programming tech­
niques for industrial computers. 

Some of the germinal early real-time language work 
in the United States was done at Case-Western Reserve 
University in their Systems Research Center. The 
Purdue Laboratory for Applied Industrial control con­
tinues as sponsor of the Purdue Workshop. Results of 
significant interest have appeared from the University 
of Toronto, and German, French and British working 
groups. 

FUTURE TRENDS IN SOFTWARE 
DEVELOPMENT FOR REAL-TIME 
INDUSTRIAL AUTOMATION 

We have noted above a number of forces which are 
currently at work to influence future trends: 

1. Microelectronics-a capability to produce very 
powerful central processors at reduced cost. 

2. A complex software development problem for 
real-time application. 

3. A current proliferation of programming tech­
niques which are more or less satisfactory, 
depending upon their match to the application 
for which they are used. 

4. A number of currently active development and 
standardization activities working in areas 
which range from customized problem-oriented 
languages to development of real-time version 
of PL/I. 

Consideration of these forces leads us to believe that 
the following trends will become evident in the future. 
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1. Computers with architectures more oriented to 
the use of special purpose real-time program­
ming languages. 

2. Hidden computers. 
3. High-level real-time languages. 
4. Problem-oriented languages. 
5. Software factories combining sophisticated lan­

guages and debugging tools for the more effective 
and efficient production of software on host 
computers. 

New real-time computer architectures 

Because real-time computers are special purpose 
rather than "general purpose" machines, a trend will 
occur toward more customized architectures, particu­
larly from a programming point of view. Characteristics 
of these new architectures are likely to include: 

1. Bit addressability 
Arrangement of data in a real-time computer 

in quanta of 8 bits is not very meaningful in 
the real-time environment. Character oriented 
data is manipulated relatively seldom in a real­
time environment. Convenient methods of ac­
cessing data fields of varying widths will be 
required for convenient implementation of data 
structures, for example. 

2. Direct implementation of real-time features 
Real-time features such as semaphores, more 

powerful interrupt structures with less inertia, 
and direct hardware support of event data will 
ultimately be implemented directly in the 
hardware. 

3. Control structures 
Because sequencing problems represent a high 

percentage of real time calculations, the instruc­
tion repertoire of real-time computers will be­
come more oriented to the easy implementation 
of more sophisticated control structures. 

4. More sophisticated addressing techniques 
Although recursion is not high on the list of 

requirements for real-time applications, the 
ability to handle reentrancy in a concise manner 
is important. This and other requirements such 
as the manipulation of inhomogeneous data 
aggregates will dictate more sophisticated ad­
dressing modes. 

When these more powerful architectures will occur is 
not entirely evident at this time. It seems that an 
orderly approach would be to pursue a more consistent 
definition and understanding of the true real-time lan­
guage requirements and then let these architectures be 

designed to support such languages (Refs. 50 through 
60). 

Hidden computers 

The capability to build special purpose hardware 
will, in the future, increase the trend toward dis­
tributed digital systems. The computational capability 
of real-time process control systems will not be concen­
trated in one central processor as is typical now but 
will appear both in the central processor and a number 
of remote dedicated processors which function to gather 
intelligence about the process under control, execute 
direct control functions and communicate to the central 
processor for supervisory control functions. The major 
force which will cause this to occur is what is sometimes 
called "the cost of copper." This expression refers to 
the fact that in many installations it is possible to 
spend as much installing the wiring to carry signals 
from sensors and control devices back to the computer 
as on the computer itself. The impact of this trend 
upon programming techniques is that these devices 
will, to all intents and purposes, be hidden from the 
user. They will perform their functions in a manner 
analogous to hardwired hardware devices in current 
use, and the programming problems associated with 
direct control will frequently be segregated from the 
rest of the system. As an example of the importance of 
this, it has been found that in the development of 
large systems for both supervisory and direct digital 
control that such major differences in operating systems 
are required to support these two control techniques 
as to make organization of a system with a combina­
tion of them rather difficult and costly. The use of 
hidden computers will reduce this problem significantly. 

Problem oriented languages 

For those users who have applications of some gen­
erality, problem oriented languages and systems seem 
to be unquestionably the best long term solution to their 
software development problems. There is no question 
but that a truly general package incurs a penalty in 
overhead and excess hardware requirements, but with 
the cost trends in hardware which we have discussed, 
it will become more and more apparent that this is the 
most economical solution. As an example, our 
experiences with certain problem oriented packages 
have been that they can reduce the programming re­
quirements by a factor of 10 and allow personnel whose 
major area of specialty is the application rather than 
software to do the programming. This usually results 
in a much better control system. Thus, on the belief 



that what is best for the user will eventually en­
sue, we predict that for many of them, their problems 
will be solved by problem oriented systems which will 
very much minimize their requirements for a profes­
sional programming staff. 

Real-time procedural languages 

As we have seen, the major real-time languages in 
current use are variants of Fortran. Table I shows 
some of the typical extensions which have been made 
in Fortran for this application area. It is clear from 
examining the length and breadth of these extensions 
that if an all-encompassing procedural language based 
on Fortran were to be implemented, the base language 
would disappear. For this reason, current development 
activities are now turning in a different direction. 

The general goals of real-time procedural language 

TABLE I-Typical FORTRAN Extensions 

1 Program & Data Structure 
(a) Data types 

Fixed point 
Bit 
Status 
Byte 
Binary 
Boolean (vector) 
Octal 
Hexadecimal 
Alphanumeric 

(b) Data manipulation 
Shifts 
Logical operators 
Bit and byte replacement 
Character manipulation 
String manipulation 
Bit testing 

2 Communications 
(a) Between programs 

Global common 
External data 
Static file system 
Dynamic file system 

(b) Input/Output 
Unformatted input/output 
Read write bulk 

3 Program control 
Schedule another program 
Link with interrupt 
Delay 
Look at clock 
Terminate execution 
Decision tables 

4 Compiler features 
Diagnostic trace 
Conditional compilation 
Reserved words 
Code optimization directives 
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development activities under way today are to develop 
a language which leads to: 

1. Lucidity-the clear expression of what is to 
occur when a program is executed, providing a 
higher level of self documentation. 

2. Freedom from side effects-in a real-time en­
vironment a predictable system behavior is ex~ 
tremely important and real-time programming 
languages must be free from side effects. 

3. Enforcement of programming discipline-in the 
business of producing software, it is clear that 
programming discipline is increasingly impor­
tant. A well designed language will help main­
tain this discipline. 

4. Natural modularity-the language must be con­
structed so as to make easy increased modulari­
zation of real-time systems. 

5. Ease of learning and use-it must not require a 
major investment in training to put a new lan­
guage into use, if possible. 

Also of particular interest to the designer of a real­
time procedural language is the maintenance of a 
proper balance between run time efficiency, integrity 

TABLE II-Some Functional Requirements for a Real-Time 
Language 

1. INTERRUPT HANDLING & SYNCHRONIZATION 

A. Interrupts 
1. Ability to indicate that some program segment is to 

be executed upon the occurrence of some particular 
interrupt. 

B. Events 
1. Ability to retain the flow of control at a point in a 

computational process until some event has occurred. 
2. Ability to cause the occurrence of an event at some 

point in a computational process. 
C. Synchronization 

1. Ability to synchronize parallel computational processes 
with security. 

II. TASKING 

A. By a task on itself. 
1. Schedule Execution 
2. Find Status 
3. Exit 
4. Kill 
5. Delay 
6. Wait 

B. On another task 
1. Execute 
2. Schedule 
3. Suspend 
4. Delay 
5. Terminate 
6. Set Priority 
7. Find Status 
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Figure 2-Software factory 

of the system and ease of programming. A general set 
of functional requirements for a real-time language is 
shown in Table II. Whether these languages will be 
general purpose6! or dedicated to particular architec­
tures62 remains to be seen. 

Software factories 

Just as the ultimate elimination of the requirements 
do a great deal of custom programming by the use of 
special purpose application packages is the ultimate 
answer in reducing software costs for the users of real­
time automation systems, the development of a unified, 
well-designed software will provide the mechanisms for 
more economical development of such systems. Figure 
2 shows the general nature of such a software factory. 
It consists of four major elements; a compiler for a high­
level language for systems software development, a 
utility library of building block software modules, 
a well organized approach to debugging software pro­
duced in the software factory, and a powerful host 
computer upon which the system is run. 

The general-purpose real-time language described 
above will be used with the debugging system to de­
velop the utility library and various application 
packages. 

Debugging system 

One of the major motivations for using a large host 
computer for . software production is the more powerful 

facilities which it makes available for software de­
bugging. The well designed debugging system for the 
software factory will attack three problem areas: 

1. Observability-to make more visible the actions 
of the program being tested. 

2. Controllability-to allow the programmer to 
control the flow of control within his program to 
suspect control paths. 

3. Repeatability-to insure that the same response 
occurs from given stimuli, aiding problem 
diagnosis. 

Table III lists the features generally used in such 
a system to achieve these goals. 

There is still some disagreement between the use of 
source language debugging through compilation to host 
machine executable programs, and direct instruction 
simulation of the target computer. Each point of view 
has merit. The source language execution approach 
allows speedier execution and provides for quick 
elimination of gross structural errors in the program. 
Simulation of the target computer at the instruction 
level is generally more expensive because of increased 
execution requirements on the host computer, but 
allows one to locate more subtle errors, particularly 
those with respect to behavior of the target machine 
hardware in unusual timing circumstances. (The latter 
requires, of course, an extremely sophisticated simula­
tion of the target computer system.) In the future both 
techniques will play an important role (References 
63-68). (It is interesting to note, however, that the 
ultimate distinction may be moot as target machines 
come closer and closer to executing high level languages 
directly.) 

Utility library development 

Perhaps the most significant aspect of t his overall 
software factory· will be the availability of software 
modules for use in building real-time systems. The 

TABLE III-Features Required in Debugging Systems 

1. Breakpoint removal and insertion 
2. Online variable revision 
3. Insertion and removal of snapshot dumps 
4. Execution initiation or transfer of control to any point 
5. Fault trapping 
6. Incremental addition of new instruction 
7. Variable searches by value 
8. Subroutine call and operating system linkage tracing 
9. Input/output and interrupt simulation 

10. Control of internal timing 



modules required may be grouped in four categories: 

1. System building modules 
These modules will form the components of 

various language processing systems desired by 
the user. With the use of these modules, the 
development of special purpose language proc­
essors for various applications areas will be 
made much more economical. 

2. Application modules 
Modules of on-line application software will 

be available for combination into application­
oriented control software packages. Examples 
of these modules will be software for direct 
digital control, supervisory control, and real­
time data base management. 

3. Systems operating modules 
Operating systems as we know them today 

may very well disappear in the future. Instead, 
the various operating system components like 
interrupt handlers, generalized input/ output 
systems, priority schedulers and executives will 
be available for combination as required. 

4. User interface modules 
Customized user interface modules will be 

available for each application area. These 
modules will actually include the linkages neces­
sary to combine the library modules and any 
specially developed software into a functioning 
control system. 

SUMMARY AND DISCUSSION 

We have examined a number of interesting trends in 
real-time software development. Of particular interest 
is the three-way interaction foreseen between the 
development of new, more powerful architectures for 
real-time computers, more powerful high-level pro­
gramming languages, and the integration of these 
programming languages into a more efficient software 
production system. 

The most interesting technical challenge in this situ­
ation is the opportunity to develop languages and 
architectures in a unified manner. In the past the de­
signer of computer architectures has been far removed 
from consideration of the application requirements, 
and his products have been extremely difficult to apply. 
The designer of real-time programming languages now 
has the opportunity to act as a coordinator in this over­
all process while insuring that the language fulfills the 
functional requirements of the application area hand, 
he will coordinate with the compiler developer and 
computer architecture designer to insure that the 
resultant combination of languages, software factory, 
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and computer form an integrated system for the effi­
cient solution of real-time automation problems. 

Exact timing of these trends is very hard to forecast. 
Working prototypes of most of the items discussed 
exist today. When the economics of the marketplace 
are satisfactory, these prototypes will be turned into 
smoothly functioning systems for general use. Develop­
ment of languages and architectures are already under 
way. As this work matures the software factory concept 
will provide the unifying factor which knits this all 
together. 
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Scheduling of time critical processes 

by OMRI SERLIN 

SYSTEMS Engineering Laboratories 
Fort Lauderdale, Florida 

INTRODUCTION 

In real-time applications, the computer is often required 
to service programs in response to external signals, and 
to guarantee that each such program is completely 
processed within a specified interval following the oc­
currence of the initiating signal. Such programs are 
referred to in this paper as time-critical processes, or 
TCPs. 

A problem of considerable practical significance in 
connection with such applications is that of devising 
scheduling algorithms for servicing multiple time-critical 
processes. The primary objective of any such algorithm 
is to guarantee that each TCP can be processed within 
its allowed interval, taking into account the possible 
activities of other TCPs. It is clear that, assuming an 
upper limit can be placed on the repetition rate of the 
prompting signals, this objective can always be met if, 
for example, each TCP executes in a separate, suffi­
ciently fast CPU; or, if a single CPU of some high, but 
finite, execution speed is furnished. Either approach is 
wasteful in the sense that the CPU (or CPU's) must 
sometimes remain idle in order to allow for some 
"worst-case" condition that occasionally may obtain; 
for example, when all interrupts occur simultaneously. 
Thus the scheduling problem becomes non-trivial only 
if additional constraints are imposed. Two such practical 
constraints are that only one CPU is available, and 
that the processor idle time is to be minimized. 

This paper examines four specific scheduling policies, 
subject to these constraints, and outlines some of the 
more interesting properties of each. 

DEFINITIONS 

Time critical processes 

In the context of computing systems, time critical 
scheduling is the problem of devising efficient CPU 
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allocation policies that satisfy the requirements of 
multiple time-critical processes (TCPs) .'These processes, 
arising naturally in real-time environments, are com­
putational procedures bound by hard deadlines. A pro­
cess bound by a deadline must, once initiated, complete 
its computation on or before the specified deadline. A 
hard deadline implies that a failure to meet it results 
in an irreparable damage to the computation. Such 
deadlines are typically due to stability and accuracy 
considerations in the process being controlled (e.g., the 
analog computation portion of a hybrid system). 

An efficient CPU allocation algorithm is one that 
guarantees to each TCP sufficient processor time to 
complete its task before its deadline, while minimizing 
forced idle CPU time. By "forced idle time" is meant 
the time during which the CPU must remain idle in 
order to accommodate the occasional worst-case condi­
tion. This constraint is essential if the problem is to be 
non-trivial. 

A basic assumption underlying this study is that all 
TCPs are preemptible. 

Time-critical processes are most commonly initiated 
by the occurrence of external events (interrupt signals). 
Time-of-day or elapsed-time prompting of these pro­
cesses may be regarded as special cases of the general 
class of external events. These events, and the associ­
ated TCPs, may be further classified as periodic or 
asynchronous. 

The TCPs to be serviced are assumed to form an 
unordered set, that is, they are not interrelated by 
precedence rules. This assumption is consistent with 
the premise that the TCPs are initiated by unrelated 
external signals. If a TCP calls on other tasks, then 
such secondary tasks can be regarded simply as chrono­
logical extensions of the calling TCP, either because 
the called task is private to the calling TCP, or because 
all shared tasks are reentrant. In fact, the concept of 
precedence rules is relevant only in the case of schedul­
ing for multiprocessor systems (Ref. 3). Multiprocessor 
configurations, however, seem to offer no advantages in 
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Figure I-A model of a time critical process (TCP). The 
parameters associated with the TCP are the deadline (d), 

repetition period (T), and required CPU time (C) 

the implementation of time critical schedules of the 
type discussed here. This subject is discussed later. 

Note, incidentally, that the grouping of interrupt­
driven processes into entities called jobs is primarily a 
bookkeeping measure. Such groupings carry certain 
implications as to the sequence of events before and 
after the time critical phase of the operation; they are 
of interest to the loader and accounting mechanisms. 
From the scheduling viewpoint, however, TCPs are 
independent entities; it does not matter whether all be­
long to a single user ("job") or whether sets of one or 
more TCPs each belong to one of several users. 

TOP models 

Figure 1 is a model of a simple TCP, depicting its 
repetition period (T), deadline (d), and required com­
pute time (0). The required compute time is the maxi­
mum time required to completely process the given 
TCP on a given CPU, assuming no interruptions. That 
is, 0 is the amount of CPU service, in terms of CPU­
seconds, required by the TCP. Evidently, 0 depends 
on the number and type of executable instructions in 
the TCP and the speed of the processor. The required 
compute time may be obtained empirically by timing 
the process running alone, or it could be predicted by 
deriving, through such procedure as the Gibson mix, an 
average instruction execution time for the processor 
and multiplying this figure by the instruction count of 
the given process. 

A basic assumption underlying the study of TCP 
scheduling is that the external world is insensitive to 
the actual time at which the process is executed, so 
long as the process receives 0 CPU-seconds somewhere 
between the occurrence of the associated interrupt and 
the deadline. This is typically achieved by incorporating 
in the process predictive algorithms that extrapolate 
the results computed from data obtained at time ti to 
ti+d, when these results are actually transferred out of 
the computer. 

T is the repetition period, i.e., the period between 

successive occurrences of the interrupt signal associated 
with the process. In practice, TCPs often are periodic 
and have d = T = constant; i.e., the constant repetition 
period and the deadline are identical. The repetition 
period is often called the frame time. Typical asyn­
chronous TCPs have d < T, and T is variable. N ever­
theless, these processes may still be represented by the 
model of Figure 1, as the following considerations show. 
I t must be possible to define for an asynchronous TCP 
a minimum T; for if this cannot be done, then either 
the process cannot be time-critical-namely, it cannot 
be bound by a hard deadline-or else a processor of in­
finite execution speed is required. Hence, in the discus­
sions to follow, T is taken to mean either the constant 
repetition period of a periodic TCP, or the minimum 
time between interrupts for an asynchronous process. 

It is generally necessary to assume that TCPs can 
become active, either periodically or asynchronously, 
at unpredictable times. Furthermore, it is necessary to 
assume that no special relationships exist between or 
may be imposed on the frame times and compute times 
of the various processes. In practical situations, how­
ever, the resolution of the system's timing mechanisms 
may dictate that all Ts and Os be integer multiples of 
some basic time unit, so that all Os and Ts are mutually 
commensurable. This property can be quite significant 
in devising realistic schedulers. 

As a rule, time-critical processes require the input of 
external data before they may proceed, and must allow 
some time after their completion and before the occur­
rence of their next interrupt for computed date to be 
output to external devices. Figure 2 is a model of a 
TCP of this type. A simple re-definition of the repeti­
tion period and deadline (T' and d' in Figure 2) trans­
forms this type to the basic model of Figure 1. This 
transformation notwithstanding, consideration of I/O 
requirements complicate the scheduling problem, as 
will be pointed out later. It is assumed that, apart 
from an initial input and a final output operations, 
TCPs do not perform I/O. 

I - - - - - _INTERR.UPTS_ - --, 

• , I 

• • 
b I c I 10 II I c J 
c= d' 

~ T' 

Figure 2-A TCP with I/O. By transforming the deadline into 
d' and the repetition period into T' this TCP is made to conform 

to the basic TCP shown in Figure 1 



Load factor 

The load factor (L) of a given process is equal to 
CIT, the ratio of the required CPU time to the repeti­
tion period. The load factor is a measure of the CPU 
load represented by the given TCP. Because the load 
factor can be readily defined in terms of quantities 
that are private to a given TCP and are easily ob­
tained, it is natural to seek to establish a clear relation­
ship between the individual load factors and the total 
CPU load. For instance, it is clear that in the global 
sense-i.e., over a very long period compared to all the 
frame times-the sum of the load factors approximates 
the total CPU load; hence, the condition L: L> 1 is 
sufficient to guarantee the failure of all scheduling 
policies. On the other hand, the condition L: L:::; 1 is 
not sufficient to guarantee success, as will be demon­
strated shortly. An efficient scheduler will maximize the 
sum of the load factors without violating any deadlines. 

Overhead 

Overhead is the time required to switch the processor 
state from one TCP to another. In the following dis­
cussions, overhead is assumed to be zero. For that 
reason a more detailed definition of overhead, which 
takes into account the variety of possible hardware and 
software configurations affecting it, is unnecessary. In 
many practical cases the assumption of zero overhead 
is a good first approximation, since the state switching 
time is indeed small compared to the frame times. 

THE INTELLIGENT FIXED PRIORITY 
(IFP) ALGORITHM 

In the most commonly used scheduling technique, 
each TCP is assigned a fixed priority at the time it 
enters its time-critical phase-that is, when its associ­
ated interrupt is armed and enabled. If the priority 
levels are such that processes having shorter deadline 
intervals receive higher priorities, the algorithm is termed 
"intelligent" fixed priority, to distinguish it from other 
fixed-priority systems in which the allocation of priority 
levels is based on other criteria. This should not be 
taken to mean that the choice of such other criteria is 
unintelligent; for example, a scheduling policy based on 
no priorities ("round robin"), or one in which "CPU 
hogs" receive low priorities, can be quite effective in 
time sharing environments or in multiprogrammed 
batch systems. For the time-critical environment rele­
vant to this discussion, the allocation of priorities based 
on the relative lengths of deadlines is most appropriate. 

Priorities under IFP need not be truly fixed. In a 
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TCP1 ~ ~ 
• T1~1 If 

I I ~ C2 TCP2 

r 
T2 • 

~ (C;l TCP3 

• T3 • 
I ~ C4 

TCP4 

• T4 • 

Figure 3-Assumed worst case under IFP. Four TCPs are shown, 
satisfying the conditions that are considered "worst-case" : 
(a) all interrupts occur simultaneously; (b) the frame times are 
so related that the CPU must process all TCPs completely 

within the shortest frame time 

multi programmed real-time system, groups of TCPs 
("jobs") may enter and leave the system at arbitrary 
times; the priority structure must be adjusted oc­
casionally in response to such changes in the relative 
deadlines. Also, real-time processes often go through 
pre- and post-time-critical phases, during which their 
priorities may be much lower than the ones they assume 
in their time-critical phase, again suggesting a dynamic 
readjustment. 

An important property of IFP, which has been 
alluded to in References 1 and 2 but heretofore not 
substantiated, is that the permissible sum of the load 
factors must be considerably less than 1 in order to 
guarantee that each TCP meets its deadline. The higher 
the number of TCPs to be scheduled, the closer this 
permissible sum gets to loge 2=0.693. In other words, 
under IFP, more than 30 percent of the CPU power 
must remain idle. The following is a sketch of the proof. 

Assume there are n TCPs, all with constant frame 
times, and that, at one instant, all of their interrupts 
occur simultaneously. The CPU at that time is required 
to provide maximum service in minimum time, so that 
this condition represents the worst possible case. Fur­
thermore, assume that the frame time of each TCP is 
related to the next shorter one by T i = T i-1 + C i-1 

where T i - 1 < Ti<2Ti- 1 ~nd di = Ti or di = t Cj 

(See Figure 3) . j=1 
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These conditions assure that the CPU will be 100 
percent busy during the longest frame time Tn follow­
ing the simultaneous occurrence of the interrupt signals. 
We wish to establish the set of T i , Ci that lead to the 
smallest possible sum of the load factors, i.e., the 
largest possible forced CPU idle time. 

Normalize the frame times by letting Tl = 1. Desig­
nate the sum of the load factors by z. Then 

Z=C1+C2/(I+C1) +C3/(I+C1+C2) + ... +Cn/ 

(I+C1+C2+··· +Cn- 1) 

Because of the assumptions (see Figure 3), 

n 

L: Cj =1 
j=1 

Let 

where L is a Lagrange multiplier used for convenience 
to obtain symmetry in the following equations. Also let 

n 

1+ L: Cj=Si. 
j=1 

We wish to find the conditions leading to the mini­
mum z. Hence: 

aj/ac1= 1-C2/ SI2-C3/ 82
2 - ••• -Cn/Sn_12+ L =0 

aj/ac2= 1/ SI-C3/ 82
2 - ••• -Cn/Sn_12+L=0 

aj/ac3= 1/82 - ••• -Cn/Sn_12+L=0 

aj/acn- 1= 

aj/acn= 

1/ Sn_l-Cn/ Sn_l+L=O 

I/Sn_1+L=0 

rhis represents both the required compute time and 
load factor for TCP 1 under the "worst case" condition 
of Figure 3 with the side constraint of worst (mini­
mum) load-factor sum. The other TCPs have 

Ci= Si-I/ Si_22- Si-l 

By continual substitution, we have 

Si= (I+C1)i 

The load factor Li of each TCP i is C i/ T i where T = Si-l; 
so 

Li= [(8 i_12/ Si-2) - Si-IJ/ Si-l = C1 

so all the load factors equal C1• Thus the sum of the 
load factors is 

z=n(21/n-l) 

Note, incidentally, that the frame times for this worst­
case core given by 

Ti = Si-l = (1 +C1) i-I = 2 (i-1) In 

The table below summarizes the worst-case situation 
for two, three and four TCPs. 

n z (max. L) T relationships 

2 2 ( V2 -1 ) "'82.8 percent I:V2 
3 3 ( ~2 -1) "'78.0 percent 1:~2:~4 
4 4( {l2-1) "'75.7 percent 1 :{l2: {l4:{l8 

To establish the trend as the number of TCPs in­
creases, we take the limit of z as n approaches infinity: 

lim n(21/n-l) =lim n[1 + In2/n+ (In2/n)2/2! 
n-+oo n-+oo 

+ (In2/n)3/3!+··· -lJ 
= loge2 = .69315 

By subtracting each of these equations from the one thereby substantiating the original assertion. Figure 4 

above it we obtain 
Sn = 8n_1

2/ 8n- 2 l: L 

Sn-l = Sn_22/ 8n- 3 

where the last equation is obtained from 

aj/acl-aj/aC2= 1-C2/(1+C1)2_1/(1+C1) =0 

Continual upward substitution in the above set leads to 

I+C1+C2+··· +Cn= (1+C)2(n-1) / (1 +C)n-2 

The left hand side of the equation above equals 2 since 
Sn=l; hence 

so that 

In 2 

2 3 fIIO.O 

Figure 4-Load factor sum as a function of the number of TCPs 
under IFP. As the number of TCPs increases, the CPU must 
remain idle a larger percent of the time (i.e., the permissible sum 
of the load factors must be reduced). In the case of many TCPs, 
about 30 percent of the total CPU power must be held in reserve 

to accommodate the worst-case ccndition 
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C
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Figure 5-Worst case situation for two TCPs under IFP when 

the condition Tl <T2 <2T1 does not apply 

shows the maximum permissible load factor sum as a 
function of the number of TCPs. 

I t is of interest to investigate the case where the 
frame times are not restricted to the range T i-I < T i < 
2Ti- 1• Figure 5 shows the effect of removing this re­
striction for the case n = 2. For the situation shown in 
Figure 5 we have: 

T2=kT1 =mT1+Cl 

where m> 1 and is an integer. Also, 

C2=m(TI-Cl) 

hence the sum of the load factors is 

z = CI/Tl +m( Tl- C1) /kTI 

=k-m+m(l-k+m)/k 

For a minimum z we require 

Hence, 
k= ym(m+1) 

describes the points at which the ratio T2/Tl minimizes 
the available CPU time. At these points, the load 
factors are 

CI/Tl = ym(m+1) -m=CdkT2 

and the sum of the load factors is 

z=2( ym(m+1) -m) 

By assuming a given ratio of Tl to T2 with the "worst 
case" constraints T2=mTl+C1 and C2=m(Tl-Cl) it 
can be shown that the sum of the load factors as a 
function of T2 (or C1) is given by 

z=C1+m(1-C1)/ (m+Cl) 

Using these last two results for z it is possible to 
develop Figure 6 which shows how the maximum per­
missible sum of the load factors varies as a function of 
the ratio T2/T1• When this ratio is an integer, there is 
no problem in allocating 100 percent of the CPU using 
IFP. When TdTI is not an integer, some CPU time 
must remain idle in order to accommodate the "worst 
case." It is interesting to note that the CPU utilization 
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drops to its minima always when Tl and T2 are mutually 
incommensurate. 

EFFECT OF I/O 

It was pointed out earlier that TCPs with nonzero 
I/O times can be transformed to the model of Figure 1. 
Such a transformation does not, however, remove a 
basic difficulty associated with I/O: during the input 
or output phases of a given TCP, the CPU may not be 
allocated to it. During the time that the I/O opera­
tions of all TCPs overlap, the CPU may not be allo­
cated to any. For example, with two TCPs of identical 
repetition periods T and equal input-output phases I, 
the maximum permissible sum of the load factors is 
(T - 21) /T. This difficulty may be further complicated 
by the need to schedule the I/O operations that use 
the same I/O facilities. 

Assuming, however, that all I/O operations can be 
performed simultaneously, one possible approach to in­
corporating the effect of I/O in CPU scheduling policies 
may be as follows. Regard I/O as a TCP with di = 
Ti= Ci, which is always executed on a second, "dummy" 
CPU. Furthermore, introduce precedence rules enforc­
ing the sequence Ii<TCPi<Oi (read: task Ii precedes 
task TCP i etc.). Unfortunately, these artifices do not 
simplify significantly the analysis of scheduling prob­
lems with non-zero I/O times. In the remainder of this 
paper, zero I/O times are assumed. 

THE INFINITE TIME SLICING (ITS) 
ALGORITHM 

Although this algorithm cannot be implemented, it is 
nevertheless a valuable tool in the study of time critical 

MAX 
Il 

1 ... 

.928 

!9~ 

.828 

.8--.;---7-......L_+_--L_~_--L ____ T2/T1 

3 V12 

Figure 6-Maximum permissible load factor sum as a function of 
the frame times ratio T2/T1, Two TCPs. The minima occur when 

T'J. and Tl are mutually incommensurate 
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+-d1 -.-. 
I 

to t1 t2 

Figure 7-Nomenclature for the proof that 100 percent scheduling 
is impossible unless di=Ti or Ti=mTl 

scheduling. ITS provides a conceptual link between the 
sum of the individual load factors and the instantaneous 
CPU load. Namely, given a set of TCPs for which the 
sum of the load factors is L, then, using ITS it is possible 
to guarantee that (as long as di = T i ) all deadlines are 
met while the CPU is busy exactly 100L percent of 
the time in any given time span. 

ITS may be approached in the following way. Sup­
pose it were possible to regard the power of the CPU 
as a continuous quantity; it may then be distributed to 
the TCPs according to the load factors. In other words, 
assuming di = T i for all TCPs, then a TCP whose load 
factor is Li < 1 is allocated a fraction of the CPU equal 
to L i . This may be taken to mean that if the CPU is 
capable of executing G instructions per second, then an 
Li fraction of the CPU has the ability to execute LiG 
instructions/sec; or, the CPU may be regarded as a 
composite of a number of slower CPUs, each performing 
LiG instructions/sec. If this is done, then each process 
executes exactly LiGTi instructions in its period T i. 
Since Li = C i/ T i, the instruction sum is C iG, which is 
exactly the TCP's requirement when assuming Ci cpu 
seconds at G instructions/sec. 

To achieve such a distribution of the CPU power one 
can start by dividing the time axis into small incre­
ments AT. In each increment, the CPU is allocated, in 
some arbitrary order, to each TCP for a period LiAT. 
If AT is made small compared to all the repetition 
periods Ti involved, we have a good approximation to 
the infinite-time-slicing algorithm. An "exact" ITS 
policy is obtained if we let AT approach O. Approximate 
ITS algorithms can be-and, in fact, have been­
implemented on computers that provide rapid context 
switching. With context-switch time of, say, 5 micro­
seconds, and AT set at 250 microseconds, it is possible 
to service five TCPs with 10 percent switching 
overhead. 

Note however that ITS is weak when required to 
schedule TCPs for which di < T i . For such processes, 
ITS must allocate Ci/di fraction of the CPU. This 
leads to situations where a specific TCP set that can be 
successfully scheduled by IFP (and other policies) fails 
under ITS. For instance, given a periodic process with 

dl = TI = 100 milliseconds and CI = 85 milliseconds, and 
an asynchronous process with minimum T2 = 2 ms, 
d2 = 1 ms, and C2 =200 microseconds. To schedule 
these, ITS must allocate 85/100 = 85 percent of the 
CPU to TCP 1 and 0.2/1 = 20 percent to TCP 2; hence 
these TCPs cannot be scheduled together. Under IFP, 
both TCPs can easily be accommodated if TCP2 is 
given the higher priority, since TCP2 requires a maxi­
mum of 10 ms CPU time during the frame time of 
TCP 1. 

A BASIC SCHEDULING RESTRICTION? 

At least in the case of two TCPs it appears that the 
following statement is true. It is never possible to allo­
cate the CPU at full efficiency (i.e., keep it busy doing 
useful work 100 percent of the time) unless either 
di= Ti or T2 =mTI , where m is an integer. 

For the case di < T i, consider Figure 7. Assume the 
CPU is allocated 100 percent, i.e., no idle time. Further 
assume this figure shows the TCP with shortest frame 
time T I • Since T2 :> T I , the deadline of TCP 2, d2, can 
occur in the frame TI at most once. Now d2 cannot 
occur in the interval tlt2 since this means that the CPU 
is idle for some time in that interval; the only exception 
occurs if d2 = T 2, (since then the CPU can work for 
TCP2 in the remainder of tl t2 ) ; or if d2 always coincides 
with either tl or t2, or if d2 always falls in the interval 
totl' To maintain these restrictions it is necessary that 
any two occurrences of d2 must be separated by mTI ; 

therefore T2 =mTI • 

I t is tempting to conclude that this condition can be 
extended to the case of more than two TCPs by re­
quiring di= Ti for all i or Ti=miT I . A proof is not yet 
available, however. 

Note that the scheduling property just derived is not 
responsible for the failure of IFP to schedule more than 
about 69 percent of the CPU (Figure 3) ; the develop­
ment of that case remains unchanged if in Figure 3 we 
let all di = T i. Thus this failure is peculiar to IFP and, 
in fact, we will show later th~t for di = T i , the relative 
urgency (RU) and other algorithms do not suffer 
from this restriction. 

THE MINIMAL TIME SLICING (MTS) 
ALGORITHM 

In implementing ITS, AT is assumed to be infinitely 
small. For any given set of TCPs, a time slicing algo­
rithm which retains most features of ITS with a finite 
AT can be developed. This is the minimal time slicing 
(MTS) policy. It is based on the realization that, for 
a given set of TCPs, the smallest time unit of interest 



d 
n 

~t---... -t 
Figure ~-?-,he MTS policy in a scheduling intervaL In every 
schedulmg mterval At, the CPU is allocated in some arbitrary 
order to all TCPs, such that each receives LiAt CPU -seconds 

from the scheduling viewpoint, called a scheduling 
interval, is the time between the occurrence of two suc­
cessive "scheduling events." By "scheduling events" 
;ve mean events that affect the CPU loading; namely, 
Interrupt instances and deadlines. The scheduler can 
guarantee that each TCP meets its de aline by allocating 
the CPU, in each scheduling interval, in some arbitrary 
order, according to the load factors. Figure 8 is a 
graphic illustration of this policy. The practical imple­
mentation of MTS requires all TCPs to be periodic so 
their interrupt instances are predictable. 

MTS suffers from the same weakness as ITS in 
scheduling processes for which di<Ti; MTS, however, 
is a practical algorithm as long as all Ti are known to 
the scheduler and the context-switching time is small. 

Note that both ITS and MTS are self regulating in 
that the CPU time used by each TCP is always under 
the control of the system so that CPU protection is 
guaranteed to all TCPs. IFP, in contrast, does not have 
this feature; it requires additional hardware and soft­
ware safeguards and monitoring. However, the required 
watch-dog programmable timer and the associated 
added overhead in context switching are not more com­
plex than those required in implementing the MTS or 
approximate ITS policies. 

THE RELATIVE URGENCY (RU) 
ALGORITHM 

The Relative Urgency (RU) policy, developed by 
M. S. Fineberg and first reported in Reference 1, is 
similar to MTS in that it requires the scheduler to re­
evaluate the scheduling environment on every inter­
rupt. RU differs from MTS in that during the period 
between two successive interrupts, RU is priority­
oriented: the highest priority TCP is given control at 
the start of that period, and allowed to continue until 
it completes its computation or until the next interrupt. 
Priorities are re-allocated on every interrupt and are 
proportional to deadlines as they exist at the interrupt 
instance (i.e., not simply to their relative lengths) ; the 
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TCP whose deadline is most imminent (and that has 
not yet completed its computation for its current 
frame) receives the highest priority. If a TCP com­
pletes its computation during an interval, then the 
next-highest priority TCP receives the CPU; priority 
re-evaluation is not required at completion instants. 

RU has an obvious advantage over MTS: in general, 
RU performs less context switching; overhead is there­
fore smaller under R U. 

At least for the case of two TCPs, it can be shown 
that RU can schedule the CPU at 100 percent efficiency. 
This is done by showing that, for this case, an RU can 
always be constructed from an MTS. The proof is car­
ried out by induction. 

Assume two TCPs (T2>T1) with di=Ti, whose in­
terrupts coincide at t = O. Construct an MTS for this 
case, taking care to, in each scheduling interval, assign 
the CPU to the TCP whose deadline is nearest. No 
generality is lost since the order is immaterial under 
MTS. ~et an RU be constructed, and assume that up to 
scheduling event L, RU and MTS are indeed identical. 
Consider the event at L and the one following it. There 
are only three possibilities (see Figure 9) : a) at L we 
have II (interrupt due to TCP 1) and the next event 
i~ also t1, b) L = t1, then t2; c) L = t2, then t1. Note that, 
SInce T2> T1, it is impossible to have two consecutive 
t2 without an intervening t1. Now, for the case (a), 
under RU we would allocate the CPU at L to TCP 1 
(its deadline is nearest); it would execute for L1T1 
seconds, since the interval M1 is T1• Since the CPU is 
assumed 100 percent scheduled, the remainder of t1t1, 

namely T (1-L1) would be allocated to TCP 2. Since 
L1+L2=1, L2=I-L1' so this remainder equals L2T1. 

(a) 

(b) 

(c) 

L 

t ........ -- ~t 
1 

-4-- ~t ----+ 

Figure 9-Nomenclature for the proof that MTS and RU are 
equivalent for two TCPs. The proof is by induction, assuming 
that up to scheduling event L, RU and MTS are identical, and 
showing that based on this assumption, RU and MTS must also 

be identical in the interval At 
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This is precisely the division of tltl, under MTS. For 
case (b), TCP 2 will receive the CPU, and is short 
exactly L21lt CPU-seconds, since by the assumption it 
received L 2(T2-IlT) CPU-seconds up to event L. This 
leaves Ilt (1- L2) for TCP 1 in Ilt, which is equal to 
Lillt, again showing the equivalence of RU and MTS 
in Ilt. Similar conditions apply in case (c). Finally, at 
t = 0 we have case (a) (with L = tl = t2) but for this 
case we already showed that RU =MTS. Hence the 
assertion is proved by induction. 

There is considerable empirical evidence that RU is 
capable of scheduling the CPU at 100 percent efficiency 
for all Ti/T i - l ratios when all di= T i ; in this case, RU 
is at least as efficient as MTS or ITS (more efficient in 
fact, due to lower switching overhead) ; when the Ti are 
not integer multiples of TI (the shortest frame time), 
IFP is known to be less efficient than either MTS, ITS 
or RU. When di < T i , RU is capable of scheduling more 
of the CPU than MTS or ITS, i.e., more TCPs can be 
accommodated under RU. 

REGARDING MULTIPROCESSING 

Considerable effort has been expended on time­
critical scheduling techniques for multiprocessor sys­
tems (e.g., References 3 and 4). For TCPs of the type 
considered in this paper, multiprocessor systems do not 
offer any advantages (if one excludes redundancy or 
backup requirements). In fact, it appears that in some 
cases, multiprocessor systems are definitely less desir­
able than an "equivalent" single processor. By "equiva­
lent" is meant that each of m CPU s execute at a rate 
l/m as fast as the single CPU. 

Given m processors and n TCPs (m < n) with equal 
C i and such that all n TCPs can be executed serially 
on the single, fast processor in time Ilt. Then each of the 
m processor can completely process at most p TCPs, 
where p is an integer that satisfies p (Ilt/ n) m <: Ilt. In 
other words, mp <: n, which means that whenever the 

number of TCPs n is not a multiple .of the number of 
CPU s m, there will remain one TCP that cannot be 
accommodated within Ilt using m processors, whereas 
the fast processor accommodates all TCPs within Ilt. 
Furthermore, if Grosch's Law holds, the faster CPU 
should cost less than the m slower units, so that even 
from the economic standpoint, multiprocessor systems 
do not appear desirable. 

CONCLUSION 

This paper presented primarily heuristic extensions and 
generalizations of concepts that were for the most part 
first sketched in Reference 1. Much work remains to be 
done in strengthening and extending the proofs and in 
discovering the properties of scheduling with I/O con­
straints. The relation between RU and MTS is particu­
larly intriguing. A consistent theory of scheduling of 
time-critical processes is within reach. 
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A class of allocation strategies inducing hounded 
delays only 

by EDSGER W. DIJKSTRA 

Technological University 
Eindhoven, The Netherlands 

We consider a finite set of persons, say numbered 
from 1 through M, whose never ending life consists of 
an alternation of eating and thinking, i.e., (in the first 
instance) they all behave according to the program 

cycle begin eat; 
think 

end. 

The persons are living in parallel and their common 
accommodations are such that not all combinations of 
simultaneous eaters are permitted. As a result: when a 
person has finished thinking, some inspection has to 
take place in order to decide whether he can (and shall) 
be granted access to the table or not. Similarly, when a 
person leaves the table, some inspection has to take 
place in order to discover whether on account of the 
changed occupancy of the table one or mQre hungry 
persons could (and should) be admitted to the table. 
This situation is reflected by writing their program 

cycle begin ENTRY; 
eat; 
EXIT; 
think 

end 

with the understanding that 

( 1) all inspection processes' 'ENTRY" and "EXIT" 
take only a finite period of time and exclude 
each other in time. (As a result of the postulated 
mutual exclusion of the inspections "ENTRY" 
and "EXIT," a "local delay" of person i, 
wanting to invoke such an inspection, may be 
needed. We postulate that such a "local delay" 
will only last a finite period of time-the requests 
for these inspections could be dealt with on the 
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basis of "first come, first served"-and we shall 
not mention these local delays any further, 
because they are now irrelevant for the re­
mainder of our considerations.) 

(2) as a result of such an inspection the person 
invoking it may be put to sleep (i.e., prevented, 
for the time being, from proceeding with his life 
as prescribed by the program) . 

(3) as a result of such an inspection, one or more 
sleeping persons may be woken up (i.e., induced 
to proceed with their life as described by the 
program). 

We restrict ourselves to such exclusion rules for 
simultaneous eaters that 

condition 1: if V is a permissible set of simultaneous 
eaters, so is any subset of V 

condition 2: each person occurs in at least one per­
missible set of simultaneous eaters. (Note: 
if a person occurs in exactly one permis­
sible set of simultaneous eaters, this set 
contains-on account of condition I-only 
himself and no one else.) 

From condition 1 it follows that there is no restriction 
on the set of simultaneous thinkers; as a result the 
inspection EXIT will never have the consequence that 
the person invoking it will be put to sleep. As a result, 
persons can only be sleeping on account of having 
invoked the inspection ENTRY and the act of ad­
mitting person i to the table can be associated with the 
waking up of person i. (A little bit more precise: if 
during the inspection ENTRY as invoked by person i 
the decision to admit him to the table is not taken, he is 
put to sleep, otherwise he is allowed to proceed. If in 
any other inspection the decision to admit person i to 
the table is taken (person i must be sleeping and) 
person i will be woken up) . 
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Furthermore we restrict ourselves to the case that 

condition 3: for each person the action "eat" will take 
a finite period of time (larger than some 
positive lower bound and smaller than 
some finite upper bound) ; this in contrast 
to the action "think" that may take an 
infinite period of time. 

In the simplest strategy no inspection will leave a 
person sleeping whose admittance to the table is allowed 
as far as the occupancy of the table is concerned. Alas, 
such a strategy may have the so-called "danger of 
individual starvation," i.e., although all individual 
eating actions take only a finite period of time, a person 
may be kept hungry for the rest of his days. (The 
classical configuration showing this phenomenon is the 
Problem of the Dinig Quintuple. Here five places are 
arranged cyclically around a round table and each of 
five persons has his own place at the table. The restric­
tion is that no two neighbors may be eating simul­
taneously. The rule will then be that every person is 
admitted to the table as soon as he is hungry and none 
of his two neighbors is eating. In this particular 
example this rule leaves no choice, i.e., when I leave the 
table the decisions whether my lefthand neighbor and 
my righthand neighbor have to be admitted to the 
table are independent of each other. In this example my 
two neighbors can starve me to death, viz., when my 
eating lefthand neighbor never leaves the table before 
my righthand neighbor is eating and vice versa. If the 
remaining two persons remain thinking, access to the 
table will never be denied to my neighbors and with me 
hungry the process can continue forever.) The moral of 
the story is that if we are looking for strategies without 
the danger of individual starvation, we must in general 
be willing to consider allocation strategies in which 
hungry persons will be denied access to the table in 
spite of the circumstance that the occupancy of the 
table is such that they could be admitted to the table 
without causing violation of the given simultaneity 
restrictions. Our interest in strategies without the 
danger of· individual starvation was aroused by the 
sobering experience that quite a few intuitive efforts to 
exorcize this danger led to algorithms that turned out 
to be quite ineffective because they could lead to 
deadlock situations. The remaining part of this paper 
deals with a general characterization of strategies that 
do not contain the danger of individual starvation. We 
shall restrict ourselves to strategies where the decision 
to admit persons to the table will be taken for one person 
at a time; from our analysis it will follow then that our 
characterization can be given independent of the 

specific simultaneity restrictions (provided of course 
they satisfy our stated conditions 1 and 2). 

We start by proving a theorem, in which we consider 
the following (possible) properties of a strategy. 

property A: the existence of at least one sleeping person 
implies at least one person who is eating 
or leaving the table 

property B: for any person i it can be guaranteed that 
during a period of his hungriness the 
decision to admit someone else to the table 
will not be taken more than N i times, 
where N i is a given, finite upper bound 
for person i. 

Our theorem asserts that when conditions 1, 2 and 3 
are fulfilled, properties A and B are the neceseary and 
sufficient conditions for any strategy in order not to 
contain the danger of individual starvation. 

The necessity of property A follows from the in­
admissibility of the situation in which one or more 
persons are sleeping while all remaining ones (if any) 
are thinking. The thinking ones may go on thinking 
forever, as a result no new inspections will be evoked 
and the sleeping ones remain hungry for an infinite 
period of time. 

We say that the danger of individual starvation is 
absent when the hungriness of any person will never 
last longer than a given, finite period of time. The 
minimum time taken by the act of eating imposes an 
upper bound on the personal frequency with which 
any given person can be admitted to the table; the total 
number of persons is M and therefore there is an upper 
bound on the total frequency with which someone is 
admitted to the table. Therefore the number of ad­
missions during a period of hungriness of person i must 
always be less than a fixed, finite value: property B is 
necessary in the sense that a set of fixed, finite N/s 
exists such that it is satisfied. 

N ext we show that the conditions are sufficient. 
When person i becomes hungry-by invoking 
ENTRY-we have to show that his hungriness will 
only last a finite period of time. If in the course of that 
very inspection he is admitted to the table, it is true 
(for inspections take only a finite period of time), 
otherwise he goes to sleep. At the end of that inspection 
at least one person is eating (on account of property 
A). From the fact that the action "eat" takes only a 
finite period of time, the persons now eating will have 
finished doing so and will have left the table within a 
finite period of time. From this and property A it 
follows that within a finite period of time a new person 
will have been admitted to the table. The assumption 



that person i remains hungry forever implies that the 
lucky person must have been someone else, i.e., within a 
finite period of time the number of times it has been 
decided during hungriness of person i that someone 
else is admitted to the table is increased by one. Then 
the argument can be repeated and within a finite period 
of time the number of times someone else is admitted 
to the table would exceed N i , contrary to our property 
B. Therefore person i will not remain hungry forever. 

Having established that properties A and Bare 
necessary and sufficient for the absence of the danger 
of individual starvation, we are now in a position to 
characterize all strategies satisfying them with a priori 
given bounds N i • For this purpose we associate with 
each hungry person a counter called "ac" (short for 
"allowance count"). Whenever person i becomes 
hungry, his ac is added to the set of ac's with the initial 
value=Ni ; whenever it is decided that a person is 
admitted to the table, his ac is taken away from the set 
of ac's and all remaining ac's are decreased by one. 
Property B is guaranteed to hold when no ac becomes 
negative. 

We call the set of ac's "safe" when for all k 2:: 0 holds 
that at most k ac's have a value<k. Note that also the 
empty set is safe. (Another formulation of safety is that 
it must be possible to order the ac's, if present, in such a 
fashion that the first ac2::0, the second ac2:: 1, the third 
ac 2:: 2, etc.) Such a safe set has four important proper­
ties. 

Property 1: No safe set contains a negative element 
(substitute k = 0 in the first definition). 

froperty 2: If removal of an element from the set is 
accompanied by a decrease of the re­
maining elements by one, each non-empty 
safe set contains at least one element that 
can be removed such that the remaining 
set is again safe: for this purpose it is 
sufficient-although one has often greater 
freedom-to choose one of the smallest 
values. 

Property 3: In the case of an unsafe set, let K be the 
minimum value of k, such that more than 
k elements have a value less than k. 
Addition of a new element to an unsafe 
set will never make it into a safe one, nor 
will it lead to an increase of K. 

Property 4: In the case of an unsafe set, K (as defined 
in the previous paragraph) is an upper 
bound for the number of times that an 
element can be removed (again each 
removal being accompanied by a decrease 
of the remaining elements by 1) before 
negative values occur. 
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Properties 3 and 4 tell us that an unsafe set of ac's is 
bound to lead to negative ac's before it is empty. 
Therefore safety of the set of ac's must be maintained 
if we wish to guarantee property B. This imposes a 
lower bound on the initial values of the ac's, i.e., the 
N i. With M processes, at most M -1 will be sleeping 
(property A) , if we impose 

N i 2::M -2 

we can guarantee that, given a safe set of ac's, the 
addition of a new ac will never lead to unsafety. 

We can now characterize all strategies satisfying 
properties A and B. We call a person "admissible" if 
the following three conditions all hold 

( 1) he must be hungry 
(2) his addition to the set V of eating persons would 

not cause violation of the simultaneity restric­
tions 

(3) his removal from the set of hungry persons 
would leave a safe set of ac's. We now char­
acterize all strategies enjoying our (necessary 
and sufficient) properties A and B in terms of a 
general permission and a specific obligation. 

Each inspection ENTRY or EXIT has the general 
permission to decide (zero or more times) to admit an 
admissible person to the table. However, those inspec­
tions that would violate property A in the case of zero 
admissions have the specific obligation to admit at least 
one person to the table. They are the ENTRY while 
there are no eating persons and the EXIT in which a 
person is the last to leave the table while there are 
sleeping persons. In both cases conditions 1 and 2 and 
property 2 of safe sets guarantee the existence of at 
least one admissible person. 

It is clear that any such strategy will satisfy proper­
ties A and B, it is also clear that any other strategy 
will have to be rejected: if the general permission is 
violated, an erroneous admission to the table takes 
place or we end up with either deadlock or violation of 
property B, if the specific obligation is not fulfilled 
property A is violated. In this sense we have char­
acterized all strategies satisfying properties A and B. 

CONCLUDING REMARKS 

For a very specific reason the result obtained seems 
significant. When one is making an operating system 
one is faced with "absolute requirements" (of a rather 
logical nature) on the one hand and "desires" (not 
necessarily all compatible with each other) on the 
other. In the early design phase of the Multiprogram-
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ming System we had the hope that all allocation 
strategies could be factored in the sense that first we 
could produce the code that would ensure non-violation 
of the absolute requirements, in which then all sorts of 
strategic routines could be plugged in, the idea being 
that a change of strategic routines could influence the 
desirability of the systems behavior but could never 
lead to violation of the absolute requirements. In the 
later design stages we have not been able to reach that 
goal: we turned up with allocation strategies for which 
we could prove that the absolute requirements would 
never be violated, but each new proposed strategy 
required a new proof of this fact. The origin of this 
failure was our inability at that time to give a con­
structive characterization of all possible strategies that 
were guaranteed to meet our absolute requirements. 

This paper shows that-at least in the case of the 
chosen absolute requirements-such a characterization 
can be given in terms of permissions and obligations 
and in such a way that it has been proved that the 
obligation can always be fulfilled. The question under 
which other circumstances such characterizations can 
be given is now open for investigation. 
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On modeling program behavior 
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INTRODUCTION 

This is a paper about the history of the working set 
model for program behavior. It traces briefly the origins 
and bases of the idea and some of the results sub­
sequently obtained. The physical context is a hier­
archical memory system consisting of a severely limited 
quantity of main (directly-addressable) storage and an 
essentially unlimited quantity of secondary (backup) 
storage. In this context, the intuitive notion of "working 
information" as the set of words which are (or should 
be) loaded in main memory at any given time in order 
that a program may operate efficiently is as old as 
programming itself. 1 The sharply increased interest in 
program models since the mid-1960s is a direct con­
sequence of the widening use of virtual memory and 
multiprogramming techniques, which have shifted the 
responsibility of memory management from program­
mers to machines. I am assuming here that the purpose 
of memory management is ensuring that an active 
program's working information is present in main 
memory, and the purpose of a program model is pro­
viding a basis for determining a program's working 
information at a given time and predicting what it will 
be at a future time. 

The intuitive notion calls for "working information" 
to be defined as machine-independent as possible, so 
that there can be an "absolute" measure of a program's 
memory demand. Moreover, the definition should be 
dynamic since we wish ultimately to derive adaptive 
memory management policies from it. In my own 
efforts to formalize the intuitive notion, I adopted the 
spirit of an approach suggested as early as 1965, ac­
cording to which a program's "working set" at a given 
time consists of those objects which must be loaded in 
main memory in order to guarantee a given level of 
processing efficiency.19 It seemed to me that an ideal 
definition should, either explicitly or implicitly, specify 
a priority listing on a program's information objects at 

937 

each moment of time; then, given the desired level of 
processing efficiency and the physical characteristics of 
the system (e.g., the ratios of speeds between various 
levels of memory, or the capacities of various levels of 
memory), one should be able to compute, at any given 
time, an integer k such that the k objects of highest 
priority constitute the program's working set at that 
time. Because a direct formalization of this idea did not 
appear immediately amenable to analysis, I settled 
instead on a definition of "working set" as a collection 
of recently referenced objects.ll ,IZ As will be seen, this 
alternative definition is equivalent to the former one 
under realistic assumptions about programs. 

A useful definition of working set should, in addition 
to the above, satisfy two properties. First, it should be 
based on easily observable properties of program 
behavior. As suggested in Figure 1, the stream of 
addresses (the address trace) generated by a processor 
is perhaps the most easily observed aspect of dynamic 
program behavior. Now, a given program's instruction 
and data code is ordinarily divided into blocks of various 
sizes, each block being identified by a number and 
consisting of words with contiguous addresses. Since 
memory allocation policies deal with blocks, not words, 
as the units of allocation, there is no loss of generality 
in supposing that a string of block numbers (the 
reference string) represents observable program be­
havior. Specifically, if aIaZ ... at ... is an address trace 
in which at is the address referenced at time t in the 
time frame of the program (program time is measured 
discretely, t=l, 2,3, ... ), and rt is the number of the 
block containing address at, the reference string is 
rIrZ . .. rt .... In the discussion to follow, I shall assume 
that the blocks of a program are all of the same size 
(i.e., paging is used); this is purely a matter of con­
venience, as generalizations to variable block size are 
straightforward. Under this assumption, a reference 
string is a sequence of page numbers. 

Second, the definition of working set should be based 
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I Processor 

Address Trace 

a, a2 ... at ... I 
t------'---=----=----~. Memor y System 

Figure I-Address trace 

on information about a program's observed past and 
not on information about its future-i.e., the working 
set at time t should depend only on rlr2 ... r t and not 
on r t+1r t+2 . . . . I imposed this requirement because I 
wanted a program model which would guide a choice 
of memory management policy in the absence of prior 
knowledge of program behavior (e.g., programmer or 
compiler advice or predictions l ) , since experience 
suggests that prior knowledge is either inordinately 
expensive to obtain or is unreliable. I was not attempting 
to deny that, if reliable prior information is present, it 
can and should be used to improve an estimate of a 
program's working set; I wanted only to avoid making 
prior information a fundamental assumption of the 
model. 

A DEFINITION OF WORKING SET 

With these general notions about how "working set" 
should be defined, one can proceed to develop the 
definition itself. As will be seen, the viability of the 
"most recently referenced pages" definition depends on 
the property of locality (known also as "locality of 
reference") which is exhibited to varying degrees by all 
practical programs.2 ,3,5-8,12,13,15,17,24,26 The property of 
locality can be summarized as three statements: 

LI. A program distributes its references non­
uniformly over its pages, some pages being 
favored over others. 

L2. The density of references to a given page tends 
to change slowly in time. 

L3. Two reference string segments are highly 
correlated when the interval between them is 
small, and tend to become uncorrelated as the 
interval between them becomes large. 

These properties are abstractions of commonly observed 
phenomena: programs tend to reference pages un­
equally, they tend to cluster references to certain pages 
in short time intervals, they can be run efficiently in 
memory spaces considerably smaller than the program 
size.2,21,26 Locality derives from the behavior and style 
of programmers: they tend to use sequential and looping 

control structures frequently, they tend to group data 
into content-related blocks, and they tend to concen­
trate on small parts of large problems for moderately 
long intervals.5- 7 ,l5,24,26 The degree to which locality is 
exhibited is strongly a function of programming styJe­
i.e., algorithm strategy and data organization ;5-7,26 

it is reported that high degrees of locality can often be 
achieved at a cost of under 5 percent of total program­
ming costS.26 As will be seen below, the definition of 
working set as a collection of recently referenced pages 
improves as an estimator of a program's working 
information as the degree of locality increases. 

Based on the foregoing ideas, one can formulate a 
model for locality. Suppose P is the set of pages of a 
given program. Associated with the given program is a 
collection of . localities, each a distinct subset of p. we , 
denote them by A, B, C, .... Two localities may 
overlap. As suggested in Figure 2, one may imagine that 
the executing program traces a path of operation 
through its localities; the path defines a sequence of 
localities, e.g., in Fig. 2 it is 

LIL2L3 ... Li ... = A B D C B E C ... 

Now, let ti denote the length of time (the residence 
time) the program spends in the ith locality Li of the 
locality sequence; while the path is in locality L i , the 
prog:a~ generates a reference substring of length ti, 
conslstmg of pages from Li only. As an example, con­
sider a program with pages P = {I, 2, ... , 6} and 
three localities 

A = {I, 2, 3} B= {4, 5, 6} C= {I, 2, 6} 

-r---.... Path of 
Operation 

Locality Sequence ABDCBEC'" 

Figure 2-Locality 



Suppose the locality sequence is LIL2Ls = ABC and the 
residence times are tlMs = 656. A reference string con­
sistent with these conditions is 

132 123 64564 6 1 262 1 (1) 
'---y------" '-----y-----" '---y------" 

ABC 

Based on the property of locality, one would expect 
that the residence times tend to be long and that 
neighboring localities (on the path of operation) tend 
to overlap. 

Ideally, a program's working set at any given time 
should comprise exactly the pages from the current 
locality at that time. In practice (at least without the 
services of a Delphic Oracle) the working set will be an 
estimate of locality based on observations of the recent 
past reference string. Accordingly, if rlr2 ... rt ... is a 
reference string, we define the working set W (t, T) at 
time t to be the set of distinct pages referenced among 
the T most recently referenced pages, i.e., among 
r t-T+l ... r t. If t < T, W (t, T) consists of the distinct 
pages among rlr2 . .. rt and if t<O, Wet, T) is empty. 
The parameter T is called the window size, since 
W (t, T) can be regarded as the contents of a window 
looking backward at the reference string. The working 
sets for T = 4 on the reference string (1) given above 
are shown in Figure 3. 

The working set is correct when it comprises exactly 
the pages of the current locality. The correctness 
depends on the choice of window size T; in general, two 
conditions would have to be satisfied: 

1. T is sufficiently large that every page of a 
locality is in the working set with high proba­
bility. 

2. T is comparable to or much less than the average 
locality residence time, i.e., the probability of 
the window's containing more than one inter­
locality transition is small. 

~Refs. I 3 2 I 2 3 645646 I 262 I 

Locality Page 

AC I x x x x x x x x x x x x 
AC 2 x x x x x x x x x x 

A 3 x x x x x x x x 
B 4 x x x x x x x 
B. 5 x x x x 

BC 6 x x x x x x x x x x x 

Correctness - x x x x x x x x x 

Size - I 2 333 3 444 3 3 334333 

Figure 3-Working sets for T = 4 
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The higher the degree of locality exhibited by the 
program, the more likely it is that T can be chosen to 
satisfy the two conditions, and consequently the larger 
the fraction of time during which the working set is a 
correct estimate of current locality. Additional factors 
influencing the choice of T will be mentioned shortly. 

The use of a moving window to estimate locality as 
discussed above is more a matter of convenience than 
necessity. In a practical implementation it would be 
sufficient to associate "use-bits" with pages; a page's 
use-bit is set when the page is referenced, and is read 
and reset at the end of each interval of T references. 
The use-bits found to be set at the end of aT-interval 
would define a working set, and the working set so 
measured would be used as an estimator of locality 
until updated at the end of the subsequent T -interval. 
Indeed, my original proposal for working sets was based 
on this idea. lO The T -intervals can coincide with the 
time slices used to schedule programs.9 ,1l ,12,22,2S,27 

Suppose one postulates a "working set paging 
algorithm"-i.e., a page replacement algorithm that 
replaces only the non-working set pages of a program. 
It can be demonstrated that this algorithm will imple­
ment the "principle of optimality" for page replacement 
(replace the page not expected to be used again for the 
longest time) provided locality is good. IS In other 
words, the use of locality as a basis for memory manage­
ment is close to being optimal. 

THE WORKING SET PRINCIPLE AND 
THRASHING 

The working set principle for memory management 
states that a program may be active (i.e., eligible to 
receive time slices on a processor) only if its working 
set is loaded in main memory.ll,12,17 It follows from this 
statement that the number of active programs is 
limited by the main memory capacity and the sizes of 
working sets; indeed, if there are n active programs, the 
main memory capacity is M pages, and the ith working 
set Wi(t, Ti ) contains Wi pages, the working set 
principle states that the relation 

(2) 

must be true with high probability at all times. It 
follows from this statement that only the pages not in 
the working set of any active program are subject to 
removal from main memory; in particular, if every 
page in memory were a member of a working set, it 
would be necessary to deactivate some program in 
order to create candidate pages for removal. 
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If the working set principle is not followed, it is 
possible for attempted overcommitment of memory to 
precipitate thrashing, a collapse of system performance, 
especially when the ratio of speeds between auxiliary 
and main memory is high.9 ,12,13,15,23,27 It is of course 
possible for the working set principle to be violated 
without having thrashing; the point is that the prin­
ciple defines a sufficient condition for avoiding 
thrashing.13 ,15 

An efficient implementation of the principle would 
employ a compromise between the ideas of demand 
paging and swapping. Demand paging would be used to 
acquire pages during a program's active intervals, and 
swapping would be used to move a working set as a 
unit at the beginnings and ends of active intervals. 
Such strategy can be remarkably effective when 
properly designed.20 

WORKING SET SIZE AND PAGING RATE 

The working set size w (t, T) is the number of pages 
in the working set W (t, T). The average size for the 
first k references is 

1 k 

sk(T) = - L: wet, T) 
k t=l 

and the limiting average size is 

(3) 

(4) 

(The error introduced by using seT) when in practice 
one would use Sk (T) for some k is not significant under 
the assumptions of locality. 17) Consider a reference 
string segment rlr2 .. . rk; for this segment, let q(k) 
denote the number of times r t+1 was not in W (t, T), 
o ~ t < k. The missing-page rate is . 

meT) = lim q(k) 
k .. oo k 

(5) 

so that m (T) measures the average rate at which pages 
are entering the working set. Note that m (T) is an 
upper bound on the page-fault rate of a single program 
in a system using the working set principle of memory 
management, for a page may leave the working set and 
subsequently return without leaving main memory in 
the meantime. 

The important properties of s ( T) are summarized 
in Figure 4. The curve s (T) is upper-bounded by the 
smaller of T and N, where N is the size of the program; 
seT) is nondecreasing in T, i.e., seT) ~s(T+1); seT) 
is concave downward; and the "slope" of seT) is the 

missing-page rate: 

s(T+1) -seT) =m(T) (6) 

Finally, meT) is nonincreasing, i.e., meT) ~m(T+1). 
The proof of (6) is straightforward: note that 

w(t+1, T+l) =w(t, T) +~w (7) 

where ~w is 1 if the next reference rt+1 is not in Wet, T) 
and 0 otherwise, i.e., ~w is 1 if and only if the next page 
referenced is missing. Observe that the expected value 
of ~w is Xw = m (T). Taking expectations on both sides 
of (7), one finds 

s(T+1) =s(T) +Liw=s(T) +m(T) (8) 

which is equivalent to (6). A complete discussion of 
these properties, together with proofs, can be found in 
Reference 17. Experimental verification is presented in 
Reference 25. Further relations between s (T) and 
m (T) and page "interreference-interval distributions" 
can be found in Reference 17. 

PRACTICAL IMPLEMENTATIONS OF 
WORKING SET POLICIES 

There is a close kinship between the working set 
model and LRU (least-recently-used) paging, a kinship 
which can be used to approximate the working set model 
in systems where implementing a window T is imprac­
tical. The LRU paging algorithm is a demand-paging 
algorithm for managing a main memory space held 
fixed at k pages; at each page fault the least-recently­
used page is replaced to make way for the page entering 
memory, so that the memory always contains the k 
most recently used pages. By comparison, a working set 

Pages seT) = T 

/ 
N ------~--------------

/ 
/ 

/ 

/ 
/ 

/ 

Window 
o L-------T-l---Tt-+-, ----------.Size 

Figure 4-Mean working set size 



W (t, T) always contains w (t, T) most recently used 
pages, where w (t, T) is variable. It follows immediately 
that the s (T) and m (T) curves of a program can be 
used to estimate the page-fault rate F(k) of the LRU 
algorithm in a k-page memory; see Figure. 5. A more 
detailed argument17 shows that, under general condi­
tions, F(k) ~m(Tk). 

N ow, one can imagine implementing a working set 
policy according to which the window size T is varied 
dynamically so that the missing-page rate m (T) is 
controlled to be within a range ml to m2, where ml >m2. 
The importance of such a policy is twofold: not only 
does it imply each program operates in a known range 
of processing efficiency, but it allows a system designer 
to determine bounds on the paging traffic generated 
by a given statistical mix of active programs. The 
policy determines a sequence of times tOtlt2 ... ti ... 
such that Ti=ti-ti-l is the ith value of window size 
and (ti- l, ti) is the ith "sampling interval." During the 
ith sampling interval the program is run under a work­
ing set policy with window size T i, the number Pi of 
pages entering the working set during that interval is 
counted, and PilTi serves as an estimate for the missing 
page rate m(Ti) during that interval. If PilTi exceeds 
ml then Ti was too small and Ti+l is set to a value larger 
than T i ; if PilTi is in the range ml to m2, Ti+l is the 
same as T i ; and if PilTi is smaller than m2 then Ti is 
too large and T i+1 is set to a value smaller than Ti . 

By virtue of the relation between the working set 
model and LRU paging, one can approximate the fore­
going procedure using LR U paging in a memory space 

seT) 

k +-------------~ 

meT) 

Figure 5-Estimating LRU paging rate 
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whose size is varied from time to time. In this case, 
T is taken as a fixed sampling interval (e.g., a time 
slice), P the number of page faults in the previous 
sampling interval, and piT the estimate of page fault 
rate. If piT exceeds ml, the program is allocated one 
additional page of memory during the next sampling 
interval (this page being filled on demand at the next 
fault); if piT is in the range ml to m2, the memory 
allocation is unchanged; and if piT is smaller than m2, 
the memory allocation is reduced one page during the 
next sampling interval (the least-recently-used page 
being removed). This process is repeated for each 
sampling interval. During each interval the memory 
space allocation is fixed and LRU paging is employed. 
At any time the contents of memory serve as an estimate 
of the working set. 

It is important to note that, if the LRU approxi­
mation to the working set principle is used in a multi­
programmed memory, a page fault generated by a 
program causes a page to be replaced from that pro­
gram's own working set but never from another pro­
gram's working set. Put another way, the LRU 
algorithm is applied on a "local" basis but not on a 
"global" one. Thus a program's missing-page rate 
depends only on its own behavior and never on that of 
another program: its working set survives intact despite 
the paging activities of other programs with which it 
shares main memory. 

DISTRIBUTION OF WORKING SET SIZE 

It can be shown17 that whenever the third property 
L3 of locality holds-reference substrings tend to 
become uncorrelated as the interval between them 
becomes large-the working set size is approximately 
normally distributed about its mean s (T). Suppose 
w (t, T) is a working set size process with mean sand 
variance 0-2• The normal approximation for the dis­
tribution of w (t, T) asserts that, for large t, 

(x-s) Pr[w(t, T) ::;x] = «P ----;- (9) 

where 

1 jX cp (x) = ----- e-u2
/2 du 

(211") 1/2 -00 

(10) 

is the cumulative distribution of a normally distributed 
random variable with zero mean and unit variance. 
The ability to consider w (t, T) as a normally dis­
tributed random process is of key importance, in view 
of the enormous literature and theory extant about 
such processes. 8 
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Safeness 

o L---t _____________ ---I~ (J 

Figure 6-Safeness of fixed and variable partitioning 

Two deviations are inherent in the use of the normal 
approximation to the distribution of working set size: 
the normal distribution is continuous whereas working 
set size is discrete, and the normal distribution is 
defined for negative values. The first deviation is not 
significant for programs whose working set size varies 
over a wide enough range of values] and the second is 
not significant for most parameter values (s and (]') 
of interest. 

The normal approximation has been found remark­
ably accurate when the correlation property (L3) of 
locality holds.8 If this property fails to hold (e.g., the 
program contains a global loop), it will be possible to 
predict arbitrarily distant future reference patterns on 
the basis of present ones and significant deviations from 
the normal approximation win be observed. 25 

FIXED VERSUS VARIABLE PARTITIONING 
OF MElVIORY 

The strategies for allocating main memory, under 
multiprogramming, usually lie near one of two extremes. 
According to the fixed partition strategy, each of the 
programs sharing the memory is allocated a fixed 
amount of memory for its private use. According to the 
variable partition strategy, the amount of space allocated 
to each program depends on its working set size. The 
principal argument advanced for fixed partitioning is 
simplicity of implementation; a recent study by Coffman 
and Ryan, however, suggests that the cost of imple-

menting variable partitioning is more than adequately 
compensated by the saving in memory requirement.8 

Under the assumption that n programs whose memory 
demands are normally distributed working set processes 
with the same mean s and variance (]'2, Coffman and 
Ryan compared a fixed partition and a variable parti­
tion strategy with respect to a "safeness factor" as a 
performance measure (the safeness factor is related to 
the volume of paging and overall efficiency). In both 
cases the total mount of main memory was M pages. 
In the fixed partition case, each program is allocated a 
block of b pages and the total memory capacity is 
M =nb; a block is considered safe (unsaturated) 
whenever the instantaneous value of working set size 
for the program using that block does not exceed b, 
and the multiprogrammed memory is considered safe 
whenever all the blocks are safe at the same time. In 
the variable partition case, each program is allocated an 
amount of space equal to its working set size; this 
system is considered safe if the sum of the working set 
sizes does not exceed the memory capacity M. The 
values of S" the safeness factor for fixed partitioning, 
and Sv, the safeness factor for variable partitioning, are 
readily determined under the assumption of normally 
distributed working set size. The results are suggested 
in Figure 6. Whenever the variance 0"2 of working set 
size is small enough so that the block size b is at least 
s+20" [equivalently, 0" is less than (b-s)/2J, the two 
strategies are competitive; but when 0" becomes large, 
the variable partition strategy is considerably safer 
than the fixed partition strategy. 

Under the assumption of variable partitioning and a 
working set memory management policy, it is possible 
to specify the equipment configuration (relative 
amounts of processor and memory resources) of a 
computer system.14 

CONCLUSIONS 

Originally introduced as a means of understanding the 
vagaries of multi programmed memory management, 
the working set model has proved useful both as an aid 
for guiding one's intuition in understanding program 
behavior, and as a basis for analyses and simulations of 
memory problems. To summarize: it has led to a 
sharpening of the notions "working information" and 
"locality of reference" ; it has aided in the development 
of multiprogrammed memory management strategies 
which guarantee each program a given level of efficiency 
and which prevent thrashing; it has quantified the 
relationship between memory demand and paging rate; 
it has led to better understanding of paging algorithm 



behavior in both demand and prepaging modes; and it 
has enabled preliminary analysis of fixed v. variable 
partitioning of multiprogrammed memories and of 
system equipment configurations. Approximations to 
the working set principle have been used successfully 
in many contemporary systems both large and small, 
demonstrating the viability of the model: systems re­
porting success include the RCA Spectra 70/46,9,23,27 
certain TSS/360 installations,18 the TENEX system 
for the PDP-IO,4 and MULTICS. Many systems have 
used, successfully, approximations to the working set 
model, and at least one is including hardware capable 
of implementing the moving-window definition of 
working set. 22 

Many extensions to the model are possible and worthy 
of future investigation. For example, the working set 
can be defined as the set of most recently used blocks of 
program code, the assumption of fixed sizes pages being 
eliminated. Or, it may be useful in some situations to 
partition the working set into two disjoint subsets, the 
instruction working set and the data working set, and 
to implement the working set principle separately for 
both these working subsets. Or, none of the foregoing 
considerations has allowed for the possibility of 
sharing-overlapping working sets-in certain cases the 
effects of sharing have been quantified, a notable reduc­
tion in total memory demand being observed.12 
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Magnetic disks for bulk storage-Past and future 

by JOHN M. HARKER and HSU CHANG 

IBM Systems Development Division 
San Jose, California 

INTRODUCTION 

In the early days of electronic data processing, new 
application requirements arose that could not be met 
adequately by batch processing, a mode dictated by the 
sequential nature of card and tape input-output equip­
ment. Users needed a device to store and directly 
access relatively large amounts of data on-line. The first 
such products, IBM's RAMAC disk file and Sperry 
Rand's Randex drum, partially answered these needs. 
However, their use could be justified only for storage of 
highly active data due to their limited capacity and 
high cost compared to off-line tape storage. 

The subsequent introduction of the interchangeable 
disk pack lowered disk storage costs and offered a 
means of supplementing on-line disk capacity with shelf 
storage of infrequently used data. Systems designed 
with this component, in combination with programming 
support for skip sequential processing and other new 
features, made disk-oriented data processing common­
place by the middle of the 1960s. During the past five 
years, the acceptance of the disk pack has continued to 
be a major factor in the explosive growth of disk 
storage. While important developments have also taken 
place in fixed media disk devices, the total on-line 
capacity of disk pack devices today is more than 
several hundred times that of fixed media files and 
drums. 

A compounding of four other factors had a substan­
tial influence on the success of the disk pack and the 
rapid growth of disk storage during this period. First, 
the total data processing base expanded at a very high 
rate following delivery of the IBM System/360 in 
1965. Second, the introduction of IBM's multidrive 
2314 disk facility made hundreds of megabytes of 
on-line storage practical at a cost per byte significantly 
below that of previous disk pack devices. Third, large 
programming operating systems became widespread, 
permitting a user to conveniently incorporate disk 
processing in his system configuration without knowl-
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edge of the device characteristics or programming 
requirements. Last, remotely operated time-sharing 
networks and the evolving capability of both hardware 
and systems programs to handle multiple jobs efficiently 
put a high premium on having direct access to a large 
data bank. Not to be overlooked, the operating systems 
themselves required an increasing amount of on-line 
storage capacity, typically 25 megabytes at a large 
installa tio n. 

In this systems-oriented environment, the disk pack 
still performs a vital function in system reliability by 
assuring that data availability is not jeopardized by the 
failure of a single drive. However, the use of disk packs 
as a way of loading and unloading user jobs can be 
expected to diminish at installations with extensive 
operating systems since these systems view the 
peripheral hardware as a resource which is allocated 
and scheduled without operator intervention. For 
efficient system usage, a single user's data sets are 
frequently spread among several packs (or "volumes") 
of storage and may be interspersed with data asso­
ciated with other user jobs. 

The gradual shift in data management from user to 
system began with the increase in disk pack capacity 
from approximately 7 megabytes in the IBl\1 2311 disk 
drive to 30 megabytes in an IBlVl 2314 drive. This 
trend will accelerate as users move to ne,,, disk devices 
with considerably larger capacity such as the 100-
megabyte disk pack in the IBM 3330 drive (Figure 1). 

Still another important development over the past 
few years is an increase in the number of disk device 
manufacturers whose resources and competition can 
stimulate further advances. 

To see where these trends will lead, it is necessary to 
understand what key technology developments can be 
expected, and then put them in the context of future 
system requirements. Since present disk storage devices 
rest on a technology base of magnetic recording, 
primary emphasis will be placed on this technology and 
its potential for further progress. Alternative tech-
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Figure I-For computer installations in the '70s, the central 
processor will perform arithmetic and logic operations at speeds 
measured in billionths of a second, and it must draw upon vast 
amounts of data stored in magnetic disk units. The IBM 3330 
disk storage holds 200,000,000 bytes of information and through 
its associated control unit, the IBM 3830, feeds data to a processor 

at a rate of 806,000 bytes per second 

nologies now emerging will be briefly assessed. The 
resulting predictions are, of course, individual and not 
corporate, but hopefully the ideas have been drawn 
more from objective observations and published fact 
than from personal bias. 

HARDW ARE CAPABILITIES 

While a disk file is an intricate piece of machinery, 
its basic capability rests upon a few key components in 
addition to the storage disk. The magnetic transducers 
record and read magnetic patterns representing the 
information. An actuator moves the transducers over a 
large number of tracks of recorded information, per­
mitting the economy of access to a large volume of 
information. The switching circuits enable many 
transducers to share drivers and sense amplifiers for 
write and read operations and to share a control unit 
for processing signals and interfacing the disk file with 
a data processing system. 

In analyzing the cost and performance of a disk file, 
areal storage density is the key parameter to consider. 
This stems from the fact that disk files have an in­
expensive storage medium but expensive auxiliary 
components, and only yield a low cost per bit when the 
auxiliary components are shared by as many bits as 
possible. Higher areal density also improves per­
formance parameters such as the data rate, access time 
and amount of data per access. 

Along with capacity increase, disk storage devices 
have improved steadily in reliability and versatility. 
The successive generations of disk files and their control 
units have acquired capabilities such as on-line diag­
nostics, independent device servicing, rotational posi­
tion sensing and command retry. 

Nonetheless, the trend toward a lower and lower 

cost (e.g., a decrease in rental from $23/megabyte/ 
month for the 2314 facility in 1967 to $8/megabyte/ 
month for the 3330 disk facility in 1971) continues 
unimpeded because the advantages of density improve­
ments far offset the costs associated with better com­
ponent and device performance. However, density 
improvements will not readily enable us to produce 
small capacity files at significantly lower cost per byte 
because the cost of auxiliary hardware cannot be 
spread over a large enough volume of data. 

To understand what is desirable and possible for 
future disk development, we must examine the critical 
parameters that control areal density-the product of 
linear density (bits per inch along a track) and track 
density. 

Let us turn first to linear density which, in magnetic 
terms, is the number of flux changes per inch. This 
factor is primarily controlled by geometrically related 
parameters. That is, the head gap determines the 
minimum bit dimension that can be resolved, and the 
storage medium thickness and head width determine the 
maximum available flux. Also, our ability to keep the 
head gap in close proximity with the medium deter­
mines the efficiency of magnetic coupling between the 
two and insures better resolution by minimizing the 
interaction of magnetic fields from adj acent flux 
transitions. 

In track density the limiting factor is our ability to 
accurately position the read-write head within a fraction 
of the track width. An error in positioning can cause 
either erasure of an adjacent track or failure to erase 
completely a previously written record. On readback, 
either case will reduce the maximum possible signal-to­
noise ratio (S/N). 

The common design practice is to maintain a position 
tolerance within 20 percent of the track width. * Early 
systems used mechanical detents. In the newer machines, 
the recording head is positioned either by a signal read 
from one of the recording surfaces as in the IBM 3330 
drive or from an external servo reference as in the 
Information Storage Systems 715 drive and similar 
disk devices. These techniques have permitted the use 
of densities reaching 200 tracks per inch. 

To improve the positioning tolerance in future 
systems will probably require servo techniques that 
actually use the data track itself to provide an appro­
priate error signal. This perhaps could be accomplished 
by including appropriate servo data in the basic 
recording code or by interspersed patterns along the 
track, at the price of a sacrifice in linear density. 

* Because of the many individual tolerances, the actual allowable 
misregistrations for a particular machine is normally expressed in 
statistical terms. 



On balance, linear density appears to be more 
amenable to improvement than track density. Increased 
linear density when compensated by reduced head-to­
medium spacing could maintain the same signal, while 
increased track density would always be accompanied 
by a loss of signal for a given number of turns. More­
over, as the track is decreased below the present 
.005-inch width, significant problems in the accuracy of 
both static and dynamic mechanical positioning of the 
head 'will be encountered because of limitations in 
servo bandwidth, spindle bearing noise, thermal 
gradients, and similar mechanical factors. 

Now, let us examine in more detail the components 
affecting linear density. 

Recording medium 

A particulate coating is commonly used for the 
recording medium. Magnetic particles dispersed in a 
binder have proved to be tolerant to impact and wear. 
This system allows us to separate the problem of 
obtaining the desired magnetic particle characteristics 
from the problem of obtaining the desired mechanical 
durability, smoothness, and uniformity in the binder. 
Consistent with the improved resolution of the record­
ing system, the storage medium thickness has been 
reduced in successive improvements from 1000 micro­
inches in the earliest disk files to below 100 microinches 
at present. 

While some further improvement is possible, we 
appear to be reaching the limit of our ability to form a 
uniform thin coating with adequate loading and dis­
persion of particles of the proper magnetic materials. 
Further density increase may require a medium thick­
ness below 20 microinches. The simultaneous require­
ments of such a thin medium for efficient magnetic 
coupling and of high magnetization for maintaining an 
adequate signal seem to be better answered by con­
tinuous magnetic films.l However, in such media the 
problems of producing desirable magnetic properties 
and a durable physical surface must be solved simul­
taneously. Magnetically, they must provide stable 
storage, adequate signal and low surface noise. Mechani­
cally, they must withstand the wear from intermittent 
contact between the disk and the head. From evidence 
to date, a considerable development effort will be 
required to achieve a technology as consistent and 
reliable as current particulate coatings. 

Read-write transducers 

With write and read transducers, the current practice 
is to use a ferrite ring head with a glass gap. We- can 
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obtain an accurate and well-defined gap with a 40 to 
80-microinch length, a 400 to 1000-microinch height, 
and magnetic pole pieces infinitely long relative to the 
gap length. Long pole pieces are a consequence of 
fabrication techniques to obtain flatness economically. 
Accurate control of gap height is essential since it 
provides a shunt path for the magneto motive force and 
sense flux, respectively, during write and read. 

When compared to gap, spacing, and track width, 
the head as a whole is a bulky structure. While smaller 
ferrite structures can be produced, current machining 
practices are a serious limitation to significant size 
reduction. 

One of the fallouts from magnetic film memory 
technology is a fabrication technique which could be 
used to form miniaturized magnetic read-write heads.2 

The technique allows us to deposit magnetic-conductor­
insulator multilayers and to shape miniaturized struc­
tures by photolithography and various etching pro­
cesses, making it possible to produce narrow gaps for 
higher linear resolution and narrow width for high track 
resolution. Also inherent in the fabrication process is 
the ability to produce economically a multiplicity of 
elements. They could either be sliced from a large wafer 
into many chips for individual use or used as a group to 
provide an array of heads for fixed head files. 

Structures of greater complexity than that required 
for head arrays have been deposited directly onto a 
silicon wafer in the fabrication of thin film magnetic 
memories.3 This suggests the possibility of an array of 
magnetic heads optimally packaged with the semi­
conductor selection matrix and sense amplifiers on the 
same silicon chip. Such heads have quiescent mag­
netization parallel to the disk surface to avoid un­
desirable disturbance, high magnetization for an 
efficient write field, and high permeability at high 
frequency for efficient coupling during reading. 

H ead-to-medium spacing 

The mechanical access device in the most recent disk 
files consists of a servo-regulated actuator which moves 
an air-bearing slider that, in turn, carries the read­
write heads. The key design consideration here is the 
control of head-to-medium spacing. 

Smooth, flat surfaces for the head carrier and the 
medium are essential to the control of head-to-medium 
spacing. Machining, polishing, and buffing techniques 
have been developed to consistently produce surfaces 
with roughness within an arithmetic average ofa few 
microinches. Smooth surfaces prevent contact and 
ensure operation in a state where there is hydrodynamic 
lubrication by the air film carried at the boundary layer 
of the disk. 
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Figure 2-With successive models of disk files, (A) the head gap, 
medium thickness and head-to-medium spacing continued to 

decrease, (B) to achieve higher areal storage density 

High resolution in future disk files will require con­
siderable reduction in head-to-medium spacing. The air 
flow will still retain the properties of a continuous fluid 
medium apart from the regions near the surface where 
slip flow will occur. The validity of continuous flow will 
be a function of the Knudsen number, which is the ratio 
of the mean free path of the air to the spacing. As long 

as this ratio is less than unity, the continuous flow 
assumption will hold and hydrodynamic lubrication will 
not present any limitation. Since the mean free path of 
air is 2.5 micro inches at atmospheric pressure, it is 
estimated that no hydrodynamic. limitation will be 
encountered at spacings above five microinches. 

Reduction of the spacing will also require a propor­
tional reduction in the area of the bearings used to 
support the magnetic transducer. Such a reduction in 
area would be accompanied by much lower loads than 
those needed for air bearings at present. 

The preceding discussion alludes to a general relation­
ship between recording density and geometrical param­
eters of components. Indeed, as shown in Figure 2, 
successive generations of magnetic disks indicate that 
areal density has been increased by scaling down three 
key geometrical parameters: head gap, medium-to-head 
spacing, and medium thickness. 

Reading, which is the inductive sensing of the 
recorded magnetic pattern in a disk, is essentially a 
linear phenomenon. If all geometrical parameters in 
the three-dimensional space are scaled up or down, while 
the magnetic material (specifically, the magnetization) 
is unchanged, the field distribution and field magnitude 
do not change.4 Since the signal voltage is directly 
proportional to flux ([field] [length]2) and inversely 
proportional to time duration ([length]/[rotational 
speed]), the signal voltage per unit track width per 
turn of read head ([field]/[rotational speed]) stays 
constant. The signal is also directly proportional to 
storage medium magnetization. Typically, for an iron­
oxide disk medium at a rotational speed of 3600 rpm, 
a signal voltage of 10 microvolts per mil of track width 
and per turn of read head is obtainable. 

The dimensions for the key geometrical parameters 
at various areal densities could be extrapolated if one 
set of values were known. Using the IBM 2314 as a 
reference, at 2 X 103 bits per inch linear density (2 X 105 

bits per square inch areal density), the head gap, 
medium thickness, and head-to-medium spacing are, 
respectively, 100-100-80 microinches. Extrapolating the 
linear density of the 2314 file (2200 bits per inch) by a 
factor of 10 would reduce these parameters to 10-10-8 
microinches. 

Obviously a 10-microinch (2500 A) gap is not easily 
achievable with the conventional ferrite technology. 
The problem is compounded when narrow track width is 
also pursued for higher track density. Thin film heads 
offer one solution for producing such narrow gaps. The 
thin recording medium required would be difficult to 
achieve with particulate binder coatings. However, a 
continuous film medium could provide a film of the 
required thickness with" the higher magnetization 



needed to maximize the signal output. Typical satura­
tion flux density for cobalt nickel film is 10,000 gauss, 
while that for iron-oxide disks is 450 gauss.1 

This analysis demonstrates that the per-turn per-unit 
track width signal can be maintained or even improved 
at high linear density if we are willing to pay the price 
of implementing exacting geometrical dimensions and 
developing new materials and fabrication techniques. 
It should be emphasized, however, that the total signal 
is likely to decrease by a factor of 10 with the projected 
higher areal density since a miniaturized head can only 
accommodate fewer turns of windings than before, and 
higher track density requires narrower head width. 

For increased areal density in the near future, better 
detection circuits are needed in addition to improve­
ments in recording components and mechanical 
tolerances. Further density improvement will be 
accompanied by the signal decreasing toward the 
intrinsic noise levels of both the storage media and 
the electronic devices. 

Signal-to-noise ratio 

In viewing the disk file as a transmission channel, we 
encounter many sources of degradation in the optimal 
available signal-to-noise (SjN) ratio. Track mis­
registration detracts from the written signal and adds 
unerased old recording to the noise. Head-to-disk­
spacing variation affects the pulse crowding phenomena. 
Lack of uniformity in the distribution (size and orienta­
tion) of magnetic particles as well as foreign inclusions 
and voids in the binder system cause extra and missing 
bits. Up to now, these noises have been the principal 
sources of error, and most of the engineering design and 
process quality-control efforts have been aimed at 
avoiding and minimizing them. 

However, with the high degree of miniaturization, the 
intrinsic random noises will assume a significant role. 
They include the so-called storage medium "shot" 
noises and thermal noises associated with the input 
impedances of the sense amplifiers and the winding 
resistances of the read heads. The signal voltage induced 
in the read head is composed of the individual voltages 
produced by the discrete magnetic particles embedded 
in the binder. Their discreteness and inhomogeneity 
result in a random noise which is analogous to those 
associated with the emission of discrete electrons in 
vacuum tubes. 

While the system noises arising from mechanical 
misregistration or environmental pickups can be de­
signed to an acceptably low level, the intrinsic random 
noises cannot be prevented. We can I{)nly insist on an 
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adequate SjN to ensure a sufficiently low probability of 
failure or sufficiently long mean time between failures 
(MTBF). 

A very striking feature of the intrinsic noises is the 
extremely nonlinear relationship between the MTBF 
and the SjN. For example, when the SjN is reduced 
from 10 to 5 (a factor of 2), the MTBF suffers a reduc­
tion by 16 orders of magnitude ! Thus, it is imperative 
to have an ample margin for the SjN in order to safe­
guard a satisfactory MTBF or to ensure an acceptably 
low error rate. 

To achieve an error rate of one error out of 1012 reads, 
an SjN of 7 is required (Figure 3). A signal of a few 
tens of microvolts per mil turn at linear densities 
between 10 and 20 kilobits per inch can be obtained by 
using improved magnetic components. If a 10-turn read 
head and .002-inch track width are assumed, the signal 
at the preamplifier is a few hundreds microvolt. 
Presently, preamplifiers have a thermal noise of about 
50 microvolts at a frequently bandwidth of 15 MHz at 
room temperature. The noise voltage (V = square root 
of 4kTRdf) as seen by the sense amplifier is a function 
of the amplifier bandwidth. As increased data rate 
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(resulting from higher linear density) requires wider 
bandwidth, the noise increases. For example, the same 
intrinsic noise source which gives 50 microvolts at 
l5-MHz bandwidth would give 130 microvolts at 
100-MHz bandwidth. Obviously, the present pre­
amplifiers are inadequate for the future high density 
magnetic disk recording. To maintain the SIN at 7, 
the thermal noise should not exceed 30 to 70 microvolts 
at a bandwidth of 100 MHz. 

The typical medium shot noise from a state-of-the-art 
particulate disk is a few microvolts per mil turn. For a 
10-turn head, the medium noise is amplified to tens of 
microvolts per mil at the input of the sense amplifier. 
To reduce the shot noises in particulate media, particles 
must be made smaller and more homogeneous. Fine 
polycrystalline continuous thin film media may also 
be helpful. 

The thermal noises can also be lowered by reducing 
sense amplifier input impedance. Moreover, since the 
errors due to random noises are transient and recover­
able, a track can be reread· to correct the errors, 
provided that reread occurs infrequently. 

Coding 

So far, we have implicitly equated bits per inch with 
flux reversals per inch. This implies a data coding that 
requires one bit per flux reversal, but codes are possible 
which achieve greater than one bit per flux change. 
Current products use coding schemes (NRZI, FM, 
MFM) that range from one to two flux changes per bit. 
The choice of such codes is usually dictated by a balance 
between spatial resolution and timing tolerance of 
clocking and data detection. Codes that offer as much as 
two bits per flux change require clocking capability 
which must maintain synchronization within a small 
fraction of a bit time over many bit periods. Extremely 
narrow pulses also are needed to minimize peak shift 
caused by adjacent bit interference. At a 10-MHz data 
rate, this requires timings in the nanosecond range and 
is difficult to achieve economically in normal commer­
cial environments, due to variations in disk speeds, 
temperature, and other factors. 

This tradeoff, compounded with the extreme non­
linear error dependence on the overall system SIN 
makes it unlikely that practical recording devices will 
greatly improve upon a one-to-one relation between flux 
reversals and bits stored. 

DEVICE CHARACTERISTICS 

So far, only factors most relevant to increasing areal 
density have been examined. Let us now consider 

device characteristics which include actuator access 
time, latency time, data rate and volume of data per 
access. 

The access time is limited by the mechanical design 
of the actuator and the servomechanisms. The latency 
time is half the period of rotation. The data rate is the 
product of linear density, track length and angular 
velocity. The volume of data per access is the product 
of tracks per cylinder (number of heads) and bits per 
track. 

Thus, an increase in linear density improves two of 
the four performance parameters since it increases both 
the data rate and the volume of data per access. How­
ever, these improvements have an upper limit. We know 
that the linear density is increased at the sacrifice of 
SIN due to signal decrease as well as bandwidth in­
crease. This leads to increased error rate (or probability 
for failure). The MTBF suffers both from the data rate 
increase and failure probability increase. Since the 
thermal and shot noises are random, the errors will be 
transient and recoverable; we could and would attempt 
occasional reread. However, when the MTBF ap­
proaches the period of rotation, continuous reread will 
be needed and we have reached an untenable situation. 

In addition to density improvement, there are other 
avenues to performance improvement. It has been 
demonstrated in fixed head files that the access time 
can be eliminated. In one fixed head file (Burroughs 
Model 9375-3), 12,420 heads are used to serve 40 fixed 
data surfaces. Currently, such files are significantly 
more costly than moving head files of the same capacity, 
but again the application of thin film technology could 
substantially reduce this premium, at least at modest 
capacities. 

Magnetic thin-film head arrays are composed of fewer 
layers of materials2 and a smaller number of magnetic 
elements (typically tens of heads) compared to a film 
memory array (typically 103 to 105 bytes). Thus, the 
existing fabrication techniques as advanced by the film 
memory development, together with the necessary 
improvements in the disk surface and a mechanical 
slider to hold an array of heads, could produce inte­
grated head arrays. When combined with a semi­
conductor selection matrix, an economical solution to 
reduce access time substantially may well be possible. 

The latency time seems to be a different matter. 
Each track contains more than 105 bits at present, which 
will increase to more than 106 bits in the future. To be 
competitive with electronic random access memories 
which can directly access many small blocks (hundreds 
to thousands of bits), thousands of integrated head 
arrays with associated sliders and selection matrices 
would be needed~ Obviously, this would be an inferior 
answer for applications requiring short latency time, 



and we can expect disks to continue to serve optimally 
as storage for relatively long records. At its best, the 
disk file may approach the performance of a shift 
register electronic memory, but it will still fall short of 
the performance of an electronic random access memory. 

Improvement of the cost per bit through capacity 
increase need not be accompanied by high data rates 
entailing expensive electronics. By lowering the rota­
tional speed, the economy of large volume can be 
obtained while holding the data rate constant. However, 
this would result in a proportionate increase in latency, 
offsetting the current effort to decrease access time and 
improve system throughput. 

In summary, over the next decade, there is the 
potential to improve linear density by a factor of 5 to 10, 
and the track density by a factor of 2 to 4. Beyond that, 
the cell sizes will be limited by intrinsic noises, and the 
cost of further improvement would outweigh its gains. 

To achieve these improvements, new technologies 
will have to become practical. Reaching these goals will 
require significant changes in basic processes, the 
resources of a vigorous competitive industry, and 
probably will take most of the decade to evolve. 

ALTERNATIVE TECHNOLOGIES 

The continual demand for more on-line bulk storage 
has attracted new technologies to contend for the 
magnetic disk market. While these technologies are 
based on interesting physical phenomena and enthusi­
astic predictions, their merit as future products must be 
measured in terms of both economical viability and 
technical capability. 

The economical assessment of any totally new tech­
nology should cover the development cost for both 
hardware and programming, and address whether the 
possible return will justify the investment. The latter 
will be influenced by the range of products to which the 
new technology can be applied. The assessment of 
hardware costs should include not only the development 
of new storage materials, but associated component 
technologies and system interface. Programming costs 
would include the impact of both system and user 
programs. Most difficult of all, if basic changes in 
current system architecture are required, the burden of 
justifying a total system development falls on the new 
technology. 

It is useful to summarize the advantages and dis­
advantages of magnetic disk systems with a view 
toward the difficulties and opportunities for intro­
ducing alternative technologies into the market place. 
The reversibility of magnetic recording permits up­
dating records in place, and its remanence ensures 
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nonvolatile storage. Concurrent development of systems 
configuration and disk files has resulted in considerable 
interdependence of operating systems and disk pro­
cessing. This and heavy user investment in disk­
oriented programming will discourage dramatic 
departure from current hardware concepts. Off-line 
storage capability gives the user unlimited private 
programs and data sets, along with the flexibility to use 
different computing systems. As an on-line storage 
device, the disk drive offers large data volume per 
access, has 10-millisecond access time, provides very 
fast data rates, and includes considerable logic and 
system capabilities through the channel and control 
unit electronics. At present, the disk file offers the 
largest on-line direct-access storage capacity (106 to 
108 bytes, and growing beyond 109 bytes) at the lowest 
cost per bit. The technology on which such files are 
based is still capable of more than 10 times improve­
ment in storage density, and hence commensurate 
improvement in both capacity and cost per bit. 

Magnetic disk technology does have basic limitations. 
Unlike solid state memories, its cost advantage cannot 
be as easily extended to low capacity storage. It does 
not appear that substantially reducing latency by faster 
rotation or more transducers will be economical. 
Magnetic disk recording does not permit local mixture 
of memory and logic as does semiconductor technology. 
Finally, due to its mechanical nature, the disk file 
consumes space and power and requires maintenance. 
While these limitations do not detract significantly 
from the merits of the disk file for the majority of its 
present bulk-storage applications, they do offer oppor­
tunities for new technologies in special applications 
such as in space, or in minicomputers, and in computers 
with new architecture and operating systems. 

Concentrating on bulk storage, we limit our comments 
to three leading alternative technologies: be.am­
addressable files,5 LSI semiconductor arrays6 and 
magnetic bubbles.7 

Beam-addressable files use the speed and flexibility 
of optical techniques which rapidly move a light beam 
to access the stored data rather than mechanically 
moving the read-write device to the storage media as 
required in current disk storage. However, the problem 
faced by optical accessing methods is finding materials 
that are sufficiently sensitive to allow writing with very 
low energy levels, and which, in turn, provide enough 
energy to allow high speed readout with an acceptable 
SjN. 

Photographic materials can satisfy both require­
ments. They have been used successfully, for example, 
in the trillion-bit memory of the IBM 1360 Photo­
digital Storage System. Designed for specialized applica­
tions. the system's nonreversible film memory would 
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seriously inhibit its extension toa more dynamic 
on-line environment. Systems which employ high 
energy lasers to vaporize holes in metallic coatings and 
other similar technologies face the same problems. 

The most commonly proposed reversible beam­
addressed file technologies are based on thermal writing 
and magneto-optic reading by a steerable laser beam. 
This approach, configured as a disk file, is attractive in 
concept. It shares with conventional disk equipment 
the simplicity of a homogeneous, stable, but reversible 
storage medium. At the same time, the beam technology 
offers the possibility of eliminating mechanical ac­
cessing mechanisms. 

In practice, there are serious drawbacks. The magneto­
optical read and thermal write transducers require the 
development of a storage medium with large magneto­
optic effects. Although such materials exist (e.g., 
MnBi for room temperature operation, EuO or Fe-doped 
EuO for low temperature operation), they are by no 
means optimized nor do they have an established 
materials technology comparable to particulate oxide 
media or permalloy magnetic films. 

Moreover, at present, nonmechanical deflectors can 
only steer a light beam to a limited number of recording 
tracks, and a simple solution to the technical problems 
involved does not appear to be immediately at hand. 
An alternative to this scheme utilizes mirror rotation in 
combination with a matrix-controlled laser array to 
select a track, and mechanical rotation to scan the 
track. Another drawback is that the dc bias field cannot 
be easily switched on and off, thus necessitating two 
rotations to effect rewrite. 

However, the projected storage density (and thus, 
toughly cost per bit) of a magneto-optic file is com­
parable, but not significantly superior, to that for 
conventional magnetic recording. This factor, along 
with the current state of materials development and the 
mechanical-accessing feature suggests that the magneto­
optical file is not likely to replace conventional magnetic 
files unless the latter fail to reach their projected 
improvement in areal density. 

The semiconductor industry is well established and 
broad-based. Semiconductor components have found 
their applications in the memory hierarchy, ranging 
from the CPU to cache and main memory. Develop­
ments in FET devices and charge-coupled devices have 
further heightened the hope that they might become 
sufficiently cheap to replace disk files. 

Since cost is the central issue, let us consider if there 
is a tangible technical basis for predicting whether 
semiconductor costs will approach magnetic disk costs. 
Basically, magnetic disks are only expected to perform 
the storage function, while the semiconductor storage 

cell must enable selection and transmission as well. 
Consequently, semiconductor devices have much more 
stringent materials requirements, and many elements 
have to be electrically connected. 

The high quality single crystals, the high-resolution 
photolithography, and the many processing steps which 
tend to compound failures are not likely to lead to a 
cost even close to that of the disk file for bulk storage. 
However, it is quite reasonable to expect that solid state 
memories may eventually catch up with the low­
capacity end of the disk files, namely the 106 to 107-byte 
fixed-head files. The cost per byte at that capacity 
level, whether for semiconductors or magnetic disks, is 
at least 100 times higher than that for the large-capacity 
disk files. 

The magnetic bubble technology has shown impres­
sive progress. It appears to have found materials for 
high-density storage, thin film techniques to facilitate 
fabrication, and processing steps similar to those well 
established for the semiconductor technology. But as 
far as cost is concerned, the comments concerning 
semiconductors apply equally well to the magnetic 
bubble technology. Perhaps the simpler structure, 
resulting in simpler processing steps, will give magnetic 
bubbles a cost advantage over semiconductors, but this 
still should be far above the cost of large disk files. 

Undoubtedly, there are some intrinsic properties 
which could be explored for significantly new file 
configurations. For example, magnetic bubbles exhibit 
capabilities for both logic and nonvolatile storage. The 
logic capability enables on-chip decoding and amplifica­
tion, and offers the potential of removing the demarca­
tion line between storage unit and control unit. The 
nonvolatile storage capability allows both on-line and 
off-line stable storage. 

In conclusion, the magneto-optical file is configured 
for bulk storage, but it still lacks satisfactory storage 
media and accessing devices. The photo-digital file 
(non-reversible media) implies a drastically different 
programming system and architecture. The semicon­
ductor and magnetic-bubble memories do have a sound 
technology foundation, but their present configurations 
and cost projection are only suitable for large memories 
(106 to 107 bytes), but not for bulk storage (107 to 
109 bytes). 

PAST AND FUTURE HIERARCHIES 

Having explored what technical capability can be 
expected, let us switch the frame of reference to that 
of a systems designer and look at what will be desirable 
and useful. in the future development of disk storage. 



In the past, storage has consisted of high-speed semi­
conductor memories, lower speed ferrite cores, fixed 
head disks or drums, movable head disk files and 
magnetic tape units. 

As a sweeping generalization, to a system designer 
any form of hierarchy of storage is an undesirable 
compromise. Where possible, all the memory associated 
with a data processing system should be available in a 
single configuration with an access time comparable to 
the logical processing speed of the system. While in 
practice this is economically unrealizable, the fewer the 
levels of storage the better because each level produces 
a new set of problems and a new set of complexities. 

In the past when the user worked with relatively 
simple problems that were well structured, stable and 
few in number, he could be expected to deal with the 
problem of knowing where his data was stored. He was 
also acquainted with something of the characteristics 
of the devices that were being used so that he could 
adapt his program to make efficient use of these devices. 

Having user programs manage storage in such a 
manner implies that no significant change in the system 
can occur without impacting both user and systems 
programs. However, the life of an applications program 
needs to be easily extendable across several generations 
of hardware and operating systems. 

Further in the future, there will be a multiplicity of 
users with less and less sophistication, as well as stored 
data sets for common usage whose characteristics the 
users do not understand, or even wish to understand, 
and cannot predict. Therefore, programming operating 
systems have evolved which perform a data manage­
ment function and make the hierarchy of storage 
devices "transparent" to the users. This process started 
with the very primitive I/O subroutines of the '50s and 
proliferated in the mid-60s to include a wide variety of 
access methods and supervisory scheduling functions. 
These now are beginning to include virtual memory 
techniques and entire data handling subsystems such 
as Honeywell's Integrated Data Store and IBM's 
Information Management System. In addition, the 
increasing importance of shared data and the necessary 
associated security procedures will require new cen­
tralized storage management functions. 

On the other hand, the management of bulk on-line 
storage has always been a critical issue in determining 
systems performance. Although substantial success 
has been achieved in transparently managing data 
movement between semiconductor buffers and main 
memory, similar techniques applied to data transfer 
between main memory and disk storage have achieved 
only limited success. The problem is that efficient 
management of today's on-line and off-line storage 
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demands considerable attention to block size, sequen­
tiality and patterns of periodic access. And the direct 
extension of these techniques to still another level of 
bulk storage is far from obvious as there is gap in 
storage management procedures between what we need 
to do and what we know how to do. 

With this background, let us consider the hierarchy 
of storage defined previously and the impact of evolving 
technology on at least its exterior configuration. 

Over the next 10 years, two main factors in addition 
to improvements in disk technology will be evident in 
computer storage development. First, there will be a 
substantial cost reduction in semiconductor memory or 
an alternative such as magnetic bubbles. Neither, 
however, is very likely to approach disks on a cost-per­
bit basis. Second, extremely large capacity on-line 
magnetic tape devices will become available, such as 
the Ampex Terabit Memory System or other systems 
of mechanically accessed tape reels. Although we will 
see increasing variation in the possible characteristics 
of such large capacity storage devices, they will probably 
all characteristically have a lower cost per bit than 
disks during this decade and substantially poorer 
random access capabilities. 

The cost reduction in semiconductor memory, or its 
equivalent, may result in its supplanting ferrite cores, 
fixed head disks and drums by the 1980s. Moreover, as 
these large capacity memories commonly reach 106 to 
108 bytes, more jobs will be processed concurrently and 
more of the data required for a single job will be held in 
main memory. In this case, the present access time to a 
disk store can be tolerated, and pressure to improve 
this parameter will diminish in favor of an emphasis on 
cost, capacity, reliability and packaging advantages. 

A more interesting question is the relationship of 
tapes and disks in future on-line storage systems. 

A tape-oriented system might be envisioned as a 
three-level hierarchy, consisting of a very large main 
memory (107 to 108 bytes), a moderate-sized disk 
system, plus a tape based mass store. 

In using this system we are confronted with the 
significantly increased difficulty of managing such a 
hierarchy at exactly the time when system, rather than 
user, management of storage is becoming more and 
more important. Looking up an entry in last year's 
ledger should not cause any substantial portion of that 
ledger to be staged to disk. On the other hand, because 
of the slow random access rate possible with the tl,pe­
based device, it is clear that, when a data set becomes 
active, independent requests to that data set must be 
limited to a few, if anything like the efficiency of current 
systems is to be maintained. 

Such tape-based devices could reduce the need for 
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capacity in disk storage. However, maintaining an 
equivalent rate of systems activity would substantially 
increase the requirement for accesses to each unit of 
disk storage since a smaller number of drives must 
handle all previous memory disk transfers plus the 
added accesses caused by tape-to-disk transfers. Thus, 
the cost savings in the disk component of the system 
may be less than expected. 

As a result, it appears that the limitation of access 
rate in tape .. based devices, however mechanized, will 
offset their lower cost unless a very low percentage of 
the accesses directed to the data base require access to 
that portion s~ored on tape. 

These predictions do not imply that a tape-based 
library will not play an important role in future systems 
as an archival or I/O device. What they do imply is 
that such a device will not impede the growth of disk 
file capacity for on-line storage. 

CONCLUSION 

In summary, the picture is one of a continuing evolu­
tionary development of present disk file technology with 
at least an order of magnitude increase in storage 
density as well as total storage volume, and a corre­
sponding decrease in the cost per byte stored. 

In a future hierarchy, the upper limits of solid state 
memory capacity imposed by cost considerations will 
move to the 107-byte range, either by continued develop­
ment of silicon technology or the introduction of a new 
technology such as magnetic bubbles. However, above 
108 bytes there still will be at least one and probably 
two orders of magnitude of cost-per-byte difference 
between solid state memories and large magnetic disk 
files. Thus, both will coexist. 

The increased size and higher data rates of electronic 
memories will also tend to increase the need for blocking 
of records, permitting increased efficiency in the use of 
disk storage space. The very high data rate that will be 
possible and necessary as a consequence of further disk 
developments will make the interchangeability of disk 
packs more a feature that insures data availability than 
a typical means of moving data into and out of an active 
system data base. 

Therefore, the role of disk storage will become more 
and more the maintenance of current on-line data with 
lower performance tape libraries performing an archival 
function. 

Given the momentum of magnetic disk technology 
and the availability of new materials and fabrication 
technologies to provide a significant increase in density, 
it is unlikely that any other technology will displace 

magnetic recording in the coming decade as a principal 
data storage media for the industry. For some other 
technology to displace it, probably the alternative 
method would have to provide functions we do not 
foresee rather than merely a more economical or efficient 
means of storage. 
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Ultra-large storage systems using 
flexible media, past, present and future 

by WILLIAM A. GROSS 
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Redwood City, California 

INTRODUCTION 

This paper aims to survey past and present, and predict 
possible future ultra-large digital memory storage 
systems It is easy to describe what exists, but difficult 
to present meaningful predictions. To cope with this 
objective, characteristics of systems that can be avail­
able in 1976 and 1981 will be described and explained. 
Since it is probable that not all of these will be available, 
the necessary and sufficient conditions have to be 
identified. These conditions are qualitatively reviewed 
by discussing the development process of systems such 
as ultra-large storage systems. 

The functional need for ultra-large storage systems 
has arisen because the power of computers, the com­
plexity and amount of processing done, and the back-up 
memory sizes have continued to grow. Each year more 
data processing managers find their tape libraries and 
stables of disc files getting out of hand. An on-line, but 
slower access memory is required to fill this new memory 
hierarchy niche. 

In this paper the characteristics of ultra-large storage 
systems and the boundary between such systems and 
large storage systems are defined. After reviewing the 
development process, identifying physical, engineering, 
software, and system implication, technological con­
siderations relevant to ultra-large storage systems are 
detailed. Then possible bit-by-bit and holographic 
storage systems are described and realizable properties 
predicted. The sufficient condition required for existence 
of these systems is funding of the development and 
production. There are too many vagaries in patterns to 
predict this. The paper does aim to set the stage for 
rational decision making. Decisions yet to be made 
will determine which of the possible systems will be 
produced, and when. 
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DEFINITION 

An ultra-large digital storage system is defined by 
function and size. It fills a new position in the memory 
hierarchy of large computer systems, by replacing 
off-line data stores, and placing the entire back-up 
storage on-line. Since ultra-large storage systems back 
up tape transports and disc files, the size will vary with 
time. In 1972 ultra-large digital storage systems place 
on-line 1011-1012 bits with access time to any data set in 
approximately 1-10 sec. In ten years the largest size 
used is likely to approach 1014 bits. The lower bound of 
memory size will be about three to ten times the storage 
capacity of the largest commonly used disc file units 
(or competitive storage systems such as may exist if 
large bubble memories become practical). 

Ultra-large memories are systems in their own right 
and can be operated in stand-alone modes. More than 
one CPU can be connected to an ultra-large storage 
system without changing any of the computers' internal 
software operating systems. Successful systems will 
have both hard and soft wiring, a minimum of moving 
parts, and be very reliable. Flexibilities should permit 
simultaneous writing, erasing, reading and searching. 
Though data can be stored off-line for archival purposes, 
it appears likely that operating data will be kept 
on-line. The high packing density (up to three orders 
of magnitude fewer reels required) and low shelf storage 
cost (about 10-6 cents per bit) may induce the user to 
duplicate some data for shelf archives. 

An assessment of existing computer systems, and 
trends leads to specifications of ultra-large storage 
system performance objectives today, and in five and 
ten years. The smallest sizes of ultra-large storage 
systems, 5(1011) bits in 1971, 1012 bits in 1976, and 
5 (1012 ) bits in 1981 are likely- to have to sell for about 
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Figure 1-Storage capacity vs. access time for memories 
in the computer system hierarchy 

one million dollars each. The largest size should be 
about ten times larger, and the cost less than three 
times as much as for the smallest system. Data ac­
curacy (uncorrectable readout error rate) should be 
at least 10-10 in 1971, 5(10-11 ) in 1976, and 10-11 in 
1976. Throughput will have to be at least 5 Mbps, i.e., 
5(106) bits per second, in 1971, 10 Mbps in 1976, and 
15 Mbps in 1981. Because of the mechanical access 
required, average access is likely to be about fifteen 
seconds throughout this period. Cost per bit off-line 
should be less than 10-6 cents per bit (with the storage 
medium fully used) throughout 1971-1981. Systems, 
of course, must be very reliable. Because of the size of 
the systems, capability of graceful degradation is useful. 

These characteristics, when plotted on cost/size/ 
access time charts as in Figures 1 and 2, clearly indicate 
the hierarchical position with respect to other memories. 

Functionally, writing and storage of vast amounts of 
data, like 1012 bits, and accurate readout for very low 
costs appear to require storage in a volume. I believe 
that the system objectives described cannot be met in 
this time frame by storage in a solid volume; therefore, 
it is necessary to build up a volume, sheet by sheet, as 
in a scroll, or book. Hence, technologies reviewed here, 
relate only to recording on flexible media which may be 
stored on reels or in bins. 

Assuming data accuracy, and retrieval times to be 
satisfactory, * storage of 1012 bits at a data density of 
106 bits per square inch (as in magnetic recording in 

* It is important to note that storage density should always be 
specified together with data accuracy, and access times and data 
rates, because of the substantial tradeoffs which occur between 
these factors. Sometimes high density storage is specified, and the 
low realizable data accuracy may not be mentioned or even 
understood. 

1971) requires 106 square inches, or about one sixth of 
an acre. To avoid substantial mechanical storage, a 
storage system of less than 1000 square inches would be 
required. For 1012 bits, this requires 109 bits per square 
inch. Though electron beam writing with this density is 
possible, and readout from small areas can be demon­
strated, readout under the specifications required is not 
practical within this time frame, and, in fact, may not 
be achievable. Ultra-large storage systems are therefore 
likely to require mechanical movement and accessing 
of substantial areas of flexible media. 

BOUNDARY BETWEEN LARGE AND 
ULTRA-LARGE STORAGE SYSTEMS 

As observed, the boundary between ultra-large, i.e., 
flexible media stores, and large, i.e., disc file stores, will 
move with time and with system application. Harker's 
companion paper! reviews the present state of disc 
files, and predicts the characteristics of disc file units in 
ten years. Not knowing his assessment at the time of 
this writing (Sept., 1971), I will predict a one order of 
magnitude increase in disc packing density, perhaps 
using magneto-optic readout techniques from plated 
discs. In ten years, therefore, it should be practical to 
use disc files to store 1011 bits, and the boundary between 
large and ultra-large storage systems would move from 
the 1010-1011 bit region of today to 1011-1012 bits in 1981. 

PROCESS OF ULTRA-LARGE STORAGE 
SYSTEM DEVELOPMENT 

A viable memory storage system, or for that matter, 
any technological device or system must have passed 
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several necessary conditions imposed by physics, 
engineering hardware and software, architecture, 
economics, and the market (e.g., timing). Each of 
these factors is reviewed in this section identifying its 
function in the development process. Understanding 
them is a prerequisite to either making or reviewing 
predictions. 

1. Physics: The fundamentals of physics, and 
materials, including the imperfections attainable 
in practice, must be such that the desired 
properties are achievable with substantial margin. 
For memory systems, a first step is commonly 
to demonstrate that sample bits of data can be 
recorded and their existence determined by some 
convenient means; I tec~niques for practical 
readout being speculated. I call this step physical 
feasibility. The specific demonstration may cost 
from $5000 to $50,000. 

2. Engineering, Hardware and Software: Design 
and repeatable production of reliable devices or 
systems must be economically achievable in 
large numbers. Operation must be economical, 
and occur in commonly available environments 
without unplanned downtime. There are many 
engineering implications, a few of which are 
worth noting. 

a. First, we must often develop processes for 
producing improved materials and improved 
fabrication methods. Different processes and 
methods are likely to have to be developed 
for each order of magnitude increase in final 
production. 

b. Second, both materials and designs must be 
such that required performance, economy, 
reliability and lifetime are possible. In the 
case of memory systems, three performance 
criteria must simultaneously be achieved with 
substantial margin to allow for production 
and usage variations: data packing density, 
write/readout error rate, and time con­
siderations (data rate, access time, write/ 
readout cycle time). Most physics feasibility 
demonstrations (1) involve techniques and 
materials in which only two of the above three 
criteria can be met. Unless there is likelihood 
that techniques for meeting the third criterion 
can be met, the study should be promptly 
dropped. 

c. Third, the design should approach elegance as 
closely as possible. By elegance is meant a sort 
of canonical (optimum in the sense that 
necessary functions are well met and super­
fluities are absent) design in which the 

Ultra-Large Storage Systems 959 

machine or system is well adapted -to people 
(the users) and in which there are the fewest 
number of parts, the least amount of material 
used, and the least amount of power required 
for operation. 

d. Fourth, the design should minimize both 
initial cost and long-term operating costs. 
Wide tolerances on mechanical parts made of 
durable materials not subject to fatigue or 
state change failures are desirable. There 
should be little, if any, contact between 
parts to minimize wear. Strip files have had 
difficulties with objectives (c) and (d). All 
models produced have had reliability ,prob­
lems; none is now being produced. 

e. An engineering model, costing perhaps ten to 
one hundred times the cost of the physics 
feasibility model (1) has to be built to give 
confidence that the engineering considerations 
such as (a)-(d) can be achieved. 

f. If satisfactory performance is demonstrated 
an engineering prototype needs to be built. 
It may cost from one hundred to one thousand 
times the cost of the physics feasibility model. 
The engineering prototype will probably 
include hardware, firmware, and software 
development as well as system studies relating 
to potential applications. 

g. Software studies and development, and systems 
planning need to be part of the engineering 
effort from the inception so that timely, 
canonical and least expensive development 
can be approached. Otherwise, major re­
design will be required as a minimum, and 
more likely, too much of the design will be 
frozen and an optimum configuration not 
possible. 

h. Finally, a manufacturing prototype, costing 
approximately the same as the engineering 
prototype, and documentation, costing as 
much as the entire technical effort, is required 
to prepare for production. It has been my 
experience, during fifteen years in the data 
proce8sing industry, that seven to ten years 
and seven to ten million dollars is a ballpark 
estimate of the cost required to move a sys­
tem, such as an ultra-large storage system 
from conception to completion and delivery 
of the first production system. 

3. Architecture: Computer architecture has changed 
substantially in the last fifteen years. There has 
been a continual growth, in computer systems, 
of software size, complexity, hierarchies of 
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memories, communications, peripherals, and 
corresponding decreases in many unit costs. 
The evolution both toward being easier to use 
(better adapted· to people), toward greater 
variety, and toward increasing maximum on-line 
size appears likely to continue for more than the 
next fifteen years. It is this latter growth which 
establishes the growing market for ultra-large 
memory storage systems. To use such big 
memory systems, however, requires that they 
fit into users' information systems. Computer 
architecture is presently provided by OEM's. 
lVlore sophisticated users are beginning to 
develop their own architecture, and increasingly 
more will in the future. Both general and special 
architectures will evolve during the next decade. 
Many of them will include ultra-large storage 
systems. 

Design of an ultra-large storage system should 
be such that evolution to larger sizes over the 
next decade or so is possible without significant 
impact upon the users' operating systems: 
There should be negligible changes in software 
or system organization required. Specifically, 
any ultra-large storage system produced today 
should be such that more than order-of-mag­
nitude increases in storage size can be accom­
plished through the next 5-, 10-, and 15- year 
intervals without requiring significant software 
and system changes. 

4. Economics: The admission price for a new 
product has to be paid. It has been observed 
that this price for ultra-large storage systems is 
likely to run to 10 million dollars. Systems worth 
many times the admission price have to be sold to 
justify the time value of the money invested. 
The market estimate of those funding the 
development is part of the economic gate. Other 
parts are estimates of production costs and 
sales price. 

For a new ultra-large storage system to be 
produced by 1976, a good part of the admission 
price must have already been paid, and the rest 
of it assured. 

5. Timing. Timing ofa new product is always 
critical. The optimum time is bounded by too 
early (applicable technology not sufficiently 
developed, market need not yet developed) and 
by too late (market established and being 
supplied, and price reductions under way). 
Expecting development of an ultra-large storage 
system to take more than five years, a new 
system can be expected in 1976 only if an engi­
neering model has already been built. 

TECHNOLOGY CONSIDERATIONS LIKELY 
TO IMPACT THE NEXT DECADE 

l\1aterial, electrical, mechanical, and magnetic tech­
nologies both permit construction of ultra-large storage 
systems, and limit their performance. The last section 
discussed some of the process of memory system 
innovation. This section lists some of the more signifi­
cant technological considerations required in making 
predictions. 

1. Materials: New recording technologies usually 
require novel storage media. In fact, invention 
of a new medium often triggers the first feasi­
bility demonstration of a potential new storage 
process. Unfortunately, though, the quality of 
existing memory storage media is so good, as a 
result of thousands of man years of development, 
that it is extremely difficult for any new approach 
to achieve the cost/performance improvement 
required for the resulting system to be successful. 

The only practical ultra-large memory storage 
media now in use are silver halide film and 
magnetic particle tape. They are comparatively 
reliable, defect-free, and low in production cost. 
Other media appropriate for ultra-large storage 
systems have not yet proved themselves. 
Evolutionary improvements in both silver halide 
and magnetic tape will continue to be made. 

Both silver halide and magnetic tape, upon 
analysis, show substantial life as affirmed by 
National Bureau of Standards tests. After a 
hundred years we will be in a better position to 
tell how the mylar backing, which appears to be 
the controlling factor, holds up. There is good 
reason to believe that, since 10 year life has been 
shown, much more life than that can be expected. 
No storage medium has been certified to have 
permanent life. 

Silver halide tape used in microfilm applica­
tions has the advantage that it does not require 
much positional accuracy for data retrieval; 
both silver halide and magnetic tape, used for 
digital bit-by-bit storage, do. The National 
Archives finds that it must rewind s~red com­
puter tapes using longitudinal track recording 
every two years. The reason is that temperature 
variations of even ±5°F lead to tension changes, 
particularly in the inner one-third of stored tape 
on reels. The problem with 800 bpi tape is that 
the transports do not have self-clocking and can 
cope with very little tape stretching. (The 1600 
bpi transports do have self-clocking and can 
cope with more stretching.) 



Experience with transverse recorded magnetic· 
tape is completely different. Transports seem 
easily able to servo to the two-inch long tracks 
even after substantial abuse including years of 
storage in wide temperature ranging environ­
ments. In fact, some of the earliest video tapes 
recorded 15 years ago can be played back with 
no recognizable loss in signal quality. 

The National Bureau of Standards has 
investigated samples of storage media supplied 
for the hole-burning Unicon* (which will be 
described later). Their study revealed that 
resolution has been accomplished and that holes 
were produced without apparently damaging the 
mylar substrate. So long as nothing happens to 
the plating during the passage of time, the life, 
like that of silver halide and magnetic tape 
should be at least 10 years, and probably much 
more. 

2. Electrical: Continuing improvements in cost­
performance-life-complexity of integrated cir­
cuits is leading to increasing use of IC's replacing 
engineer-designed circuits. Furthermore, built in 
mini-computers permit use of soft wiring (in­
ternal computer control), instead of hard wiring 
(conventional circuits using conventional circuit 
elements), and firmware (use of ROM's within 
soft wired systems). The consequence is in­
creasingly sophisticated final systems providing 
improvements in performance, cost, and flexi­
bility of use. (Ironically, improvements in IC 
cost/performance result in corresponding im­
provements in all hierarchy levels of memories, 
including that of cores, which IC's are at­
tempting to surpass by cost/performance 
improvements. ) 

3. Mechanical: Reliability problems and break­
downs seem invariably to be due to mechanical 
and/ or material failure. Comparatively few 
seem to have recognized this. As has been 
implied, getting out information is vastly more 
difficult than putting it into most storage 
systems. In fact, my experience has led me 
to observe that the development cost to prove 
readout capability is likely· to be two orders of 
magnitude greater than the cost to demonstrate 
recording. Most searches for funding for new 
storage techniques have to take place between 
these phases. 

Practical reproducibility of production parts, 
and most importantly, accurate positioning of 
the readout transducer limit the performance of 
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Figure 3-Area packing density, past experience and estimate of 
what is realizable in commercial products in the future 

electro-mechanical storage. systems to much 
lower storage capacity than physical and 
material considerations would permit with 
perfect mechanical parts and positional control. 
In fact, it is well-known, but sometimes ignored, 
that laboratory performance predicted or even 
achieved in feasibility demonstrations is often 
more than an order of magnitude better than 
can be reliably achieved in an operating system. 

Conventional, longitudinally tracked mag­
netic tape transports are a case in point. For 
economic reasons, and because of the byte­
across convention, tape skew has limited linear 
packing density to 1600 bits per inch. Instru­
mentation transports, however, not limited by 
byte requirements, record and reproduce over 
25,000 bits per inch. The ultimate achievable in 
practice appears to be about 40,000 bpi, although 
the magnetic limit is about 100,000 bpi. 

Packing density is limited by mechanical 
position reproducibility for readout, machine to 
machine. The limits are comparable for both 
flexible and rigid storage media. The storage 
density, attainable in mechanically accessed 
systems whether with rigid or flexible substrates, 
and regardless of the recording medium, appears 
to be fundamentally limited by mechanical and 
material considerations. Figure 3 illustrates how 
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this density has improved over the last decade, 
and how I believe it will level off. The figure 
applies to both bit-by-bit and holographic 
techniques. 

Some2,3,4,5,6 have used, or proposed, electron 
beam and laser beam systems with extremely 
high packing densities to overcome mechanical 
limitations. Figure 3 still seems to apply, but for 
different reasons. These will be discussed later 
in the section on beam access. 

4. Magnetic: Magneto-electric effects as in core 
memories, and magneto-electromechanical effects 
as in disc files and tape transports are used for 
large memories today. It appears that magneto­
electromechanical effects will be used for large 
and ultra-large storage systems for the fore­
seeable future. It has already been observed that 
magnetic tape can store information at vastly 
greater packing density than we will ever be 
able to deposit and retrieve it. The other mag­
netic limitation is in the transducer, the mag­
netic head. The inductor heads now used become 
lossy at high frequencies and are generally 
impractical for use above 15 MHz. This places 
an upper bound upon single channel data rates. 

There have been many efforts, such as the 
magneto-resistive head,7 to produce practical 
non-inductive, monolithic heads. None, however, 
has proven to be practical to date. The appear­
ance of a monolithic head stack which can write 
and read with equivalent performance, but at 
one-tenth the cost, would result in substantial 
changes in the design of large and ultra-large 
storage system memory elements. In the mean­
while, inductor heads will increasingly be made 
of hot-pressed ferrites for three reasons: superior 
wear, yield in production, and magnetic per­
formance. 

REVIEW AND PREDICTION OF SYSTEM 
PERFORMANCE 

Assessing possible developments in memory tech­
nology is of major interest to many groups in addition 
to the technologists and marketers. Among these are the 
system designers, senior corporate managements, and 
venture capitalists. Eshenfelder,5 Weil,6 Hoagland,8 
and Best9 have written papers containing useful survey 
assessments for ultra-large storage systems which have 
appeared in the last five years. The technologies and 
systems I will review fall into two classes: discrete bit 
and holographic. Discrete bit systems have been, are, 

and may be: 

1. Magnetic-oxide magnetic tape, erasable. 
2. Plated tape for magneto-optic read, erasable. 
3. Photographic, silver halide tape, using electron 

or laser beam write and read, permanent. 
4. Metallized tape, electron, or laser beam hole­

burning write, and readout, permanent. 

Holographic systems may be: 

1. Photographic, silver halide tape, laser beam 
write and read, permanent. 

2. Plated tape for magneto-optic read, erasable. 

Each of the preceding will be reviewed, necessarily 
in a limited fashion. It is important to note that the 
predictions for 5 and 10 years from now are not pre­
dictions of what will exist, but of what is possible 
physically, engineering-wise, and system-wise. Whether 
they are developed, produced, and offered for sale 
depends upon whether developments are funded. 

A. Discrete Bit Systems 

1. Magnetic-Oxide Magnetic Tape, Erasable 

Magnetic tape storage fundamentals have 
been so thoroughly reviewed in the literature8,lo 

and somewhat here, that I will focus upon 
storage systems. Performance data are listed 
in Table 1. 

a. 1966. The IBM 232111 Data Cell was intro­
duced in April, 1964. It was the first significant 
ultra-large storage system to be placed on the 
market. Like preceding strip-file memories, 
it suffered from reliability problems. Com­
peting disc files have superseded it. Error 
rate is not specified; errors are detected by the 
system and reported to the CPU. Access 
time is an approximate average. 

b. 1971. The only available magnetic-oxide 
ultra-large storage system in 1971 is the 
Ampex TBM,* or Terabit Memory.12 (Tera 
is the standard designation for 1012.) The 
system uses the transverse recording tech­
nique developed 15 years ago for video 
recorders, and widely used since then. 
Innovations include system design permitting 
easy growth to both larger size and to new 
generations without changing software, grace­
ful degradation, and parallel channels for 
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a - Size 

Mag particle tape, 
electromagnetic 

(erasable) 

(1) 

TABLE I 

Discrete Bit per Station 

Plated tape, 
Magneto- optic 

(erasable) 

(2) 
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Photographic Electron Metallized tape, 
or laser beam, silver laser 

halide film vaporization 
(permanent) (permanent) 

(3) (4) 

Photographic, 
laser beam, 

silver halide fihn 
(permanent) 

(5) 

Holographic, per Station 

Plated tape 
Magneto - optic 

(erasable) 

-6-

b - Raw Packing Density 

10
12 

bits 

106 bits! in
2 .098 1.4 3 7.5 NA NA 15 25 NA 2.8 6 10 NA 25 25 25 30 NA NA 25 b 

c - Data Rate 

d - Access Time 

e - Error Rate 

f - Cost per Bit on Line 

g - Cost per Bit Off Line 

10- 1 Obits ,uncorrectable 

10-4 cents 

10- 6 cents 

.44 6 16 20 

.45 15 15 10 

.7 .5 .1 

45 5-1 5-1 3-.3 

160 1 .5 .2 

(1) IBM 2321 Data Cell, (f is estimated at 50 time~ . 9(lO-4)¢ rental per month 

(2) TBM TM 

(3) IBM 1360 (Electron Beam); W=write, R=read 

(4) Laser Bearn., estirn.ated 

(5) UNICON ™ 

simultaneous reading, writing, and 1000 ips 
search. This appears to be the only system 
available in the next few years which meets 
all of the specifications listed at the beginning 
of the paper. Most parts of the first system 
have been delivered, and customer acceptance 
tests are scheduled for March, 1972. 

A storage system meeting some of the 
specifications13 is said to be under develop­
ment in IBM. It is a three-inch wide multi­
tape loop. In the absence of specific in­
formation, I can only speculate that the 
system will aim to produce automated tape 
libraries having up to, say 1011 bit storage 
capacity. Tape loops can be stored in cham­
bers, accessed pneumatically, then rotated at 
high speed for writing, reading, and erasing. 
Reliability problems associated with the 
extremely large number of rotational cycles 
requires, i.e., tape edge damage, and splices 
(if used) will have to be solved. If produced, 
and reliability is demonstrated, this large 
storage system would impact the lower bound 
of the ultra-large storage market. It remains 
to be seen whether achievement of the 
projected performance is possible with a 
reliable system. 

c. 1976. Packing density, and, therefore, total 
capacity of the TBM* can be doubled in five 
years, and the data rate increased to match 
increasing capability of central processors. 

The tape loop, if successful, should also 
double capacity by about 1977. If tape loops 
become established, any competitive large-

15 50 

15 10 

60 

2.-.5 2-.5 

2.5R 200 300 6 15 50-500 

15 

50-50 c 
.55W 
7 15 10 15 d 

100 

8.3 

600 60 .1 .5 e 

1 .2 5-1 5-1 5-.5 1-.1 1-.1 f 

1 .5 .2 .5 g 

storage systems will have to leapfrog in 
cost/performance in order to be used. Ultra­
large storage systems will continue to be 
required for larger files. 

d. 1981. By 1981 the TBM* cost/performance 
can increase as shown in Table I. If tape 
loops are successful, they would continue to 
meet needs at the low end of the ultra-large 
storage system market. Tape loop packing 
density is likely to remain under one million 
bits per square inch because of registration 
difficulties. 

2. Plated Tape, Laser Record, Magneto-Optic 
Readout, Erasable 

At this point it is useful to refer to Table II 
which was prepared mostly by Irving Wolf. 
The table shows that one material, cobalt­
phosphorous is practical to be plated upon a 
flexible substrate. That material, and three 
others, manganese bismuth, manganese anti­
mony, and manganese aluminum germanium are 
candidates for plating on rigid substrates and 
may impact the lower end of the ultra-large 
storage market. It appears unlikely that the 
europium· oxide media, though it requires less 
power for switching, can be produced which can 
operate practically at room temperature; the 
market is not likely to accept a system requiring 
cryogenic operating temperatures. These tech­
nologies have been widely discussed. For ex­
ample, Eshenfelder5 has prepared a useful 
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TABLE II 

POTENTIAL MEDIA FOR MAGNETOOPTIC MEMORIES 

MATERIAL 

Iron Silicide 

Europium Oxide 

Iron Doped 
Europium Oxide 

Europium Sulfide 

':' Manganese 
Bismuth 

Manganese 
Arsenide 

':'Manganese 
Antimony 

Gadolinium Iron 
Garnet 

,~ Cobalt-
''':' Phosphorous 

ADVANTAGES 

(1) Curie Point-llOoC 
(2) Large Magnetooptic rotation(F) 

(1) Good 2F /" (figure of merit," is 
absorption coefficient) 

(2) Can be prepared on variety of 
substitutes 

(3) Low a T 
(4) Low power requirement 

(1) Similar to EuO mag netooptically 

(1) Stability 
(2) Ease of fabrication 
(3) Large M. O. rotation 

(1) Good2F/" 
(2) High coercivity 
(3) Anisotropy perpendicular 

(4) ~e~~::trated 10Sbit/in
2 

density in material 
(5) Can be used in either Kerr or 

Faraday modes. 

Low trans ition temperature 
(40 0 C) 

(1) Good range of write temperature 
(2) Better media reliability than MnBi. 

(1) Low aT 
(2) Low power requirement 

(1) Simple plating process 
capable of mass production 

(2) Only material shown feasible 
for flexible substrate. 

Manganese Aluminum (1) Curie Point _ 450 0 C 
Germanium (2) May be feasible for 

flexible substrate. 

Appears to be practical for discs. 
'. p;:>ear s to be practical for tape systems. 

DISADVANTAGES 

(1) Anisotropy in Plane of Film 
(2) Room temperature coercivity 

(95 Oe)is low for high density 
storage 

Low operating temperature 
(77o K) due to low Curie Point 

(1) Operating temperature (-lSOoK) 
low 

(2) Low coercivity 

Very low operating temperature 
« 50

0
K) 

(1) Phase transition near Curie 
Point, 3600 C 

(2) Fabrication complicated for 
mas s production 

(3) a T = 3500 c 
(4) Impractical for flexible media 
(5) Performance function of substrate 
(6) Requires high peak power 
(7) Efficiency about 0.01%. 

(1) 2F / " lower than MnBi. 
(2) Recording properties unreported 
(3) Complicated preparation required. 

2F/" less than 50% of MnBi. 

(1) Single crystal material. 
(2) Relatively high media cost 
(3) Optical absorption < MnBi 

EuO. 

(l) Low M. O. rotation 
(2) Special readout technique 

required. 

CURRENT STATUS 

Exploratory 

Feasibility of Technique 
demonstrated 

Exploratory 

Exploratory 

Development of feasibility 
machine 

Exploratory 

Very early. Exploratory. 
Films yet to be developed. 

Early exploratory 

Write, read in engineering 
model demonstrated. 

Exploratory 

POTENTIAL 

Further materials 
work required. 

Practicality yet to be 
demonstrated, further 
materials work required 

Practicality yet to be 
demonstrated .. further 
materials work required 

Needs further work 

Useful for high modulus 
substrate storage, card, 
disc, etc. Practicality 
yet to be demonstrated. 
Possible use in holo­
graphic mode, though 
10KW instantaneous 
power required for 
104bit page. 

Further materials 
work required. 

Further materials 
work required. 

Practical media 
techniques yet to be 
developed. Could b~ 
put on discs. 

10 13 bit mass memories 
on tape or 10 10 _lOll 
bit disc menlOries. 
Possible use in holo­
graphic mode. 

Needs further work. 

review. Treves,14 Smith,15 Stoffel and Schneider,16 
Fan and Grenier,17 Aagard, et al.,11! Wider et al.,19 
and Sherwood et al.20 provide additional in­
formation. 

a. 1966-1971. No magneto-optic systems available. 

b. 1976. Since engineering feasibility of 91 

magneto-optic system using cobalt-phos­
phorous on mylar, has been demonstrated, 
it seems evident that a system can be made 
available to the market if further develop­
ment is funded. Performance, as indicated in 
Table I would be comparable or superior to 
that of the magnetic tape system available 
then. A significant advantage of magneto­
optic systems is that it appears to be practical 

to achieve packing densities about ten times 
higher than is now practical with magnetic 
tape systems. Secondly, there is no contact 
between the write/read transducer and the 
medium. Major disadvantages are the han­
dling of the media, the reliable positioning of 
the write and read photon (laser) beams, and 
availability of reliable lasers of the required 
power at appropriate costs. The demands 
placed upon mechanical positioning controls 
to take advantage of the higher packing 
density potential are severe particularly with 
respect to long failure-'free life. There is a 
fundamental limit to storage density imposed 
by the diffraction limit of the wavelength of 
light used. If all elements were perfect, in-



cluding hundreds of square feet of defect-free 
storage surface, and f /1 lenses used, one bit 
per wavelength stored with no gap between 
bits would achieve about 2 (109) bits per 
square inch. Practical considerations, exclu­
sive of the errors imposed by the storage 
surface, limit achievable storage densities to 
about 3 (107) bits per square inch. This 
pradicallimit applies to all of the light actuated 
memory systems. Electron beam systems, yet 
to be described can ideally achieve higher 
packing densities because the wavelength of 
the electron beam is about 1/5000 that of 
light beams. Here, too, practical considera­
tions limit packing density to about the 
same level. 

c. 1981. If magneto-optic systems are developed 
for 1976 availability, and they prove to be 
practical in use, then enough improvements 
are possible that, if funded, a system having 
the performance indicated in Table I is 
possible by 1981. 

3. Photographic, Silver Halide Tape, Using Electron 
or Laser Beam Write and Read, Permanent 

The technology required for electron and 
photon beam write/read systems for recording 
on silver halide media has been developed. 
Kuehler and Kerby21 reported on the IBM 1360, 
flying spot scanner read system. Bousky and 
Diermann2 and Pass and W ood22 reported on 
electron and laser beam analog recorders for 
instrumentation purposes. Generally, electron 
beam systems permit the highest data rate. 
Although, electron beams can record at the 
highest packing density, engineering limitations 
associated with accurately positioning the read­
out beam onto a flexible medium dictate much 
lower packing densities; they become com­
parable to those of magnetic recording systems. 

Electron beam systems require operating in 
vacuum, and laser beam systems require complex 
light deflection components. Nevertheless, there 
has been substantial user experience with both 
kinds of systems for storing analog information. 

a. 1966. No electron or laser beam systems were 
available. 

b. 1971. In 1965 the IBM 136023 was contracted 
to be built. From 1967 to date five units have 
been· delivered. Penny et al.24 described the 
use of such a system, and Burnham25 the 
medium. IBM produced systems under 
contract, but is not offering them for sale, 

Ultra-Large Storage Systems 965 

presumably because of profit (production 
cost, market, reliability) considerations. 

Times are different for write, which is by 
an electron beam in a vacuum, and read, 
which is by a flying spot scanner . Wet de­
velopment is automatic. Data is stored on 
chips which are accessed in pneumatic tubes 
and stored in cells, which in turn, are stored 
in trays. Costs shown are estimated. 

c. 1976, 1981. Data given in Table I for these 
years reflect the performance characteristics 
achievable by laser systems if their develop­
ment is funded. Since the media is not 
erasable, and off-line processing is required, 
it seems unlikely that such digital systems will 
be produced. Analog systems, however, will 
probably continue to be produced. 

4. Metallized Tape, Electron or Laser Beam H ole­
Burning Write, and Readout, Permanent. 

Dove described a hole-burning storage system 
in 1964, obtained a patent in 1965, and described 
the technology recently. 4 He predicted physical 
feasibility of 109 bits per square inch storage 
capacity, and identified the problems of (1) 
plated media cracking due to differential coeffi­
cients of expansion of the plating and substrate, 
and (2) preferential expansion due to fabrication. 
Engineering considerations limit packing density 
to not much more than 107 bits per square inch. 

a. 1966. No system available. 
b. 1971. Precision Instruments announced the 

U nicon, * a metallized tape hole-burning 
system in 1969. Dell26 most recently described 
the laser beam system which accesses strips of 
tape from a file and wraps them around 
either of two rotating drums. The system, 
though data is not erasable, does permit 
adding data in spaces not previously written 
upon. It does not permit graceful degradation. 
Customer acceptance tests are scheduled for 
November, 1971. Although the recording 
material is much more expensive than mag­
netic tape, the higher packing density yields 
per bit costs comparable to conventional 
tapes. Microinch level position accuracy, 
mechanical part upon mechanical part, is 
required to achieve the stated error rate. 
Table I lists the announced performance. 

c. 1976-1981. If Unicon* systems are delivered, 
have sufficient reliability, and are able to 

* Trademark 
* Trademark 
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achieve satisfactory error rates (there are 
drop-in problems in which dust, or imper­
fections lead the readout system to read ones 
rather than zeros), improvements are likely 
to be made. Since the announced system 
contains packing density near to the practical 
optical limit, packing density is unlikely to be 
improved, and, in fact, may have to be 
reduced in order to improve error rate. 
Improvements are most likely to occur in 
data rates, error rates, and in larger file 
storage. Performances that seem· possible are 
shown in Table I. 

B. Holographic Systems 

1. Photographic, Silver Halide Tape, Laser Beam 
Write and Read, Permanent. 

Anderson27 presented the most comprehensive 
review of holographic digital storage, erasable 
and permanent, on surfaces and in volumes. He 
observed that, though densities exceeding 106 

bits per square inch can be written, and readout 
occurs without critical alignment and tight 
mechanical tolerances, in situ read and write, 
but not erase is presently practical. It appears 
to be practical to develop 108 bit data blocks with 
throughput exceeding 500 (106 ) bits per second 
and random access less than 2 microseconds to 
photo diode readout arrays. In the distant 
future, it may be possible to write and read out 
1011 bits in a volume, though selective erasure 
may not be attainable. Readers are referred also 
to Briggs,28 Chen and Tufte,3 Eshenfelder,6 
and Raj chman. 29 

Problems remaining to be solved relate to 
developing capability for maintaining mechani­
cal and dimensional stability on a flexible 
medium or adapting optical or electronic circuits 
to compensate· for imperfections, and inventing 
and developing suitable light valves, page 
composers, lasers, deflectors, and photodetectors. 
Because of the first of these, it appears likely 
that holographic storage will first be achieved 
on plates. If developed, it is likely the dimen­
sional stability and alignment problems will 
probably dictate somewhat lower packing density 
than is achievable on rigid surfaces. Estimates 
of what is achievable in a system most likely to 
become available in 1977/1978, if development 
is funded, are shown in Table 1. If the problems 
can be solved so that performance comparable to 
storage on rigid surfaces is achievable, then 
systems with 25. times the storage capacity 

and correspondingly larger sizes and lower costs 
will be achieved. The highest packing density of 
any system should be achievable, and this 
would then be the most practical nonerasable 
store. 

2. Plated Tape, Magneto-optic, Erasable. 
If present applied research efforts continue, 

it is possible that a satisfactory medium which 
permits in situ write, read, and erase may be 
developed within 5 to 10 years. If so, if problems 
listed above are solved, and if funded, a system 
with performance described in Table I might be 
ready by 1981. Again, first applications are more 
likely to be large memories on rigid surfaces. 
If the dimensional stability problems are solved 
to permit storage comparable to that on rigid 
surfaces, a storage system such as this would 
probably be the most satisfactory of all proposed. 
However, there are too many ifs to believe this 
will happen much before 1981; it may not occur 
until a few years later. 

CONCLUSIONS 

Ultra-large digital storage systems will probably con­
tinue to be predominantly magnetic tape, inductor­
head write/read systems through the next ten years. 
System improvements are practical and should serve 
to make it impractical for competing technologies to be 
developed to the point where they can provide signifi­
cant competition. For example, electron beam systems 
with extremely high packing densities are likely to be 
impractical and not developed because of beam control 
problems. Holographic storage systems, while practical 
for fiche-like permanent storage systems, are limited by 
dimensional and positioning problems, and by the 
likelihood that an appropriate erasable medium may 
not be developed soon enough within this time period 
for such a system to become available. The erasable 
holographic storage system appears to have the greatest 
potential for the second 10 year period. 

Two ultra-large storage systems have been produced, 
one erasable (TBM*) the other a permanent store 
(Unicon*). Time will tell the practicality of these 
systems. 
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New devices for sequential access memory 

by F. H. BLECHER 

Bell Telephone Laboratories, Incorporated 
Murray Hill, New Jersey 

ABSTRACT 

Two classes of devices are seriously challenging the 
electromechanical disk file for bulk storage applica­
tions-magnetic bubble and charge-transfer. These 
devices can be used for sequential access memory and 
feature solid-state reliability, small size and potential 
low costs. 

Magnetic bubble devices consist of a thin layer of 
uniaxial magnetic material imbedded in a bias magnetic 
field. The easy direction of magnetization is perpen­
dicular to the surface of the thin layer and is in the same 
direction as the bias field. There is a range of bias fields 
for which regions of magnetization exist in the uniaxial 
material with a magnetic polarity opposite to that of 
the bias field. These regions of reverse magnetization 
have the form of right circular cylinders and are known 
as magnetic bubble domains or simply bubbles. The 
bubble is a stable entity that can be propagated by use 
of current carrying conductors on the surface of the thin 
magnetic layer or by the application of an in-plane 
rotating magnetic field which is used to magnetize small 
permalloy features on the surface of the magnetic layer 
(field access). 
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Rare earth garnet magnetic materials are now 
available in very thin layers (2 to 5 J,Lm) with the 
necessary anisotropy and magnetization to produce 
extremely small bubble domains (4 to 10 J,Lm diameter), 
and with very few defects to impede domain motion 
('"'-'2 cm-2). These materials should make possible 
storage densities of the order of several million bits per 
square inch. In this talk, the design of bubble circuits 
using single conductor current propagation is discussed 
with particular application to a multi-megabit bubble 
file. 

Two semiconductor devices are available which serve 
as dynamic-shift registers. One is of a functional nature 
and is called charge-coupled device (CCD). This device 
operates on the principle of charge transfer along the 
interface between a semiconductor and an insulating 
layer. The charges are moved by appropriately con­
trolling the potential of metal electrodes placed on the 
surface of the insulator. The other semiconductor device 
is an integrated version of the IGFET bucket-brigade 
shift register. Recent developments in both of these 
technologies are discussed with application to large 
sequential access memories. 





Two direct methods for reconstructing pictures 
from their projections-A comparative study 

by GABOR T. HERMAN 

State University of New York 
Buffalo, New York 

INTRODUCTION 

There are situations in the natural sciences and medicine 
(e.g., in electron microscopy or X-ray photography) in 
which it is desirable to estimate the gray levels of a 
picture at individual points from. the sums of the gray 
levels along straight lines (projections) at a few angles. 
Usually, in such situations, the picture is far from 
determined and the problem is to find the "most 
representative" picture of the class of pictures which 
have the given projections. 

In recent years, there has been a very active interest 
in this problem. A number of algorithms have been 
proposed for solving it. The algorithms are applicable in 
a large and varied number of fields. This is perhaps best 
demonstrated by the reference list, where we see that 
such algorithms have been published or discussed in 
ijournals on computer science, theoretical biology, 
molecular biology, cellular biology, biophysics, medical 
and biological engineering, roentgenology, radiology, 
chemistry, optics, crystallography, physics, electrical 
engineering, as well as in general science journals. The 
most important use of the algorithms is the reconstruc­
tion of objects (e.g., biological macromolecules, viruses, 
protein crystals or parts of the human body) from 
electronmicrographs or X-ray photographs. 

Most of the effort in this area has so far been concen­
trated in developing algorithms and in applying these 
algorithms for actual reconstructions. So far, there has 
been only limited attention paid to the relative merits 
of the algorithms. The present paper is a report on the 
first of a series of comparative studies of various 
algorithms for reconstructing pictures from their 
projections. The two techniques that we shall compare 
are one of the algebraic reconstruction techniques 
(ART) of Gordon, Bender & Herman (1970) and a 
summation technique, which has been independently 
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discovered by a number of people, but the most detailed 
previous study of which has been given by Vainshtein 
(1971a, b). 

Both these techniques are direct techniques in the 
sense that the reconstruction is being done entirely in 
real space (density space), without the use of Fourier 
transforms. This is worth pointing out, since the first 
applicable method for reconstructing pictures from 
their projections (discovered independently by DeRosier 
& Klug [1968J and Tretiak, Eden & Simon [1969J) 
depended on the fact that the Fourier transform of a 
projection is a section of the Fourier transform of the 
picture. Thus, reconstruction was achieved by taking 
Fourier transforms of the projections, interpolating in 
Fourier space to get an approximation of the Fourier 
transform of the picture, and then taking an inverse 
Fourier transform to get an approximation of the 
picture itself. Detailed descriptions of such techniques 
were given by Crowther, DeRosier & Klug (1970) and 
Ramachandran (1971). 

Crowther, DeRosier & Klug (1970) state that "for 
general particles and methods of data collection, the 
method of density space reconstruction is computa­
tionally impracticable on presently available com­
puters." However, they appear to be wrong on this 
point. Both the methods discussed in this paper have 
been implemented, and precise timings will be given on 
a number of examples to show that they are not com­
putationally impracticable. Even more interestingly, 
expanding the mathematics on which the Fourier tech­
niques are based, Ramachandran & Lakshminarayanan 
(1971a, b) succeeded to produce another direct method, 
called the convolution method, for the reconstruction of 
pictures from their projections. They demonstrate on a 
number of idealized pictures that their technique is 
faster than the Fourier techniques and that it also 
gives a better reconstruction. Detailed comparative 
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studies between ART, the convolution method and the 
Fourier techniques are presently under way, and will be 
reported on in later publications. 

In the next section, we shall briefly describe the 
problem of reconstruction of objects from their pro­
jections and discuss the criteria we shall use for evalu­
ating algorithms for solving this problem. This is the 
first exhaustive discussion of such criteria, it will form 
the basis of later comparative studies as well. The 
following two sections will give brief descriptions of 
ART and the summation method, respectively. In 
particular, we shall give a version of the summation 
method which is superior to previously published 
versions. In the final section, we shall give a report on 
the results of our experiments. 

A basic difference between the two techniques is that 
the summation method takes a fixed length of time to 
run, while ARTis an iterative technique such that its 
result can be improved by repeated iterations. One 
iteration of ART costs about the same as the summation 
technique. In rough terms, the results of our experi­
ments indicate the following. 

If the number of projections is small, one iteration of 
ART seems to perform somewhat worse than the 
summation method. As the number of projections 
increases, the relative performance of one iteration of 
ART as opposed to the summation method improves, 
and eventually it produces superior results. The break 
even point seems to be at eight projections. However, 
by repeated iterations, the performance of ART can be 
improved and it eventually surpasses the summation 
method in all our experiments. The improvement in 
ART is especially impressive with eight or more projec­
tions. In such cases, we obtain, with five iterations of 
ART, results which are far superior to the results of 
the summation method. 

METHOD OF COMPARISON 

First we wish to describe briefly the problem of 
reconstructing pictures from their projections. A more 
detailed description of the problem can be found, for 
example, in Frieder & Herman (1971). 

We assume that f is a function of two real variables 
such that f (x, y) = 0 outside a square region in the first 
quadrant of a rectangular coordinate system (see 
Figure 1). Further, we assume O~f(x, y) ~ 1, every­
where. Following Rosenfeld (1969), we shall call a 
function with such properties a picture function. 
(f(x, y) = 0 means white, f(x, y) = 1 means black, with 
other gray levels in between.) 

Let 0 be an angle, - 90° < 0 ~ 90°, and suppose that 
l is a line making an angle 0 with the positive x axis. 

Suppose, further, that l is divided into equal line 
segments and that we draw lines perpendicular to l 
from the points separating these segments. Thus, we 
get a number of infinite bands, partitioning the (x, y)­
plane. We shall refer to these bands as the rays of the 
projection associated with O. Suppose there are ro rays 
which actually intersect the rectangle. For 1 ~ k ~ ro, 
let Rf,k,O denote the integral of f(x, y) in the k'th band 
which intersects the rectangle. (The integral need only 
be carried out in the shaded region in Figure 1, since 
f(x, y) =0 elsewhere.) We shall refer to R f ,1,O, ••• , 

Rf,TO,O as the ray-sums of the projection associated 
withO. 

The problem of reconstructing pictures from their 
projections can now be stated as follows. 

Give an algorithm which, given 

( 1) the position of the square region within which 
f(x, y) ~O; 

(2) angles 01, O2, ••• ,Om, together with the widths 
and position of rays of the projections associated 
with these·angles; 

(3) the ray-sums of the projections associated with 
01,82, ••• , Om; 

will produce a functionf' which is a good approximation 
off· 

One can only hope for an approximation, since it has 
been proved, even for the limiting case when the ray 

o x 

Figure 1 



widths tend to zero, that a non-trivial picture cannot be 
uniquely determined from its projections (Frieder & 
Herman [1971J, Theorem 1). The algoritlnn ought to 
be such that for pictures that we are likely to be 
interested in, they will provide a good enough approxi­
mation. This idea is discussed in some detail by Frieder 
& Herman (1971). For the purpose of the present paper, 
the following should suffice. 

As will be seen in the next two sections, reconstruc­
tion algorithms tend to be somewhat heuristic. Hence, 
an analytical estimate of their performance is somewhat 
difficult to obtain. Even if there was a method to do it, 
we would be faced with the problem that the functions 
j, to which the algorithms may be applied in practice, 
form a small but not clearly defined subset of the set of 
all picture functions f. Hence, analytical methods, 
which give equal weight to all picture functions, may 
give much worse estimates than what one would obtain 
in practice. Therefore, it appears reasonable to evaluate 
and compare reconstruction techniques on the basis of 
their performance on selected typical pictures and test 
patterns. This is, indeed, what we are going to do in 
this paper. 

Since our algorithms are to be implemented on a 
digital computer, it is reasonable to demand that the 
output l' be a digitized quantized picture function 
(Rosenfeld [1969J, Section 1.1). Indeed, in all our 
examples, l' will be defined on a 64 X 64 matrix, and can 
assume as many values between 0' and 1 as the accuracy 
of the computer allows. In pictorial representation, we 
shall use only 16 equally spaced gray levels between 0' 
and 1, inclusive. 

For convenience, we shall use as test data only 
picture functions which are of the same kind, i.e., 
64X64 digitized pictures with 16 equally spaced quan­
tized gray levels. When working out the ray-sums, we 
shall sum the values of j(x, y) at those points which lie 
within the ray. At first sight, it may appear that this 
may change the problem in an essential way, but we 
shall show in the Appendix that this is not so. 

In all our experiments, the rays are defined in such a 
way, that it is true for at least one edge of the 64X64 
matrix that each of the points on that edge is a midpoint 
of a ray. The reasons for this are discussed in Frieder & 
Herman (1971) and, more briefly, in the Appendix. 

We have decided to use four test patterns (Plate A) . 
The first two of these are binary valued picture func­
tions (black and white) which have been used by 
Vainshtein in his demonstrations of the summation 
method. (AI comes from Vainshtein [1971aJ and A2 
from Vainshtein [1971b].) We are not aware of any 
other previously published test patterns on which the 
summation method was demonstrated. The situation is 
better concerning ART, Gordon, Bender & Herman 
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Plate A 

(1970'), Herman & Rowland (1971) and Bellman, 
Bender, Gordon & Rowe (1971), all contain a number of 
test patterns showing the operation of ART. We have 
decided to use two of these for the present comparative 
study, both half-tone (i.e., all 16 gray levels occur in 
them). One is the face of a little girl, Judy (A3), the 
other is the photograph of some stomata (A4). The 
first of these has been used by Gordon, Bender & 
Herman (1970') and Gordon & Herman (1971), the 
second has been used by Herman & Rowland (1971). 
Since in previous studies these pictures were not 
digitized at 64X64 points, we kept the previous 
digitization (49 X 49 and 50X 50' points) and inserted 
them into a white frame. This makes comparison with 
previously published tests concerning these patterns 
easier. 
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For each of the four pictures, we have carried out 
reconstruction operations using four different sets of 
projection angles. The first three sets have been used by 
Vainshtein in his demonstration of the summation 
method. In all three sets the projection angles are 
equally spaced between -90° and +90° (with 90° being 
one of the angles), and there are 4, 8 and 30 angles, 
respectively. We used these sets of angles, so that our 
results can be directly compared with the results of 
Vainshtein (1971a, b). 

The fourth set of projection angles comes from a 
small range. This is particularly important in electron­
microscopic applications, because of the restricted 
range of the tilting stage. We have, in fact, used the 
same set of projection angles that have been used by 
Bender, Bellman & Gordon (1970) in their reconstruc­
tion (using ART) of ribosomes from electronmicro­
graphs. We have rotated these angles so that none of 
them is near 0° or 90°. The reason for this is that both 
ART and the summation technique would tend to give 
unusually good results if the edges in a test pattern 
(like AI) are parallel to one of the projection angles. 
The fourth set of projection angles which we used was 
actually 35°, 44°, 62°, 80°, 98° (= -82°) and 
116° (= -64°). Thus, all these views come from a 
range of 81° as opposed to a full range of 180°. 

Four pictures, with four sets of projections each, 
provide us with 16 reconstructions to be carried out 
with each of the techniques we are investigating. Then 
we are faced with the problem of evaluating the success 
of the reconstructions. There is no standard way of 
doing this. We have decided to use four different sets of 
criteria: overall nearness of the original and recon­
structed pictures, resolution of fine detail, visual 
evaluation, and cost of reconstruction. We shall now 
discuss these criteria in some detail. 

Overall nearness 

(1) Gordon, Bender & Herman (1970) and Gordon 
& Herman (1971) used the root mean square distance 
o as a measure of the overall nearness of the original 
and reconstructed pictures. 

where Xi,j and Yi,j are the X and Y coordinates of the 
(i, j) 'th point in the n X n matrix. The validity of such 
a measure has been questioned by Crowther & Klug 
(1971), but the discussion by Frieder & Herman 
(1971, especially Theorem 2) shows that 0 is a very 
reasonable measure for the overall performance of a 
reconstruction technique. 

(2) Ramachandran & Lakshminarayanan (1971a, b) 
use another measure R of overall nearness in their 
comparison of the Fourier techniques with their con­
volution method. This is adopted from X-ray crys­
tallography, and we shall work it out as well as the 0 
measure for all our experiments. 

n n 

L L I f(Xi,j, Yi,j) -1' (xu, Yi,j) I 
i=l j=l 

R= -------------
n n 

L Lf(Xi,j, Yi,j) 
i=l j=l 

Thus, R is the mean relative error of the reconstruction. 
(3) For a number of applications one wants to make 

the assumption that f' is a binary valued picture 
function. This is obviously so if we know that· f is 
binary valued. Even if f is not binary valued, we may 
wish to contour l' to get some idea of the overall shape 
of the object which is in the picture f. Let 

_ {I, iff(x,y)~0.5, 
f(x, y) = 

0, iff(x,y) <0.5, 

and let l' be similarly defined. We shall refer to J and 
J' as the contoured versions of f and f'. (Naturally, for 
a binary valued picture function f, f = J.) We shall also 
work out the mean relative error, R, for the contoured 
versions off and 1'. 

n n 

L L I J(Xi,j, Yi,j) -J' (Xi,j, Yi,j) I 
i=l j=l 

R= -------------
n n 

L LJ(Xi,j, Yi,j) 
i=l j=l 

The measure R has also been used by Chang & 
Shelton (1971) in comparing two algorithms for binary 
pattern reconstructions. 

(4) A property of the output of a reconstruction 
should be that it is consistent with the information 
available to the algorithm. In other words, the ray­
sums of the reconstructed picture should be the same 
as the ray-sums of the original. Even though there are 
algorithms which achieve this (Gordon & Herman 
[1971J, and, for binary valued pictures only, Chang 
[1970J, Chang & Shelton [1971J), they usually tend 
to be slow for practical applications. Both ART and 
the summation technique will produce pictures where 
the ray-sums will only approximate the given data. 
One appropriate measure of the overall nearness of the 
reconstruction is the root mean square distance p 



between the ray-sums on which the reconstruction is 
based and the ray-sums of the reconstructed picture. 

[

1m r8z ]1/2 
p= -- L: L: (Rf ,k,8Z-R!',k,8Z)2 , 

m l=1 k=1 

L: r8Z 
l=1 

where m is the number of projections and R f , ,k,8z 
denotes the ray-sum in the k'th ray of the l'th projection 
for the reconstructed picture 1'. 

(5) A simple way of deciding the overall success of a 
reconstruction is to ask whether the reconstructed 
pattern resolves the original. Based on a suggestion of 
Harris (1964), Frieder & Herman (1971) used the 
following criterion for answering this question. A 
reconstruction resolves a picture, if the output is 
nearer (in the sense of 0) to the original than to uniform 
gray. Since the mean gray level of input and output is 
the same both for ART and for the summation tech­
nique, the distance from uniform gray of the output is 
nothing but the standard deviation of the output. In 
our experiments, we shall say that the output of the 
reconstruction resolves the original if, and only if, the 
standard deviation of the output is greater than o. 

Resolution in fine detail 

The major objection of Crowther & Klug (1971) to 
o as a measure of difference between the reconstruction 
and the original is that "it reaches a low value once the 
large scale features are correct and is relatively in­
sensitive to errors in the fine details." As it was pointed 
out by Frieder & Herman (1971), this objection is not 
quite valid. However, it is reasonable to ask what is 
the guaranteed maximum error in the average grayness 
of a region of certain size in the reconstructed picture. 
With this idea in mind, Frieder & Herman (1971) 
introduced the notion of (a, l, e) -resolution. They said 
that two picture functions f and g with 4a2 non-zero 
area (a, l, e)-resolve each other if, for every square 
region of size l2, the mean grayness of the pictures in 
that region differs by less than e. 

The problem with (a, l, e)-resolution is that it is 
difficult to calculate. For example, if we wanted to find 
the minimal e such that an original and a reconstructed 
64X64 picture (32,8, e)-resolve each other, we would 
have to work out the mean gray value of nearly 6000 
regions, each with 64 points. We have therefore devised 
another method, which is a good approximation to 
(a, l, e) -resolution, but which is computationally much 
simpler. 
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For 0~l~6, let 

e(l) = max [~I 
09::; (64/2 l )-1 22l 

L: [f(Xi'2l+m, Yi.2'+n) 
l::;m::;2l,l::;n=:;2' 

09::; (64/2l)-1 

In other words, e (l) is the maximum difference betweenf 
andf', when they are both digitized as (64/2l) X (64/2l) 
pictures. Thus, e(O) is the maximum difference between 
the values at any point of f and 1', while e(6) is the 
difference between the mean gray values of f and f'. 
For every l, e (l) indicates the point by point reliability 
of the reconstruction when both the original and the 
reconstructed picture are digitized as (64/2 l) X (64/2l) 
pictures. For example, if e(2) = .01, and the gray level 
in the 16 X 16 digitized version of the reconstructed 
picture is .253 at a certain point, then we know that the 
gray level in the 16X 16 digitized version of the original 
is between .243 and .263. 

The notion expressed above is easily generalized for 
test patterns which are digitized as 2k X 2k matrices, 
for .any k. Also, e(l) is computationally easy to cal­
culate, it only requires a repeated increase of the 
roughness of digitization by a factor of two. 

For each of our experiments, we shall give the values 
of e(O), e(l), ... , e(5). e(6) is always zero. 

An alternative way of representing our results 
regarding resolution in fine detail is to state the size of 
detail which is reliable within a certain error. For any 
e>O, l(e) will denote the maximum number n, such 
that n is a power of two and the nXn digitization of 
the original and the reconstructed pictures differ by 
less than e at all points. Thus, l(O.l) =32 will mean 
that the original and the reconstructed pictures 
digitized at 32 X 32 points will differ at each point by 
less than 0.1, but if they are digitized at 64X64 points, 
then they differ by more than 0.1 at least at one point. 
So, l(e) is roughly the resolution of the reconstruction 
if the error tolerance is e. For each of our experiments, 
we shall work out l(O.Ol), l(0.02), l(0.05), l(0.10), 
l(0.25) and l(0.50). Clearly, there is no point in cal­
culating l(e) for e>0.5. 

Visual evaluation 

The methods mentioned in (a) and (b) above include 
all computationally possible ways of measuring the 
success of reconstructions which are known to us. We 
left out measuring resolution by the use of Fourier 
transforms (see (a, l, e)-resolution in Fourier space in 
the paper by Frieder & Herman (1971», because of 
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its computational difficulty, and its inappropriateness 
for comparing two direct methods. Even though the 
mathematical measures we used should provide quite 
conclusive evidence of the relative merits of two 
reconstruction techniques, there has not yet been 
enough experience with them to know the correlation 
between the values of the measures and visual accepta­
bility of the reconstruction. For this reason, we shall 
give for each of our experiments the reconstructed 
picture, which can then be compared with 'the original. 
When the test-pattern is a binary valued picture 
function, we shall also give the contoured version of the 
reconstructed picture. 

Cost oj reconstruction 

This is obviously an important measure. In practical 
applications, especially three-dimensional reconstruc­
tion, one has to carry out a large number of reconstruc­
tions, and cost can be a prohibitive factor. 

To insure that our cost comparisons are valid, we 
have incorporated both ART and the summation 
method in the same general program written in 
FORTRAN. They make use of the same set of service 
subroutines, e.g. , the one for finding out which points 
lie in a particular ray. 

Time, rather than cost is given, since it is easier to 
obtain. However, cost appears to be a more stable 
measure between installations. Since all experiments 
have been run on a CDC 6400, at a cost of $475 per 
hour, the reader can easily work out the actual cost of 
the runs. (Rate may vary from installation to installa­
tion.) Run time is given in seconds. 

DESCRIPTION OF ART 

The method we shall describe now is one of the 
algebraic reconstruction techniques of Gordon, Bender 
& Herman (1970), the one which was called in that 
paper the direct additive method. Other papers relevant 
to this method are Bender, Bellman & Gordon (1970), 
Crowther & Klug (1971), Bellman, Bender, Gordon & 
Rowe (1971), Frieder & Herman (1971) and Herman 
& Rowland (1971). 

The basic idea of the method is the following. 
Starting from a blank picture, the ray-sums of all the 
projections are satisfied one after the other by dis­
tributing the difference between the desired ray-sum 
and the actual ray-sum equally amongst all the points 
in the ray. While satisfying the ray-sums of a particular 
projection, the process usually disturbs the ray-sums of 
previously satisfied projections. However, as we 
repeatedly go through satisfying all the projections, 

the d;isturbances get smaller and smaller, and eventually 
the method converges to a picture which satisfies all 
the projections. Because we start with a uniform blank, 
and while satisfying each of the projections we make as 
uniform changes as possible, the final product tends to 
be as smooth as a picture satisfying the given pro­
jections can possibly be. For practical applications, 
this seems to be a desirable property of a reconstruction 
algorithm. Roughly speaking, our reconstructed picture 
will show only features which are forced upon it by the 
projections, rather than features which are introduced 
by the reconstruction process. 

Mathematically, let f' be the partially reconstructed 
picture just before we wish to satisfy the projection 
associated with the angle 0. Let (Xi,j, Yi,j) lie on the 
k'th ray of that projection, and let N k ,8 be the number 
of points on that ray. Then f' is changed into J" by 
the rule 

J" (xu, Yi,j) = f' (Xi,j, Yi,j) + (R"k,8- Rf' ,k,8) / N k ,8. 

If the value of J" obtained in this way is negative, it is 
rounded to zero, if its value is greater than one, it is 
rounded to one. 

The process of satisfying all proj ections one after the 
other exactly once is referred to as one iteration. The 
accuracy of ART increases with the number of itera­
tions, and we report on the results of experiments after 
1, 5 and 25 iterations. 

DESCRIPTION OF THE SUMMATION 
METHOD 

This method has been described by Vainshtein 
(1971a, b), Gordon, Bender & Herman (1970), 
Gaarder & Herman (1971), Ramachandran & 
Lakshminarayanan ( 1971 b). The most detailed dis­
cussion of its properties is contained in the work of 
Vainshtein (1971a, b). 

Roughly speaking, the idea is to distribute each of 
the ray-sums equally amongst all the points in the 
corresponding ray. If there are m projections, this will 
result in a picture whose total density is m times what 
it should be. We therefore subtract from the value at 
each point (m-l)d, where d is the mean density of the 
picture. (The mean density can be worked out from the 
ray-sums.) Rounding negative values to zero and values 
greater than one to one, we get our first approximation 
to the input. 

This procedure has a lot to recommend it. It is 
conceptually and computationally simple. It can be 
implemented by a photo-summation device without the 
use of a digital computer. It seems to provide us with a 
smooth picture. In fact, if the projections and rays 



satisfy certain conditions, the result of the algorithm 
will be a picture which satisfies the projections and for 
which the variance of gray levels is smaller than for any 
other picture satisfying the projections (see Gaarder & 
Herman [1971J). 

However, the algorithm has some rather peculiar 
properties which make it often useless in practice. It 
appears that as a result of rounding to zero and one, 
the average density of the picture increases. Hence, we 
get, with 30 projections, the picture in A5 corresponding 
to the test pattern in AI. Vainshtein (1971a) recom­
mends that the output should be contoured at a level 
so that the total density of input and output are the 
same. However, this advice can only be followed for 
binary-valued picture functions. To improve the 
quality of the output for arbitrary picture functions, 
we carried out the following process. 

First of all, if a ray-sum is zero, we know that the 
value of the function at all points on that ray is zero. 
The first step in our modified algorithm is to mark all 
points which lie on rays with ray-sums equal to zero. 

Then we carry out the process described above, but 
equally distributing the ray-sums only amongst the 
unmarked points in the ray. After subtracting (m-l)d 
from the value at each point, we round all negative 
values to zero. 

At this stage, the mean density d of the reconstructed 
picture will usually be greater than d. So we multiply 
the value of the reconstructed function at each point by 
d/ d, making the mean density of the reconstruction 
equal to that of the original. We should at this point 
round all values greater than 1 to 1, but there was no 
need for this in any of the 16 experiments that we tried. 

We found that this modified summation method gave 
much better results than the simpler technique described 
at the beginning of the section. For example, for the 
test-pattern Al and 30 projections, we get the following 
comparisons. 

0 e(O) e(2) e( 4) time 

simple method 0.32 1.0 1.0 0.44 11.25 

modified method 0.18 0.75 0.57 0.09 12.92 

Clearly, the large improvement is well worth the 
small additional cost. In all the experiments reported 
on in the next section, we used the modified summation 
method. 

A final comment. ART and the summation method 
have been referred to (Crowther & Klug [1971J) as 
"very similar." The descriptions above clearly indicate 
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that this is not so, and, as can be seen from the next 
section, the power of the two methods is quite different. 
It is therefore invalid to draw conclusions about the 
behavior of one of these methods from the observed 
behavior of the other one. The two methods could be 
combined in an iterative summation method, where 
after each iteration the difference between the desired 
ray-sums and actual ray-sums is simultaneously equally 
distributed amongst the points on the rays. This method 
should give similar results to ART, but it requires a 
considerably larger memory in a digital computer 
implementation. 

RESULTS OF THE EXPERIMENTS 

We summarize the results of our experiments in the 
following tables. Table I contains results on 0, R, Il, p, 

whether the reconstruction resolves the original, and 
time, t. Table II contains e(O), e(I), e(2), e(3), e( 4) 
and e(5). Table III contains l(O.OI), l(0.02), l(0.05), 
l(0.10), l(0.25) and l(0.50). These are marked as 
1 percent, 2 percent, 5 percent, 10 percent, 25 percent, 
and 50 percent in the table. 

In all the tables, the numbers 4, 8, 30 and 6 on the 
top refer to the number of projections. The first three 
sets are equally spaced, while the last set consists of 
the angles 35°, 44°, 62°, 80°, 98° and 116°. 

The vertical arrangement of the four numbers in 
each of the entries of the table refer to the result by the 
summation method, followed by the results by ART 
after 1, 5 and 25 iterations. 

As can be seen from these tables, if the number of 
projections is small, one iteration of ART seems to 
perform somewhat worse than the summation method. 
As the number of projections increases, the relative 
performance of one iteration of ART as opposed to the 
summation method improves, and eventually it pro­
duces superior results. The break-even point seems to be 
at eight projections. However, by repeated iterations, 
the performance of ART can be improved and it even­
tually surpasses the summation method in all our 
experiments. The improvement in ART is especially 
impressive with eight or more projections. In such 
cases, we obtain, with five iterations of ART, results 
which are far superior to the results of the summation 
method. These conclusions are clearly demonstrated on 
the plates showing the reconstructed pictures. 

Plate B contains reconstructions of the wrench (AI), 
Plate C contains reconstructions of peR) (A2), Plate D 
contains reconstructions of Judy (A3), and Plate E 
contains reconstructions of the stomata (A4). Plates 
F and G contain the contoured versions of the recon­
structions of the wrench and p(R). 
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TABLE I 

WRENCH (AI) p (R) (A2) 

4 8 30 6 4 8 30 

.21 .19 .18 .26 .24 .23 .21 
lj .22 .15 .13 .27 .24 .21 .13 

.17 .07 .02 .21 .21 .15 .03 

.11 .03 .00 .15 .19 .10 .00 

.60 .50 .48 .91 1.1 .99 .87 
R .82 .52 .35 1.1 1.2 1.0 .54 

.49 .16 .03 .69 .91 .56 .08 

.26 .05 .00 .41 .67 .29 .00 

.03 .05 .05 .08 .08 .07 .04 
11 .06 .01 .01 .09 .08 .05 .01 

.02 .00 .00 .05 .05 .02 .00 

.01 .00 .00 .02 .04 .01 .00 

24 24 23 25 22 22 21 
p 19 17 15 20 15 15 12 

7.3 3.6 1.2 8.3 5.9 5.0 1.5 
2.8 .92 .01 2.8 1.8 1.8 .03 

r 
e 

Yes Yes Yes No No No Yes s 
0 Yes Yes Yes No No No Yes 
1 Yes Yes Yes Yes Yes Yes Yes 
v Yes Yes Yes Yes Yes Yes Yes e 
? 

1.8 3.4 13 3.4 1.7 3.4 13 
t 1.6 3.4 14 3.3 1.6 3.4 14 

8.0 17 68 17 8.0 17 68 
40 86 340 83 40 86 340 

In all plates, the first row gives the reconstructions 
based on 4 equally spaced projections, the second row 
gives the reconstructions based on 8 equally spaced 
projections, the third row gives the reconstructions 
based on 30 equally spaced projections and the fourth 
row gives the reconstructions based on the 6 projections 
from the 81 0 range. Within each row, the first picture is 
the result obtained by the summation method, which is 
followed by the results obtained by ART after 1, 5 and 
25 iterations, respectively. 

There are a number of observations worth making 
regarding the results of our experiments. 

First of all, the basic measures 0 and R give, with 
hardly any exceptions, the same ordering between 
different experiments for the same picture. There 
seems to be little reason to use the one rather than the 
other. The orderings based on these measures are also 

6 

.24 

.24 

.19 

.15 

1.1 
1.2 
.79 
.49 

.09 

.09 

.04 

.02 

23 
17 

6.3 
2.0 

No 
No 
Yes 
Yes 

3.4 
3.3 

17 
83 

JUDY (A3) STOMATA (A4) 

4 8 30 6 4 8 30 6 
o. 

.16 .15 .14 .23 .19 .18 .17 .26 

.17 .13 .10 .22 .20 .17 .11 .26 

.14 .10 .03 .20 .18 .13 .03 .23 

.13 .10 .03 .19 .18 .12 .03 .22 

.32 .30 .28 .54 .42 .40 .37 .62 

.41 .32 .23 .54 .48 .40 .25 .63 

.29 .20 .07 .45 .40 .28 .06 .55 

.27 .19 .06 .42 .38 .25 .05 .51 

.11 .10 .10 .20 .17 .15 .15 .22 

.16 .10 .06 .19 .17 .13 .05 .21 

.12 .08 .03 .19 .16 .10 .01 .18 

.11 .07 .02 .19 .16 .10 .01 .19 

15 17 17 18 14 17 20 19 
15 12 13 14 13 13 14 18 

2.9 1.6 .87 3.1 2.5 2.2 .88 4.0 
.54 .35 .16 .94 .42 .52 .12 1.0 

Ye~ Yes Yes No Yes Yes Yes No 
Yes Yes Yes Yes Yes Yes Yes No 
Yes Yes Yes Yes Yes Yes Yes Yes 
Ym Yes Yes Yes Yes Yes Yes Yes 

1.7 3.6 14 3.5 1.8 3.6 14 3.5 
1.6 3.4 14 3.3 1.6 3.4 14 3.3 
8.0 17 68 17 8.0 17 68 17 

4C 86 340 83 40 86 340 83 

in very strong correspondence with the orderings based 
on any of the resolution measures. 

Another interesting point is that there is no instance 
when a picture reconstructed by ART does not resolve 
the original after five iterations. 

The third observation is in reference to Table III. 
Very little information can be gained from a digitization 
with fewer than 8 X 8 points. In all our experiments the 
summation method produced a picture whose 8X8 
version differs from the 8 X 8 original at some point by 
at least 0.1. In fact, for the wrench (AI), even 30 
projections can only produce a picture, where the 
difference between the 8X8 pictures is more than .25, 
at least at one point. 

It has been claimed for ART (Frieder & Herman 
[1971J) that for an nXn resolution it requires approxi­
mately n equally spaced projections. Table III bears 
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TABLE II 

WRENCH (AI) p (R) (A2) JUDY (A3) STOMATA (A4) 

4 8 30 6 4 8 30 6 4 8 30 6 4 8 30 6 

.84 .79 .75 .81 .82 .68 .62 .83 .55 .48 .48 .75 .64 .57 .55 .93 
E .75 .67 .90 .98 .99 .99 .77 .94 .58 .61 .65 .78 .75 .65 .65 .91 

(0) .81 .54 .21 .95 1.0 .97 .25 .97 .56 .46 .20 .69 .74 .55 .15 .83 
.85 .35 .00 .80 1.0 .93 .01 .99 .58 .46 .17 .71 .71 .54 .13 .87 

.66 .61 .64 .74 .72 .59 .55 .75 .53 .43 .42 .70 .58 .52 .48 .73 
E .68 .55 .64 .87 .90 .80 .56 .79 .51 .54 .50 .58 .68 .53 .46 .69 

(1) .57 .26 .08 .74 .87 .53 .08 .71 .51 .38 .08 .64 .63 .46 .08 .64 
.50 .12 .00 .65 .92 .39 .00 .62 .53 .37 .07 .64 .59 .47 .06 .65 

.60 .55 .57 .67 .54 .53 .50 .65 .41 .36 .34 .57 .50 .44 .42 .64 
E .62 .42 .35 .75 .52 .43 .24 .58 .43 .40 .31 .51 .55 .42 .30 .56 

(2) .50 .14 .03 .64 .40 .26 .03 .49 .44 .24 .02 .50 .48 .29 .02 .48 
.36 .05 .00 .45 .42 .15 .00 .41 .47 .20 .01 .50 .45 .27 .01 .45 

.33 .26 .27 .50 .23 .24 .20 .25 .25 .25 .23 .42 .19 .21 .21 .38 
E .41 .24 .18 .53 .29 .21 .11 .26 .25 .19 .14 .40 .22 .20 .16 .36 

(3) .23 .05 .01 .42 .19 .10 .01 .15 .13 .89 .01 .30 .13 .10 .01 .25 
.09 .01 .00 .23 .12 .05 .00 .09 .13 .08 .00 .29 .12 .08 .00 .17 

.15 .10 .09 .31 .08 . .09 .09 .16 .10 .11 .10 .11 .06 .05 .07 .15 
E .12 .09 .08 .33 .06 .06 .05 .15 . .07 .04 .07 .10 .06 .05 .07 .17 

(4) .07 .01 .01 .21 .03 . .02 .00 .08 .03 .01 .01 .06 .04 .02 .01 .06 
.03 .00 .00 .09 .02 .01 .00 .03 .02 .01 .00 .08 .03 .02 .00 .03 

.04 .03 .02 .02 .02 .02 .02 .03 .00 .01 .02 .05 .01 .01 .02 .07 
E .07 .05 .04 .05 .02 . .03 .02 .03 .01 .02 .02 .02 .02 .01 .01 .06 

(5) .03 .01 .00 .04 .01 .01 .00 .01 .00 .00 .00 .01 .01 .00 .00 .01 
.01 .00 .00 .02 .01 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .01 

p(r) 

per) per) 

Plate B Plate C 
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TABLE III 

WRENCH(Al) p (R) (A2) JUDY (A3) STOMATA (A4) 

4 8 30 6 4 8 30 6 4 8 30 6 4 8 '30 6 

1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 

1%" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 2 4 1 2 1 4 1 2 2 4 2 2 2 8 2 
1 4 64 1 2 4 32 2 2 4 8 2 2 2 8 2 

1 1 1 1 1 2 2 1 2 2 2 1 2 2 2 1 
2% 1 1 1 1 1 1 1 1 2 2 1 1 1 2 2 1 

1 4 8 1 2 2 8 2 2 4 16 2 2 4 16 2 
2 8 64 2 2 4 64 2 4 4 16 2 2 4 16 2 

2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 
5% 1 2 2 1 2 2 4 2 2 4 2 2 2 2 2 1 

2 8 16 2 4 4 16 2 4 4 16 2 4 4 16 2 
4 8 64 2 4 8 64 4 4 4 16 2 4 4 16 4 

2 2 4 2 4 4 4 2 2 2 2 2 4 4 4 2 
10% 2 4 4 2 4 4 4 2 4 4 4 4 4 4 4 2 

4 8 32 2 4 8 32 4 4 8 32 4 4 4 32 4 
8 16 64 4 4 8 64 8 4 8 32 4 8 8 32 4 

4 4 4 2 8 8 8 4 8 4 8 4 8 8 S 4 
25% 4 8 8 2 4 8 16 4 4 8 8 4 8 8 8 4 

8 16 64 4 8 8 32 8 8 16 64 4 8 8 64 4 
8 32 64 8 8 16 64 8 8 16 64 4 8 8 64 8 

8 8 8 4 8 8 ]6 8 16 64 64 8 16 16 32 8 
50% 8 16 16 4 8 16 16 8 16 16 16 8 8 16 32 8 

16 32 64 8 16 16 64 16 16 64 64 8 16 32 64 16 
32 64 64 16 16 32 64 16 16 64 64 16 16 32 64 16 

Plate D Plate E 



this out. For the binary valued pictures with n equally 
spaced projections the error at nXn resolution is less 
than 0.05 at all points, while for the half-tone pictures 
it is less than 0.1. (This is after 25 iterations, sometimes 
sooner.) 

For the case of 30 projections, for all four test 
patterns, the error at each point in the 64 X 64 recon­
structed picture after 25 iterations of ART is less than 
.175, and in the case of the binary valued pictures it is 
actually less than .015 (see Table II). 

For perfect contouring we need an error which is 
less than .5 at each point. Thus, we see that contoured 
16 X 16 reconstructions of all the pictures are perfect, 
with all four sets of angles, when ART is used with 25 
iterations. For the summation method, the same 
statement holds only for 4 X 4 reconstructions. 

At two points, our results do not strictly correspond 
to results in earlier publications. 

The first of these is the bad quality of the contoured 
output of the summation method (Plates F and G). 
The contoured output obtained by Vainshtein (1971a) 
in the same experiment appears to be superior. The 
reason for this difference is that Vainshtein contoured 
at a level which will make the contoured input and 
output to have the same density, while we made the 
half-tone output to have the same density as the input, 
and then contoured at .5. The reader can easily judge 
for himself, from Plates Band C, what the effect of 
contouring at different levels would have been. 

The other point concerns the performance of ART 
on the half-tone pictures using 6 projections from the 

Plate F 
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per) 

p(r) p(r) 

81 0 range. The results appear to be much worse than 
what have previously been obtained either for Judy 
(Gordon, Bender & Herman [1970J) or the stomata 
(Herman & Rowland [1971J). There are two reasons 
for this. One is that we are putting a fairly wide white 
frame around the picture. This frame does not con­
tribute to the total density, but the fact that it goes all 
the way around the picture cannot possibly be detected 
from projections taken in a small range. Since ART is 
intended to produce a picture as smooth as possible 
while satisfying the projections, it will smooth out the 
picture into that part of the original white frame which 
is not uniquely determined from the projections. This 
will also bring with itself a general lowering of density 
in the middle portion of the picture, causing some 
distortions in trying to satisfy some of the projections. 
The second reason for the bad quality of the reconstruc­
tions of the stomata, as opposed to earlier experiments 
with angles within the same range, is that previously 
all the projection angles clustered around the horizontal, 
while due to the rotation discussed in Section two, now 
they cluster around the vertical. The stomata seem to 
have many horizontal bands, thus, reconstructions from 
projections from a small horizontal range produce 
better results, than from a small vertical range. (This 
is not the case with Judy.) The countermeasure to 
being a victim of the orientation of the object relative to 
the small range of views is to average a number of 
independent reconstructions (see Herman & Rowland 
[1971J). The following table gives the value of 0 when 
the Judy and the stomata test patterns are recon-
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structed, with and without a white band around them, 
with six views from two small ranges, as well as the 
average in each case. All results are based on ART 
after 25 iterations. 

Angles 
-45°, -36°, Angles 

-18°,0°, 35°, 44°, 62°, 
18°,360 80°, 98°, 1160 Average 

Judy 
~9 X 49 version .14 .16 .13 

Judy 
~4 X 64 version .19 .19 .16 

stomata 
50 X 50 version .16 .23 .17 

stomata 
64X64 version .17 .22 .17 

As can be seen from this table, averaging considerably 
improves the quality of the reconstruction, for the 
64 X 64 pictures. Using a smaller frame can also be 
helpful in this respect. Thus, the bad results we ob­
tained for half-tone pictures with six projections from a 
small range can be avoided by a careful choice of the 
square in which I(x, y) is assumed to be possibly 
non-zero (it should be as small as possible), or by 
averaging. Naturally, the same comments apply to the 
summation method as well. 
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APPENDIX 

Justification of the use of digitized rather than continuous 
test patterns 

A basic assumption of any picture reconstruction 
process is that the picture is reasonably smooth relative 
to the size of the ray widths. It is clearly unreasonable 
to expect an algorithm to reconstruct detail which ~s 
much finer than the width of the rays. 

Since our digitization was done approximately on 
the same scale as the ray width (i.e., the distance 
between two adjacent points in the matrix on which the 
digitized picture is defined is of the same order of 
magnitude as the ray-widths), we may conclude that 
values of the digitized picture at neighboring points are 
highly correlated. Furthermore, by our smoothness 
assumption, if we divide the continuous picture into 
squares with centers at the points of digitization, at all 
points in the squares the gray value of the picture will 
be near to the digitized value at the center. 

The way we have chosen the position and width of 
the rays is such that relative positioning of the squares 
and the rays will be as shown in Figure 2. 

In the digitized version, the contribution to the 
indicated ray in Figure 2 will come from the value at 
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Figure 2 

the center of the square, which is supposed to equal the 
total grayness in the square. In the continuous version, 
however, regions a and b in the square do not con­
tribute to this ray, while regions a' and b', which are 
outside the square, do contribute. However, the area 
of a is the same as that of a' and area of b is the same 
as that of b'. Hence, if the picture function is smooth 
relative to the ray widths, the ray-sums of the digitized 

and continuous versions of the picture are approxi­
mately the same. 

To demonstrate that this argument works in practice, 
we took ray-sums of a continuous version of the test 
pattern in AI, with a genuinely circular boundary. The 
following shows the order of differences in our measure­
ments when we used the continuous and discrete test 
patterns. The discrete pattern is not binary valued, 
rather it is the 64 X 64 digitization of the continuous 
pattern with 16 gray levels. All results refer to the 
experiments with four projections, ART and five 
iterations. 

0 R p e(l) e(3) e(5) 

pontinuous 
test pattern .1642 .4461 7.515 .5755 .2315 .0168 

digitized 
test pattern .1633 .4429 7.230 .5658 .2303 .0161 

It appears that there is no essential difference between 
the results of the two experiments. Other tests gave 
similar results (see, e.g., Herman & Rowland [1971J). 

Since the use of digitized test patterns makes experi­
mentation considerably simpler, it seems advisable to 
use them, rather than continuous test' patterns. 
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SUMMARY 

The development of PRADIS was started in early 
1968 as a vehicle to implement and evaluate new 
schemes of man-machine-interaction, data base or­
ganization, and hidden-line detection which were being 
de,veloped in our laboratory. With time it evolved into 
a rather elaborate programming system for generation, 
construction, manipulation, and perspective display of 
arbitrary three-dimensional objects. All relevant object 
types such as polyhedrons or groups of polyhedrons 
with convex or concave structure, objects that are 
described by analytical expression, as well as the most 
general case of objects that are bounded by arbitrarily 
curved surfaces can be handled. Diffe:rent modes of 
defining and inputting objects and different-hidden-line 
suppression algorithms have been individually developed 
and implemented for these various types. Man-machine­
communication has been facilitated by defining a 
simple command language for the user. The execution 
of any command can be initiated by pointing to the 
respective instruction in a command menu. Addi­
tionally, a keyboard (or the console typewriter) can be 
used for specification of parameters or the description 
of objects by analytical equations. Subroutines for 
scaling, translation, and rotation are part of the system 
as well as program modules which enable the user to 
construct three-dimensional objects by drawing two­
dimensional views of them. 

PRADIS is a modular system designed for imple­
mentation on a small to medium scale computer (our 
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system has only 16 K of 24-bit words). Each module of 
the programming package is a functional entity, 
linked to other modules by an overlay technique. In the 
paper, the construction of the programming system and 
its modules, the different input modes, and the various 
hidden-line detection procedures are described. Repre­
sentative pictures illustrate the performance of the 
system and its intrinsic procedures. 

INTRODUCTION 

PRADIS is a programming package written in 
FORTRAN II for the .SDS 930 computer. As our 
configuration has only 16 K of core memory, the whole 
system has been divided into 16 segments (links). 
Each segment is a self-sustained entity that takes care 
of a certain complex of the total set of functions. The 
various subsystems exchange data via a shared common 
area.! 

The first module is a control module that interprets 
the command language by which a user defines what 
class of objects he is going to deal with and what input 
mode he will use. The control module then calls the 
respective link which provides a data input in the 
required mode, generates objects, and executes instruc­
tions in an interactive mode. By setting certain sense 
switches, the user finally terminates the job or calls the 
control module again for further execution of other 
jobs. Figure 1 gives a simplified block diagram of the 
entire system which we will discuss more in detail in 
the following sections. 
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PRADIS 

OBJECT TYPE 

SET A 

COMMAND 

NO 

PROGRAM 

PLANE BOUNDARIES 
CONVEX STRUCTURE 

PLANE BOUNDARIES SURFACES GIVEN 

LINK FOR 

OBJECT ANALYSIS 

CONCAVE STRUCTURE BY EQUATIONS 

LINK FOR FLAKA (N) 

Figure la-Block diagram of the system PRADIS 
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LINK FOR FLAVER 

INPUT OF EQUATIONS 
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NO 

INPUT OF KEY-WORD 

BY TELETYPE 

LINK FOR FL AVI 

Figure Ib-Block diagram of the system PRADIS 

LINK FOR NINE POINTS' 

METHOD 

Figure Ie-Block diagram of the system PRADIS 

CLASSES OF OBJECTS 

The classes of objects that can be selected are: 
• Groups of polyhedrons of convex structure 

(KOVSTR) 
• Groups of polyhedrons of concave structure 

(KOKSTR) 
• Groups of objects that are defined by functions of 

two variables which have to be given in analytical 
form (FUNGLE) 

• Groups of objects described by functions of two 
variables which are "primitive functions" (i.e., 
they are stored under a function name in the 
library) (FUNAME) 

• Groups of objects that are neither polyhedrons 
nor defined by analytical functions but that are 
composed by "surface patches" as defined by 
COONS'theory (FLADAR) 



988 Spring Joint Computer Conference, 1972 

Figure 2-PROTYP-Menu 

(In the present version of PRADIS 'FUNGLE' and 
'FUN AME' are intrinsically the same module. How­
ever, in an extended version they have to be dis­
tinguished. ) 

Figure 2 shows the "menu" or "light-button field" 
which enables the user to select the required module by 
pointing first to the PROTYP command and then to a 
selection instruction. The selected problem type (and 
the respective module) is indicated by an arrow. An 
erroneous selection can be corrected by a delete instruc­
tion (LOESCH). Otherwise, the next instruction menu 
is called, depending on the object class the user wants 
to deal with. 

MODES OF INPUT 

Each module provides several input modes for the 
generation and manipulation of objects as shown in 
Table 1. 

Some comments shall be given. ZIDDI and BAUKAS 
are able to call each other to facilitate the interactive 
procedure of constructing objects of convex structure. 
ANKOR, so to speak, is a sort of preprocessor which 
calls automatically LIDREI after the analysis of the 
inputted objects has been performed (of ~ourse, this 
step can be skipped by entering LIDREI directly). 
LIDREI includes as well as BASTRU the 4X4-
matrix operation that takes care of scaling, perspective 
display, and rotation of objects or groups of objects. 
In either case the hidden lines are evaluated and 
suppressed. Naturally, the employed hidden-line detec­
tion strategies have to be different. 

In the case of objects defined by equations the input 

procedure consists in typing in either the defining equa­
tion (FUNGLE) or the functions name (FUNAME). 

For the fourth class of objects (i.e., general three­
dimensional objects composed by surface patches) 
we have two optional modes of object definition and 
input: FLEIN 1 and FLEIN 2. FLEIN 1 provides the 
definition of general three-dimensional objects fol­
lowing COONS' method; i.e., by putting in the char­
acteristic nodes and slope vectors. 

FLEIN 2 is based on the input of nine points for a 
surface patch definition, providing a much easier way 
of defining objects. This technique will be described in 
a later section. 

CONSTRUCTION AND DRAWING OF 
THREE-DIMENSIONAL OBJECTS 

To our knowledge, the first program which served 
that purpose was developed by T. JOHNSON2 of 
M.LT. in connection with the SKETCHPAD project. 
In this program, an object is represented by three views 

TABLE I -Input Modes for the Generation and 
Manipulation of Objects 

object 
type 

input 
commands 

KOVSTR ZIDDI 
BAUKAS 
BASTRU 

KOKSTR ANKOR 
DRELIS 
LID REI 

FUNGLE 
FUNAME 

visibility 
procedure 

comment 

FLA VER Display of 
objects bounded 
by plane 
surfaces with 
convex 
structure 

FLAK A Display of 
objects bounded 
by plane 
surfaces with 
concave 
structure 

FLA VI Display of 
objects defined 
by functions of 
z variables or 
by library­
functions 

FLADAR PURAKU Display of 
FLEIN 1 FLAVI objects that are 

TANECK composed by 
'surface patches' 

FLEIN 2 (Coons) 



Figure 3-Examples of objects constructed with the aid of ZIDDI 
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Figure 4-Examples of objects constructed with the aid of ZIDDI 

and one section which have to be drawn by light-pen. 
Recently, two more programs have been reported,3,4 
but they do not offer the generality and flexibility of 
ZIDDI and BAUKAS.5 

ZIDDI takes advantage of the man-machine-
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Figure 5-Illustration of BAUKAS 

communication by which a display system with light­
pen facilitates the task of constructing three-dimen­
sional objects by drawing two-dimensional views. 
Additionally, the user has a set of powerful commands 
at hand for executing coordinate transforms and other 
operations. Using the light-pen, the user marks dots 
which are subsequently connected by lines. These lines 

may constitute surfaces which, again, bound bodies. 
Dots and lines can be arbitrarily added or erased. All 
coordinate transform procedures (scaling, translation, 
rotation) can be called by pointing to the respective 
command in the command menu, and they may be 
arbitrarily used to generate and modify figures and 
objects. In space, a point is defined by three Cartesian 
coordinates x, y, z. However, on the two-dimensional 
screen of the scope we have only two coordinates. This 
discrepancy is overcome by defining two areas on the 
screen: the xy-plane and the xz-plane. Both planes 
are automatically connected by linking related co­
ordinates (for better accuracy the user can ask the 
system to display only one of the two planes in double 
size and to draw an auxiliary grid). 

Concave structures are not always uniquely defined 
by two views, but by rotating them into an appropriate 
position a unique object definition can be obtained. 
Some simpler examples of objects that have been con­
structed with the aid of ZIDDI are shown in Figures 
3 and 4. 

BAUKAS (from German "Baukasten" = building 
block) provides the possibility to call primitives which 
are stored in a font and use them as components of a 
more complex object. The primitives have been con­
structed at an earlier time by the aid of ZIDDI. Figure 
5 illustrates the way BAUKAS works. A table is going 

Figure 5 (cont'd) 



to be constructed by using cubes as primitives. By 
deforming the cubes in one way, we get the table-top; 
by deforming it in a different way, we get the legs. On 
top of the table we put two other primitives: the 
pyramids and the cube on top of them. The flexibility 

Figure 6-Examples of objects constructed with the 
aid of BA UKAS 
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of BAUKAS IS illustrated by some examples given 
in Figure 6. 

ANALYSIS OF POLYHEDRONS WITH 
CONCAVE STRUCTURE 

Concave objects are those which are bounded by 
one or more concave surfaces or which have cavities. 
A group of disconnected objects (with empty space in 
between) is-as a group-concave, too. It is evident, 
that in contrast to convex structures some difficulties 
may arise with respect to establishing unique relations 
between all points, lines, surfaces, and objects of a 
structure. However, these difficulties are overcome by 
the following procedure.6 Prerequisite for it is, that a 
list is available which gives the three spatial coordinates 
of all points, and which marks all connections between 
them. Such a list may have been put in by the user or 
it will be generated by the program. 

The most general case is that the user has three 
drawings which show three different (two-dimensional) 
views of the object. In that case the user has only to 
provide for each drawing a list of the two coordinate 
values of all relevant points, together with a second list 
of all visible connections. The order in which the points 
are numbered is arbitrary. From these lists the program 
generates a list of all points in space in the following 
way: the y-coordinate of a point in the xy-list, for 
example, is taken, and the yz-list is searched for the 
same y-coordinate. If the search is successful, the 
xz-list is searched for a point, whose x- and z-coordinates 
correspond respectively with the x-coordinate of the 
point taken from the xy-list and the z-coordinate of the 
point taken from the yz-list. Triples of x-, y-, and 
z-values obtained in such a way constitute the co­
ordinates of a (spatial) point of the three-dimensional 
object. Eventually, the list of all spatial points is sorted 
with respect to increasing values of x and a running 
index is assigned to each triple. 

The second task is to generate a list of all lines of the 
three-dimensional objects from the input of their 
two-dimensional views. A similar search procedure as 
in the case of the generation of the lists of spatial points 
is used, i.e., the three lists which belong to the two­
dimensional views are searched for certain equivalences. 
The difference is that now an equivalence is not given 
by the coordinate values but by their running index. 
The point is that first of all the arbitrary numbering in 
the list of all points of the two-dimensional views has to 
be replaced by the corresponding running index taken 
from the ordered list of spatial points. In order to make 
that feasible, the lists of the points of the two-dimen-
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Figure 7-Examples for the results of the object analysis 

sional views must at first be augmented by all connec­
tions which are existing in the three-dimensional case 
but not visible in all the two-dimensional views. This 
procedure is fairly complicated so that it would lead 
too far afield to explain it in detail. The next figures 

show some of the results we obtained with this procedure 
(Figures 7 to 9). 

DEFINITION OF OBJECTS BY ANALYTICAL 
FUNCTIONS 

There are three different ways of defining three­
dimensional objects by analytical expressions: 

(1) the implicit form 
(2) the explicit form 
(3) the parametric form 

Z=ja(u, v). 

F(x, y, z) =0 

z=j(x, y) 

x=fr(u, v), y=j2(U, v), 

Though the implicit form is the most simple one, it 
does not lead to an efficient computer algorithm. The 
explicit form, on the other hand, does not provide a 
unique description (e.g., for z=o we have j(x, y) =0 
which does not only define all the points of a plane but 
all the points on a cylinder). So we have to rely on the 
parametric form. 

In order to facilitate the input procedure, the system 
enables the user to key-in his equations on the display 
keyboard (or console typewriter, respectively). After 
having the equations analyzed and transformed, the 
system calls an appropriate algorithm for function 
evaluation. Furthermore, the user will be asked to 
specify all necessary reference coordinates, scaling 
factors, and other parameters. Syntactical errors will be 
detected, and error messages will be output. The 
respective language which we use is simple; its syntax 
has been described elsewhere.7,8 

The typed-in equations are processed in the following 
steps: 

(1) loading into a buffer storage area 
(2) equation analysis and coding 
(3) assignment of values to the parameteric varia­

bles (u, v) 
(4) assignment of values to the coordinate variables 

(x, y, z) 
(5) calculation of the right-hand expressions and 

storage of the obtained results. 

In the second step the equations are converted into 
polish notation, and a push-down stack is set up. An 
operation matrix defines whether or not an actual 
operation can be immediately performed on two 
subsequent variables. The first row denotes the actual 
operators and the first column their predeces·sors. The 
meaning of the numbers in the matrix is 

1: Operation cannot be executed. Bring operator 
into the operator stack. 



2: Both operators have same priority. Execute 
operations. 

3: Actual operator has higher priority than pred­
ecessor. Execute operation. 

4: Erase parentheses (or brackets). If the expres-

Figure 8-Examples for the results of the object analysis 
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Figure 9-Examples for the results of the object analysis 

sion between parentheses (brackets) is a sub-
routine for function evaluation, it is executed. 

5: Recognition of a terminal operator. 

6: Invalid combination of operators. Output error 

message. 

OPERATION MATRIX 

+ * / ) ] A 6- t 

+ 2 2 1 1 1 1 3 3 1 3 1 

2 2 1 1 1 1 3 3 1 3 1 

* 3 3 2 2 1 1 3 3 1 3 1 

/ 3 3 2 2 1 1 3 3 1 3 1 

( 1 1 1 1 1 1 4 4 1 6 1 

[ 1 1 1 1 1 1 4 4 1 6 1 

A 6 6 6 6 1 1 6 6 6 6 6 

Blank 1 1 1 1 1 1 6 6 1 5 1 

t 3 3 3 3 1 1 3 3 1 3 2 
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Figure lO-Surfaces generated and displayed with FLA VI 

The above outlined analysis program has been written 
in FORTRAN II which, however, had to be supple­
mented by bit and character manipulation subroutines. 
The submodule FLA VI can be applied for hidden line 
detection and suppression to the thus calculated 
functions. Figure 10 shows some objects generated in 
that way. 

GENERAL OBJECTS 

According to COONS' theory and the nine point 
modification we have three main modes of defining 
bounding surfaces of general three-dimensional objects: 

(1) The boundary contours have to be specified; 
blending functions (functions that define how 
the boundaries are connected by curved sur­
faces) are defined once and for all. 

(2) Four corner points and eight corresponding 
slope vectors have to be specified for each 
surface patch; fixed blending functions are given, 
as in the first method. 

(3) For each surface patch nine characteristic 
points have to be specified. No blending func­
tions are required. 

Generation of boundaries by polynomial approximation 
(FLEIN 1, PURAKU) 

The first approach offers the advantage of dealing 
with larger entities than the "surface patches" in the 
second and third approach. Each boundary is approxi­
mated as an entity by a polynomial approximation. 
For each contour n+ 1 quintuples have to be specified; 
n being the degree of the approximation polynomial. 



The five values of each quintuple give the three co­
ordinates of a point through which- the polynomial 
passes as well as two parameters for the specification of 
the two degrees of freedom of the surface. Thus, the 
degree of partitioning the objects can be lower. 

However, the method shows some deficiencies. (One 
serious deficiency is, for example, that it is not very well 
suited for an interactive use of the display system but 
requires rather elaborate preliminary work.) It is left 
to the user to define the degree of each approximation 
polynomial; if he is not very familiar with the per­
formance of polynomial approximations, large errors 
may occur. Of course, the best performance is obtained 
if the boundaries are conic sections. 

Figure ll-Object defined by COONS' method 

COONS'method (PLEIN 1, TANECK) 

As mentioned before, for each construction element 
called "surface patch" of a curved surface we have to 
specify four corner points and eight corresponding slope 
vectors, two for each boundary contour. These vectors, 
of course, are defined in space by specifying their 
components.lO In FLEIN 1, the intrinsic blending 
functions are of third order. Figure 11 shows an example 
for an object defined in such a way. In order to obtain a 
smooth representation of an object, it is necessary that 
the user develops a good feeling of how to specify slope 
vectors in an optimum way. Hence, the application of 
this method requires a lot of experience and preliminary 
work with pencil and paper. 

The nine point method (FLEIN 2) 

Here, a surface patch is defined by specifying nine 
characteristic points: the four corner points, four points 
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Figure 12-Example for the nine point method of 
defining a surface patch 

on the boundaries (one point on each one), and one 
point in the center of the surface.1l Figure 12 gives an 
example: the surface element is a quadrilateral, the 
center point is on the same level (has the same z-co­
ordinate) as the four corner points, and the points on 
the boundaries are on a higher level. In Figure 13, in 
contrast, the center point has been raised to the level 
of the boundary points. 

The nine point method works better the more 
information about the objects one has (points of 
inflexion, boundary, etc.). Boundaries are approxi­
mated in an optimum way if they are parabolic. Any time 
a break point or a point of inflexion occurs, a new surface 
patch has to be defined. Hence, the nine point method 
leads to a finer partitioning than COONS' method. 
Another disadvantage is that it does not guarantee 

Figure 13-Another example for the nine point method 
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Figure 14-Automobile as an object generated by aid 
of surface patches 

a continuous transition between surface patches. A 
big advantage, on the other hand, is given by the fact 
that no blending functions have to be defined and no 
spatial vectors have to be specified, both requirements 

expecting very much from the user with respect to 
his power of imagination. 

Additionally, the nine point method requires much 
less time for preparation and execution of a prob­
lem. It is particularly suited for plotters or displays 
that work incrementally. The man-machine-interaction 
is excellent. Figure 14 shows as an example the body 
of a well-known automobile. 

COORDINATE TRANSFORMS 

PRADIS uses homogeneous coordinates. A coordinate 
transform is performed by multiplying the matrix of 
homogeneous point coordinates by the transform 
matrix TM-as indicated in Figure 15. The transform 
parameters have to be specified by the user. 

VISIBILITY CRITERIA 

Visibility criteria enable the program to detect (and 
erase) hidden lines. For a satisfactory display of three-
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Figure 15-The 4X4-Transformation matrix 



dimensional objects, the hidden line suppression is 
mandatory. We distinguish between three types of 
criteria: point tests, surface tests, and combined 
point/surface tests. In the case of surface tests the 
primitive which is tested is a surface element as the 
name indicates. The surface test indicates only, whether 
or not a line is visible as an entity; i.e., a possible 
mutual hiding of two surface elements cannot be taken 
into account. Hence, it is not applicable to concave 
structures. 

Points test partition a line into small segments that 
are only considered to be visible if none of the arbitrarily 
selected points on this segment is hidden by a surface 
element. The point test procedure is generally applica­
ble, however, it requires a prohibitive amount of 
execution time. Combined point/surface tests try to 
combine the advantages and avoid the disadvantages 
of point tests and surface tests. 

In PRADIS, we use some new schemes which we 
developed. 12 The implementation of our hidden line 
detection algorithms are called FLA VER, FLAKA, 
and FLA VI. The gist of these three algorithms shall be 
summarized in the following. 

(1) FLA VER-FLA VER uses a hidden line al­
gorithm that is applicable to convex structures. 
The procedure consists of three main steps. In 
the first step, the angle between the line-of-sight 
and the normal line on the surface is calculated 
resulting in a criterium for totally hidden sur­
faces. In the second step, a priority is assigned 
to each one of the remaining surfaces. Thus, the 
sequence is defined in which the mutual hiding 
will be determined. This is done in the third 
step by investigating whether or not the ter­
minating points of a line fall into a surface with 
higher priority than that of the surface the line 
belongs to. If only one of the terminating points 
is hidden, the point of intersection between this 
line and the surface boundary is determined. 
This point terminates the visible part of the 
line. The point is that only surfaces with higher 
priority than that of the surface the respective 
line belongs to are to be taken into account, 
thus saving considerably computation time. 12 ,13 

(2) FLAKA-FLAKA works on concave structures; 
i.e., it works in the more general case where the 
polyhedrons may have cavities and/or a group 
of disconnected polyhedrons occurs. In this 
case, the angle between the line-of-sight and the 
normal line, unfortunately, does not provide a 
simple criterium for determining whether a 
surface is visible. This difficulty is overcome by 
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dividing in a preliminary step all the surfaces 
of a structure into triangles. On these triangles 
the last two steps of FLA VER can be applied. 
The partitioning of all surfaces of the structure 
results in additional lines (if a rectangle is 
partitioned into two triangles, an additional line 
is generated which is the rectangle diagonal). 
Special care has to be taken to suppress these 
additional lines (therefore, the triangles are 
of course not visible) . 

(3) FLAVI-The intrinsic hidden line detection 
algorithm of FLAVI takes care of objects that 
are defined by analytical expressions-be these 
expressions defined by the user in form of 
equations or generated by the program ac­
cording to COONS' theory. The procedure works 
as follows: First of all a Cartesian coordinate 
grid of 11 by 11 lines is superposed. If the 
visibility of the point of intersection between 
2(~U-Llv)-segments has to be determined, 
only the surface patches have to be considered 
that have no empty intersection with the 
respective grid area. Subsequently, surface 
patches to be taken into account are partitioned 
into triangles, and the z-coordinates of these 
triangles are calculated at values of x and y 
given by the coordinates of the intersection 
point. If a triangle has a z-coordinate which is 
greater than that of the intersection point, it 
hides that point. If no such triangle exists, the 
point of intersection is visible. All points of 
intersection of all linesu = constant and v = 
constant have to be tested in that way. If one 
of two connected points is visible and the other 
one hidden, more points located on the connect­
ing contour have to be examined. 
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MARS-Missouri Automated Radiology System 

by J. L. LEHR, G. S. LODWICK, L. J. GARROTTO, D. J. MANSON and B. F. NICHOLSON 

University of Missouri 
Columbia, Missouri 

The primary role of the radiologist is to examine 
patients, usually with the help of ionizing radiation, in 
order to provide information of use in patient care. The 
radiologist functions as a consultant that is, patients 
are referred to him by many other physicians, and he 
delivers information obtained from his special methods 
of examination back to each patient's referring physi­
cian. As a result the radiologist deals with greater 
numbers of patients than most physicians. Also, he 
needs to move a great deal of data quickly and ac­
curately. 

Radiology is a relatively young field of medicine, 
and the variety and complexity of examination tech­
niques in the radiologist's aramentarium continue to 
multiply. Because of this and because he examines more 
patients each year, the annual increase in demand 
upon a radiologist's time has been estimated from 15 to 
25 percent. Fortunately, however, radiologists are used 
to living with complicated electronic gear, and the 
specialty as a whole has shown considerable interest in 
employing data processing techniques to streamline 
patient care delivery. 

Our own efforts began in 1965 as project RADIATE 
(Radiologic Diagnoses Instantaneously Accessed and 
Transmitted Electronically), continued as ODARS 
(On-line Diagnostic and Reporting System), and have 
finally been renamed MARS (Missouri Automated 
Radiology System). It was apparent initially that 
straightforward computer programs could· carry out a 
variety of business functions such as patient billing or 
inventory control. However, the most important 
information flowing through a radiology department is 
the medical information, i.e., what the radiologist has 
to say about the patients he examined. The processing 
of this basic information was the problem we tackled. 

Traditionally the radiologist has dictated his con­
sultation after reviewing a patient's films. This dictation 
is then transcribed, proofread, and finally returned to 
the referring physician. The problem of capturing this 
data for a computer can be solved in a variety of ways 
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ranging from keypunching the reports to utilizing 
typewriters which produce magnetic tape along with 
typed copy. Such approaches do provide the computer 
with data to process. Indeed, they provide a large 
amount of natural language data which requires very 
sophisticated processing to interpret. Although pro­
cessing of dictated reports has the superficial advantage 
of not interfering with traditional methods, it tends to 
complicate the flow of information rather than facili­
tating it. 

We have chosen a more radical approach for MARS. 
Instead of dictating his report, the radiologist interacts 
with the computer via an on-line terminal. He con­
structs his report by retrieving terms from several 
large lists, each containing a particular category of 
term, and stored in direct access files. The retrieval 
technique is a modified keyword in context approach. 
The radiologist types in one letter denoting the particu­
lar type of term followed by the first four letters of any 
word in the term. The computer displays a list of all 
terms associated with this keyword, and the radiologist 
selects one of these. Three categories of terms are 
available; examination types, anatomic sites, and 
diagnoses. 

In addition to incorporating phrases retrieved by 
keyword, the radiologist has additional options in 
preparing his report. He may select any of a list of 
commonly employed phrases such as "there has been 
essentially no change in findings since the previous 
examination." This particular phrase being the fourth 
in the list, the radiologist may simply type "P4" to add 
it to the report. Or, if he does not remember the number, 
he may simply type "P" to request display of the entire 
list from which he then makes his selection. Another 
option available is the incorporation of a pre-coded 
sequence of statements which are retrieved by typing a 
three letter abbreviation, or mnemonic. For example, if 
the radiologist types "CAD," the computer will in­
corporate into the report a series of statements de­
scribing a geriatric chest with calcification in the aortic 
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arch, tortuosity of the descending aorta, and degenera­
tive changes in the thoracic spine. These pre-coded 
statements frequently make it possible, to complete an 
entire report by typing only a few letters. The approach 
is obviously quite similar to the use of "canned" reports 
generated by semi-automatic typewriters. However, 
the computer system does have the advantage that the 
radiologist reviews the report on his terminal imme­
diately and, if he wishes, he may easily edit it. For 
example, if the changes in the spine are unusually 
marked, he might add an appropriate modifier to the 
report. Finally, if the radiologist is unable to express 
himself fully by the options provided, he may type as 
many additional remarks as he feels are needed. 

This method was aimed at solving the basic problem 
of capturing the radiologist's report in a form which the 
computer could comprehend. The technique met with 
criticism for two reasons. First, it altered the traditional 
form of the radiological consultation. Instead of 
paragraphs of prose, the referring physician would 
receive a somewhat terse list of observations and 
impressions. Second, it required that the radiologist 
operate a keyboard. Added to the very real problem 
which would arise if the radiologist were slowed down by 
using a terminal there is a largely emotional problem 
which stems from the idea that it is somehow "sissy" 
for an M.D. to type. 

The only way we could see to answer these objections 
was to put the System to work. Our immediate goal was 
not to automate all the functions of the department, 
but to test the hypothesis that the medical information 
flow could be handled by an on-line system as described. 
Accordingly we wrote, tested, and rewrote programs. 
Finally, on April 1, 1970, we locked up the radiologists' 
dictaphones and began using MARS to process all 
consult at jon in our department. Clinical use required 
not only that the radiologist be able to interact with the 
computer to define individual reports but also that 
there be a system for handling the flow of patients 
through the department. The system we have used can 
best be described by following the progress of a typical 
consultation through the department. 

A patient presents for examination in the department 
at a reception area accompanied by a request form 
filled out and signed by the referring physician. The 
receptionist informs the computer of the patient's 
arrival by entering the patient's unit number via 
a terminal. The computer searches the hospital master 
disk file for this number and responds by displaying 
information found there, including the patient's name, 
date of birth, sex, race and· hospital ward or outpatient 
clinic code. If the information is not on file (as, for 
example, in the case of a patient not previously seen at 
the hospital who requires emergency care), it is entered 

by the receptionist manually. The receptionist then 
types in the clinical history provided by the referring 
physician, along with his name. Finally, the examina­
tion requested is entered, and the computer stores all 
of this information in a temporary holding file. A three 
digit number indicating the location of the record within 
this file is displayed to the receptionist who writes it on 
the request form. 

The patient is examined and the roentgenograms, 
along with the patient's previous X-rays and reports 
and the request form are brought to a radiologist at 
one of several terminals for interpretation. The radi­
ologist begins by entering the three digit address of the 
information entered by the receptionist. The computer 
retrieves the preprocessed patient identification data 
and displays it on the screen. The radiologist corrects 
any errors in this data and then completes the report 
by the method outlined above. Finally the radiologist 
proofreads the entire report, makes any corrections 
and then signals the computer that the report is com­
plete. The computer immediately types out a copy of 
the report on an output terminal located on the patient's 
ward and, simultaneously, three copies are produced in 
the department of radiology. One of'these copies is 
affixed to the jacket containing the patient's radiographs; 
the second is mailed to the referring physician for his 
convenience; and the third is attached to the request 
form, presented to the radiologist for signature and 
returned to the patient's medical record. 

All the reports transmitted during the day are kept 
on a random access disk file and any of them can be 
reviewed instantly by entering any patient's unit 
number on a terminal. At night, each report trans­
mitted is permanently stored in a numerically coded 
form on a large direct access file. From this file any 
report for any patient can be retrieved for review 
within a matter of seconds. Also categorical searches 
can be performed on-line. 

In our two years of experience with this system we 
have learned many things. Primarily we have shown 
that it is possible to operate a department with an 
on-line information system. In evaluating MARS we 
did measure some parameters such as the time spent by 
patients in the department and the time a radiologist 
spends reporting a case. We found these to be essentially 
unchanged from data accumulated before the System 
went into operation. MARS did, however make a great 
reduction in the delay between arrival of a patient in 
the department for examination and delivery of a 
written consultation. Before MARS this delay averaged 
23 hours with about 75 percent of all reports being sent 
out on the day following the examination. With MARS 
this delay has been reduced to an average of 10 hours, 
and 75 percent of all reports are transmitted on the day 



of the examination. We regard this as a significant 
improvement in patient care. 

Our experience operating MARS has not been 
uniformly pleasant, however. We have been plagued by 
unreliable computer services. We have been operating 
on an IBM 360-50 under O.S. using the Baylor Message 
Handler for terminal I/O. The system is a busy one 
with two million bytes of "slow" core, multiple tapes, 
disks, and a data cell. In addition to a couple of batch 
partitions, the system handles a variety of on-line 
applications for other departments in the Medical 
Center, as well as a good deal of developmental work. 
With all of this, the time during which MARS has not 
been available to radiology has averaged slightly over 
10 percent of our working day. For the most part, 
failures are due to system software. The system simply 
dissolves. Generally it can be restarted in from fifteen 
to twenty minutes providing our radiologists with an 
unscheduled coffee break. More serious failures of 
hardware or software have not been uncommon, 
however, and when the system is down for an hour or 
longer we revert to dictation of reports. 

We should emphasize that our computer center has a 
staff of good systems programmers and is headed by an 
able Director. However, we see certain disadvantages in 
the very concept of a large central computer. If a 
radiologist is going to build his practice around an 
information system, then he will be responsible for the 
effect that system has on patient care. This responsi­
bility is very difficult to assume unless it is coupled 
with clearly defined administrative control over the 
operation of that system. It is difficult to see how this 
is possible if the radiologist is only one user of a large 
time sharing computer. 

Our experience with MARS on the 360 has convinced 
us that the concept of on-line management of in­
formation flow is valid for a department of radiology. 
We have been reluctant, however, to fully exploit .the 
possibilities for a more completely automated depart­
ment on a computer system with the disadvantages 
outlined above. Finally, we have become quite inter­
ested in building a system which can be exported easily 
to other departments. For these reasons we are in the 
process of implementing a stand-alone version of MARS 
on a smaller computer, the PDP-15, using MUMPS, 
the Massachusetts General Hospital Multi-Program-
ming System. ' 

The basic reporting function of MARS on the PDP-15 
is still quite similar to that discussed previously and 
consists of retrieving from standardized tables those 
terms to be incorporated into the reports. We have 
been able to make the retrieval of terms a bit more 
sophisticated, however. After examining the frequency 
with which terms were used in some 50,000 reports we 
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found that a relatively small number of terms were 
used quite frequently. These terms have been assigned 
unique three-letter mnemonics so that they can be 
retrieved without bothering to look at other terms 
which would be retrieved under the keyword search. 
In addition, the keywords are no longer restricted to 
four letters. The modifying terms have been expanded, 
separated into exam, site, and diagnosis categories, and 
assigned mnemonic codes for retrieval. Also, the 
definition of "canned" reports has been left to the 
discretion of the individual radiologist, so that these 
can be tailored to suit his needs. Finally, the program 
has been altered so that the radiologist can specify 
multiple terms with one input string. This frequently 
makes it possible for him to define an entire report with 
one turn-around at his terminal. 

In addition to these relatively minor changes at the 
radiologist-computer interface, we are expanding 
MARS to automate several other departmental func­
tions. For the most part these are the fairly straight­
forward business-like applications which we ignored 
previously, and they come as rather natural spin-offs 
from the medical information system. These applica­
tions are, however, extremely important from a cost­
effectiveness viewpoint. One application is patient 
billing. Since the MARS report contains the name of 
the patient, the examination performed, and the 
consulting radiologist's name all the information needed 
to specify the charge is available to the System. It is 
only necessary to associate with each examination in the 
table the appropriate fee. The System displays these 
charges to the radiologist who verifies and/or corrects 
them just prior to transmitting his report. 

In many departments patient billing is handled by 
another agency, usually a hospital. Under these circum­
stances the department's responsibility ends at correctly 
specifying the charge for each patient. If billing is done 
by hand, a daily listing of charge should suffice. At our 
hospital, patient billing is done by computer, so that 
we will provide the charges on magnetic tape. We do 
expect to develop a more complete billing and ac­
counting system for those departments which elect to 
handle this function. Our basic concept is to keep 
computerized ledger sheets on direct access files. For 
active accounts, this record will contain both itemized 
charges and a record of payments made. Inactive 
accounts will be transferred to tape and/or paper files. 
The goal is to provide a billing system which is respon­
sive to human direction and can make any patient's 
bill accessible for review and, if necessary, correction 
on-line. 

Another type of information which MARS can pro:, 
vide automatically is a statistical analysis of the 
department's work load. The rapid growth of services 
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delivered by radiologists means that additional equip­
ment and personnel must be acquired almost con­
tinuously. In deciding just what piece of equipment 
should be purchased next it is obviously valuable to 
know what types of examinations are being performed 
most often. We assign a statistical code to each entry 
in the exam table which defines for the System how we 
want our utilization counts broken down. When a 
report is transmitted the appropriate counts are 
incremented. These figures are stored by the day during 
any month. At the end of the month totals are printed 
out, and at the end of the year a monthly breakdown 
is produced. 

Another operation in the department which is 
amenable to automation is management of the X-ray 
files. Currently roentgenographic images are stored on 
large films. All films for a patient are usually stored 
together in one or more large jackets which in turn are 
filed according to patient number. Films are pulled 
from the files either for use within the department or to 
be loaned to referring physicians for use outside the 
department, for use in conferences, clinics or in the 
operating suite. Since the X-rays themselves form a 
part of the medical record, the radiologist being legally 
responsible for them, it is obviously essential to have a 
system for keeping track of who has checked out what 
films. It is also necessary at times, to send out "overdue" 
notices. Current films are also pulled for review by 
referring physicians within the department viewing 
area. Since these films do not leave the department, it 
is not necessary to check them out. However, it is not 
uncommon for a doctor to request films which have been 
checked out. Under any of these circumstances a 
harried search through the department, and through 
multiple scraps of paper ensues. Some tracking of the 
films within the department is accomplished by logging 
the patient in and reporting the case. It would be 
possible to create additional check points to further 
ameliorate this problem. 

Finally, any time a patient is examined in radiology, 
all of the patient's previous X-rays are pulled for review 
so that the radiologist may detect for changes in the 
a.rea examined, or so that he may correlate the findings 
from examinations of other areas. In order to reduce the 
delay caused by pulling the old films, MARS transmits 
a request to the file area as soon as the patient is logged 
in at the reception area. 

One of the ways in which radiologists attempt to 
meet increasing patient loads is by keeping existing 
facilities busy through scheduling of examinations. In 
our department only those examinations which require 
the participation of a radiologist have been scheduled. 
In particular, nearly all patients have been simply sent 
from the clinics to the department without any prior 

warning. To alleviate this problem we have developed 
an on-line appointment book. A referrjng physician, or 
his secretary, may call the radiology reception area and 
request that a given exam be scheduled for his patient 
at a particular time. The System opens the appointment 
book to the appropriate day, and checks to see what 
has already been scheduled. If the schedule is tight, the 
System warns the receptionist who can then attempt to 
get another time which is more convenient for the 
patient, his physician, and the department. Each 
morning the schedule is printed out allowing our 
personnel to plan how they will meet the projected 
patient load. A longer range goal for this MARS module 
is to provide for a constant on-line reevaluation of the 
work load by the System, which might then make 
specific recommendations such as assigning individual 
patients to specific examination rooms. 

A potentially great advantage of having a radiologist 
interacting with a computer is that the machine may be 
able to assist them interpret the films. There are several 
possible techniques for this. Perhaps the simplest of 
these is retrieval of useful medical data. We have a 
growing file of radiological information arranged 
hierarchically by organ system, and subdivided by 
diseases or roentgen findings. This film may be examined 
on-line by the radiologist while he is reporting. A 
slightly more complicated method of assisting the 
radiologist is to provide him. with a logical tree for the 
analysis of certain diagnostic problems. The radiologist 
is asked a series of questions about the findings on the 
films and depending upon his answer to each question 
another appropriate question is asked until he reaches a 
leaf on the tree. Typically this will be a list of diagnostic 
possibilities. Another technique which may be employed 
is that of Bayesian analysis. The radiologist is asked to 
specify whether certain findings are present on the films, 
and the System then uses estimates of the frequencies 
with which these findings occur in various diseases to 
estimate probabilities for the diagnoses. Such programs 
are available for the diagnosis of pulmonary nodules, 
heart disease, and thyroid dysfunctions. The tree 
branching and Bayes techniques have been combined 
into a program for the analysis of solitary bone tumors. 
Many investigators are becoming interested in collecting 
the type of data required to attack diagnostic prob­
lems by means of these techniques. 

There is great pressure on the medical profession to 
produce more patient care with no loss in quality and 
without further increasing the cost to society. Com­
puter technology holds the promise of helping us to 
reach that goal. Our efforts in developing MARS have 
been to automate the practice of radiology. In doing 
this we have made changes from the traditional practice 
of our specialty; we feel that we have improved it. 



Certainly there is need for further work. The use of 
computers for training radiologists and radiological 
technologists has not been thoroughly investigated. 
Technological advances on the horizon such as high 
quality microfilm systems for storage of roentgenograms, 
or electronic equipment to transmit images will both 
augment the possibilities for automation, and may 
well require sophisticated data processing systems to 
have their full impact. Finally, we are beginning to see 
some practical possibilities for direct computer analysis 
of the X-rays themselves. The task of demonstrating the 
feasibility of automated systems, of developing cost­
effective systems, and of educating the medical pro­
fession to use them effectively should provide a chal­
lenge for many years to come. 
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"Sailing"-An example of computer animation 
and iconic communication 

by STEPHEN M. ZW ARG 

National Security Agency 
Ft. George Meade, Maryland 

INTRODUCTION 

The use of the visual process for the perception and 
assimilation of ideas is well recognized by educators, 
psychologists, as well as computer scientists. The popu­
larity of movies and television and the concomitant 
growth in visual literacy of the viewers of these media 
are two factors exploited by those who wish to com­
municate ideas using these media. The world which 
comes across on the movie or TV screen is the camera's 
eye view of the visual world (as opposed to our visual 
field, that which our eyesight and brain perceive of the 
visual world, or "reality," see Gibson6) ; and as such it 
is an image of reality. This can include images of 
beautiful scenery, complex human interactions, or of a 
printed page illustrating a lecture. Any ideas which are 
communicated by these devices, while relying upon 
imagery, tend to inform the viewer by creating the 
illusion that he is there, so how and why would he act, 
or they inform him by straightforward strings from 
some generally accepted language (as in the case of a 
screen full of text). Bruner, a cognitive theorist, feels 
that information acquisition proceeds through three 
stages:5 

1. Enactive-using personal action 
2. Iconic-perceptual organization and integration 

of images 
3. Symbolic-using a language or accepted set of 

representations 

As a child develops he progresses through these three 
stages. Most of the things we learn in school or from 
books are by symbolic means. Imagery can back up 
symbolic and enactive paths of learning with varying 
degrees of success. 

Iconic communication itself, using pictures, figures, 
or visual images in combination with motion in the 
cases of movies, cartoons, and TV, is not so well under­
stood as an idea transporter. With the fusion of the 
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abstract symbol manipulative, computational power of 
the computer and the concrete world of visual imagery 
(in an animated movie in this case) it was hoped to 
study the problem of idea expression and perception 
through images. The motivation for producing a com­
puter animated film was simple-it was a course re­
quirement for a graduate seminar led by Prof. William 
Huggins at Johns Hopkins University. Titled Iconic 
Communications, the intent of the course was to pro­
duce a movie, and thereby develop 'and learn the com­
puter related techniques, as well as develop the poten­
tial of iconic modes of communication by research in 
the related areas of: computer graphic systems and de­
vices and data structures; machine perception, pattern 
recognition, and syntax of pictures; memory, percep­
tion, and cognitive psychology; education, geometry, 
and visual syntax. 

Iconic Communications 

This sort of interdisciplinary study was interesting 
as well as very fruitful for those of us in technical fields, 
such as electrical engineering or computer science, who 
were looking for new applications or who only vaguely 
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understood present applications of advanced computer 
graphic technology. 

OTHER COMPUTER ANIMATION SYSTEMS 

The use of computers for the production of animated 
movies is not new. Several on-line and off-line methods 
exist with varying. degrees of interactive capability. 
Baecker3.4 at M.LT. produced the GENESYS system, 
making use of the TX-2 computer and graphics system, 
which permitted the animator/operator to specify on 
the graphic screen (1) images to be moved about as 
well as (2) schedules by which they were to be moved. 
All of this was done on-line and little or no program­
ming was necessary by the animator. The images used 
were anything that the user could draw, alleviating 
him from tediously specifying coordinate input. The 
feedback of results was immediate. One result of taking 
programming away from the user was that the com­
puter spent its time keeping track of the animator's 
on-line doodlings instead of offering computational or 
problem solving power directly toward what to do with 
these doodlings. The specification of pictures and their 
driving functions was very good for simple and fast 
cases but not really suitable for an extended animated 
effort. Spending a short amount of time to produce a 
short sequence tended to make the effect of the image 
short-lived. 

Others, including Anderson1 •2 and Knowlton8 •9 spent 
their time developing elaborate list processing languages 
and stacking data structures (as in CAMP and 
BEFLIX). These specialized languages required much 
understanding on the part of the. animator but his 
facility for taking advantage of the computer's compu­
tational power rose correspondingly. The usual tech­
nique was to write the program in the specialized movie 
language, run it on a computer graphics terminal, film 
it, and then postprocess the film to add color or special 
effects. Some strikingly beautiful films were produced 
by Knowlton at Bell Labs and are available on loan 
from there. Not much attention was paid in these 
efforts to what images were used or what ideas should 
be communicated. Visual effects were sufficient to prove 
the technology. 

More recently, at the University of Pennsylvania's 
Moore School, Talbot, et al.,9 have attempted to fuse 
the on-line interactive approach to movie specification 
with the remote computational p::>wer of a large com­
puter for the final movie production. They also de­
veloped a specialized hierarchical language (with a 
formal Backus N aur syntax specification) for the ani­
mator to specify his pictures, motion, scenes, and movie 

segments. The on-line activity consisted of drawing on 
the DEC-338 scope, working in one of the picture 
definition modes mentioned above, and then reviewing 
the rough construction of the movie immediately. When 
the animator was satisfied with his rough draft he 
entered transmission mode and the outline of the movie 
was sent to a remote IBM 360/65. There the draft of 
the movie was translated into the final movie generation 
commands to drive a SC-4020 microfilm plotter. The 
main point was to be able to review movie production 
at any stage as well as to specify everything on-line. 
Data entry was again a problem, figure manipulation 
awkward, and no concentration was made on types of 
images, what thejr effects and relationships should be 
and how to get ideas across. The preoccupation with 
hardware and syntax specification has obfuscated idea 
communication. 

THE MOGUL SYSTEM 

Our animation system at Johns Hopkins possesses all 
the so-called drawbacks. It is not on-line, no expensive 
graphics equipment is available, only a second genera­
tion IBM 7094 computer. Turn around for the finished 
movie is slow since no SC-4020 plotter is owned either. 
Tapes must be sent someplace that has one, delaying 
things by several weeks. Short term feedback of a coarse 
nature is available from the computer's line printer, and 
outputs can be had within an hour or so, typical of a 
batch operation. The draw package used by animators, 
entitled MOGUL-Movie Oriented Graphical Utility 
Language7 and developed by Prof. Huggins, Tom 
Hoffman, and Jerry Yochelson, is a FORTRAN based 
system and requires that the user understand that 
widely known language. As such, though, the user has 
at his command all the computational routines he can 
program. Data input for animator specified images in 
two or three dimensions is as easy as FORTRAN allows. 
The time invested in learning how to program and 
working out movie scenes on graph paper is well in­
vested, however, and may even overcome all the previ­
ously mentioned handicaps, or at least show that lack 
of equipment is not always a handicap. Those of us 
with programming experience enjoyed the 'ability to 
work with an animation system in a familiar language. 
The preciseness of a computer language (but not the 
restriction of a special purpose language) and the slight 
delay in feedback of results made us be more sure of 
what we wanted to see, and eliminated the draw it and 
play it right back looseness of on-line systems. We 
found that for at least 75 percent of the movie's prepa­
ration the immediate feedback is not necessary if we 



had a good idea (through time spent on a storyboard 
and basic visual techniques) of how the movie should 
go. Admittedly the final polishing up would have been 
easier with immediate checks, but costs prohibited this. 

THE IDEA OF THE SAILING MOVIE 

Since all of my spare time during the summer is 
spent on the water, when asked to make a film about 
an idea, the one which naturally occurred to me was 
that of a sailboat making its way around a race course, 
thereby demonstrating basic sailboat aerodynamics. 
The first step in my animation effort was to layout a 
storyboard. This is the sequence of key scenes in the 
movie along with a brief explanation of what is happen­
ing. Briefly the storyboard of the "Sailing" movie goes 
like this (see Figures 4-9, also an intermediate version 
16mm film of "Sailing" and several other students' 
works is available),u An outline of a boat with mast 
and sail appears, centered on the screen. The boat 
representation is similar to those found in sailing text 
and rulebooks, reinforcing its familiarity. The boat then 
shrinks as a race course appears. The course consists of 
three flag buoys and wind arrow, pointing from left to 
right. The boat shrinks to normal size and begins sailing 
around the course. The boat tacks up the first leg, 
illustrating the relative position of boat and sail neces­
sary for movement against the wind. The boat reaches 
down the second leg, jibes, and reaches down the third 
leg, with the sail farther out moving faster than on 
the first leg. Midway up the first leg again the boat 
grows, buoys disappear but wind arrow remains. The 
next sequence attempts to demonstrate the aerody­
namic principles of a sail in terms of force vectors and 
parallelograms of forces. Three arrows grow out of the 
center of the sail representing forces acting on the sail. 
One is parallel to the wind arrow, the sum of forces 
developed by the wind; the other two are perpendicular 
and parallel to the surface of the sail, the components. 
The component perpendicular to the surface of the sail 
in turn has components parallel and perpendicular to 
the axis of the boat. The first of these will drive the 
boat forward while the latter will drive it sideways. 
With a keel or centerboard the sideways force is largely 
resisted. The forward driving force acting on the boat 
then results. Arrows in the forward and sideways 
directions are drawn. Two, force rectangles are now on 
the screen. They grow and shrink simultaneously with 
the wind arrow to illustrate that forces developed are 
proportional to wind velocity. The various component 
arrows grow and shrink and change direction as the 
sail is overtrimmed and overeased, illustrating the opti-
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mum position of trim-that point at which the forward 
driving arrow is longest. 

Arrows disappear. Boat shrinks back to normal size 
and continues on its second lap around the now appear­
ing racecourse. After reaching leg three it slowly shrinks 
to nothing and heads toward the edge of its world. 

DEVELOPMENT OF GENERAL ANIMATION 
TECHNIQUES 

One of the goals of the movie experience was to de­
velop some general rules, heuristics, or theories upon 
which future work could be based. At least we could 
find out some things not to do. One of the greatest 
difficulties concerned the use of symbols or images to 
express ideas. Which are "correct," "good," or "effec­
tive," etc? What is the criterion (or grammar) for 
judging visual images? How does one even make graphic 
an idea without moving from the iconic to the symbolic 
level of communication? The medium is hard line black 
and white to start with. Using any sort of standardized 
symbols or representations immediately brings on a 
whole set of preconceptions (or ignorances) and preju­
dices on the part of the viewer, and if these are not 
complementary to the idea being shown they can side­
track the communication process. In the case of the 
sailboat, I felt that anyone who thought of sailing rule­
books when he saw my sailboat would be thinking of 
rules and principles, and that was what I was trying to 
show so it was a useful image. 

The use of text or ma.thematical languages was also 
discussed. We felt that any reliance upon text should 
be minimized. Words or letters only detracted from the 
intent to stay at the iconic level. When used for empha­
sis, reinforcement, or clarification, however, text has a 
place. Similarly, mathematical symbols or any other 
formal symbolic language more often than not gets in 
the way of the showing, if not also the conceptualizing 
of visual explanations. Languages are useful here only 
in the knowledge that they can be called upon some­
times to write down the process being shown. The 
literacy of the audience with respect to the language 
being shown (or not shown) must also be considered. 

One thing that had to be well worked out in advance 
and which was a continual cause of surprise after finally 
viewing the movie was the layout of images or occu­
pancy of the screen. Given a full, two dimensional 
square or three by four rectangle for a screen we were 
acutely aware of empty spaces. The full screen has to be 
used for motion and action for full spatial effect, but 
by no means should it be filled with clutter. One of the 
main advantages of the medium is that it is completely 
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Figure l-Steps to produce an animated movie 

bare bones, stripped of all extraneous detail, and this 
should be used to best advantage by retaining a sim­
plicity of imagery bordering on paucity. The center of 
the screen is the key spot for any important activity or 
attention getting. Split screen or simultaneous occur­
rences divide attention and effectiveness. 

Abstractions and relationships are difficult to portray. 
The choice of images, their size, relative position, order 
of appearance and movement all can suggest functions, 
relationships, and dependencies. There is the difficulty 
of avoiding coincjdental though erroneous suggestions 
of relations versus the valid suggestions of intended 
relations. Does the fact that one object precedes another 
on the screen or that it is larger than another indicate 
that it is more important? If one event happens before 
another does it imply cause and effect or time sequence? 
Questions like this have to be considered for individual 
cases to be sure that the animator's intentions are being 
realized. Importance is often indicated by size, posi­
tioning at the center, illumination (blinking), and 
motion. The relationship of cause and effect was never 
satisfactorily protrayed. In one film the anthropo­
morphic symbol of a detached hand had to be intro­
duced to cause a switch to be thrown. 

The obvious capability of a movie for showing motion 
cannot be too strongly stressed. Without background 
sensory cues, however, some sort of frame of reference 
has to be established to inform the viewer of his or an 
object's motion. A world of lines, edges, and boundaries 
is being dealt with, not one of textures and surfaces. 
Motion of objects within the screen boundaries can 

mean all sorts of things. The capability of the computer 
to calculate regular paths also adds to the possibilities. 
If two objects move simultaneously, or in some syn­
chronized fashion, or with the same pattern an obvious 
relationship suggestion is being put forward. One prob­
lem engendered by the capability of (and the expecta­
tion of) motion in the movie is that of' bringing images 
on and off the screen. Should they just appear, pop on, 
or should they grow or should they come on from the 
left (or right)? For the illustration of static concepts 
this is more of a worry than for cases where motion on 
and off the screen can seem natural. 

Timing is the other major tool the animator has to 
work with, but it is also the most difficult to handle 
properly. Difficulties in the proper use of the screen 
area can be resolved using the line printer output, but 
timing problems never are fully resolved until the com­
pleted movie is seen. This is one instance where a pre­
liminary viewing of the movie on a graphics terminal 
would be useful so that timing could be improved 
without making a whole other movie. Slowing down the 
action is one way to illustrate importance, up to the 
point where things become painfully obvious. Speeding 
up activity moves the" viewer over less important or 
intermediate material. Judging what fast and slow are 
is difficult, though, and we really had to see a boring 
thing happening for an interminable time to understand 
what too slow was. One rule of thumb we started with 
to judge how long a sequence should take was to equate 
the timing with how long a verbal explanation would 
take. Motion of an object relative to stationary objects 
or at a faster speed than other objects is one way to 
command attention. Repetition of action, even with 
slight variations, is important for facilitation under­
standing of difficult material. The redundancy of pre­
sentation should increase with the complexity of the 
visual material. It is in the production of repetitive 
sequences of highly redundant though complex material 
that the computer comes into its own. Hand animation 
requires each intermediate frame of a cartoon to be 
drawn while a computer can painlessly calculate endless 
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Figure 2-Block descriptor format 



numbers of slightly varying scenes. Pauses in activity 
are very useful as punctuation, giving the viewer time 
to digest what he has just seen rather than overwhelm­
ing him with too much action in too short a time. 
Fades, holds in action, and jumps to new scenes also 
serve useful punctuation purposes, each with different 
effects. 

THE MOGUL DRAW PACKAGE 

The sequence of steps we followed to produce ani­
mated movies is illustrated in Figure 1. The basic tools 
the animator has are his skills as aFaR TRAN pro­
grammer, the ability to draw points and lines between 
them furnished by the MOGUL system, the computer, 

IPFREE 

Director~ variables: 

IPFREE---pointer to list ot tree descriptor pairs 

IE ---highest index ot nc not occupied by block points 

JE ---lowest index ot nc not occupied by block points 

JAMAX ---maximum diaension ot XYC 

Figure 3-Storage of block information 

and the final film medium. The MOGUL system was 
developed mostly out of our experience in Dr. Huggins' 
seminar and contains those elements of programming 
which were always needed for film production, hope­
fully freeing the animator to deal with image entities 
and motions rather than coordinate details. It is a 
structured set of functions built of the compiler level 
FORTRAN programming language. Those interested 
in the complete system should refer to Tom Hoffman's 
paper.7 Only the salient features of it will be presented. 

MOGUL actually consists of three sections. The first 
and largest is the set of drawing functions, the DRAW 
package, which enables the animator to create images, 
manipulate them, and set up operation codes to be 
interpreted when the images are to be drawn. The 
second section is the executive portion, MaGI, which 
keeps track of frame numbers and screen dimensions. 
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Figure 4-Boat sailing up first leg of racecourse 

The user defines the dimensions of the two dimensional 
real plane in which he is going to draw things, e.g., a 
square grid of 1024 points running from 0.0 to 1023.0 
in both x and y directions; then MaGI windows any 
coordinates outside of this area. When output on some 
sort of device is called for, MaGI normalizes coordi­
nates and then calls on some device driving program. 
MaGI also administers the mode of movie generation, 
debugging or production. The third section, the Device 
Driver section of MOGUL contains the device depen­
dent output code to translate from the normalized co­
ordinates of MaGI and command a printer, microfilm 
plotter, or scope to produce visual images. The ani­
mator's program is actually a subroutine called MOVIE 
which is called from MAIND, the first program entered. 
MAIND initializes the system, calls MOVIE, then 
finalizes the system and returns to the IBSYS Monitor. 
The user must return himself (via a RETURN state­
ment) to MAIND to terminate his job properly. 

Figure 5-Decomposition of first force vector 
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Figure 6-All force vectors depicted 

The screen is a partition of the two dimensional real 
plane with the limits of the partition defined by user 
specified parameters. The routine is: 

CALL SETAX (ZLL, ZUR) 
or 

CALL SETAX (XLL, YLL, XUR, YUR) 

where (XLL, YLL) and (XUR, YUR) are the coordi­
nates of the lower left and upper right corners of the 
window enclosing the usable screen area. The screen 
can also be considered a complex plane with points 
whose coordinates are given by a real (x) part and a 
complex (y) part. Thus ZLL represents the lower left 
and ZUR the upper right points just mentioned, and 

ZLL=CMPLX(XLL, YLL) 

ZUR=CMPLX(XUR, YUR) 

Any object which appears on the plane is a collection 

Figure 7-Force vectors and wind arrow enlarged 
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Figure 8-Line printer output showing racecourse 

of x and y coordinate points with lines drawn between 
them. An object is then a 2 XN real array or block, 
with the first row being the x coordinates and the second 
row being the y coordinates, or a 1 XN complex array 
with the real part equal to the x coordinate and the 
complex part equal to the y coordinate of a point. 
Blocks have associated with them names, e.g., Boat, 
Sail, etc., somewhat indicative of what the coordinate 
points represent. This name of the block contains a 
pointer to the location of directory information de­
scribing the block. The "value" of the real FORTRAN 
variable Block is the index of the array XYC where the 
directory information for Block resides. Included in the 
directory is the length of the block; its index (a pointer 
to the location of the block's coordinates in the array 
XYC); the opcode which specifies whether no lines, 

* * 

** ** 

****.. * .. * 

" "* .. .. ** * 

Figure 9-Line printer output, closeup of boat and buoy 



disconnected lines, or connected lines should be drawn 
between points, or where characters should go; the 
width of lines; and the intensity of plotting. Everything 
on the screen is specified by a block, facilitating the use 
of general manipulation routines which always operate 
on blocks. Only by the opcode of a block is the interpre­
tation of its contents determined. 

Storage is considered to be a one dimensional con­
tiguous complex array, and all blocks and descriptors 
are stored in this array. The array has three equivalent 
names: XYC, XYP, and IP, depending on whether one 
likes to work with complex numbers, real numbers, or 
integers, respectively, as coordinates. In the lower end 
of XYC go the block contents. In the upper end go the 
block descriptors. Creations, length adjustments, and 
deletions of blocks are administered using the index 
variables of XYC. XYC is declared in a COMMON 
statement, making it available to any subroutine of 
the animator. 

Figure 2 shows the contents of the directory for a 
block. Figure 3 depicts the allocation of storage for 
block information. 

Storage for blocks is allocated and all housekeeping 
of pointers is taken care of by the following functions: 

or 

or 

CALL CREATE (N, BLK) 

BLK=CREATE (N, BLK) 

-makes space for a block of size N and sets BLK 
equal to the pointer to the block directory. The 
value equals the returned pointer. 

BLK=SETUP (N, TYPE) 

-creates a block big enough to contain N things of 
type TYPE, where TYPE can be connected lines 
(N -1 points needed), disconnected lines (2N 
points), or characters. Other directory information 
is set and the value of the function equals the 
pointer to the block. 

CALL COpy (FROM, TO) 

TO=COPY (FROM, 0) 

-copies the block FROM into the block TO, adjust­
ing the length of TO if necessary. Directory in­
formation is copied also. 

Blocks are erased and their space returned to free 
storage by: 

CALL DELETE (BLK1, BLK2, ... , BLKn) 

As can be seen block functions can be effected either by 
subroutine calls or by function calls which return a 
value. There are cases in writing a movie program 
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where both are useful, though consistency in calls is to 
be preferred to avoid errors. Primitive functions are 
available to set or return the value of block directory 
information if this is necessary. 

Objects to be drawn can be specified in two ways. 
Either the animator plots his drawing on graph paper 
and then enters the point coordinates, or he specifies 
some function to calculate the points. The "Sailing" 
movie uses both methods. For example the boat and 
sail were entered as points from a drawing on graph 
paper, while the mast and buoy were calculated from 
an equation for the points on a circle .. Thus, blocks 
must be prepared to receive data in several ways. Data 
can be loaded point by point into a block with the 
following sequence: 

or 

CALL BUILD (BLK) 

-initializes the function COORD to begin placing 
data into BLK beginning at the first column of 

BLK. 
CALL COORD (Z) 

CALL COORD (X, Y) 

-places the complex coordinate Z or the real coordi­
nates X, Y into the next column of BLK. 

A whole array of coordinates can be loaded into a block 
using: 

or 
CALL LOAD (I, N, XY, BLK) 

BLK=LOAD (I, N, XY, BLK) 

-loads N coordinates from the complex array XY 
into BLK beginning at the I column. The second 
usage returns the pointer to BLK as its value. 

Once objects to be displayed have been created and 
assigned to blocks, the animator must decide what to 
do with them. Scaling and translation are the two main 
manipulations he may perform, and these are done by 
applying arithmetic operations to blocks (which in fact 
contain complex, real, or integer numbers, depending 
upon interpretation). Complex variables and complex 
arithmetic permit handling of two dimensional data 
with one statement. Scaling is done by a series of com­
plex multiplications of block points by a complex scale 
factor. Translation is done by adding a complex trans­
lation factor to every block point. 

CALL SCALE (SFACT, FROM, TO) 
or 

TO=SCALE (SFACT, FROM, 0) 
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or 

-scales the block FROM by the complex scale 
factor SF ACT and places the results in TO 

CALL TRANS (TFACT, FROM, TO) 

TO=TRANS (TFACT, FROM, 0) 

-translates the block FROM by the complex trans­
lation factor TF ACT and places the results in TO 

CALL SCLTRN (SFACT, TFACT, FROM, TO) 

or 

TO=SCLTRN (SFACT, TFACT, FROM, 0) 

-scales and translates 
With the use of a scale factor defined as follows: 

SFACT=CMPLX(FACTR, 0.0) 

*CMPLX(COS(ANGLE) , SIN(ANGLE» 

=MAG (FACTR)*ROTD(ANGLE) 

an object will be FACTR times larger and rotated by 
ANGLE degrees from its former position. MAG and 
ROTD are defined as above in M OG UL. Neither scaling 
and translating operations change the data in the block 
FROM. Scaling of an object occurs about the origin 
about which the object was defined. If the origin is the 
origin of the screen coordinates rotations and magnifica­
tions will be with respect to this point. A more useful 
convention is to define all objects with an origin within 
them so regular rotation and scaling will result. Trans­
lation occurs with respect to the object's previous 
position. 

Objects are drawn using the following routines: 

CALL DRAW (BLKl, BLK2, ... , BLKn) 

-causes the output of the n blocks to the Device 
Driver program where they are'drawn according 
to their directory information. 

CALL DRA WST (SFl, TFl, BLKl, SF2, TF2, 
BLK2, ... , SFn, TFn, BLKn) 

-causes the scaling by SFi, translation by TFi, and 
drawing of a copy of BLKi. The copy is then 
deleted leaving BLKi intact. Argument list is one 
or more triplets. 

To roll the film between frames, one logically calls: 

or 

CALL ROLL 

-advances film 1 frame. 

CALL ROLL (NFRMS) 

-advances film NFRMS frames. 

ASSEMBLING A MOVIE 

Working from his storyboard, the animator knows 
what objects he wants to display when. Once he has 
entered or calculated the point coordinates of an object 
in his program he must specify the dynamics of the 
object. The usual method for doing this in FORTRAN 
based MOGUL is with DO loops, where the scale and 
translation factors change incrementally with the itera­
tions in the loop. This is fine if only one object is being 
displayed or if all the objects are scaled and translated 
with the same factors. When different sized objects or 
different motions are required there must be nested 
loops or different factors for each. A movie is then a 
series of DO loops where each loop describes some se­
quence of frames and contains the following basic 
elements: 

DO 10 1=1, NFRMS 

SFACT (1)=­
TFACT (1)=-

CALL DRAWST (SFACT(I), TFACT(I) , 
BLOCK) 

CALL ROLL 
10 CONTINUE 

The computer is doing the job of interpolating and 
specifying all the intermediate frames here, where in 
conventional animation each frame has to be specified 
individually. Even commercial animation studios are 
getting away from this frame by frame drudgery, 
though, by using over and over certain stock positions, 
motions, and expressions for characters. The result is 
somewhat crude and jerky animation. One should 
really see the old Walt Disney full length animations to 
appreciate the Ro1ls Royce versus the Chevrolet ap­
proach to animation which is apparent now. Of course 
no one can pay 750 artists fifty cents an hour anymore 
either. 

DO loops progress at a linear rate and all motjons are 
not necessarily linear. Variable increments in transla­
tion factors must then be calculated. Another difficulty 
arises in the drawing of an object composed of various 
smaller objects. Other than by nesting subroutine ca1ls 
or drawing each component separately in its assembled 
position, the big object cannot be drawn all at once 
as one large block. There is no hierarchy for nesting 
blocks composed of other blocks. In the "Sailing" 
movie the boat consisted of a hull, a mast, and a sail all 
of which had to move and rotate as an entity. A sub-



routine was defined which in turn called all these com­
ponent blocks and then drew them with the specified 
parameters. 

All of the objects which appear in the film are defined 
as prototypes. Some I drew myself, such as the boat, 
arrows, and basic sail. Others, such as the wind modified 
sail and the mast (a circle) result from calculations. 
The prototype blocks all have an origin within them. 
For manipulations either the implicit scaled and trans­
lated copy produced in DRA WST or an explicit scaled 
and translated copy of the prototypes is used to retain 
the original models. 

CONCLUSIONS 

The final movie which I produced for the seminar was 
really only an intermediate version, since the MOGUL 
system was not complete then. However, it illustrates 
all the points I wished to make, and only a few bugs 
and the inconvenience of not having all the DRAW 
functions sets it apart from the latest version. After 
watching it and watching others' reactions to it I am 
satisfied that it is getting some of the ideas across I 
wanted. The film did reveal to me that I must have 
had an audience in mind which had some sailing knowl­
edge. Many more of the little points were picked up by 
these people than by those with no sailing background. 
The latter saw an interesting little boat move about the 
screen, but without any sympathy for the problems of 
sailing they missed the basic points of tacking into the 
wind and correct sail trimming. The strongest point of 
the film (and possibly, the medium) is its absolute 
attention getting capability as well as the elimination 
of all extraneous background material. 

There are limitations to this method of communica­
tion. Computer animation has many of the strengths 
of a computer directed system but the artist as ani­
mator is farther removed from his final product. Though 
he is spared the necessity of drawing many slightly 
varying drawings and though he can calculate, modify, 
and display phenomena not observable or feasible in 
the natural world, he cannot express the artistic tech­
nique or capability that would be evident if he were 
holding the pen. Rather than an artist, an artist­
programmer-psychologist-computer scientist is re­
quired. The attempts mentioned earlier to provide on­
line animation facilities to those uninitiated in the ways 
of computers only debilit~tes the capabilities of both 
parties. Advantage should be taken of the r~quirement 
that the animator have some technical knowledge of 
the system as well as some awareness of the problems 
involved in iconic communications. Perhaps a simple 
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enough language or computer will be developed some 
day which will enable an animator to think out and 
then immediately create his cartoon sequence. At the 
moment I think this is not true, nor is it necessarily 
a bad thing either. The preciseness of computers actu­
ally aids in formalizing the images to be used in a 
communications process. 

The results for iconic communications I think are 
just beginning. The visual medium is good, but it 
takes too long to get thoughts displayed just right. 
Other than generalized heuristics there is no formal 
syntax or set of models which can help a potential 
image communicator. Measurement of the effectiveness 
of idea transmission, validity of images used, relation­
ships portrayed, all these subjects still pose many 
questions. Thoughts have been entertained to match 
up the computer with a TV screen and dump digital 
information in a video format onto black and white or 
color monitors. Technically feasible (and marketed) 
the concept may lower the cost and time involved in 
producing animations, as well as bring the manifesta­
tion of computer generated images closer to home. 
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Computer description and recognition of printed Chinese 
characters 

by WILLIAM STALLINGS 

Honeywell Information Systems Inc. 
Waltham, Massachusetts 

INTRODUCTION 

A n approach to pattern recognition 

An increasingly important aspect of computer pattern 
recognition research is automatic pattern description. 
Investigators have emphasized that pattern analysis 
should be basic to any pattern recognition scheme.4 ,l1 

Pattern analysis may be defined as the identification of 
elements of a structure and the description of the 
relationship among those elements. Chinese characters, 
by virtue of their regular structure, seem well suited for 
pattern recognition based upon pattern analysis. 

With this point of view, a scheme for automatic 
pattern recognition has been developed which includes 
the following tasks: 

(1) Description. A systematic scheme for the 
description of the pictorial structure of the 
patterns to be recognized is developed. 

(2) Analysis. An algorithm is designed which 
analyzes the structure of the patterns, producing 
a representation of the structure conforming to 
the descriptive scheme. 

(3) Encoding. From the structural representation of 
a pattern, a code is generated which uniquely 
identifies the pattern. 

This method has been applied to the recognition of 
Chinese characters. A program has been written which 
analyzes Chinese characters; the program produces a 
data structure which describes a character in terms of 
basic picture elements and the relationship among 
them. A procedure has been developed for generating a 
numeric code from the structural representation. 
Recognition is achieved by building up a dictionary 
matching characters with their codes; the code for any 
new instance of a character can then be looked up in 
the dictionary. 

1015 

The methodology of pattern recognition still lacks 
any solid theoretical foundation. The author feels that 
progress in this area requires building up a body of 
effective pattern recognition techniques. It is hoped 
that the methods and techniques developed in this 
project on a specific class of patterns will be applicable 
to other pattern recognition problems. 

Specifically, this project deals with a class of patterns 
which displays a rich structure developed from a small 
number of basic elements, all of which are relatively 
simple. The patterns are characterized by the fact that 
these elements may be combined in many complex 
ways. Other classes of patterns which fit this description 
will hopefully benefit from knowledge gained here. 

A Chinese reading machine 

Two obstacles have hindered the access of interested 
non-Chinese groups to the vast body of written Chinese 
produced each year. The first is the difficulty of the 
language itself. Chinese is very complex and takes so 
long to master that few Westerners ever learn it well. 
And second, of course, is the size of the printed output in 
Chinese. Manual translation is slow and tedious, and 
can never be relied on to handle more than a tiny 
fraction of the material. 

To make available to Westerners the culture and 
technology of one-quarter of the human race, some form 
of automation must be introducpd. A Chinese reading 
machine, which could scan printed Chinese and produce 
English output, would provide the most desirable 
means of improvement. Such a machine is a long 
way down the road, but individual steps which advance 
toward that goal are to be encouraged. 

Considerable work has been done in the area of 
automatic translation of Chinese.7 ,12 These efforts have 
been only partially successful. Even if a good translation 
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device were available, however, the formidable problem 
of encoding Chinese characters for input would remain. 

One answer to the problem would be the development 
of a practical Chinese character recognition machine, 
toward which the effort of this project is directed. * 
It is hoped that advances in this area would provide 
additional incentive for work in translation devices. 
On a more modest scale, a Chinese character recogni­
tion device could be used as a type of on-line dictionary 
to speed up the process of human translation. Even this 
limited application would be a welcome advance. 

THE STRUCTURE OF CHINESE CHARACTERS 

Chinese is a pictorial and symbolic language which 
differs markedly from written Western languages. The 
characters are of uniform dimension; they are generally 
square; they are not alphabetic. 

The characters possess a great deal of structure and 
hence are well suited to the method of recognition 
outlined above. Many regularities of stroke configura­
tion occur. Quite frequently, a character is simply a 
two-dimensional arrangement of two or more simpler 
characters. Nevertheless, the system is rich; strokes and 
collections of strokes are combined in many different 
ways to produce thousands of different character 
patterns. 

Chinese characters consist of sets of connected 
strokes. Each stroke is roughly a vertical, horizontal, or 
diagonal straight line segment. Sets of connected strokes 
form units hereafter referred to as components. Each 
character consists of an arrangement of disjoint com­
ponents. Figure 1 shows a character having three 
components. 

The structure of a Chinese character may therefore 
be specified on two levels: 

(1) A description of the internal structure of each 
component, and 

(2) A description of the arrangement of components 
in two dimensions. 

Components 

Two questions needed to be answered when deciding 
how to describe the internal structure of a component: 

(1) What class of objects should be considered as 
the basic picture element? 

* The author is aware of one previous attempt at the recognition 
of printed Chinese characters.l 

(2) What sort of structure should be used to describe 
the relationship between elements? 

Three criteria were used in answering these questions: 

(1) The structure should be easy to generate from 
the original pattern. 

(2) It should be easy to generate a unique numeric 
code from the structure. 

(3) The structure should represent the pattern in a 
natural manner. 

A natural method of representing the internal 
structure of a component would be in terms of strokes. 
This indeed is the approach taken by several previous 
recognition schemes.5 ,8 These schemes make use of 
on-line input, in which strokes are drawn one at a time. 
The difficulty with this approach for printed characters 
is that strokes do overlap and are not easily isolated. 
Also, the description of the relationship between strokes 

• becomes complex. * 
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Figure I-Character with three components 

* For a discussion of a system for the description of Chinese char­
acters in terms of strokes, see Fujimura and Kagaya.3 The authors 
are primarily interested in computer generation of Chinese char­
acters. 
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/ 

Figure 2-Component and graph 

It is more promising to describe components in terms 
of stroke segments. This can best be understood with 
reference to Figure 2. As can be seen, a component can 
be depicted as a graph. The branches of the graph 
correspond to segments of strokes. These segments are 
bounded by stroke intersections and ends of strokes. 

It will be shown later that this representation satisfies 
criteria (1) and (2). That it satisfies criterion (3) is 
fairly clear. 

Characters 

The arrangement of components in two dimensions 
to form characters can be described using the concept of 
frame. Each character is viewed as occupying a hypo-

thetical square. The segmentation of a character into 
components segments its square accordingly. The 
square, or frame 0, may be segmented in one of three 
ways: (a) East-West []], (b) North-South B, (c) 
Border-Interior [g. Each of these segmentations 
corresponds to a two-component character. For 
example, ~ I would be represented by (a), which decom­
poses the character into "5 and I . 15 would be repre­
sented by (b). Finally, either partial or complete 
enclosure, such as 9J and ~ would be represented by 
(c). Frames for characters eomposed of more than two 
components are obtained by embedding (a), (b), or 
(c) in one of the sub-frames of (a), (b), or (c). The 
process of embedding is recursive, in that any sub-frame 
of a derived frame may be used for further embedding. 
For example, the four-component character of Figure 3 
can be described by the frame arrangement of Figure 
4a. The frame description can be conveniently repre­
sented by a tree, as indicated in Figure 4b. 

This description of the arrangement of components 
is based on the work of Rankin,lo who introduced the 
concept of frame-embedding. The definition of com­
ponent used here is slightly different from that of 
Rankin. Despite this, Rankin's claim that the three 
relations used in his scheme are sufficient to describe 
accurately virtually all characters seems to apply . 
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Figure 3-Chinese character 
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(a) Frame Descr1pt1on 

, 
\ 

(b) Tree Representat10n 

Figure 4-Frame description and tree representation 

INPUT 

The program operates on a representation of one 
character at a time. The representation is in the form of 
a matrix whose entries have value zero or one corre­
sponding to white or black on the original printed 
picture. 

The device used to obtain the matrix is a flying spot 
scanner which measures the intensity of light reflected 
from an opaque sheet of paper at a number of points 

inside a small area or "window" on the sheet. If the 
intensity reflected relative to the incident intensity at 
a point is below a certain threshold, the value one is 
transmitted for that point (BLACK), otherwise a zero 
is transmitted. (WHITE). The effect is that of placing 
a grid over the picture and making each square either 
all black or all white. 

A program has been written which operates the 
scanner and stores the resulting matrix in core. The 
size of the matrix is 80 X 80 for a single character. 
However, both the window size and the sampling rate 
(the fineness of the grid) may be varied so that char­
acters of varying size can be processed. Additionally, the 
threshold may be adjusted to achieve the best quality. 

Certain functions of the program depend on the fact 
that there are no gaps or holes in any of the strokes. 
This is not always the case due to the quality of the 
printed input. Accordingly, a smoothing operation is 
performed to fill in the gaps. The resulting matrix is 
used as the data base for the program. 

The digitized form of a character can be displayed on 
a CRT. Figures 1, 3, 5 and 6 are photographs of such 
displays. 

ANALYSIS OF COMPONENTS 

A program has been written to perform the analysis of 
components. For a given component, the output of the 
program is a connected graph in which branches 
correspond to stroke segments and nodes correspond to 
the endpoints of stroke segments. 

The program is quite complex, and will be described 
in detail in a future paper. A brief outline of the pro­
cedure is given here. 

The procedure begins by finding an arbitrary stroke 
segment of a component. This is done by scanning 
along various rows and columns of the matrix until a 
stroke is encountered (See Figure 5). This initial stroke 
segment is the first branch of the graph. Next, the two 
endpoints of this initial segment are found. This is done 
by crawling along the stroke in both directions. Crawling 
is accomplished by following along the boundary points 
of the stroke using a standard contour-tracing algorithm. 
The crawling halts either at an intersection of strokes, 
characterized by encountering a large black area, or at 
the end of a stroke. Both of these two conditions for 
halting correspond to a node of the graph being en­
countered. 

Thus, one initial branch and its two nodes are found. 
The procedure continues in the same manner. For each 
of the two nodes, all segments leading from it are 
investigated (by crawling), finding more nodes. Seg-
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ments leading from each new node are similarly in­
vestigated until the entire component has been covered. 
During the execution of this recursive procedure, the 
graph of the component is developed as each new node 
is encountered. 

ANALYSIS OF CHARACTERS 

The algorithm for analyzing the pictorial structure 
of a character is in two parts: 

1. A collection of connected graphs is produced, 
one for each component. 

2. The relationship among components is deter­
mined. 

Finding all components 

The program described in the previous section must 
be applied to all the components of a character. Some 
method must be used for finding each of the components 
and keeping track of those which have been analyzed. 

To do this, the following procedure is employed. 
As a component is being analyzed, its outline is drawn 

..... ..... . .. ........... ........... 
. ::::::::::' .......... 

~mg:::· 

...... 

Figure 5-Finding a stroke 

on a separate pattern. That is, the contour points of a 
component are filled in on a new pattern as they are 
encountered during analysis. The auxiliary pattern 
contains, at any time, the outline of all the components 
of a character which have been processed. 

After a component has been processed, a search is 
made for a stroke of a new component. If a stroke is 
found, its boundary points are checked against the 
auxiliary pattern to determine whether or not this 
stroke belongs to an already-analyzed component. In 
this way, new components may be found and analyzed. 
The procedure halts when no new strokes can be found. 
The result is to produce a collection of connected graphs. 

Figure 6 shows the result of applying the algorithm 
to the character of Figure 3. 

Constructing the frame 

Representation of the frame description of a char­
acter is done conveniently by means of a tree. The root 
node of the tree has as its value one of the three rela­
tions indicating how the overall frame is broken into 
two sub-frames. The two sons represent the structure of 
the two sub-frames. Terminal elements correspond to 
components (see Figure 4b). 

The method of obtaining such a tree will be briefly 
described. First, each component in the character is 
inscribed in a rectangle. This is easy to do since the 
coordinates of each node are known. The relationship 
between all possible pairs of components is determined 
by determining the relationship between their rec­
tangles. The one of the three permitted relationships 
(East-West, North-South, Border-Interior) which most 
nearly approximates the true relationship is chosen. 
Then it is determined if one of the components has the 
same relation to all other components. This will usually 
be the case. If so, that component becomes one son of 
the root node of the tree; the value of the node is the 
appropriate relation; the other son is a tree representa­
tion developed for the remaining components. This 
sub-tree is determined in the same way. 

If no single component is found, a more complicated 
procedure is used to determine if any two components 
have the same relation to all others, and so on. 

ENCODING OF COMPONENTS 

For recognition purposes, a procedure has been 
developed for generating a numeric code for each 
character. The first step in this procedure is the genera­
tion of a code for each component in a character. 
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Figure 6-0utline of a character 

The code for a component is generated from its graph. 
To this end, the branches of a graph are labeled at each 
end. The label on a branch at a node indicates the 
direction or slope of that branch quantized into eight 
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directions. An algorithm can then be specified for start-­
ing at a particular node of a graph and traversing all of 
its branches. The sequence of branch numbers encoun­
tered is the code produced. An example appears in 
Figure 7. 

The algorithm obeys the following rules: 

1. Start at the node in the upper left-hand corner 
of the graph. Exit by the branch with . the 
lowest-valued label. Mark the exiting branch to 
indicate its having been taken, and write down 
the branch label. 
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2. Upon entering a node, check to see if it is being 
visited for the first time. If so, mark the entering 
branch to indicate this. 

3. Upon leaving a node, if there are available 
unused directions other than along the first 
entering branch, choose the one among these 
with the lowest-valued label. Leave by the first 
entering branch only as a last resort. Mark the 
exiting branch to indicate its having been taken 
and write down the label on the branch. 

Since at each node there are just as many exiting 
branches as entering branches, the procedure can only 
halt at the starting node. At the starting node, all 
exiting branches have been used (otherwise the pro-
cedure could have been continued), hence all entering 
branches have been used since there are just as many of 
these. The same reasoning can be applied to the second 
node that is visited. The first entering branch is from 

4 

6--~~-- 2 

7 
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6 

o 0 246 206 7 J 4 4 2 6 

Figure 7-Encoding a graph 

Figure 8-Two characters with same graph 

the starting node and this branch has been covered 
both ways. But this branch would only have been used 
for exit from the second node if all other exits had been 
exhausted. Therefore all branches at the second node 
have been covered both ways. In this manner, we find 
that the branches of all nodes visited have been traversed 
both ways. Since the graph is connected, this means 
that the whole graph has been covered. 

All branches are traversed exactly once in each 
direction by this procedure, so all labels are picked up. 
The code consists of the branch labels in the graph 
written down in the order in which they are encoun­
tered. 

This algorithm is based on a procedure for traversing 
graphs described in Ore.9 

While it is true that this scheme will always generate 
identical codes for identical (isomorphic with the same 
labels) graphs, the goal of generating a unique code for 
each character is not achieved. Two types of difficulties 
are encountered. 
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Figure 9-Two graphs with same code 
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The first is that two characters might generate the 
same graph, hence the same code. Figure 8 gives an 
example of such a situation. This situation appears to 
be very rare, however, and it seems to be no great 
hindrance to make special cases of these characters. 

The second difficulty is that two different graphs 
might generate the same code. Figure 9 illustrates this 
situation. The author has been unable to find any pair of 
characters whose graphs exhibit such a property. 
Again, this appears to present no great problem. 

The method, then, will generate different codes for 
different characters with only a few exceptions. The 
algorithm is simple and its execution is quite rapid. 

ENCODING OF CHARACTERS 

The representation of a character is in the form of a 
tree. The nodes of the tree are binary relations; the 

terminal elements correspond to components. Con­
sidering the relations as binary operators, the tree can 
easily be flattened to prefix form. This is done by 
walking around the tree counterclockwise, starting from 
the root node, and picking up nodes and terminals the 
first time they are encountered. As is well-known, the 
string generated in such a fashion is unique; the tree 
can readily be reconstructed from it. To generate a 
numeric string, the following code can be used: 

O~terminals (components) 
1~left node 
2~above node 
3~surround node. 

Figure 10 shows the generation of code from the tree 
of Figure 4. 

We can consider that the code so generated defines a 
class of Chinese characters all of which have the same 
frame description. Therefore, a Chinese character may 
be specified by first giving its frame description code 
and then giving the code for each of the components 

* 

1012000 
Figure 10-Flattening a tree 
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that fits into one of the sub-frames. A character having 
n components will have a code consisting of the con­
catenation of n+ 1 numbers: 

where No is the code generated from the tree and N 1 

through N n are the codes of the components listed 
according to the order in which the components were 
encountered in the tree flattening. 

RESULTS 

The algorithms discussed in this paper have been 
implemented as a computer program which recognizes 
printed Chinese characters. 

Most of the program is written in FORTRAN. A 
considerable fraction, however, is written in assembly 
language. The assembly language routines augment the 
power of FORTRAN to permit list-processing opera­
tions and also to permit FORTRAN subroutines to be 
called recursively. The combination, while less than 
ideal, provides for the creation and manipulation of 
complex data structures in a fairly natural manner. 

The program runs on a PDP-9 computer with a core 
memory of 32K words of 18 bits. The computer also has 
a large auxiliary disk and magnetic tape storage 
facilities. 

The program has been tested with a number of char­
acters from several different sources. The tests were 
designed to consider four questions: 

1. How successful is the program in analyzing the 
structure of Chinese characters? 

2. Does the program generate consistent codes for 
characters of the same font? That is, will two 
instances of the same character from the same 
source yield the same code? 

3. Does the program work for characters from 
different sources? 

4. Do factors such as character size and character 
complexity affect program performance? 

Initial results were obtained from a set of char­
acters obtained from a Taiwan printer. A sample of this 
set appears in Figure 11. To start, 225 different char­
acters were processed. This was to provide a dictio:q.ary 
for later tests, and to test the pattern analysis capa­
bilities of the program. 

The results show a reasonable structural representa­
tion produced for about 94 percent of the characters. 
The failures were all due to a particular component not 
being analyzed; for all characters the relationship 
among components was correctly determined. The 

JIB 
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Figure ll-Example of character set 

problems all occurred in the part of the component 
analysis algorithm concerned with analyzing nodes; 
i.e., the part which is to find a node and locate all 
stroke segments leading from it. The routine would 
sometimes make mistakes if, for example, two nodes 
were very close together or one node covered a large 
area. The characters involved were typically quite 
complex. 

From the characters that were successfully analyzed, 
25 were chosen for additional testing. Four additional 
instances of each character from the same source were 
processed, for a total of 100 new characters. 

All new instances of the 25 characters produced 
reasonable structural representations. For five of the 
characters, one of the new instances produced a slightly 
different representation, hence a different code. No 
character generated more than two codes. In all cases, 
the discrepancy was caused by the fact that two strokes 
which were very close in one instance touched in another 
instance of the same character. 

Additional testing was done using two other sources. 
Characters from issues of a Chinese magazine were 
used. These were approximately half the size of the 
characters in the original set. Also, some computer-
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generated characters6 were used. These were about 
double the size of the originals. Both were of about the 
same style. Fifty instances were taken from each 
source. The percentage of instances generating the same 
code as the corresponding character from the original 
set was 89 percent for the magazine source and 95 
percent for the computer source. Discrepancies mostly 
had to do with stroke segments appearing at somewhat 
different angles and with strokes touching in one case 
but not the other. 

CONCLUSIONS 

Pattern description 

A descriptive scheme for the structure of Chinese 
characters has been proposed and a program for com­
puter analysis conforming to the scheme has been 
written. The description is on two levels: The internal 
structure of components, and the relationship among 
components. 

The first level of description is straightforward: a 
connected part of a character is represented by a graph. 
This representation is adequate for the description of 
components; it is reasonable for the human percipient 
to think of components as graphs. 

Analysis on this level works fairly well; difficulty is 
encountered with some complex characters. Some work 
has been done on modifying the described approach. 
The modification consists of "shrinking" a component 
to a skeleton and obtaining the graph from the skeleton. 
This procedure is sensitive to contour noise, and it 
seems that use of this method would result in many 
components generating several different graphs from 
different instances. 

The second level of description is based on the work 
of Rankin. With the exception of a very few char­
acters whose components do not fit neatly into the frame 
description, it is an effective means of describing the 
structure of Chinese characters in terms of components. 
The analysis program for this level has been successful 
for all characters tested. 

Pattern recognition 

It would be overly optimistic to claim that the results 
of this thesis prove the feasibility of a hardware Chinese 
character recognition device. The development of 
such a device would be an impressive accomplishment. 
Nevertheless, the author feels that this thesis points the 

way to such a device by providing a good method for 
encoding Chinese characters. 

There are two separate, but related, problems 
associated with Chinese character recognition. The 
first is that complex characters may fail to be encoded, 
or may generate several codes. The second is that there 
would need to be a quite large dictionary of characters' 
to handle most material. A college graduate in China is 
supposed to know about 5000 characters, which gives 
some indication of what would be needed. The problem 
of handling a large dictionary arises. This is especially 
true if many of the characters require more than one 
code.* 

It is likely that a recognition device would be used to 
process material from mainland China. If this is true, 
several developments make things look brighter. They 
result from the desire of the Communist Government 
to simplify the language.2 The first is that the Govern­
ment has recommended the general use of only 2000 
characters. A list of these characters has been published. 
Publishers, being Government-controlled, are under 
instructions to stay within the total of 2000 as far as 
possible. Secondly, the Government has simplified a 
large number of characters. In 1956, a list of 515 
simplified characters to be used in lieu of the original 
complex forms in all publications was released. The 
average number of strokes per character for the 515 was 
reduced from 16 to 8. Overall, since 1952 the average 
number of strokes per character has been reduced from 
around 13 to around 10 for the 6000 most frequently 
used characters. The continuing Communist policy of 
language simplification contributes to the author's 
opinion that a Chinese character recognition device 
is a realistic objective. 
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Computer diagnosis of radiographic images* 
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INTRODUCTION 

The potential of optical scanning equipment and 
digital computers for assisting or replacing human 
judgment in medical diagnosis has been recognized 
by investigators for some time. 1 A number of efforts 
have been made, with varying degrees of success, in 
developing automatic techniques for recognizing and 
classifying blood cells,2 chromosome analysis and 
karyotyping,3 identifying leucocytes,4 and processing 
scintigram images5 obtained in nuclear medicine. These 
image analysis techniques are now being extended to 
the clinical specialty of diagnostic radiology where 
there is an urgent need to provide assistance in handling 
the several million radiographs read by radiologists 
each year. The need for computer-aided diagnosis in 
radiology is becoming increasingly urgent because of 
the expanding population and the continuing demand 
for improved quality of medical care. The use of com­
puters in radiology can free the diagnostic radiologist 
from routine tasks while providing more accurate 
measurements that lead to consistent and reliable 
diagnoses. 

The most common radiological examination is the 
conventional chest film. The resultant film is a complex 
image consisting of a two-dimensional projection of a 
three-dimensional object, whose structure reflects 
the absorption of X-rays as recorded on film. Such 
films commonly offer photographic resolution of 40 
line pairs. per millimeter. Chest films are commonly 
called for in routine medical examinations and are 
used by physicians to determine the health status of 
the patient. In the case of coal workers' pneumoconiosis 
("black lung disease"), chest films are even employed 
as the basis for determining federal compensation to 
the individual workers. The chest film examination 

* This work was partially supported by USPHS Grant GM 
17729. 
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is employed by the radiologist to ascertain diseases 
such as lung disease, rheumatic heart disease, con­
genital and acquired heart disease, skeletal anomalies, 
and radiation-induced diseases. In addition to the 
conventional plain films of the chest, other radiant 
images are employed in radiographic diagnostic tech­
niques, such as a cardiac series, fluoroscopy, image 
amplification, video tape, and cine radiography. This 
paper presents the results of an automatic visual system 
for the diagnosis of heart disease from the conventional 
radiographic technique employed to form the plain 
film of the chest. 

The basic technique involves the conversion of the 
chest film to a two-dimensional array of numbers, each 
number in the array representing the transmittance 
of light through the film at a particular point on the 
film. Analysis is then carried out by pattern recog­
nition methods on the digitized image as implemented 
by the digital computer. Four steps comprise the auto­
matic visual system for diagnosis of heart disease from 
the chest film. 

The first step is the digization of the X-ray image. A 
specialized camera scans the film which is illuminated 
from the back, producing an output voltage whose 
average value is proportional to the amount of light 
transmitted through a particular point on the X-ray. 
Each such point is selected by the computer directly 
controlling the scanner camera. The optical image is 
thus converted point by point into a two-dimensional 
array of numbers, each of which represents the "gray­
ness" of the image-that is, the gradation of light and 
dark on the film-at a particular point. 

The second step in the process is that of preprocessing. 
These techniques are designed to enhance the extrac­
tion of selected features and to eliminate irrelevant 
data in an image. A number of these techniques have 
proven useful. Gray level histograms are employed 
to determine if a distribution transformation should 
be employed. Spatial digital filtering methods utilizing 
the fast Fourier transform or recursive partial dif-
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ference equations may be useful. Contrast enhance­
ment is often employed, especially if the digital 
processed images are to be displayed. Finally, image 
subtraction is often used to remove irrelevant image 
information. 

The third step is that of feature extraction. The 
actual selection of an image feature set is a significant 
problem in itself for which no general theoretical 
solution exists. One reason for this difficulty is that a 
set of features required for classification-normal or 
abnormal samples for a particular disease-is relative 
not only to the class of images but also to the diagnostic 
problem under consideration. Also, features needed for 
one diagnostic problem are useless for another problem. 
The most difficult portion of an automated image 
analysis system is that of feature extraction. Tech­
niques which are useful in the feature extraction portion 
of the process are directional signatures, contour 
tracing, Fourier transform frequency signatures, tem­
plate matching, region enumeration techniques, and 
linguistic methods. 

The fourth, and final, step in the process is that of 
automatic classification. Successful use of pattern 
recognition techniques requires that all four steps in 
the process be carefully designed, depending upon the 
specific problem to be automated. In the case of chest 
films, classification schemes that have proved useful 
consist of discrimination functions, both for the nor­
mal-abnormal two class problem and for the dif­
ferential diagnosis-the further division of the ab­
normal class into subclasses of diseases. 

DIGITIZATION OF THE CHEST X-RAY FILMS 

Chest films are scanned with a computer-controlled 
specialized camera that produces an output voltage 
whose average value is proportional to the amount of 
light transmitted through a particular point on the 
X-ray. 

The system as depicted in Figure 1 performs three 
categories of operations: (1) the conversion of images 
in the form of film transparencies into digital arrays of 
numbers; (2) the storing of these arrays in an orderly 
fashion to facilitate retrieval for use by researchers; 
and (3) the redisplay of these and other picture arrays 
either to produce a photographic copy or for direct 
viewing. The conversion of film to numbers is ac­
complished either by a flying spot scanner (FSS) or 
an image dissector scanner (IDS) which utilize an 
image dissector camera in the digitization. Both of 
these devices operate under the control of a digital 
computer which also handles the flow of data from 
scanner to magnetic tape unit. 

The digital images are recorded on 800 BPI magnetic 
tape during the scanning process, becoming permanent 
entries in the image library. The library consists of 
digital images stored on IBl\l-compatible magnetic 
tape in a special library format that facilitates locating 
and using every entry in the library. An identification 
record containing scanning parameters and content 
information is written at the beginning of each image 
on a library tape. A library index in punched card form 
contains identical information and is updated as new 
images are recorded. 

The third function which the system performs is the 
reconstruction of real images from digital form. Three 
separate devices accomplish this. The first device is a 
Hewlett Packard 1300A X-Y display scope with a 
x-axis input. Second is a Dicomed/30 Image Display, 
manufactured by Dicomed Corporation of Minneapolis. 
The third device is a digital image display utilizing a 
high speed disc memory which is filled at slow data 
rates, and then dumped at high data rates as video 
information to a high resolution, high tonal television 
monitor display. Another distinguishing feature of 
this device is its interactive capabilities. Through the 
use of a joystick the operator may extract certain 
features of the displayed image and enter these into 
the computer. 

Central to the operation of both scanning and display 
devices, the SEL 840A digital computer acts as con­
troller and information channel for the system. The 
SEL 840A is a small scale computer with a memory 
cycle time of 1.75 microseconds and 16K of word 
memory. A minicomputer could also perform the 
necessary tasks. An IBlYI compatible tape drive is 
necessary for library creation. 
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Figure I-Digital image scanning, storage and display system 



Digitization devices 

Two digitization devices have been employed in the 
digitization of chest films-the flying spot scanner 
(FSS) and the ima~e dissector scanner (IDS). 

Flying spot scanner 

The flying spot scanner has seen wide use as an 
image digitizer. Serving as two devices in one, the FSS 
can also reconstruct hard copy photographic images 
from digital form. For this reason the FSS is sometimes 
chosen as both the digitizing and reconstruction in­
strument in many image analysis applications. 

The basic components of an FSS system are shown 
in Figure 2. When the transmittance at a pair of par­
ticular coordinates on the film is to be measured, a dot 
is illuminated on the CRT at a corresponding location. 
The position of the dot is controlled by X and Y de­
flection voltages which are usually generated by digital­
to-analog converters. These converters are an integral 
part of the SEL Computer Data Acquisition System 
which operates as a peripheral device to the SEL 840A. 
An image of the computer-positioned dot of light is 
focused upon the film by the lens. The amount of light 
passing through the film is measured by a photomul­
tiplier tube positioned behind the film. This signal 
contains some error due to the fact that the brightness 
of the dot is not entirely uniform over the surface of 
the CRT. To account for this error the beam is inter­
rupted by a beam splitter and the intensity of the dot 
is measured by a second photomultiplier. Both signals 
from the photomultiplier tubes contain a good deal of 
electron shot noise. This must be removed by extensive 
filtering prior to analog-to-digital conversion of the 
signals. The ration of transmitted signal to reference 
signal, calculated either digitally or by analog tech-

SPOT COORDINATE SIGNALS 
FROM SEL DAS 

Figure 2-Flying spot scanner (FSS) 
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Figure 3-Image dissector scanner system (IDS) 

niques, is the the quantity of interest. This measure­
ment is repeated rapidly for all of the locations in the 
picture raster. 

To reconstruct photographs from digital images 
unexposed film is placed in the FSS and the dot in­
tensity and position are controlled so as to expose the 
film. The reference photomultiplier measures the 
amount of exposure that the film is receiving. 

Factors affecting the resolution or ability to delineate 
fine detail of a flying-spot scanner system include CRT 
spot size, lens resolution, film image contrast and 
sharpness, and phototube signal-to-noise ratio (SNR). 
The resolution obtained in an FSS system seems to be 
proportional to the cost spent in constructing the 
device. An inexpensive, low resolution FSS has been 
implemented and will scan 3" X 3" film size at a 
limiting resolution of 256 samples across the film. This 
has proven quite sufficient for low-resolution image 
analysis applications. Very high resolution has been 
attained elsewhere but at a tremendous increase in 
cost. A disadvantage of the FSS system is that it is 
difficult to scan large format films such as full size 
medical radiographs. 

I mage dissector scanner 

The image dissector scanner is the second digi tiza­
tion device utilized. The distinguishing component 
of the IDS system as depicted in Figure 3 is the vidis­
sector camera, manufactured by International Tele­
phone and Telegraph Industrial Laboratories. The 
camera employs an image dissector tube to sample the 
input image. 

The image dissector has been described as a photo­
multiplier with a small electronically movable photo­
cathode area,. thus acting as an all-electronic low­
inertia microphotometer. The image to be scanned is 
focused by the camera lens onto a 1.75 inch circular 
photocathode. Electrons are emitted from the back of 
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the photocathode, forming an electronic image with 
current density modulated according to the image 
input. The electron image, focused by magnetic de­
flection, falls upon an aperture plane, at the other end 
of the drift tube. The aperture "samples" the image 
by allowing only a small, well defined area of the elec­
tron image to pass through. The sampled photoelectrons 
are then multiplied by an electron multiplier by a factor 
of approximately 5 X 105• The entire electron image is 
deflected allowing the aperture to sample different 
points in the picture. 

The input image is a chest radiograph measuring 
13Y2 by 13Y2 inches and illuminated from behind by a 
DC powered, high intensity light source. The camera 
deflection signals are generated by the SEL computer 
and converted to analog in the SEL data acquisition 
system. Deflection buffer amplifiers are used to adjust 
the amplitude and offset of the deflection signals. 
Eleven bit DAC's are used to allow for scanning rasters 
of 2048 X 2048 points, although this actually exceeds 
the resolution of the camera. 

The noise current present in the video output of an 
image dissector camera system can be attributed to 
random fluctuations of photo-electrons entering the 
aperture, modified by the statistical noise properties 
of the electron multiplication process. It is necessary 
to remove this noise prior to analog-to-digital con­
version. This is accomplished by integrating the video 
signal for a suitable length of time. The resulting 
signal-to-noise ratio becomes a function of tube con­
struction, input image brightness, and integration 
time. The integrate time can be selected, but 800 micro­
seconds is a common time. This relatively long integrate 
time gives a SIN ratio of over 40 DB for a relatively 
bright input image. This has been verified by digital 
frequency analysis of the video signal. 

The resolving capabilities of an image dissector are 
determined by the shape and size of the dissecting 
aperture, usually a circular aperture of diameter 1 mil. 
This configuration gives a resolution modulation 
amplitude of 39 percent at 1000/TV lines per inch on 
the photocathode. The usable diameter of the photo­
cathode is 1.4 inches, given a resolution of 1400 TV 
lines across the image diagonal. 

Logarithmic conversion via a logarithmic video 
amplifier allows recording of the optical density of a 
film, rather than transmittance. This is an optional 
feature, allowing better gray shade condition in the 
darker areas of a film. An 11 bit analog-to-digital 
converter is used for the video signal, a more than 
sufficient number for gray-shade rendition. However, 
this allows less critical adjustment of the video signal 
amplitude to insure sufficient quantization levels. 

A definite advantage of the IDS system over the 

PSS system is its ability to scan large format films, 
such as 14 inch by 14 inch radiographs. With proper 
optics the IDS can scan small format also. A dis­
advantage of the IDS system is the inherent non­
uniformities in the illuminating light source. Cathode 
non-uniformity can be typically ± 15 percent over the 
usable surface, while light source non-uniformity de­
pends upon construction of the source. In the PSS 
non-uniform CRT response could be compensated for 
in real time by the reference photomultiplier. For the 
IDS the correction had to be made by scanning a blank 
film and then subtracting or dividing each subsequent 
scan, point by point, by the reference image array. 
Subtraction was used for density scans, while division 
must be used for transmittance scans. Figure 4 shows 
the IDS. 

Display devices 

Two digital display devices are utilized to examine 
the processed image-a dark trace storage tube display 
and a disc memory-TV display. 

DICOMED 30 image display 

A display device used for examining the processed 
chest X-ray images is one that is designed and manu­
factured specifically for displaying digital images 
(Figure 5). 

Figure 4-The image dissector scanner system 



The DICOMED/30 Image Display is a product of 
the DICOlVIED Corporation of Minneapolis, Minne­
sota. The device interface with the computer is purely 
digital and is operated like a computer peripheral. The 
display utilizes a unique type of CRT called a dark 
trace storage tube which uses a scotophor instead of a 
phosphor to produce the image. The scotophor is 
deposited upon the 8 inch viewing surface of the tube. 
When struck by the electron beam it becomes more 
opaque and remains so until it is erased by thermal 
neutralization. This is in contrast with a phosphor CRT 
which glows only momentarily when it is struck by 
an electron beam. This almost infinite persistence 
characteristic of the dark trace storage tube makes it 
ideal for converting digital images into a usable form. 
Under program control the DICOlVIED display 
"paints" an entire image, one raster point at a time, 
upon the CRT viewing surface. When illuminated 
from behind by a viewing light, the CRT face portrays 
the reconstructed image which remains in full view 
vvithout need for refreshing by the computer. Thus, 
with this device, the user can either view the recon­
structed image directly or he may desire to make a 
photograph of it. 

The DIC01VIED display has a set 1024 by 1024 
square raster superimposed on the 8 inch circular 

\ viewing surface. With digital pictorial data that con­
sists of fewer raster points only a portion of the viewing 
also need be utilized or, if one wishes, the smaller 
rasters can be interpolated at display time up to the 
set 1024 point raster of the display. 

Figure 5-The DICOMED model 30 digital display 
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The display and its associated control program can 
reconstruct an image from magnetic tape in approxi­
mately 100 seconds, the time being nearly the same 
regardless of raster size. The image that is produced 
has high resolution and can contain up to 64 distinct 
shades of gray. The contrast ratio of the display is a 
maximum of 3 to 1 but this can be improved upon when 
producing "hard copy" by using high contrast film 
and high contrast paper to print the resulting pictures 
on. The erasure of images is automatic and takes about 
15 seconds to complete one erasure. This is accomplished 
by heating the scotophor until the scotophor returns 
to its neutral state. The storage property of the DICO­
MED Image Display makes it ideal for converting 
digitally coded pictorial data into a useful form. 

Disc memory-TV display* 

Data transfer rates of conventional magnetic tape 
drives and digital I/O channels are much too slow for 
flicker-free CRT or TV display of high resolution 
digital pictures. In the high speed disc-display system 
digital picture information is fed to a disc memory a~ 
these slow rates, then dumped repeatedly to a tele­
vision monitor at rates high enough to produce a flicker­
free image. The system operates as shown in Figure 6. 
The image data is read from magnetic tape at interface 
rates, then dumped via the SEL DAS digital I/O 
channel into a 72 X 16 bit buffer array. When full, 
the array is dumped to the disc. The disc is a Data 
Disc which has parallel read/write capabilities on 72 
tracks of 100,000 bits per track. The disc will hold up 
to three 525 line pictures or one 945 line picture at a 
time. Once the disc has been filled with the desired 
picture information, the computer is free to perform 
other tasks, as the display then acts as a stand-alone 
facility. The image information is read in parallel by 
72 heads, converted to analog form by high speed 

* Development supported in part by NSF Grant 20401. 
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Figure 7-Disc memory-TV display 

DAC's, and displayed as an image on the the television 
monitor at 30 frames per second with interlaced al­
ternate frames, producing a flicker-free image. A control 
s'witch determines which of the three 525 line images 
on the disc is to be displayed. 

The television monitor itself has a resolution of 1800 
TV lines per picture width, adequate for many applica­
tions. The monitor also has a contrast ration of 10 to 
1, a substantial improvement over the DICOMED 
display. Also, picture fill time for a 525 line image is 
less than 20 seconds compared to 100 seconds for the 
DICOMED /30 display. 

One of the most distinguishing features of this 
image display system is its interactive capabilities. 
Although interactive displays are quite common in 
graphics applications, an interactive high tonal, high 
resolution image display is a rarity. 

This interactive mode is accomplished by using an 
interactive module which employs a joystick to position 
a dot of light on the television monitor. The joystick 
generates X and Y analog voltages which are digitized 
and compared with the X and Y coordinates being 
displayed on the monitor. When a match occurs, the 
image information at the location is ignored and a 
white dot displayed instead. The X and Y coordinates 
of the dot may be displayed on a digital readout panel 
or they may be sent upon command into SEL memory 
via the digital channel on the data acquisition system. 
In this manner objects in the image field may be out­
lined and that outline recorded in computer memory 

or disc. Another use would be to take measurements of 
objects in the image. Figure 7 shows the display. 

COMPUTER ANALYSIS 

Once the image has been converted into an array 
whose values represent the gray shades in the image, 
the data are processed on a digital computer for the 
purpose of identifying and extracting the relevant 
features of the image. We presently use an IBM 
360/50 computer in this processing. It is helpful to 
consider the structure given in Figure 8 while discussing 
an image processing system. Stage 1 in this figure has 
been discussed in the previous section. 

In the preprocessing stage, stage 2, one can usually 
devise methods, such as filtering routines and other 
preprocessing routines, that are adequate, but not 
optimal, for the later stages of processing. In some of 
our studies on chest X-rays we have found that we 
need no preprocessing. In some of the studies in nuclear 
medicine a simple averaging technique suffices, which 
reduces the data to a resolution of 32 X 32 approxi­
mating the resolutions of the input camera. Some of 
the more useful preprocessing techniques will now be 
discussed. 

Distribution linearization 

Because image digitization requires that each gray 
level value be quantized over a finite range (e.g., 6 bits/ 
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analogue to digital conversion equipment required to convert 
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the brightness value of the image. 
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into the image data by the digital conversion equipment and 
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stages of analys is. 

3. Feature Extraction - The extraction from the image data 
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of the processing. 
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important objects in the image by the computer. 

5. Human Observation - A human interpretation of an improved 
image. 

Figure 8-Image processing system 



picture element), a histogram of the gray level distribu­
tion values may be computed. 

The gray level histogram (first order probability 
density function) of most images exhibits a brightness 
peak which is heavily biased to the dark side of the 
histogram.6 ,7 The digital representation of the radio­
graph has 256 X 256 brightness values over a 33 X 33 
centimeter face, with a sampling frequency in either 
dimension of .78 lines/mm. The effect of having a 
large percentage of the 65,536 picture elements (pixels) 
concentrated into such a narrow portion of the histo­
gram is an image with little visible detail. Many con­
trast ratios that define edges are simply not displayable. 
One technique frequently used to correct this is the 
application of logarithmic conversion of the brightness 
pixels. This yields pixels which are proportional to 
image film density rather than brightness.8 The log 
operation has the effect of expanding the gray range 
of the lower brightness pixels while compressing that 
of the higher brightness pixels. However, because of 
the shape of the brightness histogram, there is much 
more contrast expansion than compression. 

Because a more rectangular histogram is advan­
tageous, a position invariant, nonlinear histogram 
equalization technique, similar to the distribution 
transform in statistics9, is useful. Since the distribution 
transformation is only true for continuous variables, 
some care must be taken to obtain the desired result 
for the discrete approximation. 

Linear filtering 

Several techniques for spatial and frequency domain 
design of spatial digital filters will now be considered. 

Digital smoothing is designed to remove noise from 
images so that later processing will be made easier. 
Smoothing is usually done by either spatial or frequency 
domain operations. 

One method is to average over a neighborhood in the 
spatial domain. The basic idea is simply to assign a 
neighborhood to a point and then change the intensity 
value of the point by performing an average of all its 
neighbors. 10 In addition, gradient functions may be 
set up in various directions in order to test whether or 
not the averaging process should be performed. An 
attempt is made to prevent blurring edges or points 
where significant pictorial information occurs. Noise 
removal depends intimately upon the nature of the 
pictures which are being processed. That is, what 
appears to be noise may be a significant feature in a 
particular picture. 

These averaging methods can also be performed in 
the frequency domain. One takes the input picture in 
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digitized form and performs the discrete Fourier trans­
form or equivalent methods. The smoothing operations 
that have been discussed can be performed by removing 
the high frequencies in the frequency domain. This 
operation is called low pass filtering. Instead of merely 
deleting the high frequencies of a picture in order to 
remove noise, often a selected band of frequencies will 
be deleted while enough of the high frequencies are 
left to keep the edges clear. 

When an image is low pass filtered, the image contrast 
is generally unaffected. However, edge detail is ef­
fectively removed.ll Other types of filters can be de­
veloped based on a low pass prototype. 

Enhancement techniques have an obvious potential 
for assisting roentgenographic diagnosis. The ability 
to sharpen detail, for example, and to employ non­
isotropic filters to make a hairline fracture more evi­
dent, could :result in more correct diagnoses, especially 
when combined with high resolution display equipment 
for human viewing. 

The effect of high pass filtering on an image is to re­
move the contrast information of the image while out­
lining edges. The edge outlining effect can be seen most 
obviously at sharp, high contrast ratio edges. A maj or 
application of high pass filters is in the visualization 
of small, low contrast features superimposed onto 
uniform backgrounds. 12 ,13 

A filter which partially suppresses the lower frequency 
components while enhancing those higher is the high 
emphasis filter. It should be noted that both the high 
emphasis and high pass filters create negative bright­
ness pixels. These usually appear as dark bands sur­
rounding the sharper, high contrast ratio edges in an 
image. 

Feature extraction 

Feature extraction consists. of the extraction of 
significant features from a background of irrelevant 
detail. lVlethods for the enhancement of selected features 
and elimination of irrelevant detail have just been 
discussed. In this section, several techniques for the 
extraction of significant features from an image func­
tion w.ill be described. 

The selection of an image feature set is a significant 
problem in itself, and no general theoretical solution 
exists. One reason for this difficulty is that the set of 
features required for classification of normal or abnor­
mal samples for a particular disease is relative not only 
to the class of images but also to the diagnostic problem 
under consideration. Also, information which is per­
tinent to one diagnostic problem may be irrelevant to 
the solution of another problem. 
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Figure 9-Directional signatures for chest radiograph 

Fourier transform frequency signatures 

The utility of spatial frequency power-spectrum 
sampling for automatically classifying patterns in 
images was demonstrated by Lendaris and Stanley,14 
with particular applications to detecting targets in 
aerial photographs. The purpose of this section is to 
consider the applications to biomedical images. 

The usefulness of frequency sampling is based on 
the fact that certain features of an image function may 
be more distinguishable in the frequency domain than 
in the spatial domain. Also, a large data reduction may 
be affected and the features still distinguished. 

The frequency signature consists of a set of n samples, 
where n is the number of sampling areas for a given 
sampling geometry. Several sampling geometries may 
be used. An annular ring sampling geometry is suited 
to the detection of circular objects. A wedge shaped 
geometry can be used to detect periodic line structures 
in an image. A horizontal or vertical slit may be used 
to detect an axis feature. A well-known property of the 
two-dimensional Fourier transform is that the trans­
form of a circularly symmetric object is also circularly 
symmetric. Thus, if one is trying to detect circular 
objects, an annular ring sampling geometry is ap­
propriate. Peaks in this circular sampled signature 

would correspond to energy at a given radial distance 
in the transform space. 

Template matching 

Suppose that an image function of known form 
which is non-zero only over a finite rectangular region 
is perturbed by additive noise. The filter which maxi­
mizes the ratio of signal power to average noise power 
at the filter output at some spatial position is called 
a matched filter.15 A detection decision may be made 
by sampling the matched filter output at the position 
and comparing this value to a threshold. A matched 
filter detection is not affected by a translation of the 
signal; however, it is sensitive to rotation. The matched 
filter is also sensitive to magnification changes. If only 
a small size variation in the desired signal is expected, 
then a search through several sizes may be reasonable. 

Directional signatures 

A simple but powerful technique for locating objects 
in fixed frame images consists of gray level directional 
signatures (e.g., Meyers, et al.).16 A fixed frame image 
set consists of images of similar objects; for example, 
chest, head, or leg X-rays. Normalization is a significant 
but solvable problem. The directional signature con­
sists of a function which is the sum of the gray level 
pixel values along a line normal to a reference line. The 
x and y direction signatures for a chest X-ray are shown 
in Figure 9. Note that major objects such as the clavicle, 
the lungs, the heart, and the diaphragm, may be located 
from the signatures. The signature information allows 
one to "zoom" in on a particular object. After an ob­
ject has been located, measurements such as size or 
texture may be made. 

Contour tracing 

Edge structure is a significant feature in many 
radiographic images, and motivates the development 
of computer algorithms for extracting edge informa­
tion. These programs are often called contour trace 
programs. A position in a picture where two objects 
meet will be characterized by a change in the gray 
shades in the picture array. This has suggested a 
search for points where the rates of change (deviations) 
of the picture array PIC (I, J) are large. Once these 
points are found, some form of logic is then used to 
connect these points together to form the boundary 
of the object. There are variations in these techniques 
including level slicing and contour tracing, but the 



results tend to remain much the same. This method 
has several problems. First, due to the noise that will 
invariably be present in the picture atray, contour 
trace algorithm will tend to give gaps and false spurs. 
If there are touching and overlapping objects, a contour 
trace program will tend to switch from one object to 
another before a boundary of an object is completely 
traced. Contour trace programs are local algorithms 
and as such have the following problems: If mistakes 
are made, such as gaps, they must be corrected later. 
If there are several objects in the scene, a contour 
trace algorithm has no way of knowing that it is fol­
lowing a particular object and must be careful not to 
stray from it. Therefore this technique suffers from 
the problem of making mistakes which are passed on 
to the later stages of corrections,namely the pattern 
recognition stage. Thus, there is the very real problem 
of errors accumulating through the various processing 
stages. 

Another method that has shown some utility is often 
called region enumeration. This method tends to be 
the inverse of contour tracing. In this method a point 
x = (i ,j) in the picture array is located, perhaps by 
a raster scan, and one desires to identify the points 
that lie in the same region with x. There will be a 
property P(y) that one uses to determine if a point y 
is in the region. First, one finds x; then one examines 
the 8 neighbors of x. Let y be one of these points. If y 
has the property P, then y is placed in the region with 
x, otherwise it is not placed in the region. The process 
is repeated spreading out from x until all the contiguous 
points with the property P are placed in the same region. 
Often the property P will relate to the gray level of 
the point. For example, does point y have the same 
picture value as x? Or an average gray value of the 
region may be kept and y is tested to see if its picture 
value PIC(y) is close to the average value. Other P's 
can also be used. There are variations of these tech­
niques in which one uses thresholding with region 
enumeration. Thus, we see that region enumeration 
seeks to identify all the points in a region, not the 
boundary points, and to do this it places points in the 
region if it is not on the edge of the object, while con­
tour tracing looks for edge points. 

The descriptive approach to image analysis 

An approach to feature extraction that we usually 
refer to as the descriptive approach will now be briefly 
described. Other authors have described related work 
but have not applied it to radiographs.17 ,18,19 ,20 It is 
possible that this method can be applied to a number of 
medical picture classes. Thus far we have applied the 
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method to the analysis of AP chest X-ray with the goal 
of diagnosing abnormality in the heart and lungs. Since 
that time, the same program has been applied to AP 
X-ray of the knee and nuclear medicine images. There 
are several basic assumptions behind this method. 

(1) The analysis of a scene should be top down. 
That is, one should first analyze the large ob­
jects in the scene at the lowest possible resolution 
and later analyze the finer objects in the scene 
as details of the large objects. 

(2) Feature extraction and pattern recognition must 
be combined into a reinforcing system, i.e., a 
system with feedback. That is, feature extrac­
tion is not a separate process from pattern 
recognition; pattern recognition is an integral 
part of feature extraction and must be included 
from the beginning. 

(3) One must have within the program a compre­
hensive description of the class of scenes to be 
analyzed. This description must guide the scene 
analysis system from beginning to end. The 
description should be in the form of data to a 
scene analysis supervisor so that one can readily 
analyze different scene classes without extensive 
reprogramming. 

(4) Regions enumeration rather than some form of 
contour trace program should be used in primi­
tive objective identification. 

(5) All parameters in the program must be self­
adjusting. 

(6) The concept of field of vision is important in 
locating the true boundaries of objects. In many 
applications one must not only recognize the 
objects but must also determine the exact 
boundary of the object. An example is chest 
X-rays where one needs an accurate contour of 
the heart in order to diagnose heart disease. We 
believe that there are advantages in recognizing 
the fact that a scene is composed of objects 
that completely fill the area of a scene, i.e., every 
point in the picture is in some region and one 
always sees something even though it may be 
lumped into a catch-all category of background. 
These objects all fit together in jigsaw fashion 
to completely fill the space of the scene. 

A graphical description seems natural in imple­
menting assumptions 1 and 3. In particular a tree 
structure very naturally gives a top down description 
of the scene class. See Figures 10 and 11 for examples. 
In the program described in Reference 21 each node of 
the tree represents an object in the picture. The graph 
is data to the program. Thus when one changes picture 
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Clavicle 

stem 

Figure lO-Anteroposterior view of chest 

classes, one changes the data which describe the scene 
class. Attached to each node is a list of attributes for 
that object and a predicate that describes the objects 
relation to the other objects in the picture. The at­
tributes might include such facts as: 

(a) average gray level 
(b) average number of points 
(c) shape description such as higher order moments. 

An important point to note is that using a top down 
search for the objects can be located with widely dif­
ferent resolutions. For example, our current version for 
the chest searches for the level one objects (diaphragm, 
mediastinum, right lung region, left lung region) at a 
16 X 16 resolution. 

One does not have to analyze the entire X-ray at 
once; one should first distinguish these objects from 
each other. If one desires very accurate descriptions 
of the borders, one can switch resolutions easily, re­
taining the information found at the lowest level. When 
our present program switches resolutions, it merely 
declassifies the boundary points between objects, then 
switches resolution and reenters the point classifica­
tion program which decides to which object the point 
belongs. Thus, in moving to higher resolutions one 
merely reshapes the boundary to get an accurate de­
scription of the object. 

The predicates attached to each node can be very 
valuable in identifying the objects. Many times an 
object in a picture has a border that has wide varia­
tions in the intensity of the picture function at the 
border. In places the border may not be visible at all. 
The predicates are a way to define the boundary of an 
object when the boundary may not be visible. For 
example, in Figure 11 consider node 7 and the predicate 

expressed in PL/I notation 

(L(7)IB(7)I(R(7) & (B(6)IL(6))))1 

(U(7) & (B(4)IB(6)IL(6))))1 

(L(7) & R(7)))I(U(7) & B(7)) 

This says that a point x can be put in a region associated 
with the left arm region only if one of the following 
conditions holds for the initial regions linked to the 
node which represents the left arm, Node 7. 

(a) Region (7) is to the left of the point. This lets 
the region 7 grow without hindrance to the edge 
of the picture. 

(b) Region 7 is below the point. Hence, the arm 
region can move toward the top of the picture 
without hindrance. 

(c) Region 7 is to the right of the point and region 
6 is either below or to the left of the point. 

The other parts of the predicate are interpreted simi­
larly. 

Observe that the left arm region is thus controlled 
by the left lung region and points cannot be added to 
the region unless the left lung region lies to its left. 
Hence, the border is controlled by the predicate which 
reflects what the picture is of as well as the gray level 
characteristics of the picture. Figure 12 gives an 
example output for a program that we have imple­
mented. 

A program for the automatic computer diagnosis of 
rheumatic heart disease has been recently developed 
at the University of Missouri.22 

The goal for this study was classification of the 
heart size from the standard PA chest radiograph into 
normal or abnormal category. If the cardiac size was 
judged abnormal, a further sub-classification was 

Node 5 

Medi as ti num 

Area 

Figure ll-Partial vertical ordering of AP chest X-ray picture 



Figure 12a-Node 4-Diaphragm area 

accomplished into four separate categories of rheumatic 
valvular involvement. To test the basic normal­
abnormal classification further, some non-rheumatic 
cardiac abnormalities in adults were also used as test 
cases. A test set of 279 cases was used. This set in-

Figure 12b-Node 6-Left lung 
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Figure 12c-N ode 9-Right lung 

cluded 191 cases of rheumatic heart disease repre­
senting all combinations of rheumatic valvular in­
volvement. 

All patients in the abnormal group have had right 
and left heart catheterization and appropriate cine an-

Figure 12d-Node 5-Mediastinum 
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Figure 13c 
Figure 13a 

Figure 13b Figure 13d 

Figure 13-Cardiac contours outlined by computer 



giography to establish the correct diagnosis; 88 normal 
chest examinations were also selected from patients 
with no history of cardiac disease, no murmurs, and 
no cardiac symptoms. These were obtained from routine 
psychiatric admission chest X-rays and preoperative 
and employee chest examinations. The normals were 
selected generally from the age group of 20 to 45 in an 
attempt to match the age group range of the rheumatic 
heart disease patients included in the set of abnormals. 

The first 135 cases selected as the computer testing 
and training set were set aside as the radiologist test 
set library. This separate library includes normals and 
all categories of rheumatic heart disease, and com­
prises the basis of comparing the diagnostic accuracy 
of the computer and the radiologist. 

The first step in the feature extraction process was 
to extract size, contour, and shape of the heart from 
the standard PA film. This was accomplished by an 
algorithm that constructs a cardiac rectangle around 
the heart. The cardiac rectangle is variable in size 
which is dependent upon the heart size. This cardiac 
rectangle is obtained by spatial signature analysis. 

Onc.e the cardiac rectangle was located, a technique 
for obtaining the closed cardiac surface was developed. 
The technique involved thresholding a gray level 

Figure 14-This shows the measurements and two polynomials 
extracted by the algorithm after the feature extraction phase 

has been accomplished 
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histogram to produce a one-bit (two level) representa­
tion of the chest image within the cardiac rectangle. 
The algorithm, using a gray level histogram, determines 
the threshold for converting the extracted cardiac 
rectangle into a two-bit representation (black and 
white) image of the heart. 

The next step was to outline the cardiac contour 
from this black and white representation. With the 
left and right outlines determined, the intersection of 
the right cardiac edge and the diaphragm was deter­
mined and a line was drawn from this point across to 
the intersection of the left cardiac edge with the 
diaphragm. A line was also drawn to connect the right 
and left top of heart (TOH) outlines so that the entire 
heart and portions of the pulmonary arteries are 
enclosed. A typical example is shown in Figure 13 a-d. 

Area and extent measurements are now easily made 
from this closed contour. At this point, nearly all in­
formation from the standard P A chest radiograph 
needed for the diagnosis and classification of heart 
disease had been extracted, and the next step was 
measurement of the heart. The measurements taken 
are shown in Figure 14. 

All cardiac measurements were normalized so that 
a ratio figure was obtained. The linear measurements 
were divided by Thr, the thoracic width, and the area 
measurements were divided by T A, the thoracic area. 
This allows correction for variation in heart sizes re­
lated to the patient's overall size. The same algorithm 
can also be used for different film input sizes, i.e." 
standard 14 X 17 inch, 35mm reduction, or chest photo­
fiuorograms. 

Once these series of heart measurements have been 
extracted from the cardiac rectangle, this information 
was used as the basis for first classifying the case as 
normal or abnormal. If a particular case was abnor­
mal, the classification went further by placing the 
case into the correct group of rheumatic heart disease. 

The diagnoses were divided into 5 classes and the 
16 possible combinations of aortic and mitral valve 
disease were divided into 4 separate groups. The 
classes considered by the classification scheme were: 

Class 1 : Normal 
Class 2: Mitral Stenosis only 
Class 3: Other mitral valve lesions-MSMI; MI 

only 
Class 4: Aortic and mitral involvement 
Class 5: Aortic involvement-ASAI, AS only, AI 

only. 

Computer classification was accomplished through 
the use of linear and quadratic discriminant function. 23 

This classification method was selected because of its 
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Testing Training 

Number Image Analysis Image Analysis 
Radiologist Laboratory Laboratory 

Class 1, Normal 88 83% 88% 94% 94% 

Class 2, MS 33 50% 21% 33% 33% 

Class 3, MI, MS-MI 21 54% 10% 14% 29% 

Class 4, Bivalvular 87 29% 72% 75% 70% 

Class 5, Aortic 50 76% 48% 62% 60% 

Total 279 

Overall Percent 62% 62% 69% 68% 
Correct Classification 

Figure 15-Rheumatic heart disease classification results 

relative simplicity and speed. Initially each part of the 
classification was processed using both the linear and 
quadratic discriminant functions. The selection for 
using a quadratic or linear discriminant function for 
each group in the final classification scheme was de­
termined by the results: that discriminant function 
was chosen which gave the best results. If the accuracy 
was equal for both discriminant functions, the linear 
discriminant function was selected for the final classi­
fication scheme because it required less computer 
processing time. 

In order to estimate the unbiased capabilities of the 
computer diagnostic classification scheme for the 
evaluation of new samples, the "jackknifing" test 
procedure was instituted. This procedure consists of 
first withdrawing ten percent of the cases from each 
of the five classes. The remaining ninety percent of the 
cases in each class with their measurement parameters 
and polynomials are then used to train the classifica­
tion scheme. Each case in the withdrawn group is 
subsequently tested and classified into one of the five 
diagnostic classes. The withdrawn ten percent of the 
cases are then replaced into their respective classes, 
whereupon a different ten percent is withdrawn, tested, 
and replaced in an identical manner until all the cases 
have been tested. No case was tested more than once. 
This is a fair test, since in each case the algorithm had 
not "seen" the withdrawn test set until asked to make 
a diagnostic classification. A better test would probably 
have been to remove one case at a time and test each 
using the jackknifing procedure until all of the cases 
had been classified. However, this was not practical 
because of the large amount of computer time involved. 

It would be difficult to judge the value of this auto­
mated feature extraction and classification algorithm 
unless its accuracy could be compared to the diagnostic 
accuracy of radiologists. For this reason, the following 
study was instituted. 

Ten radiologists were asked to individually diagnose 
135 representative cases of the cases evaluated by the 
computer. This group of radiologists consisted of 7 
board certified academic radiologists and three third 

year residents whose training was nearly completed. 
Each radiologist was given the P A and lateral views 
and told that each case was either normal or rheumatic 
heart disease. He was asked to make a complete 
radiological diagnosis and record his answers on a form 
designed for the study. Each case diagnosed was counted 
as one physician's observation. Information on the 
forms was then transferred to punched cards and 
computer programs were written to separate the 639 
physician observations collected. Not all of the phy­
sicians completed the task of reading all 135 films. A 
comparison of the physicians' results with the computer 
results is shown in Figure 15. The Image Analysis 
Laboratory results are those obtained using the pattern 
classification method just described. The BMD results 
are included for comparison. 24 

Overall accuracy was 62 percent for the computer 
and 62 percent for the group of radiologists. The 
overall accuracy was computed from the following 
equation: 

O 11 
Total number correct diagnoses 

vera accuracy = . 
Total number of cases III test group 

This example illustrates that although automatic 
computer diagnosis is quite different from the other 
methods, it is competitive and may out-perform them. 
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The impact of computing on the teaching of mathematics 

by WALTER KOETKE 

Lexington High School 
Lexington, Massachussetts 

A discussion of the impact of computing on the 
teaching of secondary school mathematics must begin 
with an examination of how modern computing facili­
ties have entered and are entering the schools. The 
manner in which facilities are obtajned often influ­
ences the way in which a mathematics program is 
implemented. 

Most secondary schools with computing facilities 
used by the mathematics department have acquired 
their facilities in one of two ways. The key to both 
methods, however, is a motivated, aggressive member 
of the mathematics department. The reasons for this 
motivation vary dramatically, but without such an 
"inside agitator" many schools would yet be without 
computing facilities. 

The first of the two ways by which facilities are 
initially acquired centers around the manner in which 
the school conducts its administrative data processing. 
Several service bureaus that specialize in educational 
applications have agreed to run a limited number of 
student programs with very little or no cost to the 
school. Local industries have been remarkably coopera­
tive in providing limited computer time for the running 
of student programs. Many schools have had their own 
computing facilities used for administrative processing 
for the past 10 to 12 years. These facilities are usually 
capable of running student programs in a batch pro­
cessing mode. The second way of acquiring computing 
facilities for mathematics requires that the school 
budget additional funds. Although these facilities are 
more desirable from an educational point of view, the 
add on cost makes them understandably harder to initi­
ate. Such facilities include purchasing time from either 
a large commercial time sharing system or from one of 
several smaller time sharing services dedicated exclu­
sively to serving the educational community. In fact, 
several secondary schools and small colleges have ob­
tained small time-sharing computers that not only 
serve their own needs, but also permit them to sell 
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computer time to nearby shcools-usual1y at a very 
reasonable rate. Mini-computers supporting multi-user, 
one language systems are being purchased at an in­
creasing rate. Mini-computer systems that support 
from one to seven users are now being marketed not 
only by the major computer corporations, but by many 
smaller companies who claim to tailor the software 
and hardware to suit the needs of education. Several 
batch processing minis are also available with such op~ 
tions as optjcal card readers that purport to provide 
the speed of batch processing without the inconvenience 
of key punching all input. 

Having outlined the manner in which computing 
facilities are obtained, a discussion of the way in which 
the mathematics department uses these facilities is ap­
propriate. During the past six to eight years many 
schools have experienced an evolutionary sequence of 
four distinct applications. Unfortunately, most school 
systems with newly acquired facilities seem to be be­
ginning the same four step process-without deriving 
much benefit from the prior experiences of others. 

The first of the four steps is to teach programming 
for its own sake. The main objective of a course is to 
"learn to program." No specific attempt is made .to 
explore mathematical topics not required to understand 
the programming language. This first step was a very 
natural one several years ago when batch processing 
FORTRAN was the most widely available language 
in schools, but this step should no longer be necessary 
with the more user-oriented languages and facilities 
available today. 

The second of the four steps is to teach a course 
most appropriately titled "computer science." The 
tcpics of this course usually include a programming 
language, an introduction to the "insides" of a computer 
and how it works, and some computer related mathe­
matics. This course is almost always offered as an 
elective for capable, interested students. The depth of 
this course is usually directly related to the computer 
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related experience of the teacher. Several acceptable 
textbooks for secondary school students have been re­
cently published for "computer science" courses. 

The third step is that of using the computer as a 
supplement to the existing mathematics program. Occa­
sional computer related assignments are given that 
complement the "traditional" mathematics being 
studied. Students generally have not volunteered for a 
special elective, but have simply enrolled in a mathe­
matics course that happens to use the computer. This 
application is often thrust upon a teacher who is only 
half convinced of the computer's usefulness. This leads 
to the puzzling dilemma of the teacher's excusing an 
occasional student who "doesn't like the computer," 
but the many students who "don't like word problems, 
or factoring, or solving a series of three or more equa­
tions, or ... " are told that the choice of curriculum is 
not theirs. The creative teacher, however, has found 
this supplementary work to provide an excellent oppor­
tunity to experiment with many different ideas. The 
results of such experimentation is one of the factors 
leading to the now emerging fourth step of this evolu­
tionary process. 

The fOllrth step is that of using the computing 
facilities as an integral part of the mathematics curricu­
lum. Computer use does not occur only as a supple­
mentary topic or in an elective course, but is an accepted 
part of the regular mathematics program. This step is 
just beginning to be achieved in a few school systems. 
Although this step is the goal of many mathematics 
departments, supporting textbooks are not yet widely 
available. This use will, however, develop as the major 
application in most secondary schools. In this step the 
computer is used as one of several tools available to the 
student of mathematics. The computer is used when its 
application is appropriate and ignored when it is not. 

Let's look more closely at how the computer is used 
as a problem solving tool in this fourth step. The prob­
lem solving application is not a drill and practice pro­
gram used to review rote facts, it is not a computer­
assisted instruction application in which the computer 
presents a pre-programmed lesson, and it is not an 
application of computer-managed instruction in which 
the computer is used to log the progress of individual 
students. Rather, the student is given a mathematics 
"assignment" just as he is given an assignment if no 
computing facilities are available. The difference, how­
ever, is that the solution to some of the problems may 
require the use of the computer. In many instances, the 
student himself must select the problems appropriate 
for computer solution. When computer use is required, 
the student must write his own program, enter it into 
the computer, and complete all required debugging 
until a solution is obtained. The only "canned program" 

the student uses is the programming language itself 
which is the vehicle utilized to solve the mathematical 
problems. Students in such a course are likely to average 
writing one or more programs per week. They are, of 
course, free to write more, but one per week is the num­
ber they are required to complete. This type of appli­
cation is best implemented using some type of inter­
active terminal. Although batch processing is an accept­
able alternative, some important benefits are lost 
without on-line interaction. 

Implementation of the problem solving application 
seems most successful if terminals are available in a 
mathematical laboratory rather than a classroom situa­
tion. Since a single interactive terminal is most effective 
when used by one or possibly two students, classroom 
use is not very efficient unless the terminal is being 
used as part of a demonstration in connection with 
some type of projection device. Although some schools 
have unfortunately experienced occasional incidents of 
vandalism, an open laboratory in which students are 
free to schedule their own use of the computer has 
proved very successful in many installations. Although 
some type of control is necessary so that many different 
students can use the facilities, this control should be 
only that which is absolutely necessary. Ideally the only 
enforced regulation is one that limits the total time a 
student is permitted to use the facility. Such a limit 
not only increases the number of students who can be 
served, but also forces the student to be "better pre­
pared" when he does use the computer. 

How do students using the computer as part of the 
regular mathematics program learn to program? They 
should be able to learn the required programming as 
part of the mathematics course. The programming 
language used must, therefore, permit the implementa­
tion of sophisticated algorithms yet also be very easy 
for the beginner. 

The past 12 to 18 months have reflected school sys­
tems acquiring computer facilities at a continuously 
increasing rate. I suggest that this rate will continue to 
increase until it "soars" in another 12 to 24 months. 
There are several reasons for the presently increasing 
growth rate and the projected increase in this rate. The 
importance of these reasons varies among school sys­
tems, so the order in which these reasons are listed in 
this paper is not significant. 

First is the simple fact that the cost of acquiring 
computer facilities has been reduced to an acceptable 
level. More than one school committee has noted that 
computer facilities can now be acquired for less than 
the average salary of a teacher, and that's not very 
much. The reduced cost has been evidenced in the pur­
chase price of mini-computers, the rental of time-shared 
terminals, and leasing agreements of many batch 



processing systems. If there is a single most important 
reason for the increased growth rate, the reduction in 
price is the most likely suggestion. 

A second reason is an increased awareness by both 
teachers and administrators that computing facilities 
have become a necessary part of the mathematics pro­
gram. Although controlled experiments with significant 
quantitative results demonstrating the value of using 
the computer are almost non-existent, overwhelming 
qualitative evaluations ardently support the acquisition 
of computer facilities. In one of the few quantitative 
studies seen by the author, students using computer 
facilities and a control group were given a pre- and 
post-test in abstract reasoning. The increase in the 
group mean of the group using the computer was four 
times that of the control group. 

The wider availability of BASIC· is the third reason 
for the increasing growth rate. BASIC is not here de­
fended as the "best" programming language. It is, 
however, offered as the most appropriate language for 
present secondary school requirements. Remember that 
the primary application of the computing facilities is 
problem solving, not computer science. The computer 
is to be used as a problem solving tool, thus the pro­
gramming language itself should not be a problem for 
the students. Languages such as FORTRAN and APL 
are themselves problems for most students. The lan­
guage used must also be well documented, not just in 
vendor's operating manuals but in the wider literature 
of . mathematics. Languages like FOCAL, CAL and 
TELCOMP are certainly easy to learn, but they are 
not often referenced in the literature. BASIC, however, 
satisfies both of these requirements-it is very easy to 
learn and commonly referenced in the literature. 

A fourth reason for the increasing growth rate is the 
also increasing number of teachers who want to and are 
qualified to utilize computing facilities with their 
mathematics classes. This is partially due to the growing 
number of good inservice courses being offered in many 
schools of education. Many new inservice courses are, 
however, strictly "how to program" classes that do not 
help teachers implement their new skill in the classroom. 

Local school board pressure to "keep up with the 
competition" who have already acquired computer 
facilities is the fifth reason. Although this is not a very 
defensible reason for action, the movement is in the 
direction of improving education so we should accept 
rather than condemn it. Such action, however, occa­
sionally results in disastrous experiences when com­
puting facilities are thrust upon unprepared or unin­
terested teachers. 

The sixth and final reason to be listed has not yet 
happened, but will soon be responsible for giving addi­
tional impetus to the growth rate. The fourth and most 
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desirable application of computing facilities was as a 
tool in the regular curriculum courses. Although this is 
now being done in some school systems, it is done with­
out the benefit of a single textbook for the students. 
Such textbooks are, however, now being prepared by 
several major publishers. When these textbooks are 
actually marketed in another 12 to 18 months, large 
numbers of already capable teachers wiH have the 
materials for which they've been waiting. This should 
result in an even greater demand for computing facili­
ties in secondary schools-including those schools that 
already have modest facilities that are not yet required 
to serve the majority of mathematics students. 

Having examined the manner in which secondary 
schools acquire computing facilities, the way in which 
these facilities are used, and the reasons for the continu­
ally increasing interest in acquiring such facilities, we 
will now partially answer the most important ques­
tion-"Why use the computer in the study of 
mathematics?" 

The history of mathematics shows that the major 
emphasis of mathematics has shifted from geometry, to 
algebra, to calculus, to non-Euclidian geometry, and 
now to algorithms and computation. As the emphasis of 
mathematics shifts to best serve the needs of society, so 
also should mathematics education. Topics related to 
algorithms and computation can no longer be treated 
as supplementary; they have become a very necessary 
and important part of the mathematics curriculum. 

The history of mathematics also reveals that mathe­
maticians have spent a great deal of time creating in­
genious ways to avoid computation. Modern computing 
facilities have, however, eliminated the need for many 
of these clever computational aids. Once difficult topics 
have become quite easy, and many new topics have be­
come very important. Quite simply, the computer has 
rearranged the priorities of modern mathematics and 
these new priorities should be reflected in the mathe­
matics classroom. Consider, for example, the "tradi­
tional" student of first year algebra and his accrued 
ability to find the zeroes of a function. He can probably 
find the zero of any linear function he encounters. If he 
was in a fast moving class he can even solve quadratic 
functions-especially those that are factorable. Can he 
solve other polynomial functions of higher degree? No. 
Can he solve any other~type of function? No-he may 
not even know that other types o.f functions exist. If 
the student is persistent for an additional two to three 
years, he will eventually learn Newton's method or a 
similar algorithm that can be used to find the zero of 
almost any function. The path to this general algorithm 
is littered with "useful" techniques such as factoring a 
quartic or even higher degree polynomial to obtain the 
zeroes. The student in a first year algebra class that 
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has access to computer facilities can study functions 
and their zeroes in a very different manner. For ex­
ample, he can locate zeroes of almost any function by 
searching the domain for a change in either the sign or 
the slope of the function. This technique will not only 
reveal the zeroes, but also permit the student to explore 
maximum and minimum values of a function in an in­
formal yet precise manner. There are of course, many 
similar examples of now important topics that can only 
be taught very superficially if at all without access to 
computing facilities. Listing these topics is not, how­
ever, the purpose of this paper. Topics that fall under 
the general heading of Monte Carlo Methods are fasci­
nating to almost an students. Computing facilities per­
mit the inclusion of some of these now important topics. 
Probability and statistics cannot only receive increased 
emphasis with computer use, but realistic problems can 
be approached rather than superficial models that 
don't really communicate the meaning of or need for 
the ideas being studied. 

In addition to reflecting some of the priorities of 
today's mathematics, use of the computer as a problem 
solving tool helps teach that which is the real purpose of 
all education-how to think. Although teaching stu­
dents how to think is the goal of education, there is no 
course at any grade level in which that is the prime 
topic, nor is there any methods course in related teach­
ing techniques offered to prospective teachers. Com­
puter facilities will not immediately change this di­
lemma, but the analytic and algorithmic thought pro­
cesses are so much a part of programming and related 
problem solving that students cannot avoid learning 
them in a well presented course. As one would hope, 
there is a great deal of qualitative evidence indicating 
that students do transfer these processes to other dis­
ciplines as well. Fortunately, a growing number of 
mathematics educators have begun to realize that a 
student's mathematics education should be judged by 
how he reacts to problems rather than by a list of 
courses and grades. Computer assisted problem solving 
and accompanying algorithmic thought help students 
develop a very sound approach to many types of prob­
lem solving in many different disciplines. 

Some of the ways in which computer use helps de­
velop analytic and algorithmic thought processes might 
be clarified by an example. Consider the problem of 
describing the solution set of a quadratic inequality. A 
traditional text presents this topic by first listing several 
specific examples, then asking the student to solve 
several other specific examples. In a subsequent class, 
the student is told which of his answers are wrong. A 
presentation of the same topic with computing facilities 
available might well begin in the same manner-but it 
would go further. Students would first be asked to solve 

a few specific examples using pencil and paper, then 
asked to write a program that would permit a user to 
enter any set of values for A, Band C, then print the 
solution set of the inequality Ax2+Bx+C>0. To write 
the algorithm for such a program the student would 
likely have to create and solve many specific examples. 
He would not bother with the arithmetic exercise of 
solving examples he knows how to complete. Instead, 
he could concentrate exclusively on the cases for which 
he is unsure of the solution set. When testing this pro­
gram, as with many other programs, the student must 
"debug" his algorithm. He is not faced with a simple 
right or wrong situation, but one in which he is likely 
to be partially right. He must then determine which 
portion is not correct and the required procedure for 
correcting it. The entire process of debugging a partially 
correct algorithm is a realistic valuable experience that 
is rarely encountered in more traditional courses. Few 
problems the student will face in any areas of his life 
will be countered with a solution that is all right or all 
wrong. The solution will be partially correct and will 
require repeated debugging. 

As computing facilities become available in the large 
majority of secondary schools, the students, the 
teachers, and the computing industry itself will feel the 
effects. The remainder of this paper is devoted to an 
examination of these effects. Note that some of these 
effects are already a reality while others are the pre­
dictions of the author. 

The most immediate and obvious effect upon students 
is their high degree of motivation. The reason for this 
motivation changes from student to student. In fact 
most students seem to sustain their motivation for a 
shifting set of personal reasons. Skeptics point out that 
use of computing facilities in a mathematics class does 
not motivate all students. That is certainly true, but it 
does motivate most of them. Unfortunately, the same 
cannot be said for either the content or presentation of 
most traditional classes. Skeptics also profess that most 
of the student motivation is simply fascination with a 
new type of hardware. Although this might well be 
true at first, the source of student motivation soon 
shifts to many diverse, more personal reasons. I suggest, 
however, that even if new hardware were the one and 
only motivating factor, that's fine. Most teachers are 
well aware of the fact that motivating· students is at 
least half of their job, and they would be delighted to 
find any proven method or "machine" that will develop 
sustained motivation in their classes. 

Another effect upon students is that the present 
"ability grouping" of classes will have to be restruc­
tured. Since these groupings often represent present 
motivation or the results of past motivation, any factor 
that significantly alters motivation will also alter the 



groupings. Preliminary evaluations of computer use in 
mathematics classes indicate that the gap between the 
"good" and "bad" students is significantly reduced. 
There are many possible reasons for this. For example, 
the "good" students are already highly motivated so 
they do not benefit from that aspect of using the com­
puting facilities. 

The study of algorithms and computation permits 
students to make genuine discoveries. They are able to 
develop significant new computing algorithms and im­
prove upon those that already exist. Students cannot 
improve upon the proof of a theorem in plane geometry 
nor uncover an unknown property of the real numbers. 
These are unlikely occurrences at any level of mathe­
matical sophistication, and those suggesting that sec­
ondary students often make such discoveries kid only 
themselves. Although a skillful teacher could lead some 
students to the belief that they have made a discovery­
and indeed they often do make personal ones-the dis­
coveries themselves are only contrived and the results 
are already well-known. In the area of algorithms and 
modern computation, however, the secondary student 
is participating in a discipline that is about 20 rather 
than 2,000 years old. Many students soon learn that 
they can indeed uncover. flaws in existing algorithms, 
as well as create new and better ones. 

Computing facilities provide many students with a 
means for exploring previously unexecutable ideas. 
This benefit of computer use has evidenced itself not 
only in mathematics but in several other disciplines as 
well. A favorite student question, "What if ... ?" must 
go unanswered fewer times when computing facilities 
are available. More significant than the answer to this 
question is the fact that the student has the means to 
answer it himself. In 1970 a high school student dis­
covered the 21st, 22nd, and 23rd perfect numbers. 
(Perfect numbers are those positive integers that equal 
the sum of all their divisors excluding the number 
itself-such as 6 l:\nd 28.) Was this student "above 
average?" Sure he was-so were Pythagoras, Euclid, 
Fermat, Descartes, Euler, and many other brilliant 
mathematicians who unsuccessfully sought perfect 
numbers during the last 2000 years. Is this student the 
greatest mathematician the world has known? Probably 
not! He was, however, a creative high school student 
with access to computing facilities. I feel that the three 
numbers he discovered and the theorems he created 
are of less importance than the simple fact that the 
entire refining process of idea to theory to algorithm to 
execution to proof to announced results was carried out 
by a high school student with access to computing 
facilities. I contend further that such significant work 
will become an accepted if not expected product of 
secondary school mathematics during the next decade. 
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Computing facilities have made and will continue to 
make secondary school mathematics more relevant and 
more interesting for students. Pinpointing a single 
reason for increased interest and relevance cannot be 
done as these vary widely between students. The simple 
fact that execution of a program provides the student 
with immediate reinforcement does much to heighten 
and sustain his interest. He quickly learns the extent of 
his success, and if he is well prepared with appropriate 
test cases, he also receives an immediate, impartial 
evaluation of his algorithm. Interest is also supported 
by the student's ability to solve a problem in his own 
way. No longer will he be told he is wrong because the 
first few steps of his procedure are not what his teacher 
expected to find. The student can now complete the 
entire procedure in his own way, then immediately 
confirm the validity of his work. 

Students find computer related mathematics relevant 
because they are using what they know is modern 
technology. They are also able to solve much more 
complicated -problems than the usual oversimplified 
tasks they are given. In our society of space flight, push 
button wars, ecological crises, widespread famine, and 
widespread excess-we cannot afford the luxury of 
oversimplification. We must be as precise as possible, 
and where approximation occurs it must be clearly 
identified and its implications understood. Even the 
simple concept of percent error is foreign to many 
traditional mathematics classrooms, yet students want 
to know and should know about approximation. This 
is yet another example of the fact that a solution to a 
real problem is rarely all right or all wrong. An almost 
right solution, however, may not be of much value 
unless the "amount of wrongness" can be clearly 
evaluated. The relevancy of the activity in mathematics 
classes is also heightened by the fact that students can 
utilize the computer in other disciplines. Although there 
is often little application of mathematics when students 
create simulations for use in science or history, tutorial 
programs for use in English or foreign language classes, 
or any of a host of other applications, there is an in­
creased interest in both disciplines. Although the direct 
application of mathematics may be slight, the applica­
tion of the algorithmic thought process and the applica­
tion of problem solving techniques are indeed inter­
disciplinary. Such student projects are not only very 
valuable to the student, but quite often the teachers 
will also become involved in a meaningful interdis­
ciplinary study. 

Having examined some of the ways that computing 
facilities have affected and will affect students, let's 
now examine the corresponding effects upon teachers. 
The role of the teacher is altered in several important 
ways. Most apparent is that the time spent reminding 
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students that they must pursue other studies in addi­
tion to mathematics far exceeds the time spent in pur­
suit of students who are not attempting to complete 
their work. Quite simpJy, teachers spend more time 
convincing students to go home than they do coercjng 
them to do the assigned work. 

The teacher's role will become much more that of an 
advisor rather than that of a lecturer. This new role 
will place much greater demands upon the teacher, and 
may be one reason that some teachers have resisted 
using available computing facilities. The role of advisor 
means that the teacher must maintain a working 
knowledge of more mathematics than he is now required 
to do. Many secondary school mathematics teachers 
have taught only a single subject-geometry or first 
year algebra or ... -for several years. Even though 
this restricted teaching load may continue, students' 
pursuit of their own interests and many incidental 
student questions resulting from assigned programs 
will not be so restricted. The teacher's knowledge will be 
inadequate unless it extends well into many areas of 
mathematics. 

Can teachers be expected to know all of the answers? 
Certainly not, yet this response is not a source of com­
fort but of discomfort for many teachers. Students 
using computing facilities remove the security of the 
teacher who, with his answer key, does indeed have an 
answer to almost all questions. This artificial security 
will be undermined even further because of the newness 
of many computing algorithms. Few teachers believe 
they are smarter than all of their students-but they 
have the decided edge of experience. However, when 
computing facilities are introduced, the edge of experi­
ence is removed. There are clearly many teachers who 
are very uncomfortable in this unfamiliar situation. 

A teacher's mathematical background is likely to re­
quire some refreshment. One of the reasons for adoption 
of computing facilities is to reflect the changing empha­
sis of today's mathematics. The experienced teacher 
may well find himself in need of several inservice 
courses to update his own background in mathematics. 
Topics such as Monte Carlo Methods, Probability and 
Statistics, Approximations and Error Analysis, as well 
as Programming itself are some of those that may re­
quire additional study. Certainly an extensive, nation­
wide effort to renew support for inexpensive, conve­
nient inservice education is in order. The positive effects 
of such an effort were clearly evidenced when similar 
support was given to the various SMSG mathematics 
programs. Although an effort of that great a magnitude 
may not be required, the majority of mathematics 
teachers do require some type of inservice education 
and that is no small undertaking. The benefits of these 

courses' should, however, far exceed the possible incon­
venience and certain expense of conducting them. 

The teacher must also become familiar with a new 
structure in the courses he is teaching. Of course pro­
gramming is new and the topics themselves will be 
somewhat changed and rearranged. Teachers will be 
able to concentrate on problem solving rather than 
arithmetic. Any experienced teacher can relate many 
stories of students becoming so "hung-up" in the arith­
metic of a problem that they lose track of what the 
problem is all about. A traditional course in first year 
algebra examines polynomials that can be factored as 
the product of two binomials. The next topic is likely 
to be algebraic fractions and various techniques for 
their manipulation. Unfortunately, much of the topic 
of algebraic fractions is likely to be completely obscured 
because students approach almost all problems as addi­
tional exercises in factoring. Adoption of computing 
facilities reduces the likelihood of students getting 
"hung up" on the arithmetic of a problem. One can't 
resist the observation that problems will no longer have 
to have answers of 1, 10 or 100 so that the arithmetic 
can be more readily done by hand. 

The teacher will also shift the emphasis of a mathe­
matics course somewhat away from the 'current stress 
on structure. The structure of mathematics is indeed 
important, but that does not mean that the best way 
to teach the subject is to proceed in an orderly step by 
step path through this structure. After all, this cer­
tainly wasn't the order in which the mathematics was 
created. The structure will not, of course, be totally 
ignored, but it will not be emphasized until more ad­
vanced courses. 

Teachers will also find themselves in a delightful new 
situation-they will be able to get genuinely excited 
about the work of their students. Students in mathe­
matics classes using computing facilities can indeed 
create an exciting algorithm just as an art student can 
create an exciting sculpture. Clever teachers have ap­
peared enthusiastic when a student solves a problem 
correctly, just as they have generated a sincere en­
thusiasm when a particularly "slow" student finally 
learns a certain technique. They have not, however, 
often experienced the exhilarating feeling of sharing a 
student's enthusiasm for something he alone has 
created. The strongest advocate of an idea is the person 
who creates it. As the computer permits the student 
and teacher to share in the development of new ideas, 
a completely new and very desirable student-teacher 
relationship will emerge. 

Finally, let's examine some of the effects that sec­
ondary school computing facilities might have upon the 
computing industry. Clearly secondary schools repre-



sent a new and growing market and thus a new and 
growing source of profit. The nature of this market, 
however, is different from most others. The most im­
portant single factor in education is cost. Contrary to 
your feelings as taxpayers, schools do attempt to save 
money whenever possible. The continuing emphasis on 
minimizing cost permeates all phases of computer re­
lated activities. Although this concern for economy is 
often very desirable, it often becomes dictatorial. Many 
competent and valid studies of needed computing 
facilities have been prepared. The educational pros and 
cons of several systems are evaluated and closely 
scrutinized by several diverse committees. And then 
the decision is made-the school system accepts the 
least expensive of the proposals. 

If a school system adopts computing facilities and 
has a bad experience with them, this experience is 
communicated to many, many other schools. Vendors 
should, therefore, make a special effort to see that the 
staff of a school is well prepared to utilize the facilities 
they are marketing. The educational customers of today 
are surprisingly unsophisticated in comparison to their 
counterparts in industry. They require a larger than 
usual amount of "hand-holding" both before and after 
a sale, and require very solid software and hardware. 
Although the situation will eventually change, most 
schools can today only use the software provided by the 
manufacturer. They do not have the internal capability 
of tailoring that software to better suit their individual 
needs. 
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Other characteristics of the educational market in­
clude the fact that the "state of the art" is not an im­
portant consideration when hardware is selected. The 
very latest equipment is a luxury that very few school 
systems can afford and even fewer systems require. 
Reliability and durability are far more important than 
extra speed or exotic features. Most school systems will 
acquire their computing facilities gradually over a 
period of several years. Thus vendors must provide 
very flexible systems that can be expanded with little 
or no "wasted" expense, yet remain an effective system 
at each stage of expansion. As has been evidenced 
previously in this paper, schools are expected to increase 
their demand for interactive terminals on which stu­
dents can implement their BASIC programs. The inter­
active requirement may be altered in some situations, 
but it is unlikely that BASIC will be replaced during 
the next few years. 

Finally, I hope that one effect upon industry is that 
more of you get involved in secondary schools. I intend 
no disrespect for my profession when I state that we 
need all the help we can get. Offer to teach a special 
course in your local school system to students, to 
teachers or both. Assist your school administration and 
school committee in evaluating various facilities and 
the benefits they offer. The educational process you 
support now will repay all of us in the future-and 
while providing this support you too may have the 
opportunity to share the real joy of working with 
today's young people. 





Computing in the high school-Past, present and 
future-And its unreasonable effectiveness in the 
teaching of mathematics 

by WARREN STENBERG 

University oj Minnesota 
Minneapolis, Minnesota 

Five years ago computing was trickling into the 
secondary school scene, but today it's a torrent. Vari­
ous hardware and software developments over the last 
two decades have made the computer ever more appro­
priate for this environment. These developments were: 
the shared program; the replacement of vacuum tubes 
by cores; compilers and procedural languages and 
finally-time sharing. The latest development has been 
the great reduction in the price of time sharing over 
the last year. 

Six or seven years ago the pattern of computer use in 
the schools was very different from today. Some schools 
purchased table top computers with memory too small 
to contain a compiler so that students programmed in 
assembler language. (This had some disadvantages 
which I'll comment on later.) A second pattern saw 
the teacher carrying the student's program decks to a 
friendly college or industry to be run in batch mode 
during off hours. This method had the disadvantage 
that it took several days to get the three or four runs 
usually necessary for debugging. 

But today we have an entirely different scene. Today 
it's all time sharing. I illustrate by describing the situa­
tion in Minnesota where I have my best access to in­
formation. For the last three years we have had time 
sharing in a few schools in the Twin Cities area on an 
individual port rental basis. Today every Junior and 
Senior High School in Minneapolis and St. Paul has 
at least one console. This also holds true of most of the 
suburbs. In the outlying areas of the state, time sharing 
has not as yet made a very strong showing. 

After this glimpse at the hardware trends in the 
schools, it's time to see what the computer is doing 
there. The types of computer use fall generally into 
four categories: 

1st Computer Assisted Instruction (CAl) 
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2nd Student use of canned programs including 
simulation 

3rd Student programming 
4th Computing courses 

(The first three categories involve use of the computer 
in courses in the traditional curriculum.) 

CAl is essentially a programmed textbook with the 
computer turning the pages. My personal prejudice 
(shared by many people I have talked to) is to be very 
skeptical of CAl as a substitute for the teacher in the 
classroom. But I see a great future for it in the areas of 
drill, review and remedial work. So far CAl is non­
existent in Minnesota secondary schools. At present 
the main deterrent to CAl is cost. If the cost factor were 
eliminated there would still be the impediment of the 
scarcity of CAl materials. At the University of Minne­
sota, CAl is extensively used in the beginning German 
course. The cost per student hour at the console is 
about one dollar; each student spends about five hours 
per week at the console. This totals up to $50 per 
student per 10 week quarter. In addition the hardware 
(CR T terminals) is exorbitantly expensive. Also the 
development of the software for this course was about 
$20,000 not counting the overhead of maintenance of 
the CAl center at the University of Minnesota. This 
program would have been impossible without generous 
foundation support. According to experts of the Uni­
versity of Minnesota, economically feasible CAl de­
pends on two developments: first dramatic hardware 
improvements-probably replacement of cores by inte­
grated circuits; second, increasing the amount of ac­
tivity at the terminal end of the system-computer 
controlled slide projectors, film clips and audio cassette 
players. Even assuming that the necessary hardware 
developments will be forthcoming, the development of 
the course materials will require national dedication to 
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the project and many millions of dollars of financial sup­
port. Even in this era of electrifying change, a decade 
would seem a conservative estimate for the realization 
of the potential of CAL 

Computer science courses have not as yet played a 
major role in the computer use in the secondary scene 
but they now seem to be coming up fast. In Minneapolis 
three high schools currently have such courses. Next 
year six schools will have such courses and in two years 
it is estimated that all the city's high schools will have 
them. Representatives of the University of Minnesota 
computer science department believe that within a few 
years the content of their present first course will be so 
widely offered in high schools that it will no longer be 
offered at the University except as a remedial no credit 
course. 

But we are confronted with a very definite problem 
in connection with this movement of shoving the first 
computer science course back into the high school. The 
problem is that no standard curriculum has as yet been 
developed for these courses. Each teacher is "doing his 
own thing." A great deal of highly creative course de­
velopment is taking place with bits and pieces being 
assembled from various sources; textbooks are gen­
erally not used. This is actually a very healthy develop­
ment but still it creates a problem for the colleges. For 
they cannot know just what the students passing 
through these courses know about computing. So there 
is an urgent need for state departments of education to 
establish guide-lines or syllabi for computing courses. 
These should be worked out in collaboration with high 
school teachers and college computer science depart­
ments. These guide-lines should be sufficiently flexible 
as to encourage the creativity and originality of the 
individual teachers but they are altogether necessary 
lest the high school programs go to waste. First steps 
in this direction are now being taken in Minnesota. 

Actually we can foresee three kinds of computing 
courses in the high school: 

(1) The College Preparatory Course. This emphasizes 
algorithms and programming probably with the 
major stress on mathematical algorithms. It in­
cludes subscripted variables,functions and pro­
cedures. This course could be an alternative for 
one semester of mathematics. 

(2) The Engineering Course. This course would in­
clude some algorithms, but the stress would be 
placed on computer logic and circuitry, binary 
arithmetic etc. In a lab associated with the 
course students would construct models of com­
puter components. The course might include a 

quick pass over some elementary principles of 
electronics. The course could be used as a sub­
stitute for a semester of science. 

(3) The Vocational Course. This course would con­
sist of data processing techniques, the COBOL 
language, and an experience with operating a 
computer. Though primarily conceived for the 
non-college bound student, the course could be 
useful for the potential student of business. 

The latter two courses are still in the category of pipe 
dreams since the teaching personnel just does not exist. 

So far we have been discussing computing courses in 
the secondary schools. It's time that we should. turn 
our attention to the other face of the coin-the use of 
the computer in the conventional curriculum. This 
category makes up the great bulk of computer use in 
the schools at the present time. It is first necessary to 
recognize the sharp dichotomy between the use of the 
computer in mathematics courses and the use in other 
curricular areas. In mathematics courses virtually all 
computer applications involve the student in construct­
ing his own algorithms and writing his own programs. 
Outside mathematics the situation is completely re­
versed. Here the student does no programming himself 
but works with canned programs where he supplies 
data or changes the values of parameters and observes 
the effect on the resulting output. These applications 
fall generally into the category of simulation or com­
puter games. The programs involved are long and com­
plicated. They will not be worked out by the individual 
teachers-they will be developed by experts. A teacher 
using them won't have to know anything about the 
actual programming-he merely has to be confident 
that they do what they are supposed to. In other words, 
the teacher using the computer in non-mathematics 
courses needs to know next to nothing about com­
puting-only how to call up the program and plug in 
numbers. Contrariwise, the mathematics teacher has to 
know enough programming to teach it to his students 
and to help debug their programs. 

On the basis of these observations one might suppose 
that the non-mathematical use of computers, since it is 
so much less demanding on the teachers, would be much 
more widespread than the mathema~ical use. The 
exact opposite is actually the case .. Why? The reasons 
for this phenomenon are easily identified. They are: 

(1) the non-mathematics teacher assumes that any 
use of the computer involved vast technical 
knowledge and this inspires him with fear 
bordering on terror; 



(2) he receives no training in computer use in his 
college training mainly because the education 
faculty adopts the same attitude toward com­
puting as he does; 

(3) the availability of computer oriented materials 
outside mathematics is still comparatively 
sparce; 

(4) information about existing materials is not 
readily accessible to teachers; 

(5) the importance of computing is nowhere near 
as great in other areas as it is in mathematics. 

To rectify this situation four measures are necessary: 

(1) faculties in schools of education must themselves 
be educated in the use of the computer in their 
fields; 

(2) teachers' institutes featuring the application of 
computers outside of mathematics must be 
promoted; 

(3) city school systems must hire specialists in non­
mathematical uses of computing who can in­
doctrinate teachers and keep them informed of 
current developments; 

(4) computer oriented student texts and supple­
ments must be produced. 

Basically, developments in this area involve a two­
stage process-training the education faculty to train 
the teachers. For this reason developments will be rela­
tively slow in· coming unless the National Science 
Foundation and the U.S. Office of Education decide to 
initiate a crash program. 

The situation is much brighter in the area of mathe­
matics-the reasons being that the effectiveness of 
computing in mathematics is quite obvious; a large 
amount of material is available; and the technological 
aspects of computing hold relatively less terror for the 
math teacher. The way in which the math teacher has 
obtained his training may come as something of a sur­
prise. Up to now it has been almost all in-service 
rather than pre-service training. NSF summer institutes 
have played a major role here. But in Minnesota, Uni­
versity sponsored summer institutes and academic year 
seminars have been even more important. Last summer, 
60 Minnesota high school teachers participated in a 
university sponsored summer seminar. Currently 77 
Minneapolis math teachers are participating in an insti­
tute jointly sponsored by the Minneapolis school system 
and the University of Minnesota. Better than half the 
junior and senior high school math teachers in Minne­
apolis schools have now had computer training. All 
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math students in this school system will have some ex­
posure to the computer. 

In outlying areas of the state as might be expected, 
we see a much bleaker picture. Where the teachers and 
schools are widely dispersed, teacher training becomes 
more difficult and the acquisition of hardware presents 
a formidable obstacle. These problems can only be 
solved if the state department of education assumes the 
initiative in forming cooperative regional networks. 
Such a regional network has been set up in the junior 
college system. All of Minnesota's junior colleges now 
have consoles, a development which came to fruition 
during the current academic year. (As a footnote it is 
interesting that Minnesota's junior colleges are exhibit­
ing an interesting counter-trend; the chief customers for 
computing here are the physics courses-the result of a 
particularly effective training program for junior college 
physics teachers. ) 

In spite of this counter trend, the computer in the 
high school is closely associated with the mathematics 
program. One reason for this is that elementary mathe­
matical algorithms involve much less extensive knowl­
edge of programming than non-mathematical algo­
rithms and so provide a convenient vehicle for initiating 
the student in computing. But this· is of relatively 
minor importance. The more fundamental aspect of 
this interaction is found in the impact of the algorithmic 
approach in the clarification of mathematical concepts. 
In college mathematics this impact seems likely to 
completely revolutionize the teaching of calculus, linear 
algebra, ordinary differential equations and numerical 
analysis. And the impact of the algorithmic approach 
looms no less dramatically on the secondary mathe­
matics scene, so dramatically in fact that there is the 
temptation to try to use it everywhere, even in those 
places where it is inappropriate. The great scientist 
Eugene Wigner has spoken of the "unreasonable effec­
tiveness of mathematics in the physical sciences." In 
the title of this talk I have paraphrased Wigner's 
words to "the unreasonable effectiveness of computing 
in mathematical pedagogy." And indeed this effective­
ness is so great as to seem almost mysterious. Now I 
will try to uncover some of the clues to this mystery 
which I catalog below. 

PRINCIPAL WAYS IN WHICH COMPUTING 
AFFECTS MATHEMATICAL PEDAGOGY 

• Dynamic vs. Static Approach 
• Computing Attitude toward Variables 
• Development of Problem Solving Technique 
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• Affinity between Algorithm Construction and 
Theorem Proving 

• Mathematical Topics which are Algorithmic in 
Nature 

• The "Teaching Effect" 
• The Stimulation to do Independent Work 
• The Excitement of Being Involved in Modern 

Technology. 

Now let's examine and explain the items In this 
catalog. 

Dynamic vs. static approach 

In computer oriented mathematics the emphasis is on 
"what you do to find it" rather than on "what it is." 
This particularly applies to definitions and existence 
theorems which can often be put into an algorithmic 
setting. I believe that the vast majority of students 
tend to think dynamically and be stimulated by this 
more active approach. 

The computer attitude toward variables 

There is a subtle but important difference between 
the computer attitude toward variables and the tradi­
tional mathematical attitude. Traditionally, a variable 
is a symbol for which values may be substituted from 
a certain set called the domain of the variable. In com­
puting a variable is a symbol which at any time has a 
definite value although this value may change from 
time to time. In the computing approach the student 
feels that variables stand for something concrete and 
definite and thus feels more at home with variables and 
arithmetic expressions. 

The profound importance of this subtle distinction 
was first brought home to me when I was observing a 
seventh grade class trying out some SMSG text ma­
terials on flow charting. The teacher was quite pessi­
mistic about the prospects for success. He said that 
seventh grade students could understand arithmetic 
expressions to the extent of being able to substitute 
values for the variables to evaluate the expression, but 
that they could not manipulate with the expressions to 
find other equivalent forms. It turned out that the 
students had no difficulty with the material but in fact 
assimilated it at a prodigious rate. I remember particu­
larly vividly the reaction to the simple over-time algo­
rithm in Figure 1 where the variables stand for wage, 
rate and time. One student commented that the ex­
pression RX40+1.5XRX(T-40) could be simplified 

Figure 1-0ver-time 

to RX (40+1.5X (T-40)) which would be more effi­
cient as it would require one less arithmetic operation 
Another student observed that the expression could be 
still further simplified to RX (1.5XT-20). The class 
agreed with these simplifications and appreciated the 
reasons for them. The teacher and I were both quite 
dazzled by the easy familiarity with arithmetic expres­
sions on the part of these seventh graders with no 
experience in algebra. And this was on the first day of 
flow charting with numerical algorithms. 

One difficulty some students seem to have with 
mathematics is that arithmetic expressions when they 
become too complicated have no meaning for them. 
They see these expressions only as strings of symbols. 
This applies already to such an expression as the qua­
dratic formula 

-B+VB2_4·A·C 

2·A 

In the computing approach they tend to see the expres­
sion as being in itself an algorithm for calculating a 
particular numerical value. 



This motivates a remark I'd like to make on. com­
puter languages. I have long felt that in more advanced 
courses applying the computer, such as computer calcu­
lus, it is absolutely necessary to use procedural lan­
guages like FORTRAN or BASIC. The difficulty with 
assembler languages is that students get involved in so 
much detail that they lose sight of the original mathe­
matical ideas. Experiments with teaching computer 
calculus using assembler languages have borne this out. 
However, in earlier grade levels where the problem con­
sists of appreciating the meaning of arithmetic expres­
sions the situation is entirely reversed. Here in pro­
gramming with a prototype assembler language such as 
SAMOS the student plays the role of a compiler as it 
were and breaks the expression into its component 
parts, thus getting a real feeling for the meaning of 
arithmetic expressions. I hope some experiments will 
be made to test this pedagogical technique in the seventh 
or even the sixth grade. 

Development of problem solving technique 

Most teachers have had the frustrating experience 
that many students faced with a problem where they 
can't see the path from beginning to end just can't 
be made to do anything at all. We just can't seem to 
get them to pick up a pencil and start writing something. 
Experience with algorithm construction changes all 
that. Here students learn to find the heart of the algo­
rithm-the fundamental idea-and then to work both 
ways from the heart. They soon appreciate the futility 
of trying to start at the beginning and work toward 
the end. They learn to have patience with their abortive 
efforts. 

Once the student· finds a solution, any solution, he 
stands back and looks for simplifications and improve­
ments. He looks for improvements in the efficiency, the 
elegance, the clarity of his algorithm. He also looks for 
additional features he can add to the algorithm, making 
it do more. 

All this is the essence of problem solving and theorem 
proving in mathematics. The difference is that in the 
computing setting students take to these activities like 
a duck to water. The ability to handle hard problems is 
not confined to the gifted. Many students learn to 
tackle really difficult algorithms requiring weeks of 
work, breaking them down into their component parts 
and putting the pieces back together. As one by-product 
of teaching computer oriented mathematics we hope to 
tap this problem solving power and direct it toward 
solving mathematics problems. 
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Affinity between algorithm construction and theorem 
proving 

We have already seen in the discussion of problem 
solving how the mental attitudes necessary for theorem 
proving are stimulated by the computer viewpoint. 
But the relation between computing and theorem prov­
ing is more than just an analogy. In the computer ap­
proach to calculus and linear algebra most of the exist­
ence theorems are nothing more than algorithms. "If 
you can show how to find it you know it exists." This 
suggests a constructive approach to mathematics as in 
fact is the case. Although we do not accept all the goals 
of the intuitionists, we travel a long way down the road 
with them. 

One result of presenting mathematics from a com­
puter approach is that the entire course is reorganized. 
Although we arrive at essentially the same destination 
we get there by an entirely different route. The ad­
vantage is that the average student will understand 
more of the theory and the top student will understand 
it better. There are very definite levels of understand­
ing. It is one thing to follow the steps in a proof. It is 
another thing to feel it with a sense of inevitability. 

These remarks may help to dispel a popular miscon­
ception relating to computer oriented math courses. It 
is widely supposed that in such courses we use calcula­
tions as a substitute for theory. In actuality the main 
function of computing in these courses is to reinforce 
and promote the understanding of theory. 

Mathematical topics which are algorithmic in nature 

There are a large number of mathematical topics 
which are intrinsically of an algorithmic nature. In 
college mathematics some of these topics are: converg­
ence of sequences, the definite integral, ordinary differ­
ential equations, numerical analysis, and practically all 
of linear algebra. There are· also many topics in high 
school mathematics which lend themselves to algo­
rithmic treatment. Among them are: solutions of sys­
tems of equations, the Euclidean algorithm and the 
fundamental theorem of arithmetic, a wealth of material 
connected with factoring and primes, area under curves, 
mathematical induction, sigma notation, square roots 
by the "divide and average" (Newton's) method. In 
the traditional ways of teaching these subjects, the 
algorithmic approach has not been stressed. Most of 
these subjects have been very poorly understood by 
students. The algorithmic approach should produce a 
high level of comprehension. A couple of examples are 
in order to show why. 
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Figure 2-Sigma notation 

The sigma notation, as exemplified in 

n 1 
L:-
k=l k 

is nothing but a shorthand notation for the algorithm 

depicted in Figure 2. Students traditionally have a 
great deal of difficulty with this notation. If you don't 
believe it, ask your students to find 

100 

L:l 
k=l 

Using the algorithmic approach the student can be 
asked to trace the flow chart of Figure 2 by hand (with 
11k replaced by 1) until he sees what it does. 

We see here that our very definition of the sigma 
notation is as an instruction to perform a calculation 
rather than as the result of this calculation. This is an 
example of the dynamic as opp3sed to the static treat­
ment. Another important point illustrated by the sigma 
notation algorithm is the concept of a bound or 
"dummy" variable. The student sees clearly that the 
final answer has nothing to do with the variable, k. 
Bound variables as encountered here and as the vari­
able x in the expression 

b f f(x) dx 
a 

have always been a stumbling block for students which 
the . a1gorithmic approach goes a long way toward 
removing. 

For another example of how the algorithmic approach 
affects the presentation of a mathematical concept we 
will look at mathematical induction-a disaster area in 
the math curriculum. Suppose we have a statement 
with an integer variable n in it. Let's call the statement 
pen). Suppose we wish to find the first positive integer 
n for which the statement is false. This search can be 
represented by the flow chart of Figure 3. Now further 
suppose that we know somehow that whenever the 
statement holds true for one value of n, it will hold 
true for the next one as well. If this is the case, then 
once we have passed through the True exit in flow 
chart box two of Figure 3 we will go through it the next 
time as well and the next and the next ad infinitum. 
Now is there any way that we could ever leave by the 
False exit so asto get out of this loop? When this ques­
tion is asked in class some student will always answer 
that this could only happen the first time, that is when 
n = 1. Thus if we add the hypothesis that the statement 
is true when n = 1 we see that we can never branch to a 
stop; we are in a tight loop; the statement P (n) is 
true for all positive integer values of n. And this is the 
principle of mathematical induction. 

In the latter example we see a use of a flow chart 
that will never be converted to a program and run on 
a computer. We see then that flow charts can have uses 
quite apart from programming. A recent experiment 



was performed in Minnesota teaching a mathematics 
unit to three groups of junior high school students, one 
with flow charts but no computing, a second with flow 
charts and computing and a control group taught in the 
traditional manner. It was found that the flow-charting 
group showed enormous gains over the control group 

peN) F 

T 
3 

N4f-N+1 

4 

N 

Figure 3-Induction 
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but that the computing group was not significantly 
better than the flow-charting group. The scale of this 
experiment was not large enough to be in any sense 
definitive. However, the results point out that the main 
benefit to mathematics lies in the algorithmic approach 
rather than in having an easy way to get numerical 
answers. In more advanced courses like calculus and 
linear algebra the computer is indispensible as we don't 
feel the necessary conviction until we see the numerical 
results. 

Computing experience will be of lasting benefit to 
mathematics students in that they will always have a 
better understanding of iterative techniques. For ex­
ample, I have had far better results in teaching Picard's 
existence theorem in ordinary differential equations 
(using the successive approximation technique) to 
students who have been through a computer calculus 
course. 

The "teaching effect" 

Every teacher has probably said at some time or 
another, "You never really learn a subject until you 
teach it." There is a lot of truth in this. In the com­
puter approach to mathematics the students get the 
benefit of this sort of experience. For, when he develops 
an algorithm and writes the program he is essentially 
teaching the computer to perform the calculation. 
Actually the student learns much more from this ex­
perience than by doing the calculation himself. For his 
concentration is on the ideas involved in the calcula­
tion, where it belongs, and he avoids the tedious arith­
metic which is largely counter-productive. 

Independent work 

Aside from computing I have seen no field of study 
in which so many students become inspired to in­
vent problems, learn on their own and tackle major 
projects. This phenomenon has been encapsulized in the 
phrase "computer bum." Many educators worry lest 
these students will spend too much time on computing 
to the neglect of their other studies. However, as I see 
it, the whole purpose of education is to bring students 
to the level where they can learn and create inde­
pendently. We are achieving this desideratum in com­
puting as nowhere else; it should be encouraged and not 
denigrated. Experts in other disciplines might try to 
find out why computing is so successful in this respect 
and try to develop methods of encouraging this sort of 
resourcefulness in other fields. 
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The excitement of being involved with modern technology 

This item hardly needs any comment except to ob­
serve that many educators suppose that it is the only 
reason for the effectiveness of computing in mathe­
matical pedagogy. Actually it is of relatively minor 
importance though it is of course a source of stimulation 

to most (but not all) students and it would be a mistake 
not to exploit it. 

I hope my remarks have shed some light on the 
present status of the computer in the secondary school­
on where it has been and where it is going-and on the 
reasons for its continuing close association with mathe­
matics in this environment. 



Computer-aided design of MOS/LSI circuits 

by H. W. VAN BEEK 

Texas Instruments, Inc. 
Houston, Texas 

INTRODUCTION 

The functional complexity of MOS/LSI packages has 
increased exponentially during the past seven years­
from a 20-bit shift register with about 130 transistors 
in 1964 to a one-chip calculator with over 3500 transis­
tors in 1971. This evolution has been realized primarily 
because of process and engineering advancement in 
the state of the art. Computer-aided design and layout 
has played a much smaller part in this develop­
ment .... Why? 

The main reason is that most of the CAD systems 
developed to date do not provide a viable and econom­
ical approach for implementing MOS/LSI designs. 
Systems currently in use are either too wasteful in 
silicon "real estate" or require too many error-prone 
manual operations. In order to achieve greater func­
tional complexities in an MOS/LSI circuit, further 
development is required in both the simulation and 
layout of MOS systems. In this paper I will review the 
current use of CAD tools in both the circuit-analysis 
and the chip-layout areas. Challenges that must be 
faced in the future by the programmer in the CAD 
area will be presented. 

COMPONENT LEVEL SIMULATION 

The predictability of the MOS transistor in inte­
grated form by means of device equations leads to un­
complicated yet very effective transient-analysis pro­
grams. 

At Texas Instruments the design engineer uses a 
parametric circuit analysis program for evaluating cell 
or gate design based on the standard device equations 
shown in Figure 1. 

It is interesting to note that factors such as speed 
and power dissipation are directly related to the width 
and length of the M OS transistor. The program re-
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quires as input a wiring node list that describes the 
interconnection between devices. Process parameters 
as well as geometrical details of the transistors are 
data inputs. The designer can also describe particular 
signal wave-shapes to the program for driving the 
inputs as well the details of clock signals used for 
propagating information through his circuit. 
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Figure I-MOS I-V characteristics and basic equations 

Transient analysis is performed on the data by 
generating differential nodal equations, which assume 
charge balance at each node, and solving these nu­
merically. Prediction and correction techniques are 
used to select the proper time constants for solving 
each set of equations. 

The program is strictly an analysis tool as opposed 
to a synthesis medium. Correlation of the computed 
results compares very favorably with actual results. 
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The user can specify a tabular listing of absolute and 
differential node voltages and device currents in addi­
tion to a printer plot of voltage versus time. 

What is the challenge for software development in 
this area? I think it is basically that of staying up with 
the new processes that are coming out of the R&D 
laboratories and ensuring that the models used for 
computation remain accurate. The other requirement 
is to reduce the cost/computer run. Even though the 
current program executes relatively fast-about 1 
minute task time on a 360/65 for a typical problem­
it is used so extensively that a 10 percent reduction in 
run time would represent a sizable monetary savings. 

Another aspect is the time required for data prep­
aration by the designer; this, economically speaking, 
is possibly even more important. With the reduction 
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Figure 2-Signal select control logic 

in cost of simple alphameric CRT display terminals, 
it becomes feasible to provide each engineering office 
with such a terminal. The value in this approach, as 
with other interactive CRT systems, is that during the 
session at the console you (the programmer) can extract 
from the engineer his best effort. Input data checking 
is performed instantly and answers provided· when the 
engineer is most irrvolved with solving his problem. 
This is an extremely important point to keep in mind­
software development in this area must be perfectly 
synchronized with the modus operandi of the design 
engineer. You must anticipate his requirements before 
he has a change to vocalize them. This implies that 
you, the programmer, be very conversant in the 
problem area. 

Understanding the problem to be solved for the 
design engineer is even more important in the area of 
MOS/LSI chip layout. 

COMPUTER AIDS FOR THE LAYOUT OF 
MOS/LSI CIRCUITS 

One of the challenges facing the MOS designer in 
this area can best be exemplified by discussing a simple 
but accurate example of a partial system implementa­
tion. Logic in the form shown in Figure 2 had been 
implemented in standard TTL logic; it represented a 
portion of a larger logic system which was to be con­
verted to MOS. 
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Figure 3-First reduction, signal select control logic 

The designer has available to him an automatic 
P & R (Placement and Routing) program with a 
substantial number of cells. If he chose this approach 
he would initially try a one-for-one replacement of the 
TTL logic diagram with 51 MOS cells. These "library" 
cells have a standard height of say 12 mils. Assuming 
an average of three I/O pins per cell and 1.2-mil 
centerline spacing, we can arrive at an area requirement 
of 12 mils X 2 pins/cell X 51 cells X 1.2 mils/pin = 

12 X 184 mils. This is the area required for the gate 
(or cells) only, not the intraconnect. For the intra­
connect we can assume, for a random logic circuit 
implemented by rooans of standard cells, that roughly 
20 percent of the area will be occupied by cells and 
the remaining by intra connections and bonding pads. 



In this particular case the circuit size would be roughly 

12 X 184 
20 X 100 = 11040 

square mils or about 100 X 110 mils. The first com­
ment that comes to mind is that the routing algorithm 
or the designer was not very good at the task. Let's 
see, however, what the designer can do from this point. 

By combining gates that have a fan-out of 1, he can 
arrive at an arrangement as shown in Figure 3. This 
approach leads to 28 "standard" cells with a total of 
107 I/O pins, resulting in an area requirement of 
~7704 square mils or a 31 percent reduction over the 
first implementation. The designer can continue the 
"customizing" of cells and maybe achieve a layout 

Figure 4-Arithmetic unit 

equally divided between active and passive area of 
about 60 X 60mils.2 

The designer reduced his dependence on the auto­
matic placement and routing program because of the 
custom design performed, but he now apparently has a 
small layout. However, this is a false assumption since 
he only implemented a small percentge of the overall 
system as shown in Figure 4. Just one small triangle 
represents all of Figure 3! 

Sophisticated system implementation demands a 
better technique. The designer must be forced to look 
at the overall logic requirements of the system and 
break it down into functional blocks. He also must 
try to make maximum use of the PLA (Programmable 
Logic Array) or matrix technique since this approach 
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uses the same real estate for active devices as well as 
for the passive intraconnections to these devices. 

The PLA technique is an approach in which system 
logic equations are broken down into sets of Sum-of­
Product terms. Implementation follows by generating 
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Figure 5-PLA logical equivalents 

Product terms in an AND matrix, and summing thes(3 
in an OR matrix to produce the desired output (see 
Figure 5). Memory elements can be added outside the 
matrices to satisfy time delays and/or storage require­
ments. Almost all random logic circuits generated at 
TI contain one or morePLA's for control functions. 
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What is the future then for CAD if we suddenly 
discard the standard gate or cell approach in favor of a 
technique th~t doesn't lend itself to the nicely or­
ganized world of fixed-height cell layouts? Is automated 
placement of cells by means of a program obsolete? 
I believe that current versions are obsolete for most 
implementation requirements because of the poor area 
utilization. The human skill at conceiving an essentially 
infinite number of possibilities for placing arbitrary 
size polygons in a minimum area is one that is too costly 
to implement automatically. For an equivalent logic 
function the skilled draftsman can always generate a 
smaller layout than can an automatic placement and 
routing program. , 

Let's take a look, however, at the other side of the 
coin. Future demands on the functional complexity of 
packaged M OS circuits will increase by leaps and 
bounds if the past few years are any indication. These 
pressures will lead to circuit complexities that cannot 
be handled by only one or two designers, but will re­
quire teams of engineers. Even so, the chance for error 
during the design and layout process will be so great 
as to make the end product too expensive for the market 
place. One missed connection or contact on a circuit 
can cost thousands of dollars in lost time and effort to 
correct and recycle. An effective means of minimizing 
errors during the design and layout of a circuit is there­
fore mandatory. 

It is this aspect of CAD that is currently undergoing 
the greatest evolution. Interactive-graphic systems are 
now becoming available that allow the designer to lay 
out his circuit under control of the computer. Data are 
input to the system by means of a digitizer, graphic 
tablet, joystick or light-pen. This is an effective manner 
of reducing the errors that occur in cases where layouts 
are implemented entirely by hand, because a complex 
circuit can contain over a quarter million coordinate 
points! 

An interactive-graphic system in use at Texas Instru­
ments lets the user perform his cell placement and the 
intraconnect between cells, by means of a light-pen­
controlled CRT. Major program functions such as 
signal routing and placing cells are called up by means 
of a function keyboard. The program has automatic 
layout rule verification and demands an override com­
mand from the operator in order to proceed with the 
layout. Automatic conductor-spacing routines facilitate 
the layout of large groups of bused conductors. Only 
cell outlines are displayed to keep the data handling 
problem to a minimum. 

This system allows the operator a great degree of 
freedom in doing the work he is most qualified to do, 
namely the placement of arbitrary-sized cells and their 

intraconnection. The system meanwhile performs a 
clerical function-that of encoding the light-pen and 
function-keyboard commands. The encoded data is in 
a form suitable for driving digital plotters, and mask­
generation equipment. 

DATA VERIFICATION 

The question that now arises is: "Can we trust that 
no errors are made in the layout?" The answer is NO, 
because the user can usually override the system error 
diagnostics. How do we check his work? A special 
layout verification program was written to check the 
final layout just prior to the mask-generation step. It 
will check all circuit elements against each other for 
layout rule violations. This task was previously per­
formed by a visual inspection of a digital composite 
plot of the circuit but the amount of data was becoming 
so large that errors could and did slip by. 

The Critical Clearance program checks both the 
dimensional consistency of the data input as well as 
the spacing between figures. This check is performed 
on data of a particular mask level only. An extension 
of this program performs a level-to-Ievel check and 
verifies proper layout rule overlap requirements. 
Continuity checks are also made to detect open lines 
or incomplete transistors that might exist in the data 
deck. A trace-back to the circuit schematic and the 
original logic description completes the feedback cycle. 

FUTURE DIRECTIONS IN MOS/LSI 
IMPLEMENTATION 

Respectable advancements have been achieved in 
the area of CAD and layout of MOS circuits during 
the past 5 years, but even so they will not be able to 
effectively help in our future designs. There still exists 
a large gap between the abstract aspect of a logic dia­
gram and the concrete point of a circuit layout that is 
currently filled in with manual and error-prone pro­
cedures. To be more specific we must devise a system 
that accepts logic equations in an existing or new format 
and provides us with an optimum topological layout. 
This requires that a component or circuit data base be 
established with which the designer can interact. 

Note that I mentioned a component or circuit data 
base as opposed to a circuit or logic system data base. 
I propose that effort he directed toward developing 
such a data base and that placement and routing 
algorithms be developed for it. The availability of 



such a system would allow the MaS designer to bypass 
the generation of cells for his circuit layout and con­
sequently permit him to generate a circuit directly from 
his verified logic. 

Additional programs that would complement such a 
system will accomplish the following: 

1. Full-circuit parametric evaluation. 
2. IVlinor adjustments to circuit layouts by means 

of an interactive graphic terminal to accom­
modate process changes, and 
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3. Generation of documentation pertaining to the 
circuit such as bonding diagrams, process flow, 
parametric test criteria, packaging information, 
etc. 

The above steps currently occupy a sizable portion 
of the cycle time for completion of a prototype design. 
The variety of circuits that will be designed during the 
next few years will bury the component manufacturer 
unless he takes decisive steps in the aforementioned 
direction. 





The role of simulation in LSI design 

by J. J. TEETS 

IBM Systems Development Division 
Endicott, N ew York 

INTRODUCTION 

Forecasts for Large Scale Integration (LSI) indicate 
that logic gate densities of 1000 gates per chipl could 
possibly be obtained during the next decade. Sup­
posedly, device and circuit innovations could be used 
to achieve even higher densities. There are, of course, 
a number of reasons why the industry is not yet manu­
facturing major LSI hardware on a large scale. One 

• of these reasons is the lack of superior software support 
for computer-aided design, particularly simulation 
aids. For LSI, a major increase in logic design verifica­
tion simulation will be required at the chip level to 
ensure correctness of design and to minimize the need 
for chip redesign. 

The purpose of this paper is to review what has 
happened in the last five years, particularly in design 
verification, and to project what must be accomplished 
in the next five to ten years in the area of simulation 
in order to implement the promise of LSI. 

REVIEW OF THE LAST FIVE YEARS 

This section briefly describes high-level (architec­
tural) and low-level (circuit component) simulators, 
and then closely examines recent logic level simulators. 
Logic simulation employs much more detail than 
high-level simulators and much less detail than circuit 
simulators. The purpose here is not to demonstrate 
that these simulators are inadequate for LSI tech­
nologies, but to show that each still has a place. The 
intent is to display a need for multi-mode simulation 
at the logic level in one user interface. 

High-level and low-level simulation 

Predictably, there has been and will be high-level 
simulation studies on various approaches to imple­
menting LSI. Some of the major aspects and tradeoffs 
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evaluated include: (1) replacing third generation sys­
tems with LSI, (2) enhancing architectural approaches 
with LSI scratch pads and main store, (3) micropro­
gramming techniques (both read-only and writable 
control stores), and (4) considering hardware-software 
tradeoffs. 

An example of an available capability for such 
high-level studies is the General Purpose Systems 
Simulator (GPSS).4 GPSS provides for modelling 
systems and can collect various statistical measurement 
quantities such as throughput, resource utilization, 
queue lengths, busy times, system bottlenecks, etc. 
The collection of such data is very valuable in evalu­
ating high-level architectures, both hardware and 
software, in all phases of design. 

On the other end of the simulation spectrum is the 
very detailed low-level (i.e., circuit analysis) simulator. 
This analysis is at the component junction/resistor 
level; here the differential equations are solved by 
numerical methods. 

Design verification at the logic level 

The requirements of pre-LSI technologies such as 
RTL, DTL, TTL and recently ECL have led to the 
development and enhancement of co:nputer-aided 
design support for simulation, wiring, testing, and 
packaging of designs. The concept of a central design 
file, used. by all these applications and massaged to 
satisfaction, is well-known.3 In this section, the simula­
tion techniques used for technologies leading to LSI 
are reviewed in some detail to provide a basis for dis­
cussing later improvements and extensions required 
for today and tomorrow. 

The techniques used by early logic design verifica­
tion simulators were of relatively narrow purpose, i.e., 
they attacked a small set of design problems by using 
techniques specifically designed for these problems. 

There were basically three early types or modes of 
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Figure A-2VND simulation 

logic simulation that became popular and were imple­
mented (2VND, 2VUD, and 3VZD). All were similar 
(table driven, handling both sequential and combina­
tionallogic) but each was valuable to the designer in a 
different way. 

IN 

1. 2-Valued, Nominal Delay Simulation (2VND)3.9 
This mode of simulation assumed that the state 
at any point in the logic at any given time was 
either "0" or "1". The nominal delay was a 
gross approximation of the circuit delay (in­
cluding loading and line delay where appro­
priate) in the form of a "rise" or "fall" delay, 
which corresponded to the amount of time 
taken for the circuit to respond to an input 
change and change the output state from 0 to 1, 
or 1 to 0, respectively (see Figure A). When pri­
mary inputs to the logic are stimulated, the simu­
lator performs the Boolean function of the 
blocks driven by the primary inputs. The basic 
functions performed are shown in Figure D 
(ignore the "X" and "U" values). For each 
block whose value is to change, the proper 
delay is selected and the new block value is 
propagated after that delay. Propagation con­
tinues through the logic until a steady state is 
reached. When a block's value does not change 
as a result of an input change, propagation does 
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Figure B-2VND prediction of TTL inverter response 

not occur. This is known as "significant event" 
simulation and is common to all three simula­
tion techniques being discussed. This mode of 
simulation, although somewhat gross in timing 
analysis detail, was very useful in gaining some 
engineering confidence in the behavior of the 
early design. This mode was more economical 
than the "three-valued zero delay simulation 
(3VZD)." 
One area where this mode fell short, even to 
the point of misleading the user, can be demon­
strated by the following example: the 2VND 
technique (as used in early simulators) predicted 
that the response of a TTL inverter whose rise 
and fall delays were 15 nanoseconds (ns) to an 
input pulse of width 1 ns, is an output pulse 1 ns 
wide and 15ns later than the input (Figure B). 
In fact, however, a TTL gate requires a mini­
mum input width of about 12ns to achieve any 
output response and would, therefore, com­
pletely ignore an input pulse of 1 ns or even 
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O----...In~-------------------

o 

Figure C-Actual response of TTL inverter 

IOns wide (Figure C). Moreover, the technique 
is not pessimistic as a simulator should be. It 
allows the user to think that he can count on 
a narrow pulse to get through a logic gate that 
is sure, in fact, to ignore it. The point here is 
that simulators should not tell lies. Pessimism 
may produce conclusions from simulators which 
may never exist in real hardware and hence 
cloud the issue; however, the designers must be 
alerted to potential problem areas, and then 
decide for themselves when a real problem 
exists. 

2. 2-Valued, Unit Delay Simulation (2VUD)5 
This mode is very similar to the 2VND mode, 
except that the delay of each circuit i~ the same 
(one unit), independent of the type of circuit and 
the direction of change. The contention of this 
mode is that if one unit of delay is assigned to 
each logic block (with some exceptions which 
are assigned a delay of zero) , the results of 
simulation will be sufficiently accurate to serve 



a very useful purpose. Furthermore, if a con­
venient facility is available to add or reduce 
delays by units, the simulator will be able to 
closely represent the operation of the actual 
machine. The applicability of this approxima­
tion is dependent on the manner in which the 
machine was designed. Due to the variation of 
delays in logic circuits from manufacturing, the 
designer must allow sufficient tolerance so that 
all of the manufactured machines can operate 
identically to the prototype within certain 
limits of delay variations. Thus, one can con­
sider the unit delay machine merely as one of 
those variations. 
The most important advantage for this simpli­
fied timing simulation mode is its speed. It is 
faster than the other modes and does not require 
knowledge of nominal delays nor does it require 
storage for those delays in the simulator. It is 
subject to shortcomings similar to 2VND in 

'" that both modes fail to detect most hazards 
(subtle timing problems). 

3. 3-Valued, Zero Delay Simulation (3VZD)2,9 
This mode, the most pessimistic of the three 
presented, was implemented primarily to detect 
hazards and races, * as well as to investigate 
Boolean behavior. All possible timing problems 
of a design are identified to the designer. This 
was realized by the introduction of a third 
value, "X". Any time an input (beginning of 
course with the primary inputs) changes state, 
it is forced to pass through X, signifying that 
the signal is "in transition" or "unknown" . 
When this technique is used, first every primary 
input that is changing state goes to X, the 
driven blocks are simulated, and propagation 
of all blocks to a steady state occurs. The rules 
for simulating X in a Boolean function are a 
subset of Figure D, ignoring the "U" for n,ow. 
After a steady state is reached, the changing 
inputs go to their final values and again propa­
gation takes place to a steady state (if possible). 
If a timing problem is a possibility, the value re­
mains X on a block. This indicates a potential 
hazard involving that block. The possible steady 
state effects of propagating the hazard are also 
shown by X values. A facility exists to allow the 
designer to eliminate some of the simulator's 

* If it is possible for the output signals to behave in a manner 
different than predicted, the circuit is said to contain a hazard. 
When two or more signals are changing together a race is said to 
exist (Eichelberger). 
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pessimism where races detected by the simulator 
are known to be noncritical. When used properly, 
this mode will allow the designer to be confident 
that all potential timing problems have been 
identified. However, eliminating pessimism in 
one part of a design often has unexpected effects 
on other parts. 
Because of the two-pass operation described 
above, this mode of simulation is a little more ex­
pensive to use because of the additional computer 
running time; however, this must be evaluated 
as a tradeoff against extensive hazard detection 
capability not available with the other modes. 

4. Extensions 
Combinations and other variations of the pre­
vious three techniques have been used;6 one of 
the more useful perhaps was the introduction of 
a fourth value, "U", which signifies "uninitial­
ized". When a U appears on the input of a block 
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being simulated, it is propagated according to the 
rules of the simulator (Figure D). At any given 
steady state condition, the appearance of U's in 
the logic indicates the absence of initialization 
data, and therefore, identifies the importance of 
initial values. This can be very useful when 
evaluating system reset operations or the effect 
of incompletely specified input patterns. Two 
forms of the output from these simulators in­
clude: (1) timing charts, which show the reaction 
(in simulated time) of inputs and outputs of 
selected blocks, and (2) "snapshots", which dis­
play the value of all points in the model at 
selected times. 
Other improvements include extension of 2VND 
and 2VUD to include both the X and U con­
cepts. Thus, the nominal delay and unit delay 
modes can be made more useful in the area of 
hazard detection. 

5. The Unfortunate User 
Irrespective of the merits of these simulators 
individually, they had the collective disad­
vantage of not being mutually compatible. To 
simulate for more than one purpose (using more 
than one mode) required considerable, if not total 
duplication of effort. The problem was com­
pounded because each program had a unique user 
interface. Thus, the user had to learn several in­
compatible systems before he could simulate at 
any desired point in his design cycle. The cost of 
this additional training and duplication of effort 
is no longer tolerable, particularly for LSI. It is 
now essential for different simulation efforts to 
have maximum commonality in all respects, 
particularly the user interface. This resulted in 
the requirement for multi-mode simulation and 
leads us into present simulator technology. 

TODAY AND TOMORROW 

Current simulation techniques in the design process 

Whatever the size of a design project, there is a gen­
eral design procedure to be followed. Several stages in 
that procedure involve simulation and these and other 
stages may be iterated to feed back information to im­
prove the design. For purposes of discussion, these key 
stages in design are: 

1. Establish system objectives and specifications. 
2. Model the system and evaluate it by high-level 

simulation. 

3. Partition the system into units (subsystems) and 
establish unit specifications. 

4. Model the units and compare to specification by 
simulation. 

5. Design units at the implementation level, model­
ling them for design verification simulation. 

6. Compare models from different stages by simula­
tion to ensure the detailed design meets unit and 
system specifications. 

7. Build the system. 
8. Check the system against simulation results. 

At stages 2, 4, and 6, simulation is employed; how­
ever, it is obvious that the level of system being mod­
elled is different at each stage. Moreover, stage 6 simu­
lates several levels together. Hence, multi-level simula­
tion is required for a fully integrated simulation 
capability. 

Another major simulation problem that can and must 
be solved is that of getting very large models into rela­
tively small computer storages. Previously, users had 
no option (other than not simulating) except to elimi­
nate bits of their model until it was small enough to fit. 
This usually caused distress by ending up with func­
tionally awkward pieces and unchecked interfaces be­
tween pieces. The solution for this is to partition a 
model, from the start, into a set of coherent regions 
(units), each having a well-defined interface with its 
neighbors (Figure E). These regions may then be simu­
lated together as a system with the simulator auto­
matically handling inter-region transactions by con­
necting together signals with identical names. An 
incomplete (or not yet designed) region can be simulated 
by using manually generated data or higher level models 
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in place of missing parts which influence the regions 
modelled at the logic level. 

This multi-region concept readily lends itself to tech­
niques for solving the storage problem previously men­
tioned. One solution is to use a roll-in, roll-out tech­
nique to make storage available for active regions. 
Another solution is to compress the storage requirement 
(and execution time) of those regions that are being 
used only to generate interface activity for the benefit 
of simulating other regions in detail. This compression 
takes the form of higher level models for the other 
regions so that the functions can be reproduced at the 
interface. With this technique, a "multi-level simula­
tion" capability is defined. Merged with a multi-mode 
capability for those regions modelled at the logic level, 
an overall capability for system simulation can be pro­
vided where the detailed simulation takes place in the 
area of user interest. 

These concepts lead toward the idea of "top-down" 
design using simulation. In stage 4 of the design, high­
level models for the different units may be used to com­
pare specifications of the units against system level 
specifications by simulation. As stage 5's logic level 
model becomes available for a given unit, the simulation 
at stage 6 may take advantage of the higher level 
models of other units not yet designed in detail. The 
stimulus (i.e., the input patterns) for the detailed model 
can be provided by the high-level models surrounding it 
and can operate concurrently with the high-level models. 
The high-level model for the region being simulated in 
detail may be simulated at the same time, and the out­
puts of both can be fed into a comparator to ensure that 
the implementation design meets unit and system 
specifications. This use of the "high-level environment" 
provides the user a pseudo system simulation at all 
times, regardless of which unit is being investigated and 
designed in detail. It also eliminates much of the prob­
lem of providing adequate stimulus to the low-level 
design, which is otherwise a very tedious task. 

Thus, the initial and unavoidable need to partition a 
model can be turned to an advantage. It leads to orderly 
design, region by region, with thorough checking and 
evaluation of each unit. In addition, very important 
advantages, particularly in the LSI design environ­
ments, can be addressed in the area of design verifica­
tion; these include: 

1. verify the correctness of design (including com­
paring high-level to low-level models and com­
paring different versions of a unit). 

2. detect hazards and races which would not be 
detected by building a hardware model. 
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3. speed up the design process by using top-down 
design techniques (which also provide good com­
munication between unit design groups). 

4. reduce the overall cost of the design process. 

All of the above, particularly the cost factor, are im­
perative in the LSI design environment. 

It has been stated that for LSI, a major increase in 
logic simulation at the chip level will b~ required to in­
sure correctness of design and to minimize the need for 
chip redesign. The engineering change problem is par­
ticularly perplexing and still lacks good proposals for 
its solution. If a chip change is required sufficiently early 
in an LSI machine project, redesign costs will be in­
curred although slippage may not occur. During machine 
test, however, where in the past the practice was to 
install an immediate fix If possible, slippage as well as 
redesign costs will accrue; a repeated string of such 
change cycles·is obviously intolerable. Thus, LSI ideally 
requires error-free design which necessitates simulation 
aids and capability at a level never required or achieved 
in the past. Such ultimate goals as self-diagnosing and 
repairing machines in LSI cannot possibly be achieved 
without significant advances in design verification and 
fault simulation capability. 

Thus, because of the cost factors and the related prob­
lems of system prototype "bring up" (engineering 
change activity), it appears that the LSI technology is 
insisting upon much more extensive simulation and 
paper design before manufacture, and at the same time, 
a reduction in the overall machine development cycle 
and cost. 

Another salient point that must be made is that it is 
imperative for fault simulation to be integrated more 
into the design verification process. If a machine de­
sign does not lend itself to system fault diagnosis and 
component fault detection, then many problems arise. 
For this reason, the requirements of testing the machine 
must be fed back into the design process as early as 
possible. One approach is to use the same stimulus used 
by the design verification simulators as test patterns for 
fault simulation. If the patterns detect only a small per­
centage of faults, then an incomplete job of design veri­
fication or an untestable design may be indicated. 
Quite possibly the answers to testability and diagnosis 
reside in performing fault simulation as soon as possible 
after a logic level design is firm, or even during the 
comparison of alternative design approaches. 

The change in engineering design philosophy is largely 
due to the inadequacies of past diagnostic capability. 
Tests were derived in the past, in some cases, after the 
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machine had been built. They were, as a consequence, 
not fully effective in their coverage. The obvious solu­
tion is to constrain the initial system and engineering 
designs by the diagnosis requirements. 

An open-ended list of future goals can now be stated 
for implementation of LSI in the next decade; they in­
clude: 

1. techniques and software for verifying that sys­
tem and architectural specifications have in fact 
been implemented in a machine. 

2. highly interactive, terminal oriented, and inte­
grated computer aids for design to reduce user 
training and turnaround, resulting in usability. 

3. advanced and enhanced simulation techniques 
for verification of designs; particularly multi­
level simulation, logic-level simulation, and more 
effective techniques for timing analysis, at re­
duced cost. 

4. advanced testing capability. 

5. a "paper design" capability using software which 
provides very high engineering confidence and 
paves the way for the reduction or elimination of 
engineering change activity, at reduced cost and 
on a shorter design cycle. 

6. Automatic input generation (particularly test 
pattern generation) and automatic output analy­
sis facilities to relieve the burden of the designer. 
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INTRODUCTION 

In large circuits, we are confronted with two problems. 
First, the modelling of integrated circuit modules using 
the normal methods of considering each element such 
as the general circuit analysis program-precise though 
it may be-can be excessively lengthy and tedious be­
cause of the computation time involved and the large 
storage required.1 •2 On the other hand, since most very 
large 'circuits are likely to be active, and therefore non­
linear, and since the processes of non-linear analysis 
are more time-consuming than the corresponding pro­
cesses of linear analysis, the time required for the in­
version of these large matrices would become an even 
smaller proportion of the total. Though suitable for 
discrete circuit analysis, this method applied to inte­
grated circuit configurations3 such as modified TTL 
and DTL gates leads to complex forms of modelling 
rendering it inappropriate for use in large systems con­
sisting of hundreds of logic gates. Also, since the models 
of the elements constituting integrated circuits are more 
complex in nature than their discrete counterparts, a 
model leading to accurate predictions of performance 
will tend to give an excessively lengthy analysis. The 
choice of models becomes even more critical as the 
complexity of integrated circuits becomes larger. Even 
with the recent advances in sparse matrix, adjoint and 
implicit integration techniques, these methods are not 
powerful enough to solve the problems associated with 
large complex logic systems. 

Secondly, computer-aided analysis in digital systems 
commonly involves logic simulation6.7 and an assess­
ment of propagation delay which is made through the 
time diagrams for each module available from the 
manufacturers. However, propagation delay tpd ob­
tained by algebraic methods,6.7 is imprecise since some 
important factors governing tpd are not considered. 
Further, in a logic system the outputs of the modules 
are delayed and may not be simultaneous even though 
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the inputs are. At high speeds, interconnections intro­
duce significant delays and act as transmission lines; 
these effects, which cause functional errors and hazards 
in sequential circuits particularly, are included in the 
process of simulation. 

MACRO-MODELLING 

As medium and large scale integration (MSI and 
LSI) become commercially feasible, the transient 
simulation and accurate evaluation of tpd in large sys­
tems become increasingly important. The need for the 
accurate prediction of the delays, where complex fac­
tors are generally ignored, results from the inability to 
specify exactly when a given signal will actually make a 
transition from one state to the other. These delays 
may also introduce functional errors in the system. 
Apart from the elemental components and considera­
tions of fan-out, the important factors governing tpd are 
the rise and fall times of the input function, multiple 
inputs, short input pulse width, multiple paths, feed­
back loops and the characteristics of the interconnect­
ing paths. However, to obtain a precise value for tpd and 
to predict the transient waveform at a given point in a 
system with multiple interconnecting and feedback 
paths, a transient Macro-Model is necessary. If the 
transient behavior of each module under the operating 
conditions is not precisely known, the actual output 
logic function obtained may be unrealistic. A novel 
approach-Macro-Modelling3 •4-which takes into ac­
count all the considerations outlined above and enables 
a good prediction of waveforms and propagation delays 
in large integrated digital systems, is based on an ana­
lytical formulation of the input-output relationships 
in transient of the logic module, using the piecewise 
linear transient device model introduced by N arud 
et al. 8 Examples of such piecewise linear analytical 
expressions can be found in References (3) and (8) for 
a large variety of bipolar and MOST gates. 
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Koehler5 alludes to macro-modelling while investi­
gating the effect on propagation delays using quantized 
tables and taking into consideration the effect of fan­
out for the two values of propagation delay for rising 
and falling edges. He points out the possibility of using 
empirically-derived expressions for specifying the 
input-output relationship. N arud, Dertouzous and 
Jessel2 have made a good attempt to model an ECL 
gate by using non-linear input and output current 
generators and capacitances but their approach has 
some limitations: the number of gates in the system is 
restricted to 12 and it is not suitable to analyze systems 
with saturating bipolar gates or MOST gates as well as 
interfacing with different kinds of gates. The effect of 
feedback paths and interconnections causing multiple 
reflections could not be readily simulated by their 
method. Macro-modelling in Large Scale Integration 
(LSI) of digital systems makes use of the periodic 
nature of a large number of subnetworks. Integrated 
digital circuits consist normally of a large number of 
internal nodes-hence variables-whose values need 
not be known for the evaluation of the overall inte­
grated circuit provided, of course, that their effect is 
taken into account. Obviously, there are two main 
aspects of the analysis: 

(a) the modelling of different kinds of modules 
which the system may comprise and 

(b) the actual simulation of the whole system. 

MACRO-MODELLING IN SIMULATED TIME 

The input function is first determined by establishing 
the dominant input in relation to the other inputs.4 The 
dominant input, in the case of saturating multi-input 
gates, is defined as being the latest arriving and first 
decaying, or vice versa, dependent on the kind of logic 
operation performed. For non-saturating gates, a sepa­
rate integral is solved for each input and the appropriate 
value is used as the argument in the output function. 
The dominant input is then subdivided into a given 
number of fixed time intervals At and the output re­
sponse is computed by successive iteration for each 
time interval using the analytical input-output rela­
tionship for the particular module. The quantized 
values for the input and output functions at the be­
ginning and end of each interval provide the initial 
values and slopes (which together form the initial 
conditions) and must be included in the computation. 
The simulation is performed by successive iteration of 
the set of mathematical expressions describing the type 
of module under consideration. The type of logic 
module is simulated accurately by an analytical tran-

sient input-output relationship-an expression which is 
analytically derived2,3,4 and stored for reference. It in­
cludes the transfer function of the module as well as a 
function defining the propagation time. These transient 
expressions3 ,8 are not difficult to obtain using the piece­
wise linear device model. Each such iteration deter­
mines the value of the output for each corresponding 
equation as a function of the values of the composite 
inputs. This is illustrated by considering points on the 
input and output curves (Figure 1) corresponding to 
time ti; the time at the beginning of the previous in­
terval is t i - I and ti = t i- I + At. The value of the output 
function Vi at ti is calculated from the corresponding 
value of the input function Ii and the entire response is 
obtained by iterated computation. It is important that 
the current input and output function values (Ii and 
Vi) as well as the values corresponding to the previous 
interval (Ii- I and Vi-I) are made available at the be­
ginning of each interval, since these determine the initial 
conditions-the initial values and the slopes for 
each At. 

Given V TI and V T2, the threshold points associated 
with the rising and falling input edges, the output re­
sponse of logic gates may be looked upon as consisting 
of three main regions: 

(i) the region before V Tl, 

(ii) the region between V TI and V T2 and 
(iii) the region after V T2. 

Each main region may consist of one or more sub­
regions. Logic gates normally require one or more 
subregional expressions3 to specify their transient re­
sponse. While each subregion may be considered as a 
continuous function, the interface point where a sub­
region begins is defined as a discontinuity. Because of 

FUNCTION Ii 

Figure I-Macro-modelling and waveshaping of continuous 
expressions for the rise and fall times with discontinuities 



the discontinuities associated with the output of these 
gates, they may be referred to as multiregional gates. 
Examples of multiregional responses are the modified 
bipolar and MOST gates.3 The input-output conditions 
and transient relationships for each region are different 
and are considered separately in the simulation. This is 
consistent with the principle of piecewise linear 
analysis.s 

For the output region preceding V TI, an important 
consideration is the comparison of the slope of the input 
function at each time interval ~t with the slope of a 
curve Y i, which is governed by the internal time con­
stant associated with the gate input. 

In general the region between V TI and V T2 is governed 
by T D, a delay time elapsing after V TI, and by the 
relevant transient relationship of the gate. TD depends 
on the relationship in time between the rate of rise of 
the input Ii and the inherent time constant Y i associ­
ated with the gate input. For similar gates, the varia­
tion in TD is of little concern, but in a system employ­
ing interfacing with different gates, the changes in the 
value of TD and in the position of V TI must be taken 
into consideration. Given that Ii is much faster than 
the internal time constant Y i , TD is determined by Y i ; 

whereas, if Ii is slower than Y i, TD is governed by the 
input. The required input relationship at interface 
points is established and the required TD computed. 
This region is also governed by an intrinsic curve Xi 
derived from the internal switching characteristics of 
the gate.2 ,S,9 A comparison of the current values (Xi 
and Vi) at each ~t detects the presence of a disconti­
nuity in the response. The value and slope at the point 
where a discontinuity occurs are stored as new initial 
conditions for the next continuous subregion. 

The region after V T2 which may also be multiregional 
is governed by TDD, the storage time elapsing after 
V T2, and the appropriate input-output transient rela­
tionship. TDD is an important parameter and governs 
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INPUT Ii 
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Figure 2-Effect of a short pulse width on the rising response 
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DOMINANT INPUT Ii 

INVERTED OUTPUT Vi Vi 

I· TOO> Ip 

Figure 3-Effect of a short pulse width on the storage time 

the output response of tpd. An appraisal of T DD is 
therefore included in the macro-model. 

Assuming that the input waveform consists of 
reasonably wide pulses, the corresponding output \vave­
form Viis predicted in a normal manner by considering 
the parameters T D and T DD for the logic module. If, 
however, the duration of the input pulse Ii is short 
and comparable with TD and TDD, then prediction of 
V i must be based on the consideration whether the 
input levels turn the output stage O~ or drive it into 
saturation. It may be seen that this consideration de­
termines whether the output is a pulse waveform or 
consists of partial pulses or humps. This assessment is 
made with accuracy by the simulation method, which 
computes the initial conditions (V i-I and V i-2) at the 
beginning of each output interval ~t subsequent to an 
enquiry of the conditions at the input. This is further 
explained through the waveforms shown in Figures 
(2), (3) and (4). Figure 2 shows the case when tp , the 
pulse width of the dominant input I i to a gate as 
measured between the two threshold points V Tl and 
V T2, is small and V T2 follows V Tl before the output 
waveform Vi reaches the '0' level. As no storage time 
(TDD) considerations are involved, it may be seen that 
the response Viis only a partial pulse; the settling time 
at the lower level of the output Vi (before the output 
starts to rise) is only due to the intrinsic charge in the 
switching circuit. Figure 3 shows the negative edge of 
the input Ii and the output Vi of a saturating gate at 
the '0' level initially. If the transition of the input 
from V T2 to V Tl has duration less than TDD, then the 
output does not change until a time TDD has elapsed 
after the point V T2. A third case is illustrated by Figure 
4 where the time from V T2 to V TI (at the lcwer level 
of the input Ii) is larger than TDD. In this case the 
output rises at the end of TDD. If, however, the time 
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DOMINANT INPUT Ii 

lNVERTED 
OUTPUT Vi 

Figure 4-Effect of a short pulse width on the falling response 

from V Tl to V T2 (at the higher level of the input I i) is 
short such that the output Vi does not reach the '1' 
level, then the output continues to rise for a time TD 
from the point V T1 and then starts to fall. 

These cases are obviously for inverting gates but the 
argument applies equally to gates without inversion at 
the output. 

FEEDBACK LOOPS AND FLIP-FLOPS 

A sequential circuit can be thought of as a combina­
tion of two simple NOR gates connected in a closed 
loop. The output of each NOR gate drives the input of 
the other. Actual sequential circuits do not in general 
behave ideally. Changes in voltages at the outputs of 
secondaries may not be simultaneous even though their 
inputs are; at high speeds even short interconnections 
may introduce significant delays. Unfortunately these 
various delays do not simply slow down the operation 
of the circuit, they may introduce functional errors and 
give rise to hazards. As a result of the inability to specify 
exactly when a given signal will actually make a transi­
tion from one state to the other, Szygenda, Rouse and 
Thompson7 associate an ambiguity interval with each 
.signal. The requirement of an ambiguity interval is due 
to the fact that gates of the same type could have 
different propagation times; hence the time delay of a 
gate is represented as a minimum value plus an am­
biguity region. The approach in this paper, however, 
does not require the postulation of ambiguity intervals, 
since the propagation delays are accurately represented 
in the Macro-Model developed for each particular 
gate considered. 

The simulation of feedback paths in a system is 
illustrated by considering Figure 7 in which module 8 

forms a feedback loop with module 7. The scanning is 
started by giving an enabling initial condition to the 
feedback input of module 7. This may be done by con­
sidering~ the . loop open at the beginning of the first 
time interval ti; this provides an output for module 7 
and hence for module 8. At the beginning of the next 
time interval, ti+l, the feedback input is then made to 
take the value of the module 8 output thus giving the 
corresponding output value for module 7, and the entire 
output response is obtained by the usual iteration 
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Figure 5-Algorithm illustrating pure delay and unit-step delay 



principle. This in effect may be interpreted as including 
a delay At in the feedback loop. It may be seen that 
the overall error in propagation time depends upon the 
ratio Atl ntpd where tpd is the individual delay of n 
modules constituting the feedback. This principle is 
easily extended to the simulation of sequential circuits 
e.g., flip-flops which can be considered as two cross­
coupled inverting NOR gates. For inputs originating 
from a source with a pure delay, the values are those 
obtained during the previous iterations ti-d determined 
from the respective values of the actual delay d as a 
function of time steps. This principle is illustrated in 
the flow chart of subroutine DELAY as shown in 
Figure 5. 

MODEL IMPLEMENTATION 

From the two different modes of handling time and 
processing events, i.e., 

(i) the next event formulation of a simulation model 
which is time variable and dependent on the 
events to be considered subsequently and 

(ii) the fixed time step model, 

the latter mode approach was chosen. A fixed time 
step model requires the user to specify a size for the 
time increment At to be used when the model is em­
ployed for simulation. In fixed time step simulation all 
response values are treated as if they all happened 
simultaneously at the upper end of the interval. Be­
cause of this, merely changing the size of the time incre­
ment to a large arbitrary value can radically alter the 
interrelationship of event occurrences. 

It is noted that although a time step of any positive 
magnitude At allows the simulation to be executed, the 
meaning and validity of the results is related to the 
value of At. A very large arbitrary value of At may 
lead to inappropriate initial conditions. The conditions 
corresponding to a discontinuity or subregion may be 
left unscanned and the resulting response may have an 
incorrect subregional waveshape. At is chosen to be less 
than TD and TDD and is for example 1 or 2 ns for gates 
with switching times of the order of 10 ns. On the other 
hand, a fundamental problem associated with simula­
tion is the time synchronization of model elements. 
This problem exists because the real network may per­
form certain phenomena simultaneously while the model 
must perform these phenomena in a sequential manner. 

The simulator MILS (Macro-modelling of Integrated 
Logic Systems) is based on a "fixed-step" time-incre­
ment concept,l1 where a search is done for the next 
event after the current event has been met and passed. 

Implementation of a Transient Macro-Model 1075 

Figure 6-Algorithm illustrating the scanning procedure 
in simulated time 

The actual simulation mechanism used, however, is a 
special case of this concept; in fact this mechanism can 
be considered as a special case of the "next-event" 11 

principle, since all events do occur simultaneously at 
the ends of the time intervals and will be processed to­
gether until the next time is looked for. There is, how­
ever, a definite order in which events occur. This order 
is proceduraF2 and is related to the logical interconnec­
tion and physical layout of the system. It is obvious 
that the card order in the simulation program may not 
be the same as the order of events occurring and in 
this respect the program description is non-procedural. 
In the simulation, each gate or circuit is treated as a 
box with a sequential number N as well as a type identi­
fication number. The description of the modules which 
may be of different kinds, are previously stored. Input 
functions, which may occur anywhere in the system, 
are designated "input-boxes" and included in the simu­
lation with a sequential number. Each unit (or box) 
has response states at times ti and ti-I, the latter cor­
responding to the initial condition and, in general, the 
response states of boxes of similar or different type 
numbers need not have the same quantized value. To 
obtain the response of the system at a certain node, the 
corresponding discrete value of the input function is 
obtained and, while time stands still, the output of all 
the modules are evaluated by scanning in a sequential 
order. Owing to the topological configuration of a sys-



1076 Spring Joint Computer Conference; 1972 

Figure 7-A circuit configuration which has DTL modules and 
includes a feedback loop; f30 and Ft were taken as 10 and 500 

MHZ respectively 

tem, the outputs of some modules may not be available 
in a sequential scanning in which case the scanning of 
these modules is repeated with the help of pointers, 
until all the modules have functioned once. The opera­
tion then moves to the next interval, a new value of the 
input function is introduced, and the corresponding 
output value evaluated. The entire response is thus 
obtained by similar scanning. This procedure is illus­
trated in Figure 6. 

Assuming identical box types, the output function 
Vn,ti of the box n considered at time ti is dependent 
on the status J n,ti-l of the output function. This status 
is determined from a knowledge of the position of the 
scanning time ti with respect to the input function; 
and J n, ti-l has different values above V Tl and below 
V T2. The m inputs of box n are first searched-not 
necessarily in a sequential order-to determine which 
input is dominant. This depends on the logic operation 
being performed. This resultant dominant input associ­
ated with input k is then designated Ik,ti at ti and then 
compared with the previous value Ik,ti-l to determine 
the slope of the rising and falling input functions. If the 
j input to a box n is connected directly to an input-box, 
then the input value will be obtained from the appro­
priate specified input waveform at time ti by asimple 
interpolation technique, but if the j input to box n is 
not from an input-box then the input value Ik,ti will be 
extracted from the· outputs of the m connecting boxes. 
If an input is from the output of the same box, this 
means that there is a feedback loop (seesection 4). 
The previous value of the output function V n,ti-l is 
compared with the current value Vn,ti to determine the 
initial conditions at each time interval. An analysis of 
the configuration shown in Figure 7 which has DTL 
modules and includes a feedback loop (i.e., between 
modules 7 and 8) was carried out by the simulation 
technique discussed, and the responses at nodes A, B, 
C, D, E, F are shown in Figure 8. The response at G 
remains as expected, high. A list of the symbols used 
in this section is given at the end of the paper. 

SYSTEM IMPLEMENTATION 

Speed of simulation is an important requirement but 
may be sacrificed if more accurate results are required 
through a reduction in ~t. Although an assembler lan­
guage would result in' a little faster execution and less 
storage requirement, FORTRAN was chosen since it 
would be easier to implement and is considerably more 
machine independent.7 Its use is justified because the 
method itself is so efficient. The efficiency of this ap­
proach is illustrated in the storage and computing time 
required on Queen's University ICL 1907; 9 K for 300 
logic modules, 40 types of logic gates, 10 input wave­
forms; and 21 mill seconds for the 8 gates configuration 
of Figure 7. FORTRAN is more compatible when deal­
ing with numerical values in large arithmetic state­
ments-as would be the case when computing the time 
response in numerical form. PLAN (ICL Machine­
Coded Language) or PL/l has desirable features which 
could be easily added to support the FORTRAN IV 
system only in the part of the program not dealing 
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with numerical values especially in the STORE part, 
hence increasing the efficiency. 

However, FORTRAN programs can grow excessively 
large for two reasons: firstly that they contain a large 
number of instructions, and secondly that they require 
a large amount of storage, usually for arrays. Programs 
which are large for the first reason can usually be over­
laid. MILS provides a way of treating the storage in a 
similar fashion. An area in core can be used to hold the 
part of a larger storage area that is required at a given 
time, selected from the larger area held on disc storage. 
When the part is no longer required it can be written 
away to the disc storage and the next part can be 
brought down into core store previously occupied by 
the first segment. There is no restriction on the order 
in which sections of storage are accessed. The storage 
described in this paper is scratched space, i.e. ,any in­
formation stored on it is lost when MILS is terminated. 
The system uses files on magnetic disc devices to store 
the information. Files can be on either EDS or FDS 
( exchangeable disc storage or fixed disc storage) 
scratch files. A maximum of eight files can be declared 
at anyone time. A file must be declared by a CALL to 
a subroutine which declares a scratch file of length K 
elements. One element is required for each real or in­
teger array element. Two elements are required for 
each complex or double-precision array element; 
another parameter is for the channel number by which 
the file is to be referred and must be an integer; a third 
parameter is for EDS or FDS. The area on the disc is 
treated as a string of elements numbered from one up­
wards. It is required to keep track of the start positions 
of each of its arrays on the disc by means of pointers. 
This is illustrated by the two subroutines: 

CALL STACK (C, K, A) 
CALL ACCESS (C, K, A) 

where C in the channel number, K is the element 
number of the first element to be transferred and must 
be a variable as the value of K will be altered by any 
of the routines and A is the array name. 

X and Yare array elements declared as A (I, J - - - -) , 
A (L, M - - - -). The values given to all dimensions of the 
array element Y must be greater than or equal to those 
ofX. 

Each of these subroutines writes to or reads from 
the file with channel number C starting at element K. 
K must be a variable and have a value greater than or 
equal to 1. 

CONCLUSIONS 

This formulation technique of an integrated logic 
module permits the analysis of large networks, con-
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sisting of hundreds of logic gates, with complex situa­
tions and allows a more accurate prediction of transient 
performance and propagation delay. The method can 
be used for studying statistical variations of delays and 
switching times without employing regressional analy­
sis. The individual elements of the logic module could 
also be modified for worst case analysis without affect­
ing its macro-appearance. Further, the approach lends 
itself to predicting the effects of multiple reflections and 
crosstalk in a system with a given number of intercon­
necting paths and tap-offs. An analysis of these effects 
forms an important and interesting part of the overall 
system simulation. While a large amount of work has 
been done3 to simulate these effects, in view of the 
space and time available, a discussion of this aspect 
will be outside the scope of this paper. 

LIST OF SYMBOLS 

m 
N 
n 

TD 
TDD 
Vn,ti 

Dominant input function to a box n at time 
ti determined from previous boxes' outputs 
I i for simplicity 

Dominant input function to a box n at time 
ti-l (ti':""l = t i - Llt) determined from previ­
ous boxes' outputs 
I i-I for simplicity 

Status of the output function at time ti-I 
Input number considered 
Dominant input box number 
Maximum number of inputs to a box 
The sequential number given to a box 
The box number being considered excluding 

all the preceding input boxes I x I 
IN-xl 

Current time considered 
Previous time considered (ti-I = ti- Llt) 
Previous iteration time determined from the 

respective values of the actual delay d as 
a function of time steps (ti-d = ti - d) 

Delay time above V T1 

Storage time below V T2 

Output function at ti for the box considered n 
V i for simplicity 

Output function at ti-I for the box con­
sidered n 
V i-I for simplicity 

Threshold point for a leading input edge 
Threshold point for a trailing input edge 
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INTRODUCTION 

LSI implementation of digital circuitry opens the door 
to the consideration of dramatically new approaches to 
the design of system fault diagnosis. 1 New constraints 
have been added, such as the difficulty of inserting test 
access points internal to large pieces of circuitry. At 
the same time, failure modes seem to be changing with 
bonding lead failures increasing in importance.2•3 This 
paper presents an approach that leans heavily on the 
assumption that adding additional logic to a circuit is 
of little consequence, whereas it is important to reduce 
the access provided for testing capability. As the prac­
ticality of the proposed approach has not been examined 
in detail, the concept is primiarly presented to stimulate 
further study into the special problems and oppor­
tunities involved in diagnosis of LSI systems. 

The approach discussed here is to incorporate on each 
least replaceable unit CLRU) a special combinational 

* Parts of this paper are excerpts from Dr. Mehta's Ph.D. Thesis. 
Dr. Messinger of Illinois Institute of Technology served as an 
academic adviser during the course of the thesis, while Dr. Smith 
of Bell Telephone Laboratories acted as a thesis adviser. Dr. 
Mehta is with GTE Automatic Electric Laboratories which also 
supported the thesis. 
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test circuit that will identify, by observation of the 
output alone, any stuck at "0" or "1" input failures to 
the particular input involved. Such a test circuit is 
termed an "Ambiguity Resolver" CAR) function, and 
proof of its existence for any number of inputs ,vill be 
presented. The identification of a failure to a particular 
input in general actually only isolates the failure to the 
bus that is connected to that input because of the 
propagating tendency of failures on a bus. Thus, all 
LRU's connected to the bus implicated are equal 
candidates to have failures on their bus connections. 
A capability such as provided by AR functions would 
obviously be of little use in a situation in which buses 
tend to be common to a group of LRU's. However, 
when the observable points are restricted to the func­
tional outputs, conventional methods usually do not 
provide resolution of input/output faults to a unique 
bus. This feature is conveniently provided by the usage 
of AR functions. 

Let us define some of the terms and clarify the nota­
tions used in this article. 

DEFINITIONS AND NOTATIONS 

Observable Points: points at which the outcome of an 
applied test procedure can be observed. 
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BONDING LEADS 

F1 : THE BASIC FUNCTION 

Fll : THE DUPLICATED FUNCTION 

F2 : A COMPARE FUNCTION 

Figure I-One way to use redundancy 

Z SPECIAL 

Failure Exclusive Points: a set of points only one of 
which is affected by anyone assumed failure. 

Independent Inputs: two inputs are independent iff 
(if and only if) the logic state of either can be changed 
without affecting the logic state of the other. 

Sensitized Path: a path between a point in a com­
binational circuit and the output is sensitized if a change 
of logic conditions at that point results in a change of 
logic conditions at the output while other inputs are 
not changed. 

Output Vector: the ordered set of (binary) outputs 
that result from the application of a test procedure (a 
sequence of tests). The output vector corresponding to 
no-fault conditions is called the normal output vector 
and is denoted by ~n; also ~f denotes the output vector 
for the same test procedure when fault f is present. 

Complementary Failures: Stuck-at-O (s-a-O) and 
Stuck-at-1 (s-a-1) failures at a particular point (input 
or output) are called complementary. 

Least Replaceable Unit (LRU): the smallest sub­
system which will be completely replaced if a fault is 
located at the terminals of, or inside, the subsystem. 

Capital letters of the English alphabet are used to 
denote the inputs and the outputs of a circuit. Usually 
the early letters (A, B, C) are used for the inputs 
while the later letters are reserved for the outputs 
(Z, Y, X, W). Exceptions in these notations are made 
when dealing with networks to avoid duplicate labeling 
for connections (buses). Subscripts are used to identify 

the inputs or the outputs. A distinction is made between 
the inputs to the circuit (Ai) and the leads which carry 
these inputs to the circuit. Small letters with identical 
subscripts (ai) designate the corresponding leads for 
any input. Similar notations are used to distinguish 
the outputs and the output leads. A fault at the input 
lead is fed back to the input (output of the driving 
gate) only if it is a propagating fault (i.e., if it affects 
the entire bus). A lead ai with a s-a-O fault, in tables 
and figures, is denoted by symbol aP; ail similarly 
denotes the same lead with a s-a-1 fault. 

AMBIGUITY RESOLVER (AR) FUNCTION 

Since LSI implementation makes redundant logic 
economic to use, we examine the possible ways of using 
redundancy (internal to a LSI circuit) to simplify fault 
diagnosis of digital systems. 

One of the ways to use the redundancy is the con­
ventional approach of duplicate and compare (Figure 
1). Two disadvantages prevent this scheme from being 
attractive. First, the required redundancy is excessive; 
it takes more than double the circuitry to implement 
this approach. Second, the approach simplifies the 
diagnosis of only the internal faults. For the diagnosis 
of the faults at the bonding leads one has to still resort 
to other approaches. Unfortunately, a predominant 
failure mode in systems composed of LSI, that have 
been in systems which are in operation for awhile, is 
due to bond failures. 2 •3 Therefore, the approach of 

BONDING LEADS 

METALLIZATIONS 

F....r---_A 

Zm 

ZSPECIAL 

AMBIGUITY 
RESOLVER (AR) 
FUNCTION 

Figure 2-Another way. to use redundancy 



Figure 1 does not represent an efficient usage of redun­
dancy. 

The proposed approach (Figure 2) consists of a 
specialized single output test function (F) for sim­
plifying the diagnosis of input faults. These Ambiguity 
Resolver (AR) functions are combinational logic 
functions which have the property that input/output 
faults can be resolved to a unique bus through the 
observation of the output alone. We will show that such 
functions exist and that they are simple in comparison 
to the normal function (FI). AR functions simplify the 
fault diagnosis of digital systems implemented with 
LSI circuits because: 

(1) A predominant failure mode in operating IC's is 
bond failures which result in input/ output 
faults. The AR functions simplify the diagnosis 
of only the input faults; however, the output 
faults will become input faults of the driven 
LRU's and therefore will be diagnosed by their 
AR functions. It is reasonable to assume that 
the faults of the unused outputs do not affect 
the system performance. 

(2) AR functions permit resolution of input/output 
faults to a unique bus. Such resolution is not 
always available by the use of conventional test 
procedures when the observable points are 
restricted to the functional outputs. 

(3) Only one point need be observed for diagnosis. 

(4) Since the AR function (F) is unrelated to the 
basic function F I , its design is completely 
independent; for example, FI may be a sequential 
function, yet F can be a simple combinational 
function. Due to this independence, often 
diagnosis using AR functions requires fewer 
tests in comparison to a conventional test 
procedure. 

Although the AR approach simplifies fault diagnosis 
of LSI implemented systems, it is certainly not the 
complete answer. For example, the AR approach 
requires testing, and thus does not provide an on-line 
detection of faults. Also AR function provides neither 
fault detection nor diagnosis of faults within an LRU. 
Therefore, in any practical application, the AR ap­
proach would probably be augmented with other, more 
conventional methods. 

Since the AR function can be independently designed, 
in the following sections, we will disregard the basic 
function. We will concern ourselves only with single 
output combinational functions which have the AR 
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T ABLE I-Outcomes of a Test for Complementary Failures at 
the Input ak and their Implications 

Test Input Conditions Normal Possi- ako ak1 

A1- - - - -An Output bility 

CTi CTi 

2 CTi iii 

3 Ui CTi 

4 Ui iii 

property. We will assume: 

1. Only input/output faults. 
2. Only s-a-I, s-a-O faults. 
3. One fault at a time. 

Implica­
tions for 
the test 

CXki = 0 or 1 
fault in-
sensitive 

CXki = 0 

(Xki = 1 

Not re-
alizable 

4. Access to only the inputs of the function. That 
is, only the inputs can be controlled externally. 

5. Output is the only observable p:::>int, i.e., the 
performance of the function, during the test 
procedure, can be observed only at the output. 

In order to clarify some of the concepts presented 
here, Section 8 presents an example of the use of AR 
functions along with a conventional scheme for com­
parison. 

COMPLEMENTARY FAILURES 

Understanding the constraints that are imposed on 
circuits being tested is required before we can gointo a 
discussion of the existence of AR functions. An impor­
tant constraint is on the allowable outputs for com­
plementary input failures. 

Consider a test ti that applies the input aIia2i ... ani 

to a circuit, and consider a particular input lead ak (see 
Table I). If the output of the circuit is (Ji under the 
test ti, then the output can be either (J i or a- i for ak s-a-O 
and similarly for ak s-a-l. If the output is (Ji for ak both 
s-a-O and s-a-l, then the output is fault insensitive to 
ak. If the output is a-i for ak s-a-O and (Ji for ak s-a-I, 
then it is clear that ak must have a "I" input for this 
test ti. A similar story is true for output (J i for ak s-a-O 
and a-i for ak s-a-l (ak has a "0" input). However, it is 
not possible to have an output a- i for both kinds of 
failures because this would imply that a- i is always the 
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output for ak with either 0 or 1 input, which contradicts 
the original assumption. Theorems 1 and 2 state the 
results just given, which are proved elsewhere in detaiL7 
They are given below because the results will be used 
later. 

Theorem 1: 

The outcome of a test ti cannot be different from 
normal case under both a s-a-O and a s-a-1 failure at 
the same input. 

Theorem 2: 

If the outcome of the test ti is different from the 
normal case for the fault ii, then the outcome of the 
test ti for the complementary failure is identical to the 
normal case. 

Finally, each detectable failure must produce a 
non-normal output for at least one of the tests. For that 
test, by Theorem 2, the complementary failure must 
have normal output. Therefore" the resulting output 
vectors for complementary failures cannot be the same. 
Thus, although this is not necessary for localization of 
input faults to a unique bus, complementary failures of 
AR function will always be distinguishable. Having 
established this, we are now in a position to formally 
define the AR function. 

DEFINITION AND PROPERTIES OF AR 
FUNCTIONS 

Definition: An n-input AR function is a combinational 
function of n variables with a single output with the 
following properties: 

1. All faults are detectable, i.e., there exists a test 
procedure T containing p tests such that 1 ~ p ~ 2n 

and ~n~ ~fi for any fault fi. 
2. All faults produce unique output vectors for the 

test procedure T, i.e., ~fi= ~fi iff fi=fj. 

Any such set of p tests will be referred to as Test 
Pattern of the AR function (under the fault assumptions 
made earlier) . 

Some elementary properties are easily derived from 
the basic definition of the AR function. Clearly, the 
output faults yield either an all D's (s-a-O) or an all 
l's (s-a-1) output vector. Also, the normal output 
vector for the test pattern has to be non-zero and 
non-all l's since output faults are to produce non-

normal output vectors. Finally, each input fault must 
yield a unique, non-zero and non-all l's output vector. 

Theorem 3: 

If the permissible failure modes include comple­
mentary faults at the inputs and at the outputs, then 
the complement of the normal output vector for an AR 
function is different from the resulting output vectors 
for all permissible failures. 

Proof: 

Since the normal output vector is non-zero, non-all 
l's, the complement of the normal output vector (~ii) 
is also non-zero, non-all l's. Thus ~ii is different from 
the resulting output vectors for the output faults. 

N ext assume that the resulting output vector for an 
input fault fi is identical to ~ii. This implies that the 
outcome for each test tj (1 ~j ~ p) for the fault fi is 
different from the normal case. Now consider the 
complementary failure Ji. By Theorem 1, for any test 
tj the outcome for both failures at the same input 
cannot have different performance from the normaL 
Therefore (by Theorem 2), the outcome for each test 
tj (1 ~j ~ p) for the fault Ji must be identical to the 
normal case. Thus the resulting output vector for the 
fault Ji for the test pattern T will be identical to the 
normal case. But this is a contradiction since the fault 
Ji during the test pattern T must produce a unique 
output vector different from the normal case. Thus the 
resulting output vector of an input fault of an AR 
function also cannot be identical to ~ii. (Q.E.D.) 

N ext we examine other properties of AR functions 
which will permit synthesis of new AR functions from 

A1 
a1 
a2 

A2 
Zi 

Zi 

A3 
a3 

Figure 3a-N ot conformal because faults at aa violate condition 1 



a1 
a2 Fl 

~ z Z 
a -- J 3 F2 a4 

Figure 3b-Not conformal because faults at a2 violate condition 1 

the available AR functions. It will be shown that the 
resulting functions have the AR property when certain 
structural constraints are observed. The concept of 
conformal structure, introduced next, provides one 
convenient way to produce new AR functions. It should 
be noted, however, that although conformal structures, 
as defined below, have the AR property, structures 
having the AR property need not be conformal. 

Definition: 

When a one output combinational function is 
generated by the use of AR functions and logic gates, 
the resulting structure is conformal iff 

1. Each input failure of the resulting function 
results in a permissible input failure at one, 
and only one, of the AR functions, 

2. No two input failures of the resulting function 
result in an identical input failure condition at 
any AR function, 

°1 
Fl z 

°2 
°3 

Figure 3c-Not conformal because s-a-O faults at a2 and a3 
violate condition 2 

z 
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"0" °1 
A2 °2 F2 

°3 A3 z 
Z 

A4 °4 
°5 Fl A5 

Figure 3d-Not conformal because the test pattern for F2 may 
not be possible (condition 3) 

3. Application of the test pattern for each AR 
function is possible by control of the inputs of 
the resulting function, and 

4. For the output of each AR function, a sensitized 
path to the output of the resulting function 
exists. 

Figure 3, where Fl and F2 are AR functions, illustrates 
a number of structures which are not conformal for one 
or more reasons. 

The motivation for the use of various conditions in 
the above definition can be intuitively explained at this 
point. Condition 1 insures that each input fault can be 
made distinguishable from the other faults by the test 
pattern of one of the AR functions. The second part of 
the condition ("only one") prevents one input fault 

°1 
°2 Fl -Z1 

°3 
Z2 1\ °4 F2 z 

°5 Ll 

Figure 3e--Not conformal because the output Zl violates 
condition 4 

z 
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from affecting more than one AR function. The resulting 
output vectors of each AR function need a sensitized 
path to the final output to be observable under normal, 
as well as under various failure conditions. One of the 
ways to provide such a path is to maintain a unique 
combination of the inputs at the remaining AR func­
tions (which provides a sensitized path) during the 
testing of each AR function. Following this procedure, 
in addition, permits distinguishability of the input 
faults of one AR function from the input faults of other 
AR functions as we will see. If an input fault of the 
resulting structure affected more than one AR function, 
this procedure may not be possible in all cases. Condi­
tion 2 prevents multiple input failures from having 
identical output vectors, thereby permitting the 
required localization. Condition 3 assures the ability to 
apply test patterns to various AR functions, and the 
condition 4 makes the resulting output vector available 
at the final output of the resulting structure. 

Having established some structural constraints and 
some intuitive basis for them, we proceed to prove the 
AR property of conformal structures. 

Theorem 4: 

A conformal structure implemented with AR func­
tions and logic gates results in an AR function. 

Proof: 

Let F1, F2, ••• Fn be the n AR functions used in 
the conformal structure. We will refer to these functions 
as component AR functions. Let Zi be the output of 
the function F i and let Z be the output of the resulting 
function F with conformal structure. 

To prove the AR property of the resulting conformal 
structure, we will show the existence of a test procedure 
which provides the distinguishability of the input/out­
put faults of F. 

As the structure is conformal, each input fault of the 
resulting structure results in a permissible input fault 
at one (and only one) AR function. Thus the set of 
input faults of the resulting structure is a subset of the 
input faults of the component AR functions. Also due 
to the second condition of conformality, these input 
faults of F produce unique input faults at the com­
ponent AR functions. Thus if the input faults of the 
component AR functions are distinguishable, then the 
input faults of the resulting function are also dis­
tinguishable. 

Consider a test procedure wherein we apply the test 
pattern to each component AR function, one after 

another, by control of some of the inputs while main­
taining the remaining inputs at some logic conditions 
so as to provide a sensitized path to the output Z 
throughout the test pattern. The conformality of the 
structure accounts for the feasibility of such a test 
procedure. We will show that this test procedure 
provides the required distinguishability. 

To show the distinguishability, we will follow these 
steps. First we will show that input faults of any F i are 
distinguishable from the other input faults of the same 
AR function. Next we will show that these faults are 
distinguishable from the faults at the output Z. Then 
we will show the distinguishability of these faults from 
the input faults of the other AR functions. Note that 
the distinguishability is symmetric, i.e., if a is dis­
tinguishable from b, then b is distinguishable from a. 
Therefore, the distinguishability of the output (Z) 
faults from the input faults of the resulting structure is 
easily established. Finally, we will show the distinguish­
ability of the output faults from each other. 

During the test procedure, the test pattern Ti is 
applied to F i, and a sensitized path to the final output 
for the output Z i is provided. As F i is an AR function, 
its input faults produce unique non-normal output 
vectors at Zi for the test pattern Ti which due to the 
availability of the sensitized path are transmitted to 
the output Z. (The normal output at Z may be the 
same as, or could be the complement of, the output at 
Zi during the test pattern Ti as sensitization does not 
guarantee the polarity of the output. But as the unique­
ness is what we are concerned with, and as uniqueness 
is preserved under complementation, we do not worry 
about the polarity.) Note that due to the conformality 
of the structure during the test pattern T i only per­
missible faults (s-a-O or s-a-l) exist at the inputs of 
the function Fi . Further, as we consider only a single 
failure, when we are considering the distinguishability 
of the two input faults of F i, the path sensitization can 
be assumed to be failure free. Thus the input faults of 
Fi produce unique output vectors at the output Zi, 
which in turn, produce unique output vectors at the 
output Z. Therefore, the input faults of Fi are dis­
tinguishable from the other input faults of the same 
AR function F i, when test pattern T i is applied as a 
part of the proposed test procedure by observing Z. 
Also, as the resulting output vector at the output Z for 
each input fault is different from normal, the input 
faults are detectable. 

N ow consider the distinguishability of the input faults 
of the function F i from the output faults at the output 
Z. Observe that when the test pattern Ti is applied, 
as a part of the test procedure, the observed output 
vector for the faults at the output Z will be either all 



O's or all l's. While the input fault of the function Fi 
results in a non-normal, non-zero, non all l's output 
vector at the output Zi, and will be transmitted to the 
output Z due to availability of a sensitized path. Also 
as all the properties (non-normal, non-zero, non all1's) 
of the output vector are preserved even under comple­
mentation, the resulting output vectors at the output Z, 
for the input faults of the AR function F i, are non­
normal, non-zero and non all l's. Therefore, the input 
faults of F i are distinguishable from the faults at the 
output Z when the test pattern T i is applied. 

N ow consider the distinguishability of the input faults 
of one AR function, say F i, from those at the inputs of 
the other AR functions, say F j where i~j. The two AR 
functions, Fi and Fj, do have independent inputs* due 
to condition 1 of the conformal structure. Therefore, 
during the testing of F i by the test pattern T i, to 
provide a sensitized path a single combination of the 
inputs of Fj can be used throughout the test pattern 
T i . The input faults of the function F j would result in 
one of four cases during the test pattern Ti • 

1. It does not affect the final output. 
2. It makes the final output a complement of what 

should be (changes the polarity of sensitization), 
i.e., fails all tests in T i . 

3. Makes the final output a logic 0 for all tests. 
4. Makes the final output a logic 1 for all tests. 

In the first case, the resulting output is normal; in 
the second case, it is always the complement of the 
normal; in the third and the fourth cases it is at a 
permanent logic condition for the test pattern T i . 

Since the input faults of F i, on the other hand, result 
in unique, non-normal, non-zero, non all l's output 
vectors, they are distinguishable from the input faults 
of F j in cases 1, 3, and 4. Further, by Theorem 3, the 
complement of the normal output vector cannot be the 
same as any output vector for the input faults. There­
fore, the input faults of the functions Fi and F j are 
distinguishable. 

As we repeat the procedure for each AR function, 
each input fault of every component AR function will 
be distinguishable from other input faults and from 
the output faults at Z. 

Finally, as the property of distinguishability is 
symmetric, the output faults are distinguishable from 
the input faults. Also as the output faults produce an 
all O's or all l's output vector and as normal output 
vector has a logic 0 and a logic 1 element, the output 

* An input fault of F only affects one of the F /s. 
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faults are detectable and distinguishable from one 
another. 

Therefore, as the test procedure considered, provides 
unique, non-normal, output vectors for various faults, 
the resulting conformal structure has the AR property 
and the test procedure is its test pattern. (Q.E.D.) 

It becomes apparent that the formulation of con­
formal structure provides us with a great flexibility in 
generating new AR functions. Of these, three are 
worthy of specific mention. 

Corollary 1: The complement of an AR function is an 
AR function. 

Corollary 2: The AND function of AR functions is an 
AR function if the resulting structure is conformal. 

Corollary 3: The OR function of AR functions is an 
AR function if the resulting structure is conformal. 

EXISTENCE OF A GENERAL N-INPUT 
AR FUNCTION 

There are a number of ways by which we can prove 
the existence of an n-input AR function, for any n. For 
instance, it is easy to show that a parity network* with 
any number of inputs has the AR property. However, 
for three or more inputs other functions, apparently 
less complex, also exhibit the AR property. We, there­
fore, will create simple two- and three-input AR func­
tions and use them in a constructional proof for proving 
the existence of a general AR function. This proof is 
preferred because it also provides a scheme for gen­
erating relatively simple AR functions. 

Existence of a 2-input AR function 

Figure 4 shows a two input exclusive OR function. 
Also shown are the resulting functions for various 
faults. Note the uniqueness of the resulting function 
for each fault. As the resulting function for each fault 
is unique and non-normal the exclusive OR function is 
an AR function. Table II shows a test pattern for the 
AR function. That this is a test pattern can be shown 
by generating the resulting output vectors for various 
conditions and showing their uniqueness. 

Existence of a 3-input AR function 

Figure 5 shows a three input function. Also shown are 
the resulting functions for various faults. As the result-

* A single output network using exclusive OR gates. 
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fa BONDING LEAD 

a I {METALLIZATION 

Zt (NORMAL) = 01 02 + 01 02 

Zt (ZtO) = ° Zt (olt) = 02 
Z1 (z 11 ) 1 Z1 (020) = 01 
Zt (a to) = 02 Zt ( 021) = at 

Figure 4-A 2-Input AR function 

ing function for each fault is unique and non-normal the 
function has the AR property. Note that the function 
of Figure 5 is simple compared to a three input parity 
network. Table III shows a test pattern for the AR 
function of Figure 5. That this is a test pattern can be 
shown by generating the resulting output vectors for 
various conditions. 

Having shown the existence of 2- and 3-input AR 
functions we now show the existence of a general 
n-input AR function for n ~ 2. 

Theorem 5: 

There exists an n-input AR function for any finite 
n~2. 

TABLE II-A Test Pattern for the 2-Input AR 
Function of Figure 4 

Inputs 
Test No. Normal Output 

Al A2 

1 0 0 0 
2 0 1 1 
3 1 0 1 

\ BONDING LEAD 

; r METALLIZATION 
01 

Zl (NORMAL) 

Zl (Z10) 

=01 0 2+'01 0 3 

= ° Zl (02°) = 01 03 

Z1 (Z11) 

Zl(010) 

Zl (all) 

Proof: 

1 Z1 (021) = 01 +°1 03 = 01 +03. 

03 Zl (030) =01 0 2 

= 02 Z1 (031) = 01 02+°1 =02+01 

Figure 5-A 3-Input AR function 

We have already shown the existence of 2-input and 
3-input AR functions. Consider any integer n>3, then 
it is always possible to find integers q and r (25:. q 5:. n/2 
and 05:.r5:.1) such that n=2q+3r. In other words, for 
all even integers, we have r=O, and q= (n/2) while 
for odd integers r=l and q=[(n-3)/2J. 

Since the OR function of AR functions is an AR 
function by Theorem 4 (Corollary 3), we can generate 
an n-input AR function for n > 3 by generating an OR 
function of q 2-input AR functions and r 3-input AR 
functions with conformal structure. Therefore, n-input 
AR function exists for any finite n~2. (Q.E.D.) 

THE CONVERGENCE PROPERTY 

In the previous sections, we examined few techniques 
to generate new AR functions. The functions, thus 

TABLE III-A Test Pattern for the 3-Input AR 
Function of Figure 5 

Inputs 
Test No. Normal Output 

Al A2 A3 

1 0 1 0 0 
2 0 0 1 1 
3 1 0 1 0 
4 1 1 0 1 



generated, had the property of failure localization to a 
single bus for the input/output faults of the resulting 
function. To that extent, these new functions can be 
used internal to the LRU to provide the failure localiza­
tion capability. If we provide an AR function in each 
LR U, the special output (the output of the AR func­
tion) of each LRU must be made observable. Does the 
possibility of reducing the total number of observable 
points exist? To answer this, we consider if convergence 
of AR functions by an AR function preserves the failure 
localization property. 

First, let us illustrate what we mean by a converging 
connection. Let F I , F2,' • " Fn be n AR functions. 
Further, let each Fi have mi inputs and one output. 
Also let Fe be an AR function with n inputs. Now con­
sider a configuration, shown in Figure 6, where the 
output Zi of each Fi is connected to the ith input of Fe. 
Let Z be the output of Fe. The resulting structure will 
be termed a converging connection. 

It can be shown7 that when the inputs to a con­
verging connection are independent and failure ex­
clusive, the input/output faults of each component 
AR function (F/s or Fe) are locatable by observing Z 
alone. Thus a test procedure exists which produces 
unique output vectors at the final output Z for each of 
the faults at the inputs (aij; 1:::; i:::; n, l:::;j:::; mi) or at 
the outputs (Z/s or Zc). Further, it can be shown that 

Ant 
An2 

Anm 

1 

2 

n 

° it 
°12 

Fl 
Zl 

°lm1 
-

°21 Oct -
°22 F2 

Z2 °c2 Fc 
Zc 

°2m2 °cn --=.:...:.-

Z 

I 
I 
I 

ant 
I 

°n2 Fn 
Zn -

°nmn 
F 

Figure 6-A convergent structure 
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Zi = A1A2 A3 

Z2= Al+A2+A3 

Figure 7-A simple LRU for example subsystem 

the length of such a test procedure does not exceed the 
sum of the tests in the test patterns of the component 
AR functions. The detailed proof of this result, which 
follows a similar line of reasoning as that of Theorem 4, 
is rather lengthy and is, therefore, not included. 

N ext we demonstrate the application of converging 
connections in reducing the number of points which 
must be observable. Note that in Figure 6 if all AR 
functions Fi were used in different LRU, all of the 
n outputs Z/s must be made observable. In that case, 
the test pattern Ti however, can be applied simul­
taneously to each AR function F i. Thus the number of 
tests would be equal to the maximum of the number of 
tests in the test patterns T/s. On the other hand, by the 
use of a converging connection we are able to reduce 
the number of points which must be made observable 
to one (from n). But the length of the test procedure to 
obtain the same degree of diagnostic resolution· is now 
equal to (or less than) the sum of the number of tests 
in all the test patterns T i (1:::; i:::; n) and the number of 
tests in the test pattern Tc for the AR function Fc. 

AN ILLUSTRATIVE EXAMPLE 

To illustrate the application of AR functions, a very 
elemental LRU (Figure 7) is selected as a building 
block of a simple subsystem (Figure 8). Realistic 
systems, of course, would be considerably more complex. 
A comparison is made of the AR approach with present 
day techniques in terms of the required number of 
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Figure 8-An illustrative subsystem 
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* The points which are to be observable are identified 
by the arrowhead 

observable points and the length of the required test 
procedure. 

A conventional approach 

As can be easily inferred from the functions for Z31 
and ZS2, if the observable points are restricted to the 
final outputs (Z31 and ZS2) , all faults cannot be localized. 
For instance, the s-a-O faults at all, a12 and alS and s-a-1 
fault at Zl1 are indistinguishable. Similarly, the s-a-1 
faults at a2l, a22, and a2S and s-a-O fault at Z22 are in­
distinguishable. The distinguishability of these faults 
can be obtained if the outputs Z12 and Z2l are made 
observable. Thus to obtain a complete localization we 
need four observable points. 

Table IV shows a conventional test procedure for the 
subsystem generated by the use of well-known tech­
niques. (4,5,6) The first four tests provide the testing of 
the faults at the inputs of FH • The conditions at the 
other inputs are maintained as prescribed to provide a 
sensitized path to the output ZSl. One of these tests also 
provides an all zero test for F 12. The next three tests 
similarly provide the testing of the faults at the inputs 
of F 12. Note that the input combinations for FH , to 
provide a sensitized path for the output Z22 during 
these tests, are carefully chosen to simultaneously 
provide the tests for FH when the output Z12 is ob­
servable. The eighth test provides partly for the testing 
of the input aSl. Observe that so far only a subset of the 
total tests required is applied (indirectly) to F IS• The 
conditions corresponding to the remaining tests are 
applied by the tests 9 through 12. Note the use of care-

fully chosen input combination at the inputs of F12 to· 
simultaneously provide the required test combinations 
if the output Z2l was observable. Finally test 13 is 
necessary to provide the remaining test combination 
for F12 when output Z2l is made observable. Thus we see 
that a total of thirteen tests and four observable points 
are required for localization of all faults. 

The proposed approach 

N ext, consider the use of a three-input AR function 
(FAR) as shown in Figure 9, which is the function 
discussed in Section 6. One output is to be added to 
the LRU to make the output of the AR function 
observable. 

Consider the implementation of the subsystem using 
LRU's with AR functions as shown in Figure 10. Table 
V shows the required test procedure to locate all faults, 
except the ones at the outputs ZSl and ZS2, by observing 
only the outputs of the three AR functions (ZlS, Z2S, Zss). 

Outputs ZSl and ZS2 will be inputs to some other LRU's 
and therefore their faults will be localized by the AR 
function of those LRU's. Recall that for each AR 
function four tests are required (Table III). If the 

TABLE IV-A Test Procedure for the Subsystem of Figure 8 
(Without AR Functions) 

Test Test Procedure Inputs to F13 
No. 

A B C D E F G A Zll Z22 

1 1 0 1 1 0 0 0 1 1 1 

2 1 1 0 1 0 0 0 1 1 1 

3 1 1 1 0 0 0 0 1 1 1 

4 1 1 1 1 0 0 0 1 0 1 

5 1 0 0 1 0 0 1 1 1 0 

6 1 0 1 0 0 1 0 1 1 0 

7 1 1 0 0 1 0 0 1 1 0 

8 0 0 0 0 0 0 0 0 1 1 

9 0 1 1 1 0 0 0 0 0 1 

10 0 1 0 0 1 1 0 1 0 

11 1 1 1 1 1 0 1 1 0 0 
12 0 1 1 1 1 1 0 0 0 0 

13 1 1 0 
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Figure 9-The LRU with AR function 

conditions corresponding to this test pattern are 
applied to each of the AR functions, then the fault 
localization will be achieved. The first four tests provide 
the conditions for the test pattern of the AR functions 
in F21 and F 22• In so doing, by applying appropriate 
conditions at the input A we also manage to provide 
the conditions corresponding to two of the four tests 
for F23• The last two tests provide the remaining tests 
for F 23. Note that we use the results at the output Z33 

only if we have determined that no input fault exists 
at F21 and F22 i.e., when Z13 and Z23 do not show a 

A 

B °Il 
Zll 

zll 
C °12 F21 z12 Z12 
D °13 z13 Z13 ° 31 z31 Z31 

°32 F23 z32 Z32 

°33 z33 Z33 
Z21 

E ° 21 z21 
Z22 

F °22 F22 z22 
G °23 z23 Z23 

Figure IO-Implementation of the subsystem using LRU's 
with AR functions 

Functions for Improving Diagnostic Resolution 1089 

TABLE V-A Test Procedure for the Subsystem of 
Figure 10 with AR Functions 

Test Test Procedure Inputs to F 23 

No. 
A B C D E F G A Zll Z22 

1 0 0 1 0 0 1 0 0 1 0 
2 0 0 0 1 0 0 1 0 1 0 
3 1 1 0 1 0 1 1 0 
4 1 1 1 0 0 0 

5 0 1 1 1 0 0 0 0 0 1 
6 1 1 1 1 0 0 0 0 1 

failure. Thus the output Z33 is used only to detect and 
locate the input faults of F 23• 

Thus a test procedure with six tests and three 
observable points is sufficient to localize the failures. If 
we would like to reduce the number of observable 
points further, we can use a converging (Section 7) 
AR function Fa such as the 2-input AR function of 
an earlier section (Figure 11).3 The points \vhich must 
be observed are the outputs Z33 and Z41. But \vhen we 
reduce the number of observable points by converging 
we pay a penalty in the length of test sequence. Recall 
that, as per upper bound it would take 11 tests to test 
the convergent structure (as a two input AR function 
requires three tests). Two additional tests will be re­
quired to provide the remaining tests for the AR 
function F 23 as before. And thus a total of 13 tests may 
be necessary. However, as shown in the test procedure 
of Table VI, the actual number of tests required for the 
converging connection is only eight, and therefore, a 
total of nine tests are required (Tests 1 and 5 are 
identical). Note that the required test pattern for the 

A 

Zll 
B °11 z11 °31 z31 Z31 

C °12 F21 z12 °32 F23 z32 Z32 

D °13 z13 °33 z33 Z33 

E Z21 °21 z21 °41 
F °22 F22 z22 F3 z41 

Z41 
Z22 

G 023 z23 °42 Z23 

Figure ll-Use of a converging connection to reduce the points 
which must be made observable 
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TABLE VI-A Test Procedure for the Configuration of Figure 11 

Test Procedure 
Test 
No. A B C D E F 

-+1 0 0 1 0 0 1 

2 0 0 0 0 1 

3 1 0 1 0 1 

4 1 1 1 0 0 1 

-+5 0 0 1 0 0 1 

6 0 0 1 0 0 0 

7 1 0 1 0 1 0 

8 1 0 1 0 1 1 

9 0 1 1 1 0 0 

10 1 1 1 1 0 0 

converging AR function Fa is applied in the process of 
applying test patterns for the AR functions of F21 and 
F22• Table VII summarizes these results for the sub­
system considered in the illustration. 

It iEl important to note that the AR function design is 
unrelated to the function actually performed on an 
LRU, but is only dependent on the number of inputs. 
Thus in practical LSI applications, as the level of 
integration goes up and as the gate/pin ratio increases, 
the percentage redundant logic required for AR func­
tion will decrease. 

TABLE VII-Comparisons of the Different Approaches to 
Implement a Subsystem (Figures 8, 10, and 11) 

No. of Points Length of the Test 
Which Must be Sequence for Fault 

No. Case Made Observable Localization 

1 LRU's without 4 13 
AR functions 
(Figure 8) 

2 LRU's with AR 3 6 
functions 
(Figure 10) 

3 LRU's with AR 2 9 
functions and a 
converging AR function 
(Figure 11) 

Inputs to F23 Inputs to F3 

G A Zn Z22 Z13 Z23 

0 0 1 0 0 0 

0 0 1 0 1 0 

0 1 1 0 0 0 

0 1 1 0 1 0 

0 0 1 0 0 0 

1 0 1 0 0 1 

1 1 0 0 0 
0 1 1 0 0 1 

0 0 0 1 1 0 

0 1 0 1 1 0 

CONCLUSIONS 

In this paper we have introduced the notion of adding 
special Ambiguity Resolver functions to Least Re­
placeable Units in order to provide localization of 
input/ output failures. We have demonstrated the 
existence of these functions for any number of inputs 
and shown how they can be synthesized by means of a 
conformal approach. For those cases in which it is 
important to further reduce the number of pJints that 
must be made observable, a convergent structure is 
discussed, along with an upper bound on the length of 
the required test sequence. 

The Ambiguity Resolver approach is certainly not 
the complete answer to the fault localization problem 
in Large Scale Integrated circuitry, but it is a step in 
the direction of tailoring the diagnostic technique to 
the characteristics of the environment. 
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INTRODUCTION 

Major efforts have been devoted to the application of 
computational techniques to medical diagnosis, a diffi­
cult computational task. The amount of information 
necessary to perform an exhaustive diagnostic search 
is' formidably large. The "costs" associated with mak­
ing certain diagnoses or eliminating others often affect 
a tentative diagnosis as much as the probabilities of 
the conditions being considered. These "costs" are 
usually intuitively considered by the physician and 
usually are not available as numerical quantities to 
use in a linear programming algorithm. Lastly, diag­
nosis is done both rapidly and well by most physicians. 

In contrast stands therapeutics, specifically the 
administration of medicines. After deciding what and 
how much effect is desired (choosing the drug and the 
therapeutic objective) the problem is how much to 
give and in what temporal pattern. Drug-dosing is 
inherently quantitative and is presently done sub­
optimally. Accordingly, we have approached the con­
struction of algorithmic techniques for determination 
of drug dosage. 

Since drug effects correlate far better with drug 
levels in the body than with doses administered, a 
Target Blood Level (TBL) approach to drug ad­
ministration seems reasonable. In order to implement 
such an approach, estimates of appropriate pharmaco­
kinetic parameters for individual patients must be 
obtained so that pharmacokinetic models, providing 
the mathematical framework for drug level predictions, 

* Supported in part by United States Public Health Service 
Grants GM 16496 and GM 10791. 
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can be used to determine optimal dosage regimens. 
We have described a conceptual scheme and associated 
statistical methodology to accomplish this objective.1 

In this paper, we summarize the scheme and methods, 
provide justification for our approach, report early 
results, and describe some future plans. 

BACKGROUND 

Eighteen to thirty percent of all hospitalized patients 
sustain one or more adverse drug Teactions2,3 and the 
duration of their hospital stay is nearly doubled as a 
result. In addition, 3 to 5 percent of all admissions to 
hospitals are primarily for a drug reaction2,4 and 30 
percent of these patients have another drug reaction 
during their hospital stay. The economic consequences 
of these reactions are staggering: one-seventh of all 
hospital days is devoted to the care of drug toxicity, 
at an estimated annual cost of 3 billion dollars.5 The 
same amount would cover the cost of all prescription 
drugs used in this country per year. 

An encouraging aspect of the . large adverse reaction 
rate is that 70-80 percent of them are direct extensions 
of the pharmacologic actions of the drugs involved, 6 

and therefore should be predictable and preventable. 
The maj ority of the pharmacologic adverse reactions 
are probably not the result of extraordinary individual 
sensitivity to the actions of the agent, but rather of 
dosage regimens leading to inordinately high blood 
levels. 

The evidence which associates drug levels in blood 
or tissues with their effects is striking. It is particu­
larly clear-cut for those drugs responsible for more 
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than 50 percent of dose-related adverse reactions:6 

digitalis preparations, 7 anti-arrhythmic drugs, 8, 9 and 
antimicrobials.10 As an example, consider digoxin, a 
drug which, in clinical practice, is both highly useful 
and formidably toxic. About 20 percent of all patients 
receiving the drug demonstrate pharmacologic toxicity 
and as many as 30 percent of those demonstrating 
such toxicity may die of it.n A three-or-more-fold 
variation in the blood levels of digoxin is seen in dif­
ferent individuals given the same doses of the agent, 
but toxicity is highly correlated with blood levels: in 
one study, 90 percent of individuals with levels less 
than 2 nanograms/ml of plasma were nontoxic and 
87 percent of those with levels greater than this amount 
were toxic.12 For digoxin, then, individual sensitivity 
differences may account for as little as 10 percent of 
clinical toxicity. 

That levels of drugs in body fluids should bear a 
more constant relationship to effects than doses ad­
ministered is readily understandable. Drugs act on 
receptors and elicit effects which are proportional to 
the fraction of occupied receptors. The concentration 
of a drug at its receptor is a major determinant of drug 
effect. The utility of blood levels stems from the ob­
servation that although few drugs act on receptors in 
the blood itself, after drug distribution, tissue concen­
trations of drugs (p~esumably at their sites of action) 
bear a reasonably linear and constant relationship to 
blood levels. Individual variation in absorption, dis­
tribution, metabolism and elimination of drugs, how­
ever, causes widely varying blood levels to be found 
in different individuals, despite standard doses. 

It seems clear, then, that a TBL approach to drug 
dosage design is theoretically sound and likely to be 
beneficial. Pharmacokinetic models can represent and 
quantify variations in absorption, distribution, me­
tabolism and elimination of drugs. In order to utilize 
a pharmacokinetic model for the purpose of drug 
dosage design, some way of predicting individual 
variation in the parameters of the model must be 
available. An obvious approach is to measure blood 
levels of agents at varying time intervals after ad­
ministration of a standard regimen and to adjust the 
parameters of the model to yield a best fit to the ob­
served levels. This is analogous to the way in which 
most physicians administer drugs today: a standard 
regimen is begun, effects are observed (presumably 
proportional to levels) and dosage adjustments are 
made based upon these observations. The quantitative 
adjustments are more intuitive than optimal. We can 
do better than merely improve the quantitative aspects 
of the feedback process described above, although 
doing only this can lead to excellent results.13 

The factors responsible for pharmacokinetic varia­
tion can be related to the physiological determinants 
of pharmacokinetic processes. For example, digoxin is 
primarily eliminated by renal excretion. The elimina­
tion rate of the drug should be, and is, proportional to 
renal function.14 Tests designed to assess renal function 
[such as measuring the serum creatinine or Blood Urea 
Nitrogen (BUN)] are routine. These measurements 
can be used to modify the dosage regimen of digoxin 
in accord with the excretory ability of the individual 
patient. 

The combination of prior clinical information with 
quantitative feedback adjustment should produce a 
system for optimal drug dosage design. In order to do 
this we require a black box with the following char­
acteristics: the inputs are clinical data, commonly and 
easily available (such as height, weight, age, sex, and 
the results of standard laboratory tests, e.g., tests of 
renal function); the outputs are a set of predicted 
values for the parameters of a pharmacokinetic model. 
On the basis of these predicted parameter values, the 
initial dosage of a drug can be set to produce the TBL. 
As additional data in the form of blood level measure­
ments or changes in the laboratory tests become avail­
able, estimates of the parameters can be optimally 
modified (by the black box) to improve dosage sug­
gestions. 

THE DOSE-BLOOD LEVEL RESPONSE MODEL 

The first task in the design of the black box is to 
formulate a model for the relationship between the 

TABLE I-The Conceptual Scheme 

I. Observations (0) ---+Physiologic Variables (P) 
type: usually non-linear 
data source: general population 
example: Body Surface Area (BSA) = F (height, weight) 

II. P ---+ Pharmacokinetic Variables (Q) 
type: linear 
data source: patients receiving drug 
example: Volume of Distribution (Vd) = F (BSA) 

III. Q ---+ Pharmacokinetic Parameters (K) 
type: usually non-linear 
data source: theoretical 
example: Rate Constant of Elimination (Kel) = 

Clearance IV d 
IV. K ---+ Blood Level Predictions 

type: non-linear pharmacokinetic model 
data source: theoretical 
example: one compartment model with first order 

absorption 



clinical data and the pharmacokinetic parameters. 
Our model is outlined in Table 1. Clinical observations 
(0) are used to predict physiological variables (P). 
These predictions can be defined through study of the 
general population and need not be restricted to those 
individuals who have received the drug of interest. 
The relationships are not restricted as to type; they 
may be linear, non-linear, discontinuous, etc. The 
example given in Table I, Body Surface Area (BSA) , 
is a quantity estimated from a non-linear function of 
height and weight and is expected to be more linearly 
related to metabolic capacity and body "compart­
ment" sizes than either height or weight. In Table I, 
the pharmacokinetic model itself is a simple one: the 
one-compartment open model with first order absorp­
tion. Its parameters (K) are: Kel, the first-order rate 
constant of elimination of the drug; Vd, the volume 
of distribution of the drug; and a series of Ka's and 
f's, each pair representing the rate constant of absorp­
tion and the fraction of dose absorbed for a specified 
route of administration. The K may be linearly related 
to the P. For example, the Vd of a drug might be 
predictable from a patient's body surface area, as 
shown in Table 1. A non-linear function of a K might 
bear a linear relationship to one or more of the P. An 
example is the clearance of a drug (the product of Kel 
and V d) which would be linearly related to a P de­
scribing renal function (the Glomerular Filtration 
Rate, GFR) if the drug were eliminated by the kid­
neys. To keep the scheme general, a set of pharmaco­
kinetic variables, Q (distinct from the K) are defined 
as functions, again of any variety, of the K. The Q 
are defined wholly from theoretical considerations. 
Finally, having defined the P and Q so that we expect 
linear relationships to hold between them, we assert 
that they are related linearly. The first data-fitting 
task is that of estimating the coefficients of the linear 
P to Q transformation. This can be done utilizing data 
from individuals whose clinical observations are known 
and whose blood levels of drug have been measured. 

The full model allows utilization of general popula­
tion data and prior information in the form of both 
theoretical relationships and constraints on the coeffi­
cients to be estimated for the P to Q transformations. 
The use of an extremely simple pharmacokinetic 
model is justified on two grounds. First, for clinical 
medicine, our scheme must be responsive to shifts in 
patient characteristics and inexpensive to operate. 
]\tIore parameters imply more data-fitting, degrading 
responsiveness, and increasing cost. Second, most 
drugs with clinical utility do not cause significant 
toxicity until their blood levels are at least twice those 
at which significant efficacy is achieved. Therefore, 
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there is no need for great precision; prediction errors 
of 50 percent should have little clinical import. 

Before discussion of the problem of merging feedback 
(blood-level) information with initial estimates, some 
preliminary tests of the appropriateness of the con­
ceptual scheme and of the ability to estimate coeffi­
cients for the P to Q relationship will be presented. 

TEST OF THE MODEL 

Dr. Thomas Smith of the Massachusetts General 
Hospital kindly supplied us with clinical data, dosage 
history, measured blood levels (one per patient) and 
determinations of the presence or absence of toxicity 
in a group of 99 patients who received digoxin. The 
clinical data for each patient consisted of age, weight 
and BUN. Fifteen patients were questionably toxic 
and 18 definitely toxic by published criteria. ll •12 The 
model was adapted to digoxin from the available clin­
ical data, by using weight as a predictor of BSA, and 
age, weight and BUN as predictors of renal function. 
V d was assumed proportional to BSA. Digoxin clearance 
was assumed proportional to G FR and BSA since the 
non-renal losses of digoxin are presumably metabolic 
and should therefore be related to BSA. All digoxin 
had been administered orally so that Ka and f values 
for the oral route only were needed. Digoxin has an 
absorption value (f) of .85.15 While the precise rate of 
oral absorption is not known, it is sufficiently rapid 
relative to rates of elimination14 that an arbitrary large 
value could be assigned to the oral-rate constant of 
absorption without expected loss in accuracy. Data 
was adequate to establish an expected value for Kel 
for normal individuals, and to support the assumption 
that digoxin clearance should be linearly related to 
GFR.16 Data on the rate of non-renal loss of the drug 
is scanty, and no clear data exist for estimating the 
relationship between BSA and V d. Accordingly, the 
patient data were first used to estimate these values 
using standard non-linear data fitting techniques. 
The blood levels were weighted by the inverse of the 
observed values plus the measurement error in their 
determination because, on the one hand, with un­
weighted measurements, fitting to absolute errors 
inappropriately magnifies the importance of those 
patients with large measured blood level values, and, 
on the other hand, data fitting by pure relative error 
(corresponding to weighting by the inverse of the 
square of the measured value plus the measurement 
error variance) remove all bias toward greater pre­
dictive accuracy for higher values, which are the more 
clinically important ones, being indicative of toxicity. 
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TABLE II-Relation Between Program-Predicted and Actual 
Blood Levels of Digoxin in a Sample of 99 Patients 

Information Correlation 
Used Coefficient (r) r2 crr2 

1. Daily dose .29 .08 

2. 1 + model .31 .10 +.02 

3. 2 + weight .42 .18 +.08 

4. 3 + age .47 .23 +.05 

5. 4 + BUN .73 .54 +.31 

We arrived at a value of 9 percent per day non-renal 
loss (as opposed to an estimate of 14.4 percent per 
day16) and a V d value of 351 liters/square meter of 
BSA. It is noteworthy that these estimates could be 
easily obtained from the crude clinical data at our 
disposal. The use of our scheme permits estimation 
of population values for pharmacokinetic quantities 
from usual clinical data and does not demand separate 
and elaborate experiments. This point is crucial, since 
an individual blood level determination obtained from 
clinical usage of the feedback portion of the system 
will not only serve to improve the estimates of that 
individual's responses, but also add to the data base, 
making improved population estimates possible. 

With the scheme set for digoxin and necessary 
values obtained from the literature, or as noted above, 
from the data itself, the ability of the scheme to pre­
dict blood levels of the patients, using various amounts 
of prior clinical information, was examined. Table II 
shows the resultant correlations. The only upward 
bias in utilizing the correlation coefficients to describe 
the predictive capacity of the system stems from the 
use of one degree of freedom for the estimation of the 
non-renal losses, since V d operates in thepharmaco­
kinetic model as a scale factor only. The fraction of 
total variance in the actual levels which is explained 
by the computed levels is expressed by r2; in the ab­
sence of any clinical data save the dose administered, 
only 8 percent of the level variance is explained, while 
use of all the clinical data allows explanation of 54 
percent of the variance. Knowledge of renal function 
makes the major contribution to accurate predictions, 
but the patient's weight, the sole predictor of size 
used, explains as much of the variation in levels as 
does the dose. In order to exclude the possibility that 
the few very high values present in the data were 
responsible for the high correlation we obtained, despite 
our weighting scheme, predictions were examined when 

weighted by the inverse of the square of the measured 
value plus the measurement error variance. Under 
these conditions, the correlation coefficient for predic­
tions made with full information fell only to .71. 

l\{ore important, however, than the ability to pre­
dict the measured values with a modest degree of 
accuracy, is the potential clinical implication of the 
predictions. As has been mentioned, digoxin levels 
greater than 2 ng/ml are associated with a significant 
incidence of toxicity. Table III compares the toxicity 
predictions of the actual measured levels, using this 
cut-off point, with those of the predicted levels. Al­
though the predicted values are not quite as good at 
predicting toxicity as are the measured values (there 
are, however, no significant differences in the columns 
of Table III by x2 analysis), use of the scheme might 
have prevented 10 of the 18 toxicities in this group 
of patients. Clearly the potentially prospective avail­
ability of the predictions and the non-toxic dosage 
schemes they would engender outweigh the slight 
(retrospective) diagnostic advantage of the actually 
measured levels. 

THE FEEDBACK PROCESS 

The requirement for feedback adjustment of the 
model parameters is that it make an orderly transition 
from estimates of an individual's pharmacokinetic 
parameters based solely upon population data to ones 
based to a greater extent upon measured blood levels 
of the drug. Our approach is based upon an estimation 
scheme valid in circumstances where an individual 
parameter vector characterizing responses (in our 
case, the Q vector "characterizes" the blood level 
"response") is dispersed about a population mean 
(that is, individual vectors are similar, but not identi­
cal) Y This regression method allows efficient estima­
tion of the mean value of the parameter vectors in the 
population, of the extent of dispersion of ind.v.dual 
parameters about the population mean, and of the 

TABLE III-Comparison of Predictions of Digoxin Toxicity by 
Actual and Program-Predicted Blood Levels 

Levels Used 

Actual 

Program-predicted 

Predictions of Toxicity 
False + False - Total Correct 

10/66 

11/66 

3/18 

8/18 

71/84 

65/84 



values of the parameter vectors characterizing each 
individual. In our case, population data is used to 
estimate a mean population Q vector, the appropriate 
adjustments to be made in this vector for the values of 
clinical observations, a population variance matrix of 
parameter prediction error, A, and the variance of 
prediction error associated with individual blood 
levels, (7"2. An individual's Q vector is assumed to be 
the sum of the population mean vector adjusted for 
his set of clinical observations, plus an individual 
shift vector, originally unknown, with mean value, 
zero. For initial dosage suggestions, the shift vector is 
assumed to be zero. For the feedback portion of the 
system, given A and (7"2 and the actual versus predicted 
blood level for the individual, a non-zero value is as­
signed to the individual shift vector so as to maximize 
the prediction likelihood function (an empirical Bayes 
estimator). A more complete description of the sta­
tistical methods underlying this approach can be found 
in References 1 and 18. What occurs, in effect, is that 
the information content of a blood level measurement 
is used to decrease the uncertainty of our knowledge 
of the components of an individual's Q vector (and 
hence his K vector) so as to minimize the mean square 
error in the resulting blood level predictions. 

TEST OF THE ESTIlVIATION SCHElVIE 

Examination of the problems attendant upon estima­
tion of a population dispersion matrix has begun. The 
simpler case of an underlying response model linear in 
the explanatory variables (the P) was studied first. 

Despite the linearity of the underlying model, an 
analytic solution is not apparent for the dispersion 
matrix; thus, even in the linear case, one is forced to 
use non-linear techniques to maximize the likelihood 
function. For this reason the linear and non-linear 
cases share many characteristics. If efficient estimation 
of a ,dispersion matrix could not be .accomplished in 
the linear case, we would be pessimistic about the 
ability to do so in the non-linear case. The problem 
can be reduced to a search over the space of triangular 
matrices, T, such that TT' = A. The number of pa­
rameters to be estimated by non-linear methods is 
therefore p=k(k+l)/2, where k is the dimension of 
A. The Fletcher-Powel1 algorithm has been used to 
seek a maximum of the likelihood function over this 
space. The results of similations to date have been 
uniformly encouraging. The likelihood function is 
smooth and well behaved, and is well described by 
analytical derivatives. Regardless of the initial esti-
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mate chosen for T, the search algorithm converges to 
the same maximum and the same estimate for [2, 

indicating that the likelihood function has a unique 
extremum. Convergence appears to require fewer than 
3p iterations in all but a few cases, and 4p iterations 
has been the maximum. Thus the non-linearity of the 
problem appears to pose no difficulties. 

lVlore important, a relatively small amount of data 
appears sufficient to generate a satisfactory estimate 
of A. With four simulated observations on each of 
forty individuals, the estimates have consistently ap­
proximated the relative magnitudes of the diagonal 
elements of A, and the signs and magnitudes of the 
off-diagonal elements. 

CURRENT WORK 

The preliminary results obtained in the development 
of both the conceptual and estimation schemes has 
been encouraging. For the initial prediction portion, 
it was a simple matter to write an interactive program 
to run in a time-shared mode (for use via a remote 
access terminal) which would accept clinical observa­
tions on a patient as well as the (physician deter­
mined) TBL and deliver a dosage scheme (at present, 
for digoxin only) adjusted for the individual, and 
designed to produce the TBL. We note that although 
it is possible to provide information on the usual range 
of therapeutic blood levels for a drug through the 
program, the actual TBL for an individual patient 
should not be pre-programmed. It is precisely in the 
choice of this value that the physician is called upon 
to exercise his judgment as to the severity of the con­
dition being treated, the therapeutic objectives sought 
and the projected sensitivity of his patient. 

The interactive program and the initial dosage sug­
gestions are being tested in a prospective fashion. 
Out-patients in need of digitalis or in need of adjust­
ment of digitalis therapy are being studied. Both the 
primary physician and the program are suggesting 
regimens and predicting blood levels for these patients. 
The program output is made available to the physician 
for a randomly selected portion of the patients, and the 
physicians administer the drug as they see fit. Com­
parisons will be made in the accuracy of blood level 
predictions by the physicians and the program, and 
in the results of treatment (both for efficacy and 
toxicity) obtained by administration of program­
suggested regimens. 

The estimation scheme is being further tested by 
Monte Carlo studies. Multiple blood level data is being 
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obtained on patients reCeIvmg digoxin so that the 
procedures for estimation of A can be tested. The 
questions of major interest are: (1) How much data 
is necessary to estimate A and how valuable is knowl­
edge of the population dispersion in predicting in­
dividual blood levels? (2) What is the "trade-off" 
between clinical observations and subsequent blood 
level determinations; e.g., how many blood level 
determinations does it take to make up for lack of 
knowledge of renal function? (3) Do blood levels drawn 
early in the course of therapy, when maximum blood 
levels are not yet attained and toxicity is highly im­
probable, contribute substantially to the ability to 
predict future (maximum) blood levels? (4) At what 
point is the further determination of blood levels 
unnecessary; that is, when do they cease to contribute 
new information? We expect to have partial answers 
to these questions for digoxin at the time of the Spring 
J oint Computer Conference, and will devote the major 
portion of our presentation to discussing them. 

SUMMARY AND CONCLUSION 

We have devised a conceptual scheme which succes­
sively relates routinely available clinical observations 
to measures of underlying physiologic and pharmaco­
kinetic factors and, ultimately, to pharmacokinetic 
parameters. These parameters can be used in a phar­
macokinetic model to produce optimal initial dosage 
suggestions tailored to individual needs. We have also 
proposed a statistical methodology for adjustment 
and improvement of individual estimates in the light 
of subsequent response data. Preliminary tests of the 
various portions of the system have been uniformly 
encouraging. The scheme is highly general; most of 
the definable influences on drug absorption, distribu­
tion, metabolism and elimination can be represented, 
quantified, merged with others and tested in relation 
to blood level data. As a consequence of the statistical 
techniques used and the degree to which extensive 
exploitation of prior information is possible, determi­
nation of even a single blood level for an individual 
should markedly improve the system's predictive 
accuracy for him. Drug levels determined in order to 
improve treatment for an individual also contribute 
to the underlying data base used to update the various 
estimated population coefficients. Thus, the system 
can learn. A broad definition of what constitutes clini­
cal observation will allow us to use the pharmacokinetic 
variables determined for one drug, for one patient, in 

. the estimation of the pharmacokinetic parameters for 

another drug for him, if a meaningful relationship 
holds between them. Hence, the system is a research 
tool. 
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Automated therapy for nonspeaking autistic children* 

by DAVID CANFIELD SMITH, MALCOLM C. NEWEY and KENNETH MARK COLBY 

Stanford University 
Stanford, California 

CHARACTERISTICS OF AUTISTIC CHILDREN 

Earlier publications described our computer method 
for stimulating language development in nonspeaking 
children, sketched several case histories (Colby 19684), 

and gave statistical evidence that our high rate of 
success (71 percent) was due to our treatment method 
(Colby and Smith 19706). This paper presents some pro­
posals for making the method more widely available. 

The term "Childhood autism" refers to a psychiatric 
category of mental disorders occurring in children. 
Though the category is somewhat unreliable, there is 
a set of characteristics generally associated with autism. 
Some of the characteristics of autistic children that 
influenced our approach and our choice of them as 
subjects are described briefly. More complete descrip­
tions are provided by (Rimland 19644), (Wing 196614), 

(Ornitz and Ritvo 196810), (Colby 19684, Colby and 
Smith 19706). 

An autistic infant's early disinterest in play or being 
picked up develops into a clear unresponsiveness to 
people during his second and third years. He avoids 
contact with other people, sometimes running and 
hiding from strangers. He does not respond when 
spoken to, and may be diagnosed as deaf. He may be 
fascinated by spinning objects and machines, such as 
phonographs, washing machines, light switches, etc. 
Far from being mentally retarded, an autistic child 
may be more adept than normal children at music 
and mathematics, and may have a better memory. 

* This research is supported by Grant PHS MH 06645-10 from 
the National Institute of Mental Health, by (in part) Research 
Scientist Award (No. 1-K05-K14, 433) from the National 
Institute of Mental Health to the third author and by (in part) 
the Advanced Research Projects Agency of the Office of the 
Secretary of Defense (SD-183). 

The views and conclusions contained in this document are those 
of the authors and should not be interpreted as necessarily 
representing the official policies, either expressed or implied, of the 
Advanced Research Projects Agency or the U.S. Government. 
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But the most characteristic attribute is his inability 
to acquire language. An autistic child has great diffi­
culty understanding the relation between human 
vocal sounds and meaning. Those that do develop 
some speech have trouble advancing beyond nouns 
designating concrete objects to pronouns and verbs 
with their inherent abstractions. All studies agree that 
the prognosis for an autistic child is closely correlated 
with speech development; an autistic child who has 
not developed speech by the age of five has in the 
past almost invariably been institutionalized for the 
rest of his life. If a child has speech, therapy for his 
other disorders has a far greater chance of success; 
indeed, absence of language may in itself account for 
many of his other shortcomings. Having speech, he 
may begin to play with other children, to go to school, 
and to build a model of the world that is no longer 
devoid of concepts transmitted through language. 

Though autism is admittedly an imprecise category, 
the best estimates currently available indicate the 
incidence of autism to be 4-5 per 10,000 children, 
about the same incidence as deafness and blindness in 
children. 

The main thrust of our effort, then, is to stimulate 
language development using a method which is ac­
ceptable to an autistic child on his own terms. We 
give him a chance to play with a machine which hap­
pens to be a linguistic entity. 

A COMPUTER METHOD FOR TREATING 
AUTISTIC CHILDREN 

While our eventual goal is to implement our method 
on a system with modest or no computer support, our 
initial approach was dictated by the resources avail­
able to us and by our need for flexibility and modifi­
ability. For these reasons we used the large computer 
system at the Stanford Artificial Intelligence Project, 
Stanford University. That system is a time-shared 
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DEC PDP-6/PDP-10 combination (DEC 19688). 

The PDP-6 is primarily used as an I/O driver at Stan­
ford; it controls digital-analogue and analogue-digital 
converters, among other input/output devices. The 
faster PDP-10 serves as the central processor. Actually 
a time-sharing system is not particularly suited to our 
method, because the need for rapid responses of long 
duration imposes real-time constraints which are 
incompatible with the philosophy of time-sharing. In 
fact, our need to output continuous sound of up to 
three seconds duration has not yet been implemented 
to our complete satisfaction. 

Our goals of a flexible, easily-modifiable system with 
a minimum of programming effort initially led us to 
choose a high-level programming language MLISP 
(Smith 197012), a dialect of LISP. Admittedly this was 
like using a sledge hammer to kill a fly, but MLISP 
enabled us to concentrate most of our early effort on 
the program itself and not on developing a program­
ming system. Subsequently, our entire system was 
rewritten (by Malcolm C. Newey) in machine lan­
guage. It was decided to invest the additional pro­
gramming effort to gain the greater efficiency of ma­
chine language because the developmental phase of 
many of the games had been completed, and they are 
no longer being modified. In addition to the basic 
program itself, we and others at Stanford have de­
veloped a set of programs and program modules that 
facilitate the construction and modification of games. 
Among these utility programs are a drawing program, 
with which figures and animation can be easily drawn 
on a display using a light pen, and a sound recording 
program with which sound of up to three seconds 
duration may be recorded, digitized, and stored on the 
disk. 

For hardware we use a computer-controlled Infor­
mation International Inc. (III) graphics display with 
a screen about 2/X2' in size that is refreshed 30 times 
per second. The need for rapid response, including 
animation, argued against the economy of a storage­
tube display. At present, input is by an alphanumeric 
keyboard resembling a typewriter keyboard; the 
child presses a key, and a response is generated. We 
are currently investigating the possibility of light-pen 
interaction, so that the child can draw his own figures, 
and of microphone interaction, so that the computer 
would be activated by a voice signal rather than a 
keyboard signal. An associated, rapid-response audi­
tory display is generated by randomly accessed, digi­
tized records of voice, animal and mechanical sounds. 
The sounds are recorded using one of the utility pro­
grams, digitized at 20KC, and stored on secondary 
storage (IBM 2314 disk). About 1000 audio-visual 
experiences are available in the currently used set of 

games, requiring nearly 5 million words of disk storage. 
When a sound is to be played, it is retrieved from the 
disk, passed through a digital-to-analogue converter, 
and output through a speaker system. The high re­
cording rate (20KC) was arbitrary; we wanted good 
clear fidelity, but a lower frequency (10KC or 5KC) 
could be used since we tend to favor low, vibrant 
sounds. 

Thus we utilize at Stanford a PDP-10. a III dis­
play with keyboard, an IBM 2314 disk drive with 5 
million words of secondary storage, and a D / A con­
verter with a speaker system. Clearly these heavy 
requirements make the widespread replication of our 
total system impossible. However, we have antici­
pated eventual implementations of the method on 
small machines, and even on non-computer-controlled 
devices (as discussed below), by a modular construc­
tion of our programs. The sound and display files are 
organized into separate and distinct "games". Each 
game emphasizes a particular aspect of linguistic 
development. In most cases they do not share files; 
each game may be separately loaded into the com­
puter much the same (conceptually) as tape cassettes 
may be loaded into a tape recorder. (In fact, that is one 
possible implementation of a non-computer device.) 

The different game modules may be summoned by 
the sitter, a non-professional adult who is present at 
all therapy sessions. The following descriptions of the 
games are from an earlier paper (Colby and Smith 
19706). The descriptions are still valid because, as was 
mentioned earlier, these games are in their final form. 
Many games continue to be developed, but their 
philosophy is similar to that of the games presented 
here. These games are better described by the slides 
and recordings which will accompany presentation of 
this paper. 

Game 4 is especially worth noting in view of the 
autistic child's impaired affective relationships with 
other people. Elements of compassion are introduced 
obliquely in several of the frames. For example, in one 
series a cartoon of a large ice cream cone is accompanied 
by sounds of loud, happy slurping, and the word 
SLURP! Then the top scoop falls off (PLOP!), and 
there is a groan of dismay. The sad faces of many 
children viewing this reveal clear communication of a 
shared emotional experience. 

Game 1 : Letters and numbers. The letter, number 
or symbol of the pressed key is displayed accompanied 
by a male or female voice pronouncing the appropriate 
sound. Many of the letters are shown in different sizes 
and shapes, and a few are drawn in motion auto­
matically on the video screen. 

Game 2: Words. Single words appear on the screen 
in response to pressing a key. The words consist of 
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verbs and adjectives involving affect and motion, e.g., 
'laugh', 'jump', and 'angry.' The affect terms are not 
only stated but enacted, i.e., the voice laughs while 
saying 'laugh.' All the major positive and negative 
affects are referred to in an attempt to exercise the 
child's affective repertoire. For example, the word 
'kill' is spoken very belligerently, and the combination 
'XYZ' is accompanied by a contemptuous Bronx 
cheer. 

Game 3: Phrases. A letter or number is displayed 
in response to the corresponding key being pushed. 
Following the symbol appears a word or a phrase 
containing it one or more times, with arrows pointing 
to these occurrences. A male or female voice states the 
word or phrase. The words and phrases are selected 
on the basis of common occurrences in the child's life 
(e.g., 'funny', 'upstairs') and because of their absurdity 
(e.g., 'fried filet from Farnsworth', 'lambs go baaaaaa I'). 

Game 4: Cartoon pictures. This game consists of 
displayed phrases and pictures along with human, 
animal, machine and other sounds such as music. The 
figures consist mainly of animals and machines, with 
very few humans. Crude motion is achieved by moving 
the animals' legs or moving a vehicle across the screen. 
The pictures and sounds are intended to be ludicrous, 
absurd and amusing to children. 

Game 5: Phrase completion. A phrase or sentence 
consisting of several words appears on the screen in 
response to a key; e.g., pressing 'J' produces 'the cow 
jumps over the moon.' A male voice expresses the 
sentence over and over until the child stops it by 
pressing any other key. When 'J' is pressed again the 
same thing happens, but on the third occurrence, 
while the full sentence appears, the voice omits part 
of it, saying e.g., 'the cow jumps over the ---.' The 
intent is for the child to fill in the omitted word or 
phrase, which is omitted one of three times. 

Game 6: Word construction. Here the letters of the 
alphabet appear in a square around the edge of the 
video display. On pressing a key, a trumpet sounds 
with the Los Angeles Rams 'Charge!' call, a female 
voice says, 'Here comes the word,' a male voice states 
the word, e.g., 'cat,' and another male voice pronounces 
the letters, which one by one light up and move to 
the center of the screen to form the word. The word 
is again stated when the spelling is completed. The 
game demonstrates how words are put together letter 
by letter. 

Game 7: Phrase construction. The alphabet is dis­
played at the bottom of the screen. In response to 
pressing a key, letters move to the top of the screen, 
following individual paths, to form a phrase, one word 
at a time. The effect is of chaotic motion resolving 
itself at the end into a coherent word. 

Game 8: Typewriter. The video portion of this 
game consists of the symbols of the keys pressed ap­
pearing in lines from left to right until the screen fills 
up, whence they are all erased and a new sequence 
begun. The audio portion involves a male voice offering 
comments, requests and questions regarding the dis­
played symbols-e.g., 'Is this really eight?', 'where is 
O?', 'see the four?', 'now find 1.' 

Game 9: Spelling. The child types freely. If, by 
chance or design, he spells any of the words which 
occur in any of the games, the rest of the screen is 
erased temporarily leaving the word he has spelled 
centered in the screen. The appropriate sound is then 
played. 

We are continuing to experiment with new games 
in an effort to build a library of the most successful 
approaches to stimulating language. 

THE RATIONALE FOR AUTOMATED THERAPY 

Colby has already expressed our initial motivation 
for using a computer in automated therapy (Colby 
1968, p. 6424): 

My group's interest in a computer-based 
method for developing language in non­
speaking disturbed children derived from 
several sources. First, we were interested in 
the general problem of using computers in the 
problems of psychiatry, as for example 
through computer simulation of belief systems 
(Colby 1967a2) (additional references: (Colby 
and Smith 19695), (Colby et al. 19717» and 
man-machine dialogues (Colby and Enea 
1967b3). Second, the work of Suppes (Suppes 
196613) and Moore (Moore 19639) indicates 
that normal children learn reading, writing, 
set theory, and arithmetic rapidly and en­
joyably by means of computer-controlled 
keyboards and displays. Third, the observa­
tion of many workers regarding the great 
preoccupation of some disturbed children 
with mechanical objects which they can 
manipulate and control is impressive. Since 
language acquisition in a normal child results 
from interactions with people (relations which 
disturbed children find difficult), perhaps 
nonspeaking disturbed children would find a 
machine such as a computer-controlled key­
board and display a more acceptable source 
for linguistic interaction. Hence, an effort 
was made to take advantage of a child's 
fascination with machines by providing him 
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with a speaking and writing machine to play 
with. Instead of a person controlling a child, 
the child can control the machine, making it 
talk and display symbols at his will. 

Language is often described as used for 
expression and as an instrument for social 
influence. But during normal language acqui­
sition, it is also used by children as a toy. The 
method used in the present studies offered 
each child a means of playing with language. 
The hunch that children might enjoy this 
activity was further supported by some pre­
liminary experience with normal children who 
delighted in the play and whose speech was 
greatly excited by it during and after the 
sessions. If a nonspeaking disturbed child 
could become interested in this sort of play 
and begin to enjoy developing language as 
play rather than work, the hope was that 
he would transfer his use of language from a 
computer context to other social contexts. If 
a disturbed child talks, a greater chance 
exists for understanding what troubles him 
and for helping him. 

In addition to eliminating the fear of interpersonal 
relationships possessed by many autistic children, the 
computer has other intrinsic advantages over a human 
therapist. Some children's linguistic difficulties stem 
from an inability to abstract from complex and chang­
ing situations. They are baffled by vocal sounds coming 
from people. Even the most well-intentioned human 
therapist will inject variety into the learning situation, 
thereby including one more variable with which the 
child must deal. The response of the machine is an 
absolute constant which forms a firm base for the child 
to build upon. We frequently observe children striking 
the same key over and over, and listening intently to 
the sound. "Adults do not tolerate repetition well, 
and when a child strikes the same key for twenty 
minutes, it takes great control not to interfere. We 
know from experience that if a sitter tries to stop 
repetitions, the child will resist the interference and 
refuse to play further. And he is right." (Colby and 
Smith 19706) 

Has a nonspeaking autistic child lost hope 
of understanding and using language? Has he 
given up so that nothing seems worth the 
effort or risk? If so, we get him to try again, 
to rekindle the hope by providing him a lin­
guistic experience requiring little effort and 
at which he cannot fail. For a small amount 
of effort in pressing a key, he produces a large 

effect; and there is no risk of failure because 
something always happens, and he is never 
corrected for being wrong about what hap­
pens. He is free to select those symbols he 
wishes to manipulate. He is free to exercise 
his curiosity, to explore, to try to make sense 
out of the games. The experience is designed 
to be fun, non-serious, not like school 
(BLEAGGH!). The program is full of foolish­
ness, nonsense and absurdities intended to 
delight a child and to elicit glee and exuber­
ance. Only personal observation of the chil­
dren playing with the display can convince 
adults of how pleasurable it can be. (Colby 
and Smith 19706) 

The strongest argument, though, for our method is 
the favorable results we have achieved. Other treat­
ment methods for nonspeaking autistic children report 
an improvement rate of 3 percent-57 percent (Bettelheim 
19671). To date (Nov. 1971) we have treated 21 cases 
over the past four years. We have estimated 15 (71 
percen t) to have improved in language development. We 
classify a child as nonspeaking if he is mute or utters 
only a word or two per month or year. He will also 
generally utter other sounds that are unintelligible. 
(However, all but one of our children have shown some 
language comprehension.) We rate a child improved if he 
moves from this state to volunteering appropriate intel­
ligible words and phrases in social communication. The 
speech must be non-echolalic and be initiated by the 
child with the intention of communicating information. 
Though the enunciation need not be perfect, it must 
be sufficiently good so that the child can make practical 
use of language in interpersonal relations. Sometimes 
the children offer quite well-constructed sentences, 
but more often they utter short, primitive sentences 
or phrases. 

AN ECONOMICAL THERAPY MACHINE (ETM) 

Our implementation of an automated therapy labora­
tory on the PDP-I0 is clearly not feasible for most 
clinics, schools or even hospitals around the country. 
The computer requirements described above would 
cost well over a million dollars if duplicated faithfully. 
But this approach is not even desirable. Our goal was 
to use whatever resources were available to experiment 
with automated therapy techniques, bypassing as many 
developmental problems as possible. N ow that we 
have had several years of experience with this type 
of treatment, we can begin to specify the characteris­
tics of an economical therapy machine (ETM). By 
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this we mean a machine suitable for use in a large 
number and variety of institutions dealing with lan­
guage problems. 

First and foremost is effectiveness; the machine 
must be at least as effective as our system in treating 
language disorders. Thus it must have many of our 
system's features which we have found to be impor­
tant: (1) a video screen and provisions for showing 
still pictures and (at least crude) motion. (2) An audio 
device capable of producing continuous sound in syn­
chronization with the pictures. (3) A keyboard or simi­
lar device with which the child may select a picture/ 
sound, plus the appropriate logic for selecting his 
choice from the storage. (4) Storage devices for pic­
tures and sounds; they could use the same device (e.g., 
movie film with sound track) or separate ones. The 
storage devices and their accessing logic must have at 
most a one second delay Oi second is optimal) be­
tween the time the child requests a picture/sound and 
the time it is played for him. The child's attention 
span will not tolerate a longer delay. 

Next in importance is low cost. The machine must 
be economically feasible for a wide range of institu­
tions; individual machines can and should cost no 
more than $1000-$5000. It may be possible to group 
several terminals together under one system, in which 
case a small computer (e.g., a PDP-8) could be used 
for the logic. A system with five terminals should cost 
around $15,000. These are only rough estimates; they 
might be improved upon. 

Other essential characteristics are that the machine 
be reliable, rugged (the keyboard, at least, must be 
able to withstand rough handling by children), easily 
and cheaply repairable (hopefully using stock, readily­
available parts), portable, self-contained and requiring 
no special environmental controls (such as air condi­
tioning or humidity control). 

This is admittedly a formidable list of requirements, 
but one which we believe to be well within the capa­
bilities of current technology. Some suggested imple­
mentations are presented below. 

'1;here are other characteristics that are desirable 
but not essential in a therapy machine: (1) Color in 
the pictures. (2) Better motion than the 2-4 frame 
motion we use; also more professional cartoon char­
acters. (3) Longer sound than our current three-second 
time limit. (4) Flashing lights and changing geometric 
patterns, accompanied by music; the children are 
fascinated by orderly motion. (5) More physical in­
volvement while participating in the games. Many 
children are hyperactive and squirm and fidgit when 
required to sit in a chair to play the games. If they 
could run around the room punching buttons or jump­
ing on pedals to activate the machine, it would not 

only be more enjoyable to these children but would 
probably increase their attention span as well. (6) 
Finally, custom tailoring is important. It should be 
easy to construct a new game specifically for an in­
dividual child. Frequently a child will show interest 
in a particular sound or word or phrase; it should be 
possible to construct a new game exploiting this sound 
for the child's next therapy session. 

All of these features are designed to hold the child's 
interest and to stimulate his involvement with the 
machine. Variety and novelty are the key characteris­
tics. Any suggestions the machine designer would 
have would, of course, be welcome. 

POSSIBLE IMPLEMENTATIONS OF AN ETM 

The following are some rough ideas we have had on 
the form an economical therapy machine might take. 

The video screen could be most simply realized as a 
standard slide-projector screen. This would exclude 
some versatility, such as permitting the child to draw 
on a display screen with a light pen, but the cost 
would be very low. 

The pictures could be generated using a standard 
film strip driven by a high-speed stepping motor. The 
motor would have to be fast enough to advance over 
several frames of the film to get to the desired frame 
within the }i-I second time constraints. It should also 
be able to stop, so that a single frame remains shown, 
and to proceed at a slow rate suitable for showing 
motion. Alternatively, a plate of fiche with the pictures 
imprinted on it would be used together with a scanning 
head. Both of these approaches require the design of 
logic circuitry to control and count the stepping of the 
motor or the positioning of the scanning head. This 
circuitry constitutes the main non-standard aspect of 
the ETM. It has to be designed from scratch; but 
presumably, once the design costs have been met, it 
could be constructed inexpensively using low-cost 
integrated circuit chips. 

The sound could perhaps most easily be recorded 
on a sound track on the film strip. This requires that 
the film strip be constantly moving, even for still 
pictures. The advantage is that each game could be 
packaged in a self-contained and easily-changeable 
cassette. The problem of constructing new games 
tailored to individual children reduces to the problem 
of making new cassettes; there is much inexpensive 
movie-with-sound recording equipment available to­
day. Alternatively, a separate sound tape could be 
used in conjunction with the picture producing device. 
This would complicate the controlling circuitry, since 
two tapes would have to be coordinated (one for the 
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pictures, one for the sound). A small computer might 
become feasible with this approach, particularly if 
several terminals were to be used. Another approach 
is to have a rapidly rotating drum on which the sound, 
and possibly the pictures, is recorded. Movable or 
fixed read/write heads would be used to access the 
sound; a high RPM would insure that latency is suffi­
ciently small. This arrangement is particularly suited 
to time-sharing several terminals using a small com­
puter; one copy of the sounds could be used by all 
the terminals connected to the drum. 

We envision a very wide market for a machine de­
signed along these lines. Many hospitals, clinics and 
schools are becoming increasingly concerned with 
correcting language disorders. Furthermore, normal 
children thoroughly enjoy our system. If used in the 
schools, it could provide a powerful stimulus for their 
early interest in language, leading perhaps to increased 
reading efficiency at an early age. 
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An inferential processor for interacting with biomedical 
data using restricted natural language* 
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INTRODUCTION 

This paper describes the design and implementation of 
a natural language system (hereafter referred to as 
EN GOLISH) which was developed to support and 
enrich the utilization of computer models of physio­
logical systems. In addition to providing capabilities 
for interrogating data bases using a subset of English, 
ENGOLISH also provides capabilities for defining and 
structuring data bases using this subset of English. In 
particular, this facility has been used to encode rele­
vant information from documents concerning these 
models to enrich their utility. ENGOLISH is struc­
tured around GOL (Goal Oriented Language) which is 
a programming language developed by H. Pople to 
provide a means in which to express algorithms involv­
ing heuristic search and problem solving. GOL pro­
vides not only the basis for organizing and searching 
ENGOLISH data structures but also provides the 
basis for ENGOLISH's heuristic parsing algorithms. 
For a description of GOL, see Pople.13 

The development of retrieval systems, using subsets 
of English to interrogate structured files of data, has 
received considerable attention. Simmons23 summarizes 
much of this work. In general those retrieval systems 
referred to as "fact-retrieval systems" or "question­
answering systems" consist of the following basic 
components: 

(1) A query language (in this context a subset of 
natural language ) . 

(2) An internal language or data structure in which 
facts may be represented or encoded. 

(3) A translator for translating questions posed in 

* The work incorporated in this report was carried out under 
NIH Contract 70-4121 and also supported in part by NIH grant 
PM 00049-02. 

1107 

the query language into programs or subroutine 
calls to search the internal data structures. 

In addition to the above basic components, the 
following are regarded as features which are desirable 
in such systems: 

(1) A general internal representation (ability to add 
new and perhaps differently structured data to 
the system without major modifications). 

(2) Ability to build and expand the data base using 
the query language. 

(3) Ability to alter or extend the query language. 
(4) Inferential capability, including the ability to 

handle quantifiers. 
(5) Capability for dealing with modalities and state 

spaces. 

In regards to such systems, Schwarcz et aP7 have 
identified the need for solving the following three major 
interrelated problems. 

1. The development of a formalized data repre­
sentation language in which the aspects of 
meaning that are relevant to the system's uses 
are explicitly and unambiguously represented; 

2. The development of algorithms for translating 
inputs in the English subset into appropriate 
storage and retrieval commands for operation on 
the data base, making appropriate use of con­
textual information to resolve both syntactic 
and· semantic ambiguity, and for translating 
structures retrieved from the data base into 
well-formed English answers; 

3. The development of algorithmic and/or heuristic 
methods for determining what subset of the 
data base is relevant to filling a given retrieval 
request and, using the logical relationships 
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represented in the data base, for deducing an­
swers from this subset to meet the request. 

structures which are to be used for its semantic basis. 
Currently most such query systems use one of two 
approaches. The first (hereafter referred to as a "logic­
based system") uses a logic as its basis, usually a first 
order theory, and employs a theorem prover as its 
means for searching and inferring facts from the data 
base. (For examples see References 6 and 16.) The 

SEMANTIC ORGANIZATION AND EXAMPLES 

The primary consideration in the development of a 
question-answering system is the definition of the data 

DELTA 01-SEP-71 20.16 

"0810 
00820 
00038 
"0040 
00058 
00"61 
00870 
"0880 
00090 
e0100 
00110 
00120 
00130 
08.<48 
00150 
0016. 
00170 
00180 
"0190 
00200 
00210 
00221 
00238 
08240 
88258 
00260 
00278 
00288 
"0298 
80300 
00310 
00320 
00330 
803'­
"035' 
08360 
0837. 
00388 
08410 
00428 
"0430 
80448 

• 

<DELTA.STRUCTURE> a <STRUCTURE-NAME> <STATE-DEFINITIONS> 

<STRUCTURE-NAME> = <LISP-ATOM> 

<STATE-DEFINITIONS> = 0 
= <STATE-DEFINITION> 
a <STATE-DEFINITION> <STATE-DEFINITIONS> 

<STATE-DEFINITION> a ( <STATE-NAME> <DELTA-DEFINITION> ) 

<STATE-NAME> a <LISP-ATOM> 

<DELTA-DEFINITION> = (DELTA cVARIABLES> eDELTA-ENTRIES» 

eVARIABLES> = ( (eFREE-VARIABLES» eSTRING-VARIABLES» 

<FREE-VARIABLES> = 0 
• <FREE-VARIABLE> 
• <FREE-VARIABLE> <FREE-VARIABLES> 

<FREE-VARIABLE> - <LISP-ATOM> 

eSTRING-VARIABLES> a 1 
• <STRING-VARIABLE> 
= <STRING-VARIABLE> <STRING-VARIABLES> 

<STRING-VARIABLE> ~ <LISP-ATOM> 

<DELTA-ENTRIES> - eDELTA-ENTRY> 
• <DELTA-ENTRY> <DELTA-ENTRIES> 

<DELTA-ENTRY> = ( <TRUTH-VALUE> eN-TUPLE> <CONDITION> ) 

eTRUTH-VALUE> = T .,. 
<N-TUPLE> a ( cATOM-LIST> ) 

<ATOM-LIST> • cLISP-ATOM> 
= <LISP-ATOM> <ATOM-LIST> 

<CONDITION> = eGOL-EXPRESSION> 
Figure 1 



second approach utilizes networks for representing the 
primary relations concerning its data base. Higher level 
relations as :well as searching and inferential capabilities 
are normally encoded as special purpose programs. For 
future reference, we shall refer to these as "program­
based systems." (For examples see References 7, 14, 17, 
21, 24 or 25.) In general, logic-based systems offer 
more powerful inferential capabilities and permit input 
data using variables and containing quantifiers. N or­
mally the addition of such deduction rules in a program­
based system entails modifying existing programs or 
adding new routines to the system. However, logic­
based systems currently lack capabilities for handling 
higher order logics (thus making it difficult to handle 
many features such as a "How many" type question), 
and in general their inability to deal with relevance 
makes them impractical for other than very small 
data bases consisting of a limited number of deduction 
rules. On the other hand, program based systems, by 
their nature, allow some degree of relevance to be in­
corporated into the data structures as well as the rou­
tines for searching these structures, at the expense of 
some degree of generality, and hence can be made to 
operate more efficiently on larger data bases. Further­
more it is difficult in either of these approaches to 
incorporate linguistic data into their data structures to 
provide a natural language capability with the system. 
As a result a natural language capability is usually 
provided by a separate component in the system which 
makes it difficult to allow the development and expan­
sion of the subset of natural language in conjunction 
with the data base. 

We feel that use of a heuristic problem solving lan­
guage such as GOL as a basis for the semantic organi­
zation will permit the incorporation of the advantages 
of each of the above systems. The semantic representa­
tion used in ENGOLISH is a data structure (hereafter 
referred to as the DELTA notation) which is an exten­
sion of the GOL extensional and intensional data 
structures. The extensional data structures in GOL 
enable the definition of n-ary relations by an explicit 
encoding of the appropriate n-tuples. Alternatively, 
patterns containing free variables may be used to de­
scribe classes of n-tuples in compact form. The inten­
sional data structures are ~-expressions which provide 
for the definition of one relation in terms of others; 
such definitions may be recursive. (For further details 
see Reference 13.) The DELTA notation combines 
these two into a single data structure also allowing pro­
visions for representing negative data. In addition, it 
provides the capability for having string variables, as 
well as free variables; this makes the DELTA notation 
ideal for expressing grammars as well. The syntax for 
the DELTA notation is given in Figure 1 below. 
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As an example, in GOL one might code a maze solving 
routine by defining a GOL intensional data structure 
such as SOLVE-MAZE given below. 

SOLVE-MAZE 

(SOOOO (LAMBDA (X Y) 
(OR (CONNECTED X Y) 

(EXISTS (Z) (AND 
(CONNECTED X Z) 
(SOLVE-MAZE Z Y)))))) 

Then a maze such as the trivial example below 

B 

D 

END 

may be encoded with a GOL extensional data structure 
CONNECTED such as follows. 

CONNECTED 

(SOOOO (EXT (NIL) 
(START A) 
(A B) 
(A C) 
(B D) 
(D END))) 

Alternatively, one could combine the two and use the 
single DELTA definition MAZE given below. 

MAZE 

(SOOOO (DELTA ((X Y)) 
(T (START A) T) 
(T (A B T) 
(T (A C) T) 
(T (B D) T) 
(T (D END) T) 
(T (X Y) (EXISTS (Z) 

(AND (MAZE X Z) 
(MAZE Z Y)))))) 

Here X and Y are defined as free variables and the 
first five "delta entries" encode the extension of MAZE 
(equivalent to CONNECTED defined above) and the 
last delta entry its intension (equivalent to SOL VE-
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MAZE given above). The first delta entry 
(T (START A) T) 

encodes the fact that MAZE is true of the 2-tuple 
(START A) under all conditions, and the last delta 
entry 

(T (X Y) (EXISTS (Z) 
(AND (MAZE X Z) 

(MAZE Z Y»» 

encodes the fact that MAZE is true of any 2-tuple 
under the condition that there is a path connecting 
them. 
Thus with respect to defining the "meaning" of natural 
language concepts, DELTA allows one to have an ex­
tensional as well as an intensional part as proposed by 
Carnap 3 in his method of extension and intension. 
Thus 

UNCLE 
(SOOOO (DELTA ((X Y» 

(T (HARRY BILL) T) 
(F (JOHN SALLY) T) 
(T (X Y) (EXISTS (Z) 

(AND (PARENT Z Y) 

would encode 

(OR (BROTHER X Z) 
(BROTHER-IN-LAW X Z»») 
(T (X) (EXISTS (Z) 

(UNCLE X Z»») 

(1) Harry is an uncle of Bill. 
(2) John is not an uncle of Sally. 
(3) X is an uncle of Y if X is a brother or brother­

in-law of a parent of Y. 
( 4) X is an uncle if X is an uncle of someone. 

with (1) and (2) being extensional and (3) and (4) 
expressing the intension of the binary relation "uncle" 
and unary relation "uncle" respectively. 

GOL data structures such as above may subse­
quently be used to evaluate GOL-expressions which 
contain them. This evaluation may consist of testing 
the truth value for atomic arguments or generating 
values for arguments consisting of unbound variables. 
Thus 

(LAMBDA ( ) (UNCLE (QUOTE HARRY») 

could represent the question 

"Is Harry an uncle?" 

and if applied to the above data structure UNCLE 

would result in a value of T. Similarly the GOL 
expression 

(LAMBDA (A) (UNCLE A (QUOTE BILL») 

could represent the question 

"Who is an uncle of BILL?" 

and if applied, to the data structure UNCLE would 
generate instances for the lambda-variable A. 

To briefly illustrate the representation of a grammar, 
consider the following trivial example which defines the 
positive binary integers and which is equivalent to the 
context free grammar given in BNF below. 

(positive-binary-integer> : : = 
o 11 I (positive-binary-integer> 0 I 

I (positive-binary-integer> 1 

POSITIVE-BINARY-INTEGER 

(SOOOO (DELTA( () $X) 
(T (0) T) 
(T (1) T) 
(T ($X 0) 

(POSITIVE-BINARY-INTEGER (QUOTE ($X» 
(T ($X 1) 

(POSITIVE-BINARY-INTEGER (QUOTE ($X» 
(T ($X) T) 

$X is defined as a string variable and the last entry 
above may be thought of as a completeness statement 
i.e., no other strings are positive binary integers. 

DISCUSSION AND EXAMPLES 

Although ENGOLISH is applicable to defining and 
interrogating various types of data bases, its develop­
ment was guided by the desirability of building an 
interrogation system around physiological models, in 
particular a neural model which is under development 
as a means of representing facts concerning pharmaco­
logical data. 

The first problem in this development was the choos­
ing of some subset of English which was felt to be ade­
quate for expressing questions concerning the informa­
tion represented in such models. Because of the struc­
tural similarities between these models and pictures of 
simple objects, we began with a subset of English 
similar to that given in Kochen9 and pioneered by the 
work of Kirsch,7 concerning grammars for talking about 
pictures. Since any grammar for a collection of ques-
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Since ENGOLISH requires no prior knowledge 
concerning the given data base, i.e., the basic vocabu­
lary of objects and names of relations, the model builder 
should enrich the vocabulary of the system for relations 
requiring more than one English word by using the 
SUBSTITUTE statement as illustrated in lines 00001 
and 00003 above or by using a hyphen in the first ap­
pearance of the phrase as with "connected-inhibitory" 
in line 00005. 

Using the small data base created by Figure 3, Figure 
4 below illustrates types of questions which could be 
asked of it using ENGOLISH. (Lines preceded by * 
illustrate questions asked and the line (s) following the 
response from ENGOLISH.) 

Note in the preceding that following "what­
questions" the command "ANOTHER" may be used 

GAMMA to elicit further instances for the "what-question" from 
ENGOLISH. Similarly, "REST" may be used for all 
remaining answers. 

RAPHE' NUCLEUS 

BULBOSPINAL NEURON 

Figure 2 

tions also entails as a subset a grammar for statements, 
it was decided that the defining of relations using such 
statements would also be a useful feature, thus allowing 
the construction of the data base itself using natural 
language. Since the language into which we translate 
such questions, i.e., GOL expressions is the same lan­
guage in which the data base is structured, this was 
possible. 

Illustrative example 

As an illustrative example assume we wish to define 
and interrogate the prototype of a simple neural model 
given in Figure 2. The statements given in Figure 3 
were used to define this data base in hNGOLISH. 

Schema of Neural Structures and Their Transmitter 
Mechanisms for Figure 2. 

VOP: Nucleus Ventralis Oralis Posterior 
VOA: Nucleus Ventralis Oralis Anterior 
ALPHA MN s and GAMMA MN s represent their 

respective motorneurons 
AREA 4 and AREA 6 are the cytoarchitectural 

divisions of Motor Cortex 
CHOL: cholinergic transmitter mechanism 
DOP: dopaminergic transmitter mechanism 
5-HT : serotonergic transmitter mechanism 

Encoding of literature 

In addition to the information encoded within models , 
another important source of information is from litera­
ture which is relevant to such models. These could be 
used not only to cite justification for the structure of a 
given model by the model builder but also to contain 
published laboratory data which may corroborate or 
contradict results obtained when using such models. 

To accommodate this type of data we decided that 
it should be encoded within the same data structures so 
that the same processors which search for answers to 
questions within a model, could also be used to answer 
such questions from the literature. Furthermore, the 
user should have the option of deciding to which source 
he wishes his interrogations directed-to a model, the 
literature or both. 

As ·a result, we currently envision the top level 
structure of this data base as a hierarchic state space. 
This is feasible because of GOL's existing capability 
for dealing with state-spaces in heuristic problem 
solving. The user then focuses attention on some node 
of this state spage by the statement (LETS DISCUSS 
-) or by including the phrase ( ... ACCORDING 
TO X ... ) within a statement. Having done so, he 
then restricts the context to that state and any states 
accessible from it. 

The indexing of data by states also provides the user 
a means of indexing his data base so that questions 
may be directed to specific parts of the data base, thus 
saving substantial searching time. 
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88881 
•• 8.e 
88883 ....... 
• 8 •• 5 .... , 
8 ••• , 
8 ••• 8 
188.9 e".1 
18111 
88.12 
8 ••• 3 
.1814 
"8815 
.8.16 
8"'11 
••• 18 
.8819 
8882a 
••• 21 
81122 
18823 
08"24 
""825 
.""26 
88821 
8e828 
8.829 
8813. 

"'31 8 •• 32 
•• 133 
88834 
88835 
81836 
8.131 
••• 38 
8.139 

""48 
08841 
" .. 42 
• 0 .... 3 
".4~ 
8.145 
8e8 ... , 
".047 
08848 
e.'49 
81150 
00051 
80852 

• 

SUBSTITUTE NEURAL-STRUCTURE FOR NEURAL STRUCTUR€. 

SUBSTITUTE NEURAL-STRUCTURES FOR NEURAL STRUCTURES,,' 

SUBSTANTIA-NIGRA AND RAPHE-NUCLEUS ARE CONNECTED-INHIBITORY 
TO PALLIDUM. 

PALLIDUM AND NEOSTRI~TUM ARE CONNECTED-EXCITATORY TO VQA. 

DENTATE-NUCLEUS IS CONNECTED EXCITATORY TO VOP. 

VOP IS CONNECTED EXCITATORY TO AREA-.... 

VOA IS CONNECTED EXCITATORY TO AREA-6. 

AREA-6 IS CONNECTED EXCITATORY TO ALPHA-MOTORNEURONS. 

AREA-'" IS CONNECTED EXCITATORY TO GAMMA-MOTORNEURONS • 

SUBSTANTIA-NIGRA IS CONNECTED INHIBITORY TO 
BULBOSPINAL-NEURONS AND NEOSTRIATUM. 

X IS MONOSYNAPTICALLY-CONNECTED TO Y MEANS X IS CONNECTED 
EXCITATORY TO Y OR X IS CONNECTED INHIBITORY TO Y. 

X IS A NEURAL STRUCTURE IF X IS MONOSYNAPTICALLY CONNECTED 
TO SOMETHING OR SOMETHING IS MONOSYNAPTICALLY CONNECTED 
TO x. 

X IS ON-A-PATHWAY TO Y MEANS EITHER X IS MONOSYNAPTICALLY 
CONNECTED TO Y OR X IS ON A PATHWAY TO SOME NEURAL STRUCTURE 
WHICH IS MONOSYNAPTICALLY CONNECT·ED TO Y. 

ACETYLCHOLINE. SEROTONIN. AND DOPAMINE ARE TRANSMITTERS. , 
LIBERATE IS A VERB. 

SUBSTANTIA-NIGRA LIBERATES DOPAMINE. 

RAPHE-NUCLEUS LIBERATES SEROTONIN. 

NEOSTRIATUM. DENTATE-NUCLEUS. PALLIDUM. vop" AND VelA 
LIBERATE ACETYLCHOLINE • 

X IS SEROTONERGIC MEANS X LIBERATES SEROTONIN. 

X IS CHOLINERGIC MEANS X LIBERATES ACETYLCHOLINE. 

X IS DOPAMINERGIC MEANS X LIBERATES DOPAMINE. 

X IS BLOCKED-BY-ATROPINE MEANS SOME NEURAL STRUCTURE WHICH 
IS CHOLINERGIC")S ON A PATHWAY TO X. 

Figure 3 
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*LIST ALL NEURAL STRUCTURES. 
AREA-~ AREA-6 VOA VOP DENTATE-NUCLEUS PALLIDUM SUBSTANTIA-NIGRA 

RAPHE-NUCLEUS GAMMA-MOTORNEURON ALPHA-MOTORNEURON NEOSTRIATUM 
8ULBOSPlNAL-NEURON. 

*IS AREA-~ CONNECTED EXCITATORY TO GAMMA MOTORNEURONS? 
YES • 

• WHAT IS CONNECTED INHIBITORY TO PALLIDUM? 
RAPHE-NUCLEUS • 

• ANOTHER. 
SUBSTANTIA-NIGRA • 

• ANOTHER. 
THAT'S ALL • 

• WHAT IS ON A PATHWAY TO AREA-6? 
VOA • 

• ANOTHER. 
PALLIDUM. 

-ANOTHER. 
RAPHE-NUCLEUS • 

• ANOTHER. 
SUBSTANTIA-NIGRA • 

• IS VOA CHOLINERGIC? 
YES. 

*IS IT TRUE THAT AREA-6 IS CHOLINERGIC? 
NOT TO MY KNOWLEDGE • 

• WHAT LIBERATES ACETYLCHOLINE? 
DENTATE-NUCLEUS • 

• ANOTHER. 
NEOSTRIATUM • 

• ANOTHER. 
PALLIDUM • 

• "·HAT IS THE MEANING OF BLOCKED BY ATROPINE? 
X IS BLOCKED-BY-ATROPINE MEANS SOME NEURAL-STRUCTURE WHICH IS 

CHOLINERGIC IS ON-A-PATHWAY-TO x • 
• ARE THE ALPHA MOTORN£URONS BLOCKED BY ATROPINE? 
YES. 

Figure 4 
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*IS AREA-6 BLOCKED BY ATROPINE? 
YES. 

-HOW MANY NEURAL STRUCTURES ARE BLOCKED BY ATROPINE? 
6 • 

• LIST ALL NEURAL STRUCTURES WHICH ARE BLOCKED BY ATROPINE. 
AR[A-~ AREA-6 VOA VOP GAMMA·MOTORNEURON ALPHA-MOTORNEURON • 

• IS IT TRUE THAT SOME NEURAL STRUCTURE WHICH IS DOPAMINERGIC IS 
CONNECTED INHIBITORY TO SOME NEURAL STRUCTURE WHICH IS CHOLINERGIC? 

YES. 
Figure 4 (Cont'd) 

A complete example 

Within the framework of the previous section one 
may include facts from the literature into such a data 
base by expressing them as EN GOLISH statements as 
represented by the example in Figure 5. 

In a similar manner, the model builder may encode 
comments about his model. Such data is useful not only 
for future reference by the model builder but also by 
future users of such models to explain and justify as-
pects of them. ' 

Having encoded such data for a neural model and 
several documents relevant to it, one may then interro­
gate this data base with queries such as illustrated in 
Figure 6. 

ENGOLISH IMPLEMENTATION 

The current version of ENGOLISH is implemented 
in GOL enriched LISP. The translator consists of a 
top-to-bottom parser utilizing heuristics on syntactical 
patterns as well as the data base itself to aid in the 
recognition of sentences, questions, names, etc. These 
patterns are defined by GOL DELTA data structures 
and the parser and heuristics by GOL intensional data 
structures and LISP subroutines. As a result it re­
sembles the conceptual parser described by Shank19 ,20 

as opposed to totally grammar based systems. The 
parsing algorithm places stress on "function words" 
such as articles, prepositions, quantifiers etc., and as a 
consequence is capable of parsing sentences containing 
nouns, verbs, and adjectives which were not previously 
defined within the data base and for which no syntactic 
information is available. Such words which are defined 
in the data base are used to aid in the parsing and 
disambiguating of sentences. 

Having parsed an English statement or query, the 
phrase marker generated is used to generate the equiva-

lent GOL expression. This expression is then evaluated, 
and if a statement, it will result in the approprjate data 
structure being defined or modified, and if a question, 
in the appropriate value being generated or retrieved, 
to provide an answer to the question. 

DISCUSSION AND FUTURE DEVELOPMENTS 

The preceding sections described the current status of 
ENGOLISH. Even though it has convinced us of the 
feasibility of translating from a subset of English to 
GOL and of its desirability as a basis for a query sys­
tem, there still remains much to be done. 

Currently, steps are being taken to expand the con­
versational capabilities of ENGOLISH. In addition to 
expanding the syntax, there is need for more interaction 
between man and machine. In addition to utilizing its 
own data base to answer questions, ENGOLISH's 
utility would be increased by adding capabilities for it 
to generate sub-questions to the user, i.e., to also make 
use of the users knowledge in answering his questions. 
For example, consider a true-false question such as 
IS SUBSTANTIA-NIGRA BLOCKED BY 

ATROPINE? This question would currently result in a 
"YES," "NO," or "NOT TO MY KNOWLEDGE" 
response from ENGOLISH, depending on the success 
of searching out pathways to Substantia-Nigra for a 
neural structure which is cholinergic (see Figure 3). If 
none were found, but neural structures were tested for 
which no transmitter was known, it would be desirable 
to have the system query the user with 

IS CHOLINERGIC? 
or 

WHAT DOES LIBERATE? 

as opposed to merely responding "NOT TO MY 
KNOWLEDGE." 
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THE CONTEXT IS NEURAL. 

LETS DISCUSS NEURAL-DOCUMENTS. 

MOUNTCASTLE-BARD IS A SUB-WORLD OF NEURAL-DOCUMENTS. 

"BARD. PH" IS THE AUTHOR 0' MOUNTCASTLE-BARD. 

"MOTOR FUNCTIONS OF THE CEREBRAL CORTEX AND BASAL-GANGLIA" 
IS THE TITLE OF MOUNTCASTLE-BARD. 

"MEDICAL PHYSIOLOGY VOL I J EDITED BY MOUNTCASTLE 
PP 119. I 88S" IS THE SOURCE OF MOUNTCASTLE-BARD • 

LETS DISCUSS MOUNTCASTLE-BARD. 

NUCLEUS-VENTRALIS-CAUDALIS. NUCLEUS-VENTRALIS-INTERMEDIUS. 
NUCLEUS-VENTRALJS-ORALIS-POSTERIOR. AND 
NUCLEUS-VENTRALIS-ORALIS-ANTERIOR ARE PART OF THE 
VENTR08ASAL-THALAMIC-NUCLEI. 

STIMULATION OF SKIN EXCITES NUCLEUS-VENTRALIS-CAUDALIS • 

STIMULATION OF JOINTS EXCITES NUCL£US-VENTRALIS-CAUDALIS 
AND NUCLEUS-VENTRALIS-INTERMEDIUS. 

STIMULATION or MUSCLE-AFFERENTS EXCITES 
NUCLEUS-VENTRALIS-ORALIS-POSTERIOR. 

STIMULATION or NUCLEUS-VENTRALIS-CAUDALlS CAUSES PARESTHESIA. 

STIMULATION OF NUCLEUS-VENTRALIS-ORALIS-ANTERIOR INCREASES 
MUSCL.E TONE • 

STIMULATION OF NUCL£US-VENTRALIS-ORALIS-ANTERIOR SLOWS 
VOLUNTARY MOVEMENT. 

STIMULATION OF NUCLEUS-VENTRALIS-ORAL~S-POSTERIOR ACCELERATES 
VOLUNTARY MOVEMENT. 

KILLING NUCLEUS-VEHTRALIS-ORALIS-ANTERIOR ALLEVIATES 
PARKINSON-DYSTONIA. 

KILLING NUCLEUS-VENTRALIS-QftALIS-POSTERIOR ALLEVIATES 
PARKINSON-TREMOR • 

Figure 5 
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*LIST ALL NEURAL STRUCTURES. 

ACCORDING TO BRODAL WHICH IS A SUB-WORLD OF NEURAL-DOCUMENT 
LARGE-NEURON IN DEITERS-NUCLEUS SMALL-NEURON IN DEITERS-NUCLEUS 
ALPHA-MOTORNEURON GAMMAt-MOTORNEURON 

ACCORDING TO HASSLER WHICH IS A SUB-WORLD OF NEURAL-DOCUMENT 
NUCLEUS-VENTRALIS-LATERALIS DENTATE-NUCLEUS 
NUCLEUS-VENTRALIS-ANTERIOR PAL .. LIDUM MOTOR-CORTEX-" MOTOR-CORTEX-6 

ACCORDING TO GR ILLNER-ET-AL-1969 WHICH IS A SUB-WORLD OF 
NEURAL-DOCUMENT PONTINE-RETICULAR-FORMATION GROUP-ONE-AFFERENT 
ALPHA-MOTORNEURONGAMMA-MOTORNEURON 

ACCORDING TO POMPEIANO-ET-AL-t967 WHICH IS A SUB-WORLD OF 
NEURAL-DOCUMENT EXTENSOR-GAMMA! -MOTORNEURON NUCLEAR-BAG 
DEITERS-NUCLEUS NUCLEAR-BAG-AFFERENT 

ACCORDING TO NEURAL-MODEL EXTENSOR-INTERN FLEXOR-INTERN 
GAMMA2-SPINAL-JNTERN INHIBI'LEX-INTERN VESTIBULO-SPINAL-INTERN 
DEITERS-NUCLEUS RAS·INTERN SUBSTANTIA-NIGRA RAS RAS-PONTINE 
RAS-MEDULLARY CORTICAL-INTERN NUCLEUS-RUBRA RUBRA-INTERN 
MOTOR-CORTEX-4 MOTOR-CORTEX-6 NUCLEUS-VENTRALIS-ANTERIOR 
BASAL-GANGLIA INTRALAMINAR-NUCLEUS NUCLEUS-VENTRALIS-LATERALIS 
EXTENSOR-DEEP-CEREBELLAR-NUCLEUS DEEP-CEREBELLAR-NUCLEUS 
EXTENSOR-CEREBELLAR-INTERN CEREBELLAR-INTERN EXTENSOR-INTERN-. 
INTERN-l CORTIRU8E-INTERN BASAL-GANGLIA-INTERN 
E)(TENSOR-CEREBELLAR-CORTEX CEREBELLAR-CORTEX 
EXT£NSOR-ALPHA-MOTORNEUROH FLEXOR-ALPHA-MOTORNEURON 
EXTENSOR-GAMMA2-MOTORN£URON GAMMA2-MOTORNEURON AFFERENT2-INTERN 
£XTENSOR-GAMMA1-MOTORNEURON GAMMAI-MOTORNEURON CORTICAL-'INTERNEURON 

ACCORDING TO MODEL-BUILDER WHICH IS A SUB-WORLD OF NEURAL-MODEL 
PONTINE-RETICULAR-FORMATION DEITERS-NUCLEUS GROUP-ONE-AFFERENT 
EXTENSOR-ALPMA-MOTORNEURON EXTENSOR-GAMMA1-MOTORNEURON 
GAMMA1-MOTORNEURON. 

*WHAT IS THE ANTAGONIST OF THE FLEXOR-MUSCLE? 

EXTENSOR-MUSCLE. 

*WHAT IS PART OF DEITERS-NUCLEUS? 

SMALL-NEURON • 

• ANOTHER. 

LARGE-NEURON. 

*ACCORDING TO THE LITERATURE WHAT REDUCES FLEXOR-MUSCLE-TONE? 

ACCORDING TO LUND-POMPEIANO-196S STIMULATE DEITERS-NUCLEUS. 

Figure 6 
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*LETS DISCUSS NEURAL-MODEL. 

OK. 

*IS DEITERS-NUCLEUS CONNECTED TO SOME MOTQRNEURON? 

*WHAT IS DEITERS-NUCLEUS CONNECTED EXCITATORY TO? 

VESTIBULO-SPINAL-INTERN. 

*ANOTH&:R. 

GAMMA2-SPI~L-INTERN. 

*WHAT JUSTIFIES DEITERS-NUCLEUS BEING CONNECTED EXCITATORY TO 
EXTENSOR-GAMMA1-MOTORNEURON? 

BECAUSE ACCORDING TO MODEL-BUILDER POMPEIANO-ET-AL-1967 
DEMONSTRATED THIS CONNECT'ION. 

*LETS DISCUSS POMPEIANO-ET-AL-1967. 

*IS DEITERS-NUCLEUS CONNECTED EXCITATORY TO 
EXTENSOR-GAMMAI-MOTORNEURON? 

YES • 

• WHAT DOES STIMULATI0N OF DEITERS-NUCLEUS DO. 

AUGMENT AFFERENT-DISCHARGE FROM MUSCLE-SPINDLE • 

• WHAT IS CONNECTED-EXCITATORY TO NUCLEAR-BAG-AFFERENTS? 

NUCLEAR-BAG. 

*WHAT IS CONNECTED-EXCITATORY TO NUCLEAR-BAGS? 

EXTENSOR-GAHMAI-MOTORNEURON. 

Figure 6 (Cont'd) 
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.WHAT JUSTIFIES DEITERS-NUCLEUS MONOSYNAPTICALLY-EXCITING THE 
EXTENSOR-GAMMA1-MOTORN£URONS? 

BECAUSE POMPEIANO SAYS THAT THIS EFFECT IS RESISTANT TO BLOCK BY 
ANESTHETICS. 

*LETS DISCUSS THE NEURAL-MODEL. 

OK • 

• WHAT JUSTIFIES GROlP-ONE AFFERENTS BEING CONNECTED INHIBITORY TO 
GAMMA1-MOTORNEURONS? 

BECAUSE ACCORDING TO MODEL-BUILDER GRILLNER-ET-AL-1969 ELLICITED 
IPSPS IN GAMMA-MOTORNEURONS BY STIMULATION OF MUSCLE NERVES • 

• WHAT IS CONNECTED EXCITATORY TO BASAL-GANGLIA? 

NUCLEUS-VENTRALIS-LATERALIS. 

*ANOTHER. 

THAT'S ALL • 

• WHAT IS BASAL-GANGLIA CONNECTED EXCITATORY TO? 

GAMMA2-SPINAL-INTERN • 

• ANOTHER. 

NUCLEUS-VENTRALIS-ANTERIOR. 

*ANOTHER. 

THAT'S ALL. 

*WHAT IS ON A PATHWAY TO BASAL-GANGLIA? 

NUCLEUS-VENTRALIS-LATERALIS. 

*ANOTHER. 

SUBSTANTIA-NIGRA. 

Figure 6 (Cont'd) 
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*ANOTHER. 

BASAL-GANGLIA-INTERN. 

*ANOTHER. 

INTRALAMINAR-NUCLEUS. 

*IS IT TRUE THAT RAS IS ON A PATHWAY TO FLEXOR-ALPHA-MOTORNEURON? 

YES. 

*ACCORDING TO NEURAL-DOCUMENTS WHAT IS PART or THE 
V£NTROBASAL-THALAMIC-NUCLEI? 

ACCORDING TO MOUNTCASTLE-BARD' NUCLEUS-VENTRALIS-INTERMEDIUS. 

*ANOTHER. 

NUCLEUS-VENTRALIS-CAUDALIS. 

-LETS DISCUSS THE LITERATURE. 

OK • 

• WHO IS THE AUTHOR OF MOUNTCASTLE-BARD? 

BARD. PH. 

-WHAT IS THE TITLE OF MOUNTCASTLE-BARD? 

MOTOR FUNCTIONS OF THE CEREBRAL CORTEX AND BASAL-GANGLIA • 

• WHAT IS THE SOURCE OF MOUNTCASTLE-BARD? 

MEDICAL PHYSIOLOGY VOL II EDITED BY MOUNTCASTLE PP 1198 1808 • 

• WHAT ALLEVIATES PARKINSON? 

.ACCORDING TO HASSLER KILL PALLIDUM. 

*WHAT SUPRESSES DECEREBRATION RIGIDITY? 

Figure 6 (Cont'd) 
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ACCORDING TO HENATSCH-INGVAR-1956 ADMINISTRATE CHLORPROMAZINE. 

*WHAT DOES ADMINISTRATION OF CHLORPROMAZINE DO? 

ACCORDING TO DASGUPTA-WERNER-1953-195~ BLOCK SPINAL-REFLEX. 

*ANOTHER. 

ABOLISH DECEREBRATION-RIGIDITY. 

*WHAT AFFECTS DECEREBRATION RIGIDITY? 

ACCORDING TO DASGUPTA-WERNER-1953-1954 ADMINISTRATE CHLORPROMAZINE 
ABOLISH DECEREBRATION-RIGIDITY. 

*IS IT TRUE THAT ADMINISTRATION OF CHLORPROMAZINE BLOCKS 
SPINAL-REFLEXES? 

NOT TO MY KNOWLEDGE. 

*WHAT FACILITATES TREMOR? 

ACCORDING TO HASSLER STIMULATE NUCLEUS-VENTRALIS-ANTERIOR. 

*WHAT DOES STIMULATION OF SKIN DO? 

ACCORDING TO MOUNTCASTLE-BARD EXCITE NUCLEUS-VENTRALIS-CAUDALIS. 

*WHAT AFFECTS MUSCLE TONE? 

ACCORDING TO HASSLER KILL INTRALAMINAR-NUCLEUS DECREASES 
MUSCLE-TONE. 

*ANOTHER. 

STIMULATE NUCLEUS-VENTRALIS-ANTERIOR INCREASES MUSCLE-TONE. 

*ANOTHER. 

ACCORDING TO MOUNTCASTLE-BARD STIMULATE 
NUCLEUS-VENTRALIS-ORALIS-ANTERIOR INCREASES MUSCLE-TONE. 

*ANOTHER. 

THAT'S ALL. 

Figure 6 (Cont'd) 
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.WHAT DOES ADMINISTRATION OF RESERPINE DO? 

ACCORDING TO STE6-1964 MIMIC ANEMIC-DECEREBRATION. 
*ANOTHER. 

ABOLISH ACTIVITY GAMMA1-MOTORNEURON. 

*ANOTHER. 

AUGMENT STRETCH-REFLEX. 

*ANOTHER. 

THAT'S ALL. 
*WHAT DOES ANEMIC DECEREBRATION DO? 

ACCORDING TO STEG-1964 SELECTIVE-ACTIVATE ALPHA-MOTORNEURON • 

• WHAT REDUCES FLEXOR-MUSCLE-TONE? 

ACCORDING TO LUND-POMPEIANO-196S STIMULATE DEITERS-NUCLEUS • 

• LETS DISCUSS THE NEURAL-MODEL. 

OK. 
*15 SUBSTANTIA-NIGRA CHOLINERGIC? 

NOT TO MY KNOWLEDGE • 

• WHAT IS CHOLINERGIC? 

NUCLEUS~VENTRALIS-ANTERIOR • 

• ANOTHER. 

NUCLEUS-VENTRALIS-LATERALIS • 

• WHAT IS THE MEANING OF BLOCKEI BY ATROPINE? 

X IS BLOCKED-BY-ATROPINE MEANS SOME NEURAL STRUCTURE WHICH IS 
CHOLINERGIC IS' ON-A-PATHWAY-TO x • 

• WHAT IS BLOCKED BY ATROPINE? 

MOTOR-CORTEX-6. 

Figure 6 (Cont'd) 
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*THE CONTEXT IS NEURAL. 

OK. 
*LETS DISCUSS NEURAL. 

OK. 
*WHAT DOES STIMULATION OF SUBSTANTIA-NIGRA DO? 

ACCORDING TO BARBEAU-196S WHICH IS A SUB-WORLD OF NEURAL-DOCUMENT 
RELEASE DOPAMINE IN PUTAMEN. 

*15 SUBSTANTIA-NIGRA DOPAMINERGIC? 

ACCORDING TO SOURKES-POJRIE-1965 WHICH IS A SUB-WORLD OF 
NEURAL-DOCUMENT YES. 

-WHAT DOES LESION OF FOREL-HI-AREA DO? 

ACCORDING TO MODEL-BUILDER PRODUCE TREMOR. 

-WHY DOES LESION OF rOREL-HI-AREA PRODUCE TREMOR? 

BECAUSE ACCORDING TO MODEL-BUILDER THIS APPEARS TO BE DUE TO 
INTERRUPTION OF PATHWAYS ORIGINATING FROM SUBSTANTIA-NIGRA. 

*15 SUBSTANTIA-NIGRA A TREMOR SUPRESSING AGENT? 

ACCORDING TO MODEL-BUILDER YES • 

• WHAT JUSTlf'IES SUBSTANTIA-NIGRA BEING A TREMOR SUPRESSING AGENT? 

BECAUSE ACCORDING TO MODEL-BUILDER CARP£NTER-ET-AL-1950 PROVIDES 
EVIDENC£ANDMONNIER-1971 EXPRESS.ES THESE VIEWS • 

• WHERE IS SUBSTANT lA-NIGRA 1 

ACCORDING TOCARRERAS-METTLER-1955 WHICH IS A SUB-WORLD OF 
NEURAL-DOCUMENT MEDIOVENTRAL-AREA IN BRAIN-STEM • 

• WHAT DOES LESION OF SUBSTANTIA-NIGRA 001 

ACCORDING TO CARRERAS-MEtTLER-195S WHICH IS A SUB-WORLD OF 
NEURAL-DOCUMENT DEGENERATE ASCENDING-NIGRO-STRIATE-PATHWAY. 

-WHAT DOES UNILATERAL LESION OF SUBSTANTIA-NIGRA DO? 

ACCORDING TO CARPENTER-ET-AL-t 950 WHICH IS A SUB-WORLD OF 
NEURAL-DOCUMENT IN .MONKEYS PRODUCE HYPOKINESIA. 

Figure 6 (Cont'd) 



Effectively, ENGOLISH could then answer questions 
or sub-questions by searching its data base, running 
dynamic models, or querying the user. Furthermore 
this capability could also be used to allow the system 
to ask questions concerning new data presented to it 
and perhaps eventually the grammar itself which is 
being used. Thus, given a user who did not know the 
organization of the data base, but who wished to encode 
a fact such as 

NEURON-A IS CONNECTED TO NEURON-B 
would result in the structure "CONNECTED" being 
defined or updated. Of more use would be the capability 
for the system to respond with 

or 

IS NEURON-A CONNECTED-EXCITATORY 
to NEURON-B 

IS NEURON-A CONNECTED-INHIBITORY 
to NEURON-B 

so that the new information could be represented more 
consistently with existing information. 

Another addition consists of making the state trans­
formation facilities of GOL available to the user of 
ENGOLISH. In addition to defining states the user 
could then define actions or transformations (such as 
drug administrations would entail), capable of creating 
new states from old ones. This should increase the 
utility of ENGOLISH for problem solving in general, 
since problem solving often involves changing some 
model, by using specified transformations or actions, in 
search of a desired goal state for the model. 

Furthermore, we are also exploring the potential 
within the current system for the generation of mean­
ingful discourse by machine. This would enable the 
generation of answers to some "how" and "why" 
questions, by generating text describing the path of the 
GOL heuristic search process. Thus, it would describe 
the sequence of transformations and their effects in a 
search for the goal state in a problem solving situation. 
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An infornlation processing approach to theory 
formation in biomedical research* 

by H. POPLE and G. WERNER 

University of Pittsburgh 
Pittsburgh, Pennsylvania 

INTRODUCTION 

The extensive literature on modeling of biological 
systems published in the past decade reflects the 
growing expectation th~t theories of biological func­
tions can be subject to more exacting tests of con­
sistency with the natural system, and yield more 
powerful predictions if embodied in the formal structure 
of computer programs. 

One principal aspect of the usefulness of such models 
of biological systems is attributable to their capability 
to generate predictions under conditions which tran­
scend the human mind's limited capacity to trace 
implications through long chains of causal connections, 
notably when there exist possibilities for multiple 
interactions between components of a system designed 
for insuring some degree of homeostasis. Moreover, 
once sufficiently elaborate, refined and acceptable to a 
community of investigators, a model could be expected 
to generate upon request observable facts at various 
levels of resolution and generality, without having all 
of these facts explicitly encoded and stored. In this 
form, the model could be regarded as an information 
storage and retrieval device from which data can be 
generated by suitable programs and algorithms. 

Irrespective of the particular purpose a model may 
subserve, it can be considered as an aggregate of com­
ponents whose initial properties are given in the form 
of a set of definitions, and whose interactions are 
determined by suitable transfer functions. The modeler's 
task is, therefore, twofold: in the first place, suitable 
algorithms need to be selected to represent the input­
output transfer functions of the individual model 
components. Second, the task consists in designing an 
explicit structural arrangement of the components, and 
a pattern of information flow between them, which is 
suggested or implied by the information in the data 

* This work w~ supported by NIH Contract 70-4121. 
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base, and which enables the model to mimic the per­
formance of the natural system. 

In some sense, one may anticipate that the potential 
usefulness of computer based models grows with the 
complexity of the natural domain they represent. 
However, as the latter increases, model building itself 
turns into an increasingly more formidable task, fre­
quently complicated by either incompleteness or 
ambiguity of some of the available observational data. 
The implication of this is that the relation between a 
theory and its data base on the one hand, and a corre­
sponding model on the other hand, need not be unique; 
instead, each given set of observational data of a certain 
complexity can generate a class of models. Conse­
quently, in order to work toward a parsimonious 
model compatible with the available evidence, the 
modeler must engage in the iterative process of iden­
tifying alternative interpretations of the data, selecting 
between them, and evaluating their consequences. In 
those natural domains whose complexity makes modeling 
most desirable, this information processing task tends 
to assume a degree of complexity that impedes model 
development. To explore ways of assisting the modeler 
in this task, we have inquired into the nature of the 
information transactions underlying the modeling of 
complex biological systems. In the following sections, 
we discuss the nature of this information processing 
task. We, then, focus on the problem of structure 
optimization of neural networks, that is: the adaptive 
process of fitting together a neural network which, 
when simulated, gives rise to behavior analogous to that 
observed in the natural domain. Finally, we discuss 
computational procedures designed to aid in this 
process. 

SOME ASPECTS OF THE MODELING TASK 

In our work with models of complex neural control 
systems, we have come to recognize the need for drawing 
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a sharp distinction between the concept of "hypothesis 
model" and that of "simulation model." The hypothesis 
model is what the investigator carries in his head; it 
consists of a collection of facts and a set of interpretive 
rules that allows the researcher to perceive relationships 
in the data, make predictions concerning consequences 
of untried experiments, etc. A simulation model, on the 
other hand, is a computer program in which the 
researcher can express the essential features of his 
internal hypothesis model, enabling rig~rous tests of 
validity. As such, it requires a degree of explicitness 
which goes beyond that commonly available in the 
hypothesis model. We emphasize this dual aspect of 
the modeling process in order to bring into focus the 
interplay that takes place between data, hypothesis, 
and simulation. 

In many cases, the implications of biological data, in 
terms of the scientist's hypothesis models, may give 
rise to a. multitude of possible interpretations. For 
example, the finding that "electrical stimulation of 
Deiters Nucleus elicits IPSPS (inhibitory postsynaptic 
potentials) in gamma-motorneurons" could suggest a 
variety of structural connectivities; some of those are: 

(a) an inhibitory pathway between the cells of 
Deiter's nucleus and the flexor gamma-l­
motorneurons; 

(b) an excitatory pathway between the cells of 
Deiter's nucleus and some spinal-interneurons 
which, in turn, inhibit gamma-motorneurons on 
the extensor side; 

(c) orthodromic and antidromic conduction along 
collaterals ofaxons which originate in some cell 
group with inhibitory connections to, both, 
Deiter's nucleus and certain gamma-motor­
neurons. 

While it may be possible to rule out certain of these 
alternatives on the basis of other data, the researcher is 
invariably forced-in the course of constructing a 
simulation model-to make essentially arbitrary choices 
for which there is no conclusive evidence, either in the 
theory or in the data. 

If a hypothesis model is subjected to a simulation 
test that is successful in the sense that the latter 
exhibits behavior which is consistent with the pre­
dictions by the former, then the researcher is reinforced 
in the choices that were made. On the other hand, if 
this correspondence is not attained, a reexamination of 
data, of hypothesis model, and of simulation model 
performance may direct the investigator to more 

rational choices. This is one of the principal benefits of 
using simulation: it can reduce the degrees of freedom 
available to the model builder, and can force a restruc­
turing of his hypothesis model which, in the absence of 
a simulation experiment, might not take place. 

However, in order to exploit the full value of negative 
simulation results, the researcher needs to know much 
more than simply that the results were unsatisfactory. 
Of course if that is all he knows, he can still proceed 
with revision of the model and additional experi­
mentation. He might, for example, go to some point in 
his hypothesis model where an arbitrary choice from 
among alternative interpretations of the data had been 
made, and simply try another choice. In following such 
an exhaustive search procedure, he may be forced to 
go through a large number of variations of the simula­
tion model until one is found that supports his theoreti­
cal model. Provided he has the patience to persevere in 
this endeavor, it could lead ultimately to an enhance­
ment of his theory. 

As is the case in most such search processes, it is 
reasonable to expect that some heuristic procedure 
which makes use of the detailed information developed 
in the course of a simulation, would provide substantial 
improvement in terms of the time and effort required to 
obtain a fit with the data. The important questions are: 

(a) what kind of information does the researcher 
need; and 

(b) in what form will this information be of most 
use to him. 

In a later part of this paper, we will describe the kinds 
of information support systems that we currently have 
under development to provide relevant inputs for the 
restructuring of hypothesis models. Their development 
was engendered by the experience gained in the design 
of a simulation model of the central neural control of 
skeletal muscle tone and reflexes. As a prelude to the 
discussion that follows, it will be useful to describe at 
this point the way in which one observes the macro­
and micro-behavior in this motor control simulator, 
further details of which are described in the appendix. 

OBSERVATION OF MODEL BEHAVIOR 

The main tool for observing macro-behavior in the 
motor-control system models is the ANALYZE program 
(see appendix), which is used to develop behavioral 
comparisons of two states of a model (one of which 
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typically represents the normal condition, the other 
some pathology) . This program provides a verbal 
output that describes deviations in behavior in one 
state of the model, relative to another, along certain 
key dimensions. Changes in such attributes as ampli­
tude and rate of muscle contraction, force required for 
smooth passive stretch, frequency of oscillatory· be­
havior, and others are perceived and reported to the 
user by this processor. 

While in the model-building/ data-fitting phase of 
his work, the researcher can use ANALYZE to test his 
developing hypotheses concerning representation of 
pathology in the model. For example, he might know 
from a review of the data that a lesion affecting the 
motor-cortex (area 4) would be expected to yield 
predominance of extensor muscle tone in the organism .. 
Moreover, he might already have established in his 
model a number of connections emanating from the 
motor-cortex that could explain such a change in 
behavior. There might, for instance, be an excitatory 
pathway from this cortex to alpha motoneurons 
supplying flexor muscles. In approaching a simulation 
of this pathology, the researcher would therefore start 
with a number of pre-conceptions and expectations. In 
particular, since he intends that the structures which 
appear in the model should have a functional corre­
spondence with their counterparts in the real system, 
he would expect (and indeed would insist for the model 
to be considered acceptable) that destruction of the 
motor-cortex of his model would be comparable, in its 
behavior manifestations, to ablation of the real struc­
ture in the living organism. 

Unfortunately, it often happens in the process of 
model building that such pre-conceptions are not 
supported by the simulation results, and it becomes 
then necessary for the researcher to engage in a kind of 
post-mortem where he reviews his assumptions and the 
simulation results in an attempt to assess what went 
wrong. Any number of things could have happened. 
For example, the researcher might have expected some 
pathway to be 'turned off' in the pathology because its 
source of excitation would be all or partially removed. 
He may find on closer examination that this particular 
pathway is not sufficiently active in the normal model; 
this would of course explain the failure to induce the 
anticipated pathology. There may also be other, more 
complicated reasons for the model to deviate from the 
anticipated behavior: for instance the simulated lesion 
may give rise to widely dispersed changes in the activity 
pattern that are difficult to trace in the hypothesis 
model, and which are therefore less likely to have been 
anticipated during the theoretical analysis. 

The ANALYZE program is of limited value in 

Figure 1 

identifying such failures in the reasoning process. While 
it provides an answer to the question: "How did the 
model fail?" it does not address the equally important 
question "Why?" In order to gain insight into why a 
model fails, we must examine the micro-structure of 
model behavior and the information flow at key struc­
tures along various pathways. The analysis of this 
information flow in the model typically requires an 
extensive series of simulation tests, involving various 
diagnostic procedures in both the normal state of the 
model and in the intended pathology. Once this analysis 
has been completed, the researcher must then deter­
mine what these new insights concerning information 
flow imply with regard to his hypothesis models, make 
the appropriate adjustments, and try again. 

The basic tasks involved in this modeling process are 
illustrated by the flowchart of Figure 1. Here, the nodes 
HI and H2 represent hypothesis models corresponding 
to the two experimental conditions being compared. 
The arcs connecting these nodes to the box labeled 
'Simulation Analysis' correspond to sequences of com­
mands of the form: 'Cut,' 'Tie,' 'Block,' 'Facilitate'­
operators which have been provided as part of the 
motor-control simulator package for use in constructing 
various versions of the simulation model (see appendix). 

Other aspects of the flow chart are less well defined, 
being part of the informal analysis engaged in by the 
investigator. The box labeled 'Theoretical Analysis,' 
for example, represents the researcher's attempts to 
rationalize the expected change in macro-behavior on 
the basis of probable changes in micro-behavior; that is, 
it reflects his attempts at predicting the cause and 
effect relationships that are operative in the pathology 
under consideration. 

These predictions feed into a comparator labeled 
'Post-Mortem Analysis,' which also receives the actual 
observations that result from running the simulation 
model. In the event that prediction and observation fail 
to match, an 'error signal' is generated and is fed back 
to the box labeled 'Theory Builder' causing a restruc­
turing of the hypothesis models and a reiteration of the 
verification cycle. 
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Whenever this procedure requires an alteration of the 
hypothesis model, the experimenter must examine 
whether all experimental conditions accounted for in 
the previous version of the hypothesis model, are still 
satisfied. Thus, the flowchart of Figure 1 describes just 
one phase of the total information processing task 
associated with the development of a general hypoth­
esis model that accounts for a number of different 
experimental results. 

INFORMATION SUPPORT SYSTEMS 

The modeling task described in the preceding sections 
comprises an extremely complex problem in information 
processing. Although much of the work seems to be of a 
routine and mechanical nature-tedious is perhaps the 
right word-there has been no methodology available 
to relieve the inordinate burden this procedure places 
on the researcher. To provide an effective research tool, 
capable of supporting a wider spectrum of the in­
vestigator's activity rather than merely the mechanics 
of simulation, there is need for computational pro­
cedures that will aid in the theory building phases of the 
total information process, and also facilitate theoretical 
and post-mortem analysis. 

In order to state these objectives more precisely, let 
us consider again the dilemma of a researcher who is 
attempting to develop theoretical models to explain 
data pertaining to the motor-control system. He has 
access to a number of different kinds of experimental 
results that can be grouped according to the following 
classifications: 

(a) anatomical 

(b) physiological 

(c) pathological 

(d) pharmacological 

Assuming fixed algorithms for the neural elements 
and the peripheral motor and sensory components of 
the system, the researcher's task is that of developing 
a theoretical model-in the form of a neural connec­
tivity network-which is consistent with the observa­
tional data of each of these four domains, and the 
implications thereof. 

What we have set out to do is reduce this task to a 
computational procedure. Toward this end, we have 
designed and implemented an inferential processor 
that can be used to analyze data and propose hypoth­
esis models. Because of its central role in the total 
information system concept, we discuss next, in some 

detail, the conceptual basis of this theory building 
program. 

THE THEORY BUILDER 

The first step in developing computational procedures 
for dealing with theory is a formalization of that 
theory. There are, of course, a number of computational 
procedures extant-e.g., resolution, model elimination­
for dealing with the deductive aspects of theory.1,2 
However, our problem is concerned not so much with 
what the theory implies as with what theory is implied. 
This converse problem, referred to variously in the 
literature as 'apagoge' or 'abduction,'3 is put succinctly 
by McCulloch:4 

" ... abduction starts from the rule and guesses 
that the fact is a case under that rule: All people 
with tuberculosis have bumps; Mr. Jones has 
bumps; perhaps Mr. Jones has tuberculosis. This, 
sometimes mistakenly called an 'inverse proba­
bility,' is never certain but is, in medicine, called a 
diagnosis or, when many rules are considered a 
differential diagnosis, but it is usually fixed, not 
by a statistjc, but by finding some other observable 
sign to clinch the answer." 

If we express the syllogism contained in this argument 
symbolically: 

Tx:JBx 
Ba 

Perhaps Ta 

it is clear that a stronger conclusion 'Ta' would be 
fallacious, and the qualifier 'perhaps' is a necessary 
part of the abduction. The uncertainty that attaches 
to such a result can be lessened, however-as McCulloch 
points out-by finding additional evidence to clinch 
the case. Even another abduction argument can lend 
support; for instance, if we also have: 

Tx:JCx 
Ca 

Perhaps Ta 

and Px:JCx 
Ca 

Perhaps Pa 

the occurrence of two distinct data supporting 'Ta,' 
while only one supports 'Pa,' would cause most of us to 
hypothesize 'Ta.' 

Such support can also come indirectly through a 
somewhat lengthier chain of reasoning. Consider for 
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example the set of rules: 

Tx~Ex Tx~Bx Bx~Cx Px~Gx Bx~Ax 

Dx~Cx Gx~Ex Px~Dx Dx~Ax 

We can illustrate the network of implications contained 
in these premises graphically as follows, where the 
upward branches at any node denote 'reverse implica­
tion': 

Ax 

If we observe the data: rCa, Ea}-then we might 
reasonably hypothesize: {Ta, Ba, Aa} -since this col­
lection of nodes defines a sub-graph of the net that is 
mutually supportive: 

Since only 2 of these 5 nodes have actually been 
observed, however, any assumption concerning the 
others is merely theory. An alternative theory that 
might be put forth to account for these same data 

would be: 

Pa 

where again, only 'Ca' and 'Ea' correspond to the actual 
observations. 

If we have the opportunity to ask questions, we often 
are able to discriminate between alternative theories. 
For example, in this case if we ask "Aa?" then one or 
the other of the proposed theories will necessarily be 
set aside. Note that although the pair {A~B, B} does 
not yield a definite conclusion, the pair {A~B, B} 
does. 

Provided we have data that can be structured in the 
form of an implicative or causal net-:-as above-we can 
clearly write heuristic computer programs that engage 
in the abductive process of theory building. The objec­
tive of such a program would be to find a single con­
nected sub graph that 'covers' all of the observations; 
or, failing that, a pair of such subgraphs; or a triple, 
etc. Since each additional subgraph included in a theory 
contains an additional basic assumption (top node), 
the goal of parsimony in theory development would 
provide a rule for selection from among alternative 
hypotheses even in the absence of other criteria. If, 
in addition, we have the ability to ask questions of the 
user, of a simulation model, and of the structured and 
unstructured data files, the power of our program to 
develop sound theory is clearly enhanced. 

We have encoded and successfully demonstrated a 
heuristic processor, using a combination of LISpIO,ll 
and GOL5 routines, that constructs hypothesis models 
on the basis of the heuristic procedure outlined above. 
We are in the process of interfacing this Theory Build­
ing program with a natural language query system that 
also possesses some inferential capability, subsequently 
referred to as ENGOLISH.6 This makes it possible 
that: 

(a) an uninterpreted literature data base, III the 
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form of ENGOLISH data structures, can be 
accessed by the theory builder program, and 

inconsistencies, ambiguities, and incompleteness 
in the data base recorded. 

(b) the theory builder program can be invoked to 
develop hypothesis models while engaged in an 
ENGOLISH dialog with the user; thus avoiding 

The set of rules that generates the abduction net of 
the theory builder is encoded in a table of associations 
called SUGGESTS, the present form of which is as 
follows: 

(GOLDEF SUGGESTS 
(SOOOO 

(EXT ((P Q R S U V W X Y Z» 
((PROJECTS P Q) ((POLARITY X) (CELL-TYPE P Y) (CELL-TYPE Q Z» 

((PATHWAY MONOSYNAPTIC X Y Z») 
((ELICITS (P Q) (R S» 
((PATHTYPE P R W X» 
((PATHWAY W X Q S») 

((PATHWAY POLYSYNAPTIC P Q R) 
((MATCHUP P Y W) (DISTINCT Q S) 

(DISTINCT S R) 
(ORTHODROMIC Z» 

((PATHWAY MONOSYNAPTIC Y Q S) (PATHWAY Z W S R») 
((PATHWAY ANTIDROMIC P Q R) 
((ORTHODROlVIIC X) (MATCHA P X Y W) 

(DISTINCT Q S) 
(DISTINCT R S» 

((PATHWAY MONOSYNAPTIC Y S Q) (PATHWAY X W S R») 
((INTERRUPTED (PATHWAY MONOSYNAPTIC P Q R) U) 
((GOLDIG (LAMBDA NIL (OR (DESTROYED R) (DESTROYED Q»» U)) 
((PATHWAY MONOSYNAPTIC P Q R») 

((INTERRUPTED (PATHWAY POLYSYNAPTIC P Q R) U) 
((MATCHUP P Y W) 
(DISTINCT Q S) 
(DISTINCT S R) 
(ORTHODROMIC X) 
(GOLDIG ((LAMBDA NIL (OR (DESTROYED Q) DESTROYED S»») U)) 

((PATHWAY MONOSYNAPTIC Y Q S) (PATHWAY X W S R»)) 
((INTERRUPTED (PATHWAY POLYSYNAPTIC P Q R) U) 
((MATCHUP P Y W) (DISTINCT Q S) 

(DISTINCT S R) 
(ORTHODROMIC X» 

((PATHWAY MONOSYNAPTIC Y Q S) 
(INTERRUPTED (PATHWAY X W S R) U») 

((INTERRUPTED (PATHWAY ANTIDROl\tIIC P Q R) U) 
((ORTHODROMIC X) 
(MATCHA P X Y W) 
(DISTINCT Q S) 
(DISTINCT R S) 
(GOLDIG ((LAMBDA NIL (OR (DESTROYED Q) (DESTROYED S»» U» 

((PATHWAY MONOSYNAPTIC Y S Q) (PATHWAY X W S R») 
((INTERRUPTED (PATHWAY ANTIDROMIC P Q R) U) 
((ORTHODROMIC X) (l\tIATCHA P X Y W) 

(DISTINCT Q S) 
(DISTINCT R S» 

((PATHWAY MONOSYNAPTIC Y S Q) 
(INTERRUPTED (PATHWAY X W S R) U»») 
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This table is encoded as a GOL extensional data 
structureS in which the symbols: (P, Q, R, S, U, V, 
W, X, Y, Z) stand for universally quantified variables. 
Each entry of the table consists of three parts, (A Be), 
which can be read: 

"e implies A under conditions B" 

For example, the first entry would be interpreted: 

A(P, Q, X, Y, Z) pathway (monosynaptic, X, Y, Z) 
::) projects (P, Q); where (polarity (X) 1\ 
cell-type (P, Y) 1\ cell-type (Q, Z). 

In this expression, 
'pathway' predicates a monosynaptic connection, 

of polarity X between cells of type Y and 
type Z 

'projects' predicates a fiber projection between 
neural structures P and Q. 

'polarity' is the property: {excitatory, inhibitory} ; 
and 

'cell-type' is a relation that associates the names of 
neural structures with the various neural 
populations subsumed thereunder. 

The operation of abduction, using the SUGGESTS 
data structure entails an associative access whereby 
some observational datum (e.g., 'proj ects motor-cortex-4 
flexor-alphas') is matched against the first position (A) 
of appropriate entries of the table, with the result 
a hypothesis (e) qualified by the expression (B). The 
reason for employing quantifiers and qualifiers in the 
SUGGEST -Table is that this permits large numbers of 
nodes to be represented compactly by a single entry; 
furthermore, it enables the use of much more powerful 
search techniques than would otherwise be possible. 
This refined principle of operation would appear to 
have the same relation to simple abduction that resolu­
tion holds to Herbrand expansion. 2 

While these concepts and their relationship to other 
paradigms of artificial intelligence will be the subject 
of subsequent publications,7 we present at this juncture 
an illustration of their operational aspects. For this 
purpose, we consider an application of the theory 
builder in the context of a collection of typical neuro­
physiological data giving rise to alternative hypothesis 
models. 

In a discussion of the diversity of the effects of 
cerebellar stimulation, Eccles et al. 8 describe the various 
pathways which mediate the inhibitory influence of the 
cerebellar cortex on a cell group in the vestibular 
nuclei. Some aspects of this discussion can be stated in 

PURKINJECELlS 
PURKINJECElLS 

DEITERS NUCLEUS DEITERS NUCLEUS 
NEO-INF-OLIVE NE~-INF-OLIVf 

A B 
Figure 2-Schematic diagrams of the neuronal connectivity 
proposed by the theory building program. The empty circles are 
neural structures whose names correspond to those appearing in 
the program dialogue. The connecting pathways ending with an 
open branch signify excitatory, those ending with a solid circle 

inhibitory connections 

terms of the following propositions: 

(1) the inferior olive projects monosynaptically via 
the climbing fibers to the cerebellar cortex; 

(2) activity engendered by electrical stimulation in 
the main inferior olivary nucleus (neo-olive) 
elicits EPSP's in Purkinje cells; 

(3) activity engendered by electrical stimulation in 
the main inferior olivary nucleus elicits IPSP's 
in Deiters Nucleus. 

(4) electrical stimulation of Purkinje cells elicits 
IPSP's in Deiters Nucleus. 

To deal with these propositions meaningfully, some 
general background knowledge is required which finds 
its representation in the data encoded in the SUGGEST­
table, given previously: 

(a) fiber projections identified by neuro-anatomical 
procedures are monosynaptic pathways; 

(b) electrical stimulation in the typical experi­
mental procedure elicits activity not only in the 
target cells, but also in fibers and their termina­
tion in the vicinity of these cells. 

(c) impulse traffic in fiber tracts under condition of 
artificial electrical stimulation can be either 
ortho- or antidromic, or both. 

( d) chronic lesion of a structure interrupts impulse 
transmission (both, ortho- and antidromic) in 
all pathways of which this structure is a part. 

As illustrated by the following dialogue and in Figure 
2a, when supplied with just these propositions and 
facts, the theory builder proposes a partial model, 
consisting of one excitatory and one inhibitory mono-
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synaptic pathway: 

*(STRUCTURE INFERIOR-OLIVE NEO-INF-OLIVE PALEO-INF-OLIVE) 
NIL 
* (STRUCTURE CEREBELLAR-CORTEX PURKINJE-CELLS 

GOLGI-CELLS BASKET-CELLS) 
NIL 
* (STRUCTURE VESTIBULAR-NUCLEI 

MEDIAL-VN 
DEITERS-NUCLEUS 

SUPERIOR-VN DESCENDING-VN) 
NIL 
* (OBSERVATION (PROJECTS INFERIOR-OLIVE 

CEREBELLAR-CORTEX) ) 
NIL 
* (OBSERVATION 

*NIL 
* (OBSERVATION 

NIL 
* (OBSERV ATION 

NIL 
* (PONDER) 
(PROPOSE MODEL: 

((PATHWAY 

(PATHWAY 

(ELICITS 

(ELICITS 

(ELICITS 

MONOSYNAPTIC 
NEO-INF -OLIVE 
MONOSYNAPTIC 
PURKINJE-CELLS 

(STIM NEO-INF -OLIVE) 
(EPSP PURKIN JE-CELLS))) 

(STIM NEO-INF -OLIVE) 
(IPSP DEITERS-NUCLEUS)) ) 

(E-STIM PURKINJE-CELLS) 
(IPSP DEITERS-NUCLEUS)) ) 

EXCITATORY 
PURKINJE-CELLS) 
INHIBITORY 
DEITERS-NUCLEUS)) ) 

If now provided with the additional observational datum that a chronic lesion of the inferior olive abolishes the 
inhibitory response in Deiters nucleus that follows electrical stimulation of Purkinje cells, the program recognizes 
the inconsistency between the implications of this finding and its internal model. This gives rise to a restructured 
hypothesis model, as follows (see Figure 2 B): . 

* (EXPLAIN (ABOLISHES (CHRONIC-LESION INFERIOR-OLIVE) 
(ELICITS (E-STIlVI PURKINJE-CELLS) 

(IPSP DEITERS-NUCLEUS) 
))) 

(THIS FINDING INCONSISTENT WITH PREVIOUS MODEL) 

(PROPOSE PARTIAL MODEL) : 

((PATHWAY 

(PATHWAY 

lV[ONOSYNAPTIC 
NEO-INF -OLIVE 
POLYSYNAPTIC 
NEO-INF -OLIVE 

The operation of the theory building program starts 
with the definition of the domain of discourse: this is 
accomplished by use of the STRUCTURE-command. 
The first argument of this command designates the 
name of a neural structure; subsequent arguments 

EXCITATORY 
PURKINJE-CELLS) 
INHIBITORY 
DEITERS-NUCLEUS)) ) 

identify its components. The command OBSERVA­
TION is used to perform a preliminary encoding of an 
observational datum which may be either a statement 
concerning automical connections, or a description of 
functional relations. Supplied with these facts, 
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PONDER is called to invoke the abduction process 
which generates a parsimonious hypothesis model that 
accounts for the data supplied thus far. 

The continuation of the model building process 
consists of the addition of new data and their evaluation 
relative to the existing model. The macro command 
EXPLAIN is available for this purpose: in the first 
place, it enables the user to supply a new observational 
datum; the program, then, ascertains whether this new 
fact is consistent with the existing hypothesis model: 
if this is the case, it renders an account of that part of 
the existing model which has been enriched, either by 
way of confirmation of an existing aspect of the model, 
or by expanding its domain. Alternatively, the program 
may discover an inconsistency between the model it 
contains and the new datum, in which case it reverts to 
PONDER to attempt the generation of a new model 
which accommodates all of the facts it has been given 
up to that time. 

ON MECHANIZED MODEL BUILDING­
AN OUTLOOK 

Having presented and illustrated the mode of opera­
tion and capability of the theory building program, we 
are now in a position to assess its role within the total 
information support system for model building. With 
reference to the flow chart of Figure 1 which dissected 
the process of model building into identifiable steps and 
the interrelations between them, we have demonstrated 
that the theory building program can generate hypoth­
eses on the connectivity of model components which 
correspond to the boxes labeled HI and H2 in that 
Figure: that is, a connectivity that may obtain under 
normal, and also satisfies some abnormal, conditions; 
the latter consists in the example given of an artificial, 
experimental lesion. The hypotheses concerning con­
nectivity are of a form which permits them directly to 
be represented in the simulation model by means of the 
CUT and TIE commands (see appendix). 

The example illustrates that the formation of hy­
pothesis models can be mechanized, which was the 
principal objective we have set out to accomplish. 
Beyond this, the theory building program contains 
features which enable it to contribute also in other ways 
to the development of theoretical models; namely, by 
posing questions, and by proposing experiments to be 
conducted in the "simulation laboratory." To this end, 
the EXPLAIN command can be used to generate 
predictions and expectations for meaningful post­
mortem analysis (see Figure 1) : it directs the investiga­
tor's attention to those components and pathways of 

the simulation model which are expected to be most 
prominently involved in the anticipated behavioral 
differences. The outcomes of the theoretical and the 
simulation analysis can now be compared; if significant 
differences obtain-which would signify the negation 
of some implication of the hypothesis model-this new 
datum can be fed back and employed in the restruc­
turing of the hypothesis. 

Operating in this manner, the theory-building 
program can now be envisaged to perform the structure 
optimization of the neural network, relieving the 
investigator from the tedium of the iterative process of 
fitting observational data into a useful simulation 
model. Instead, once he has defined the first principles 
which will serve as the basis of theory formation-in 
the form of rules in the SUGGESTS data structure-he 
is able to assess continuously the sufficiency and 
necessity of his concept of the natural domain under 
study, and the consistency of this concept with newly 
acquired data. 

APPENDIX 

Modeling tools of the motor control system simulator 

The motor control system simulator is a processor 
that can be used to construct and evaluate simulation 
models of neural control mechanisms which play a role 
in the regulation of certain skeletal muscle reflexes and 
of muscle tone. This requires, in the first place, that the 
investigator have available a versatile set of commands 
to define neural structures and to interconnect them by 
pathways of suitably chosen length (i.e., conduction 
time). These commands are intended to enable the 
investigator to formalize his conception of the system 
under study in the form of a model that can be altered 
conveniently in accord with new evidence; that can 
reflect some experimentally induced condition; and 
that can mimic disease states as well as effects due to 
administration of pharmacological agents. The second 
requirement was to provide programming tools which 
would exercise the model in a manner analogous to the 
tests used by the experimentor to ascertain the func­
tional capabilities of the natural system. Thirdly, it 
seemed to us necessary to provide the ability for 
examining the performance of components in the model, 
and of the model as a whole, at different levels of 
resolution, comparable to the procedures used by the 
experimenter: at one time he may be interested in the 
fine temporal pattern of activity in one single node of 
the model; and another time, in a time average of the 
activity, or in the trend; and at some other occasion, 
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in the gross overt performance of an effector organ (in 
the case of the prototype model: muscle length and 
tone), or merely in the deviation of this performance 
from a normal baseline; finally, the investigator may 
wish to recognize the relation between performance of 
an effector organ and the pattern or activity flow be­
tween the interacting components of the (neural) 
control system. Accordingly, programs to extract and 
perceive anyone of these aspects of the model's be­
havior are available for selection by the user. 

Algorithms of system components 

The basic element of the simulated neural system is 
a stylized neuron whose activity state is described by a 
quadruple of numbers, each ranging over the numerical 
values from zero to four. These numbers designate, in 
this sequence, output, threshold, input, and a term 
representing a "driving force." The latter is a constant 
which sums algebraically with the value of the threshold 
and enables the user to set a positive or negative bias 
value on the neuron computation. 

These formal neurons can be connected by excitatory 
or inhibitory links to form a finite state machine in 
which each neuron can receive an arbitrary number of 
inputs. These are summed algebraically to determine 
the net input. Computation within the neural network 
is deterministic and proceeds in discrete time steps, 
each corresponding to the synaptic delay of approxi­
mately 1 millisecond duration in. real time. At each 
time slice, the input and output values of each neuron, 
representing a neurophysiologic ally characterized 
neuron population, are updated on the basis of the 
following algorithms: 

if «input(t-1) >thresh) and 
(output(t-1) <input(t-1)) and (thresh¢4)): 
output(t) =output(t-l) +1 

if «thresh=4) or (input(t-1) <thresh) or 
(output(t-l) >input(t-1)): 
output(t) =output(t-1)-1 

else: output(t) =output(t-1) 
inputj(t) = 2:. (outputk(t-dkj)) 

kEA 

(where A is the set of structures K that are con­
nected, via delays of lengths dkil to the j th neuron. 

The neural network controls the length of reciprocally 
connected flexor and extensor muscles through the 
algorithm of table 1 which also computes for each value 
of muscle length and gamma motorneuron output the 
feedback signals generated by muscle spindles (nuclear 

TABLE I-Periphery Algorithms 

1. motor-output(t): = flexor alpha-motorneuron 
2. ext-motor-output(t) : = extensor-alpha-motorneuron 
3. gammal-output(t): = flexor-gammal-motorneuron 
4. gamma2-output(t) : = flexor-gamma2-motorneuron 
5. ext-gammal-output(t) : = extensor-gammal-motorneuron 
6. ext-gamma2-output(t) : = extensor-gamma2-motorneuron 
7. flex-Iength(t+l) : = flex-Iength(t) + 

flex-mult * (golgi-output(t) - motor-output(t» 
8. ext-length (t+l) : = ext-Iength(t) + 

ext-mult * (ext-golgi-output(t) - ext-motor-output(t» 
9. golgi-output (t+l) : = (ext-length (t+l) / 

(ext-length (t+l) + flex-length (t+l»)* 
(ext-motor-output(t) + motor-output(t» 

10. ext-golgi-output (t+ 1) : = (flex-length (t+ 1) / 
(ext-length (t + 1) + flex-length (t + 1) » * 
(ext-motor-output(t) + motor-output(t» 

11. chain-output (t+l) : = scale (flex-length (t+1) -
chain-Iength(t), kchn) 

12. chain-length (t+1) : = chain-Iength(t) + 
cmult * (chain-output (t+1) - gamma2-output(t»; 
(clip at zero) 

13. ext-chain-output (t+1) : = scale (ext-length (t+1) -
ext-chain-Iength(t), kchn) 

14. ext-chain-Iength (t+1) : = ext-chain-Iength(t) + ecmult * 
(ext-chain-output (t+1) - ext-gamma2-output(t»; 
(clip at zero) 

15. ext-bag-output (t+1) : = scale (ext-length (t+1) -
ext-bag-Iength(t), kbag) 

16. ext-bag-Iength (t+ 1) : = ext-bag-Iength(t) + ebmult * 
(ext-bag-output (t + 1) - ext-gamma I-output ( t» ; 
(clip at zero) 

17. ext-bag-rate: = ext-mult (ext-golgi-output(t) -
ext-motor-output(t» - ebmult* (ext-bag-output(t+1) -
ext-gamma l-output(t» + ext-bag-output (t+l) 

18. bag-output (t+ 1) : = scale (flex-length (t+ 1) -
bag-Iength(t), kbag) 

19. bag-length (t+l) : = bag-Iength(t) + bmult* 
(bag-output (t+ 1) - gamma l-output(t»; 
(clip at zero) 

20. bag-rate: = flex-mult (golgi-output(t) - motor-output(t»­
bmult* (bag-output (t+1) - gamma l-output(t» + 
bag-output (t+l) 

21. golgi-tendon (t+1) : = golgi-output (t+1) 
22. ext-golgi-tendon (t+1) : = ext-golgi-output (t+1) 
23. nuclear-chain (t+l) := chain-output (t+1) 
24. nuclear-bag (t+1) : = bag-rate (t+1) 
25. ext-nuclear-chain (t+1) : = ext-chain-output (t+1) 
26. ext-nuclear-bag (t+l) : = ext-bag-rate (t+1) 

bag and chain organs) and Golgi tendon stretch 
receptors as schematically illustrated in Figure 3 (for 
review, see Reference 9). The connecting links between 
the neural control network and the muscle effector 
system are provided by three motor neurons, each, on 
flexor and extensor side; and by afferent pathways 
originating from the length and tension transducers of 
muscles and tendons. Items 1 through 6 of Table 1 
designate the relationship between the respective 
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motor neurons and the variables appearing in the 
periphery algorithms; items 21 through 26 designate the 
sources of feed back signals. The parameters appearing 
in these algorithms have the following meanings: 

flex-mult [ext-mult J: scale factor used to translate 
the tension changes of flexor 
[extensor] extrafusal muscle 

cmult [ecmultJ: 

bmult [ebmultJ: 

scale: 

fibers into length changes; 
a scale factor to accomplish the 
same for intrafusal muscle fibers 
of the nuclear chain receptors; 
a scale factor for intrafusal 
muscle fibers of the nuclear 
bag receptors; 
a scaling function that uses the 
tabular functions KBAG and 
KCRN (see later) to translate 
length differences between 
extra- and intrafusal muscle 
fibers of nuclear bag and nuclear 
chain receptors, respectively, 
into the static component of the 
transducer outputs. 

It might be useful at this point to comment on 
issues of implementation. We have had access for this 

Figure 3-Schematic display of an antagonistic muscle pair 
(F = flexor, E = extensor muscle), and their efferent and 
afferent innervation. ex - MN = motorneurons supplying the 
extrafusal muscle fibers; "Y1- and 1'2-MN's: gamma-motorneurons 
supplying the muscle fibers of nuclear bag and nuclear chain 
transducers, respectively, from which the afferent nerve impulses 
signaling muscle length originate. Golgi = receptors situated in 

muscle tendons and signaling muscle tension 

development to a medium scale PDP-I0 system, on 
which a superb LISP interpreterlO •ll is available. To 
provide the user a convenjent means for· interacting 
with his simulation models, we have encoded a set of 
supervisor and exercisor routines-to be described 
presently-that operate in the context of this LISP 
interpreter. Since LISP is singularly inefficient in its 
provision for numerical computation, those algorithms 
described above which define computations at the 
neural nodes as well as in the peripheral effector and 
sensor organs have been encoded in FORTRAN, and 
the resulting compiled modules have been incorporated 
in the LISP system as callable subroutines. Thus in the 
discussion that follows, although the notation used to 
illustrate features of the simulation system if that of 
LISP, the reader should be aware that the actual 
simulation results are produced by execution of the 
appropriate FORTRAN subroutines, upon direction 
by the LISP supervisor programs. 

Command structure for model building 

The devices needed to build a model and to alter 
connections, add or delete structures, specify delays 
(i.e., conduction times between neural structures, in 
milliseconds real time) and to pass numerical param­
eters to the computational algorithm are available in 
the form of a set of LISP functions. Examples of some 
steps in the building of a model are illustrated in the 
following interactive dialogue with the model building 
supervisor: 

*(ADD NEURON @N-RUBER 1$ 
N-RUBER 
(4900100) (IMPINGE+) (IMPINGE-) 
NIL 
*(ADD DELAY DEEP-CEREBELLAR-NUCLEUS 

15$ 
DELAY40 
(INPUT: 3) 
*(ADD DELAY N-RUBER 20$ 
DELAY36 
(INPUT: 49) 
*(TIE EXCITATORY DELAY40 N-RUBER$ 
N-RUBER 
(4900 100) (IMPINGE+ DELAY40) 

(IMPINGE-) 
NIL 
*(TIE EXCITATORY DELAY36 FLEXOR­

ALPRA-MOTORNEURON$ 
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FLEXOR-ALPHA-MOTORNEURON 
(3200 200) (IMPINGE+ DELAY36 DELAY21 

DELAY5 AFFERENT2-INTERNEURON 
EXT-INTERNEURON1B) (IMPINGE­
DELAY12 EXT-INTERNEURON1A 
RENSHAW-CELL 

INTERNEURON1B) 
NIL 
*(TIE EXCITATORY DELAY36 GAMMA1-

MOTORNEURON$ 
GAMMA1-MOTORNEURON 
(3400 1 00) (IMPINGE+ DELAY36 DELA Y26 

DELAY21) (IMPINGE-INTERNEURON1B 
DELAY 12) 

NIL 
*(SAVE RUBER$ 
JOB-SAVED 

In this example, the user wished to add a new struc­
ture to the model, namely nucleus ruber (N -ruber) , 
and to connect it via appropriate delays so that it would 
get excitatory input from the deep-cerebellar-N ucleus 
(already in the model), and deliver excitatory output to 
the alpha- and gamma-l motorneurons on the flexor 
side. The instruction (ADD N-RUBER) requires 
specification of the new structure's threshold which was 
chosen to be 1. 

Upon requesting the addition of delays (ADD 
DELAY with the statement of point of origin and 
duration), the program returns the call by assigning a 
number to the new delay (the numbers 40 and 36 were 
assigned, respectively). 

The counterpart to ADD is the instruction DELETE 
(not shown here). 

Once all new structures are added and their thresholds 
and delay length specified, the user applies (TIE) 
which calls for three arguments: excitatory (or inhibi­
tory) 

name of the structure of origin 

name of the structure of endpoint of new link. 

The input to the newly added delays is already fur­
nished by the instruction ADD. After the new connec­
tion is established, the program lists all excitatory and 
inhibitory inputs to the recipient structure of the new 
connection in the form if (IMPINGE+ ... ) and 
(IMPIN GE - ... ), respectively. 

The counterpart to TIE is CUT which severs existing 
connections and requires the same format of arguments 
as does TIE. 

The user then decides to save the new model under 
the name of RUBER. 

Two more changes are then made: a driving force of 
+2 is added to the Deiters-Nucleus by means of the 
instruction (TRY DRIVER ... value). This means 
that deiters nucleus will now have an output of two in 
the absence of any excitatory input, and this value of 
two will be added to any output level computed (with 
the ceiling value, of course, remaining 4). Furthermore, 
the sensitivity of the nuclear bag end organs is changed: 
first, the user examines their old value with KBAG; 
there are 4 criterion levels set (1 through 4); any 
length difference between extra- and intrafusal muscle 
fibers up to 25 generates an output of 1; similarly, the 
values 2, 3 and 4 are generated by the specified length 
differences. These criterion values are changed by 
STORE (KBAG etc.). 

*(INSTATE RUBER$ 
NIL 

NIL 
*(TRY DRIVER DEITERS-NUCLEUS 2$ 
OK 
*(KBAG 1$ 
25 
*(KBAG 2$ 
50 
*(KBAG 3$ 
100 
* (KBAG 4$ 
200 

* 
(STORE (KBAG 1) 50$ 

50 
*(STORE (KBAG 2) 100$ 
100 
* (STORE (KBAG 3) 200$ 
200 
*(STORE (KBAG 4) 300$ 
300 

* 

Neurological lesions can be simulated by the com­
mand (KILL-name of structure-) which sets the 
threshold of this structure to the value of 4 and, thus, 
effectively eliminates the structure from the flow of 
activity in the network. 

The command BLOCK, decreases the activity level 
of a set of one or more structures by a specified value: 
for example, (BLOCK T 1 @ (RAS RAS-INTER­
NEURON) ). The neural structures within the paren­
theses are affected. The converse effect is generated by 
the command (FACILITATE T +1 @(RAS)) 
which mimics an excitatory drug effect. 
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OBSERVATION OF MODEL PERFORMANCE 

To enable testing the performance of the model with 
the types of maneuvers applied by neurophysiologists 
or neurologists to evaluate the functional state of the 
motor system, two functions are defined: 

PULSE, designed to mimic a brief muscle pull, and 
consisting in the application of input pulses to the 
muscle spindle afferents of a specified muscle for a 
brief, specified period of time. This function is 
intended to test the motor system for its ability to 
support a phasic stretch reflex of the kind commonly 
employed in the form of the "knee jerk." 
STRETCH, on the other hand, is designed to test 
for active resistance to muscle stretch, developed 
in the course of slow extension of the muscle under 
study, with rate and duration of passive muscle 
stretch to be specified by the user. The muscle 
tension developed during passive stretch is com­
puted as the incremental activity required at the 
Golgi stretch receptors to sustain the specified 
rate of muscle elongation during the stretch 
interval. 

For the assessment of the model's response to these 
kinds of stimuli, the important variable to be observed 
is that of muscle length. In addition, the user may wish 
to observe activity levels of selected neural structures. 
He can accomplish this defining a "WINDOW" that 
lists these structures by name. 

Even if only a few structures of the model are being 
monitored, the output generated as a result of several 
hundred state transitions in discrete time becomes 
bulky and cumbersome to interpret; details that should 
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Figure 4 

stand out to attract the user's immediate attention, 
tend to become obscured. Thus, some compression of 
output is needed to enable quick and reliable "percep­
tion" of the performance. 

For the purpose of perceiving the characteristic 
features in muscle behavior following PULSE or 
STRETCH perturbations, we view the resulting 
transient departure from resting muscle length as 
comprising four states (Figure 4) : 

State 1: commencing with the application of the 
stimulus and extending until deviation 
of muscle length exceeds criterion level; 

State 2: follows state 1 and extends until resting 
muscle length is recovered; value and 
time of occurrence of the extremum, and 
time till recovery are recorded. 

State 3: follows state 2 and encompasses the 
period during which the primary over­
shoot occurs; its magnitude is recorded. 

State 4: encompasses the remainder of the ob­
servation period during which mean 
muscle length, maximal excursions and 
frequency of oscillation are recorded. 

In the case of what would be considered a normal re­
flex, the observation terminates in state 4. Abnormal or 
abortive reflex behavior can cause the perception 
algorithm to terminate in any of the earlier states, in 
which case appropriate messages are generated. 

For the neural structures named in a WINDOW, 
the compressed output consists of a mean activity level 
over the observation period and the number of oscilla­
tions that may have occurred. Moreover, as shown 
below, the algorithm records duration and time of 
occurrence of the longest sustained periods of high and 
low levels of activity. Although not illustrated, the 
program also computes time of occurrence and intensity 
of the first burst of activity triggered by the test 
procedure; this reflects the temporal dispersion of 
transient activity in the neural network. 

*(SETQ WINDOW @(N-VENTRALIS­
ANTERIOR GAMMA1-MOTORNEURON» 

(N-VENTRALIS-ANTERIOR GAMMA1-
MOTORNEURON) 

* (PULSE FLEXOR 3 50 H1£1£1) 

FLEXOR-MUSCLE 
STARTING-LENGTH 1£1£1£1 
EXTREME-VALUE 800, OCCURS-AT 75 
STARTING-VALUE-REGAINED-AT 24£1, 

OVERSHOOT 32 
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STEADY-STATE-VALUES: MEAN 999, 
STANDARD-DEVIATION 51 HIGHEST-VALUE 
1088, LOWEST-VALUE 908, #-OSCILLATIONS 28 

FINAL-VALUE 1036 
DO-YOU -WISH -TO-EXAMINE-WINDOW *YES 

N-VENTRALIS-ANTERIOR: MEAN 17, #-OSC 56 
LONGEST-RISE 38, OCCURS-AT 112 
LONGEST-FALL 20, OCCURS-AT 188 

GAMMA1-MOTORNEURON: MEAN 11, #-OSC 70 
LONGEST-RISE 20, OCCURS-AT 126 
LONGEST-FALL 26, OCCURS-AT 963 

While these perception algorithms describe model 
behavior in absolute and numerical terms, observational 
records in the natural domain are typically stated in 
terms of qualitative descriptors, most commonly of a 
comparative nature; that is: in terms of deviations from 
a reference state. To enable the modeler to perceive his 
simulation results in these same terms, we devised the 
program ANALYZE. This program performs a sequence 
of tests on two specified states of a model, compares 
the results and generates a verbal output that describes 
differences in behavior along certain key dimensions. 
An application of this program is illustrated below: at 
first, a lesion of substantia-nigra is produced by apply­
ing the KILL-instruction; this causes the behavior of 
the model to depart from the normal condition in a 
manner resembling that of Parkinson's disease in that 
the response to a PULSE stimulus of the flexor muscle 
is augmented and abnormally prolonged while the 
STRETCH of the flexor muscle induces an oscillatory 
response (i.e., tremor). 

*(KILL SUBSTANTIA-NIGRA) 

DONE 
*(ANALYZE @NORMAL) 

((PULSE-FLEX NEVER-RECOVERS LATE-PEAK 
AUGMENTED-PEAK) (PULSE-EXT ABSENT) 
(STRETCH-FLEX OSCILLATIONS EARLY­
RECOVERY) (STRETCH-EXT NEVER­
RECOVERS)) 

* 
The tremor component of this pathology is in the next 
simulation run alleviated by combining the lesion of 
substantia nigra with a second lesion, intended to 
mimic one form of neuro surgical management of 
Parkinson's disease, namely a lesion of the nucleus 
ventralis anterior of the thalamus: 

*(KILL SUBSTANTIA-NIGRA) 

DONE 
*(KILL N-VENTRALIS-ANTERIOR) 

DONE 

* 
(ANALYZE @NORMAL) 

( (PULSE-FLEX NEVER-RECOVERS LATE-PEAK 
AUGMENTED-PEAK) (PULSE-EXT ABSENT) 
(STRETCH-FLEX EARLY-RECOVERY) 
(STRETCH-EXT NEVER-RECOVERS)) 

* 
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The clinical significance of simulation and modeling in 
leukemia chemotherapy* 

by T. L. LINCOLN 

The Rand Corporation 
Santa Monica, California 

INTRODUCTION 

It seems certain that in the next thirty years-by the 
year 2001-the computer will become a major instru­
ment in support of clinical practice. Part of our task 
today is to look beyond the frustrations, expense, and 
apparent waste of our present prototype systems and 
to distinguish the important themes which will bind 
Inedicine and computers together. In computer medi­
cine we are clearly in the exploratory phase of a new 
technology-a position analogous to the early designers 
and users of automobiles. With the introduction of the 
automobile came a great variety of expensive, made-to­
order cars which could only be run on poorly maintained 
muddy roads. To drive required a large measure of 
patience, enthusiasm, and self-reliance, coupled with 
a fine sense of the ridiculous. Moreover, the automobile 
scared the horses, and otherwise challenged the estab­
lished order of things. And still it came, demanding 
new conventions to make its use effective: freeways, 
parking tickets, campers, bedroom communitites, air 
pollution-the good with the bad. 

This is a talk about mathematical modeling, simula­
tion, and leukemia chemotherapy; but I have opened 
in this way because it is not the details of leukemia 
chemotherapy which I want to emphasize, but rather 
the far-reaching changes which information processing 
is destined to bring to this field. The primary changes 
will be found in the conventions of clinical decision­
making. The use of mathematical modeling and the 
computer in leukemia chemotherapy is particularly 
illustrative of a new form of medical practice because 
(1) the untreated disease is usually rapidly fatal and 
deserves the investment; there are 14,000 new cases a 
year, many in children and young people; (2) it is 
quantifiable; the leukemia cells can be sampled in the 

* This work is supported under NIH Grant CA-12369. 
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blood and the bone marrow; (3) it responds to rational, 
well-organized therapeutic regimens; effective drug 
doses and schedules can be set up which depend upon 
cell kinetics (models of cell behavior) and pharmaco­
kinetics (models of drug distribution); (4) the impact 
of drug therapy is quantifiable, thus the regimens can 
be evaluated and the models verified; and (5) good 
results depend upon a persistent, well-organized 
approach. 

We might put the argument another way: We have 
strong drugs with which to treat leukemia, but our 
therapeutic advantage is sufficiently small, and our 
knowledge sufficiently limited that the penality for 
sloppy thinking and sloppy patient management is 
particularly high. This disease is a test of our ability 
to manage medical information, to understand its 
implications, and to apply our knowledge wisely. 
Because quantitative data is the key aspect of decision­
making in this disease, skill in the use of quantitative 
information is essential to success. At the same time, 
because of the importance of teamwork between the 
specialties of hematology, clinical oncology, infectious 
disease, and laboratory medicine, leukemia therapy 
is an excellent test of the ability of computer technology 
to coordinate the relevant information: Moreover, 
success, short of a cure, requires long term sophisticated 
maintenance therapy, and thus effective long term 
records. To pursue the automobile analogy, we might 
consider the skill, the teamwork, and the endurance 
required for this information processing system to be 
in some sense parallel to that required to run in the ./ 
Indianapolis 500. 

DISCUSSION 

The chemotherapy of acute myelogenous leukemia 
was chosen for my research as the principal area for 
modeling. This disease lends itself to a quantitative 
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analysis because there are good measures of success, 
failure and complications. Treatment is quantitative 
and offers a spectrum of options in detailed implementa­
tion. The purpose of simulation is to make the choice of 
treatment options more rational. Leukemia can be 
compared to the growth of crab grass in a lawn. If 
left by itself, this agressive grass will overtake the lawn 
and destroy it. In a like manner, leukemic cells grow 
in the bone marrow and come to replace the cells which 
are usually present there. As the bone marrow is en­
croached upon, its normal function-to supply red cells, 
granulocytes, and platelets to the blood- is com­
promised. The lack of red cells leads to anemia; the 
lack of granulocytes leads to an increased susceptibility 
to bacterial infection; and the lack of platelets-a 
cell needed for blood clotting-leads to hemorrhaging. 
If nothing is done, the patient will die quickly from 
one of those complications. Treatment must stop the 
process and turn it back. The ideal objective of chemo­
therapy is to kill the encroaching leukemic cells without 
injurying the normal cell lines. However, the best that 
can be done is to establish a differential kill rate based on 
differences in growth characteristics, so that on balance 
more leukemic cells die than normal cells. In the crab 
grass analogy, the use of a growth poison, such as 
chlordane, achieves a differential kill rate because 
the crab grass grows more rapidly than the lawn grass. 
It is generally not possible to irradicate crab grass 
completely. If treatment is stopped, the crab grass 
will recur. But it is possible to reduce it to a nearly 
imperceptible level, and to maintain the lawn with 
continued intermittent treatment. The best results 
depend upon adjusting the dose of chemical and the 
interval between doses to keep the lawn and to kill the 
weed. Two different strategies are needed: one to get 
rid of the visible crab grass; the other, to maintain a 
healthy looking lawn. This healthy looking state is 
medically equivalent to remission. 

In leukemia chemotherapy the first strategy is to 
achieve remission induction, the second remission 
maintenance. Modern experience indicates that large 
doses of drugs given at intervals of about 14 days, 
which first produce marrow depression and then allow 
for marrow recovery, give the best induction results and 
lower doses at longer intervals provide good main­
tenance. The toxic effects of the drug, by reducing 
the function of the marrow, lead to the same complica­
tions: anemia, infection due to lack of granulocytes, and 
bleeding due to lack of platelets. 

This is the briefest overview of the clinical situation 
and the short term clinical objectives. Clearly, one would 
like to develop methodologies which will cure the 
disease, but in the meantime, the clinician must move 

between the two sources of marrow disfunction: over­
treatment and undertreatment. He has at his disposal 
few objective measures which might be considered as 
"control variables." 

For example, the concentration of the cellular com­
ponents in the blood reflect bone marrow function. 
Daily blood samples can chart not only the impact of 
the chemotherapeutic drugs, but also the likelihood 
of complications. Bone marrow biopsy allows the de­
veloping blood cell components to be counted and 
provides an assay for the encroachment on the marrow 
of leukemic cells and the depletion of the marrow by 
drug. 

Classically, decision procedures based on these data 
have been organized into clinical rules of thumb-a 
heuristic syntheisis of experience. For example: 
"When the platelet count drops to 20,000, there is 
danger of bleeding, and we give platelet transfusions." 
These rules of thumb are modified by clinical asides: 
"The threshold is set a little high on purpose-the 
patient probably won't get in trouble until his count 
reaches 10,000." 

Computer programs have been written which 
incorporate such rules of thumb. The best known are 
those on electrolyte balance. One might say that these 
programs automate the professor in a dogmatic way 
and can only be as· successful as his dogma. The same 
can be said for programs which set up trees for se­
quential decision-making. The output of the program is 
no greater than the input. 

The advantage of a simulation is that one can explore 
new territory. If the problem has been formulated in a 
mathematically explicit way so that the interaction 
among the variables is accounted for, new states of the 
system can be explored. If the simulation were perfect, 
then the simulation would be equivalent to the essence 
of the problem and could serve as a near perfect 
advisor. However, in a situation as complicated and as 
incompletely understood as the biology of cancer 
chemotherapy, we can hardly expect to fulfill this ideal. 
What then is the purpose of mathematical modeling, 
of simulation, and of the most expensive luxury of all­
on-line interactive graphic simulation? 

As a physician working in this field, I can only 
present my experience with the hope that it offers some 
generality. To build my models, I have been using 
BIOMOD, a Rand-developed software package de­
signed specifically for on-line interactive model building 
and simulation. It provides a data tablet, keyboard, 
and full graphics capability with a resolution of 1024 
by 1024. The system has the capacity of enter models in 
mathematical formats so that the computer does the 
machine-language programming and can produce, 
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compile, and run a new program in a matter of minutes. 
The system can keep track of 20 output curves and 
display five of these on command. As a simulation 
progresses, the evolving curves are presented on the 
screen. The scale of the graphic output can be changed 
interactively and the displayed variables combined and 
redefined. The simulations can contain up to 20 modi­
fiable parameters so that the simulation can be stopped, 
parameter values changed, and then allowed to proceed. 
In BIOMOD II, the new FORTRAN-based revision 
of BIOMOD, we now have the capacity to compare the 
output with data curves which can be entered directly 
through the tablet. 

These capabilities cannot be provided in batch 
processing. In short, for a physician this is a very 
fancy system. What are the returns? To present these, 
I identify four different levels of model building. 

1. Parameter Identification. The process of trying to 
build a simulation of a medical problem is in and of 
itself elucidating. The necessary first step in this exer­
cise, however primitive the quantitative results may be, 
is the identification of those parameters which ought to 
be considered in the model. In leukemia chemotherapy 
we presume that the clinical phenomena can be under­
stood by constructing models which simulate the growth 
of cells and developmental characteristics of the blood 
cell precursors in the bone marrow. Ultimately our 
models must incorporate the following biological 
processes: 

1. The mechanisms by which blood-forming tissues 
sustain themselves. 

2. The control mechanisms that regulate the growth 
and differentiation of particular blood-cell types. 

3. The relationships between the blood as a circu­
lating pool of cells and the other tissue spaces 
where blood cells are sequestered. 

4. The processes of attrition that lead to the natural 
loss of cells from the blood. 

5. The ways in which cytotoxic drugs act on 
blood-forming tissues (e.g., the sensitivity of 
cells in different phases of the cell cycle to 
particular drugs). 

6. The rates of transport and the detoxification of 
particular drugs. 

7. Growth characteristics which distinguish leu­
kemic cells from normal cells. 

This biological analysis gives focus to the data items 
which can be collected in a clinical setting. Some items 
are collected to evaluate parameter values. For example, 
tritium thymidine studies can evaluate cell kinetic 
characteristics. Some are collected to follow the evalua-

tion of certain control parameters, for example, the 
platelet count. Given even a simple model of platelet / 
destruction, it is possible to observe when the count is 
falling as a function of the platelet pool only, i.e., when 
no platelets are being made. Now the clinical decision 
rule can become an anticipatory one: "If the halving 
time of platelets is under 36 hours, then prepare to give a 
platelet transfusion before the count falls to 10,000." 
The result, at the very least, is a data flow chart with 
explicit organization and meaning, very much in the 
spirit of Larry Weed's automated record. Manual and 
now automated flow charts have come into use at the 
M. D. Anderson Hospital to monitor the changes in 
important variables. These allow a chief of service to 
review thirty patients in less than two hours rather than 
by an exhausting set of card rounds. Such flow charts 
can condense the information both numerically and 
graphically. The prototype of the graphic representation 
is the temperature chart, long clearly useful. The up­
datable graphic record of lab value changes over time, 
coupled with important therapeutic decisions, provides 
a scanable situation report which should come to re­
place the chaos of the classical record. 

2. Functional Organization. A step beyond the asser­
tion that a· certain group of parameters are important 
and somehow related is an explicit graph of this related­
ness. In the case of the blood and the marrow, this is 
illustrated by Diagram 1. Such a block diagram does 
not describe the exact relation among the variables. 
Rather it sets the stage for their discovery through the 
organized analysis of experimental and clin:cal data. 
Mathematical models of bone marrow cell kinet ·.cs and 
leukemic cell kinetics have been formulated to conform 
to the available clinical and experimental data. The 
models that we have been building depend for their 

Blood-Cell Removal 

Blood-Cell Removal 

Diagram 1. 
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clinical input on the treatment protocols and the 
resultant data from the adult leukemia service of the 
Department of Developmental Therapeutics, M. D. 
Anderson Hospital , University of Texas, Houston, 
Texas. Here the greatest pay-off is ins: ght, however 
incomplete. For example, we observe clinically that the 
platelet count rises two to three days before the granu­
locyte count, when a heavily treated marrow is under­
going recovery. If the granulocytes are dangerously low, 
the platelet count is a good predictor of how long the 
count rises two to three days before the granulocyte 
count, when a heavily treated marrow is undergoing 
recovery. If the granulocytes are dangerously low, the 
platelet count is a good predictor of how long the 
white cells will be depressed. The relationships which 
outline the flux of cell types through the bone marrow 
provide us with this qualitative observation. In bio­
logical simulations it is important that the system can 
handle time delays and other processes which exhibit 
historical dependence. For example, the attrition rate of 
red cells is proportional to the age of the cells, with an 
expected life-span of 120 days. Thus, a marked varia­
tion in cell production influences the number of cells 
present at a much later date. BIOMOD incorporates 
efficient means of handling delays and some kinds of 
historical dependence. 

3. Teaching Model. These simulations exhibit proper­
ties which are thermatically correct. In our case, it is the 
typical response of a typical leukemia patient to a 
typical course of drug therapy, either for remission 
induction or remission maintenance. At this stage 
interactive intervention in the evaluation of a simula­
tion becomes useful and of insight. There is a natural 
inclination for physicians to extrapolate a little bit 
ahead of the available results. Thus the ability to 
watch a simulation unfold allows learning, model 
correction, and experimentation. At present, we can 
only project the clinical impact of such a system. 
We observe that it. allows an exploration of therapeutic 
alternatives in a very real and believable Socratic 
Dialogue. It is also well to observe that it presents a 
danger, which might be called the "Las Vegas effect": 
There is a fascination with on-line simulations which 
can eat up computing time and money, the implication 
being that some form of success is just around the 
corner. 

Our present modeling efforts are aimed primarily at 
the teaching model level of sophistication. On the bio­
logical level , teaching models test the consistency of our 
hypotheses. For example, present models point to a 
major discrepancy between our theoretical understand­
ing and our practical results. The models suggested by 
the work on the L-1210 leukemia in mice and first 

outlined by Skipper have led to considerable clinical 
success. In mice the differential kill rate of leukemic cells 
over normal cells depend on constant differences in the 
cycle time, the growth fraction and the length of the 
DNA synthesis phase between the L-1210 cells and the 
mouse marrow. The experimental tumor grows faster, 
all cells are actively dividing, and are thus more 
susceptible to cycle sensitive drugs like cytosine 
arabinos·de. Very successful schedules have been set up 
assuming similar cell kinetics for human leukemics. 
However, in the latter case, Clarkson has demonstrated 
that in relapse, with a bone marrow full of leukemic 
cells, the leukemic cycle time is longer than that of 
normal cells, and the growth fraction smaller. This 
points to a new modeling requirement, a new iteration: 
the analysis of transient growth states leading to a new 
hypothesis for the same output phenomenon. 

vVe see that the clinical pay-off from a teaching model 
is clinical courage, the willingness to carry through a 
plan because, in spite of limitations in the underlying 
rationale, the phenomena have become more or less 
predictable. Modification must be made for the indi­
vidual patient using classical clinical judgment. 

4. Patient-Specific Model. Whereas the teaching 
model provides a skeleton for action, the patient­
specific model demands that parameters be modified 
to take into account individual differences. If this can 
be done successfully, i.e., with clinical verifiability, then 
the modeling process becomes a component in the 
therapy itself, a medical tool like any other. In cancer 
chemotherapy we have not taken this step, and except 
for very simple model components, this form of model­
ing remains largely a vision of the future. However, 
we can see it as a vision of the immediate future, 
because at least one strategy for implementation already 
exists: at a given point in time, the measure of a bio­
logical response of the patient can be derived from 
the data accumulated over the past course of therapy. 
Thus, an initial protocol course of drug has the dual 
objective of therapy and a calibration of future therapy. 
We envision combining protocol data curves with our 
simulations, using subroutines to automate the evalua­
tion of parameter values. 

This approach should open up new potentials in 
protocol studies of cancer chemotherapeutic drugs. 
Present protocols treat patients by a formula which 
supposes that each is the average case of the teaching 
model. Drug courses are set up so that cons'stency is 
achieved by using standard doses. This imposes certain 
obvious rigidities which limit success. By using a 
model approach, it will be possible to keep the relation­
ship between drugs and patient parameters constant. 
Thus we can seek to test the input of drugs on the 
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biology of the patient and his disease, rather than 
treating him as a block box, susceptible only to statistical 
analysis. 

CONCLUSION 

The impact of model building and simulation on clinical 
medicine is just beginning to be assayable. Many of the 
themes which will ultimately be important can be 
observed in prototype. Long-term effects will be felt 
(1) on the operational organization of medical data, in 
the medical record; (2) on the formulation of the 
biology of disease; (3) on the methodology of medical 
teaching; and (4) on the precision and focus of clinical 
research. 
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Graphics software for remote terminals and 
their use in radiation treatment planning* 
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INTRODUCTION 

Interactive graphics' ability to provide a meaningful 
interface to investigators in a variety of applied fields 
has been recognized for many years. Nowhere is this 
promise greater than in medicine and the life sciences. 
Levinthal'sl interactive program for constructing and 
displaying complex molecular structures is well-known. 
N eurath2 and Frey3 have analyzed chromosome spreads 
by delegating to human perception the light-pen dissec­
tion of individual chromosomes from overlapping 
clusters while leaving subsequent measurements and 
final classification to the computer. Cox and Clark's 
Programmed Console4 has introduced many radio­
therapists to the use of computers in treatment plan­
ning. Other applications at this facility5 and elsewhere6 

illustrate the great value of interactive graphics support 
in deriving insight from large clinical data bases, ex­
ploring complex biological models in the hope of im­
proving treatment strategies, and developing cost­
effective algorithms or special hardware for patient 
monitoring. 

That the use of computer graphics in biomedical 
and other fields has not developed more rapidly has been 
in large part attributable to two factors, the high costs 
associated with hardware and development of applica­
tions programs, and the general unavailability of 
graphics terminals that can operate remotely using 
common carrier communications facilities. The latter 
capability is not needed when modest computational 
requirements enable support by a dedicated small 
computer, as in the case of the widely used Programmed 
Console. But, as illustrated by other of the projects 

* This work is being undertaken at the Health Sciences Computing 
Facility, UCLA, sponsored by NIH Special Research Resources 
Grant RR-3. 
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mentioned above, many biomedical applications re­
quire access to a level of computer support which is most 
economically provided on a shared basis. The recent 
commercial availability for less than $20,000 of a 
terminal (IMLAC) which has many characteristics of 
the higher quality graphics systems and which uses 
common carrier telephone facilities to communicate 
with its host processor, has motivated a substantial in­
vestment in systems support at UCLA's Health Sciences 
Computing Facility (HSCF). 

The setting for this work will be de~cribed, previous 
. efforts in graphics and the development of an operating 
systems environment appropriate for supporting a 
multi-terminal remote graphics system. Subsequent 
discussion of a set of interactive graphics programs 
that are being developed for radiation treatment plan­
ning will illustrate some of the problems that must be 
faced when a graphics terminal is to be supported by 
low-bandwidth communications. After describing the 
related hardware, current and projected software de­
velopments will be discussed with reference to the fore­
going applications. 

PREVIOUS DEVELOPMENT OF GRAPHICS 
AND OPERATING SYSTEMS AT HSCF 

HSCF is maintained by the National Institutes of 
Health to explore and develop computer-implemented 
analytical support to research in biology and medicine. 
The BMD statistical package programs, TORTOS 
operating system, and other developments at this 
facility have originated in response to explicit needs of 
biomedical researchers. 

TORTOS (Terminal Oriented Real Time Operating 
System)1 was developed in response to the variety of 
needs that prompt biomedical researchers to share ac­
cess to a large computer. It has been designed to take 
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advantage of the large high-speed core (2000K bytes) 
and computational speed of the 360/91 processor, mak­
ing these resources available to the facility's users with 
as few constraints as possible on the types of programs 
accommodated. The terminal user has at his disposal 
the full facilities of a standard OS/MVT system as well 
as the specialized interactive functions developed here 
to aid conversational access to the system (monitor 
programs, a convenient file service, input/output inter­
faces, text editor, a FORTRAN compiler, and a library 
of statistical and biomedical applications programs). 
The system concurrently supports local and remote 
batch operations. Its versatility is exemplified by the 
wide range of uses to which it is being put. These in­
clude multivariate statistics, computer-aided instruc­
tion, management information systems in the Bio­
medical Library, biological modeling, and several 
clinical applications. Although not presently in use, the 
system has supported a high speed, real time link to an 
SDS 9300 located in UCLA's Brain Research Institute.5 

Since the remote graphics terminals are time-shared as 
an extension of the conversational terminal system, 
they have access to all facilities developed for the 
latter. 

For the past five years, we have developed and use­
tested systems to make the IBM 2250 graphics termi­
nal accessible to biomedical programmers. Interactive 
graphics interfaces are intended to be meaningful to the 
scientists who use them. A growing number of biologists 
and physicians are capable FORTRAN programmers. 
Many of this facility's medically or biologically oriented 
graphics programs have been developed, by such people, 
using our FORTRAN callable subroutines, GRAF 
(Graphic Additions to FORTRAN) 8,9 or a similar 
interface, PL/OT,lO developed for use with PL/l. These 
include5 programs for data analysis and statistics, 
teaching, image processing, modeling of cellular and 
physiological systems, interactive retrieval, simulation 
of disease propagation in adjacent urban environments, 
design of coronary-care and obstetrical monitoring sys­
tems, and radiation treatment planning. 

The GRAF programmer has at his disposal routines 
for generating the primitive elements of an image 
(blanked and unblanked points, lines, and alpha­
numeric characters) which are combined into a struc­
tured display file whose basic element is called a display 
variable (DV). Additional routines are provided for 
combining the DV's into display' frames for presenta­
tion on the terminal's screen. There are also facilities 
for servicing the input devices associated with the 
graphics 'terminal (alphanumeric and function key­
boards and light-pen) and for character-string 
manipulation. 

REMOTE GRAPHICS SUPPORT TO 
RADIATION TREATMENT PLANNING 

Distributed-processing capabilities being developed 
for the GRAF subroutines designed for terminals oper­
ating over low-bandwidth communications systems are 
discussed in later sections. One of the biomedical proj­
ects whose needs influence this work, a set of programs 
for radiation treatment planning, is described here. Pre­
liminary program development on the IBM 2250 has 
been reported. l1 

Previous work in radiation treatment planning 

Radiation treatment planning is among the earliest 
established areas of computer support to medical 
practice. Stovall's12 recent bibliography provides access 
to most of the formal publications in this field and is 
recommended as a basic reference for this section. 

The radiotherapist's primary concerns in treatment 
planning may be briefly summarized as follows: He has 
at his disposal radioactive sources that can be placed 
within the body and beams of radiation that can be 
directed to it from various angles outside. He seeks a 
combination of either, or sometimes both, so that the 
resulting spatial distribution of dose delivered through­
out the tumor volume is large compared to that de­
livered to normal tissues he wishes to spare. He also 
desires a relatively homogeneous distribution through­
out the tumor volume itself. Fear of tumor regrowth in 
undertreated areas, "cold spots," dominates the latter 
concern, but excessive tissue breakdown in hot spots 
also is to be avoided. Either formulas inherited from 
research on the interaction of radiation and high-energy 
particles with matter, or tabulated empirical measure­
ments of fields surrounding sources or beams in water 
or other materials of known composition, enable him to 
compute the desired dose distributions. Palpation, 
scanning or other techniques are used to estimate the 
location and extent of the tumor. Special radiographic 
techniques such as tomography help to locate the 
boundaries of internal organs to be spared or whose 
tissue densities are to be taken into account when the 
dose distributions are calculated. 

When done by hand, even the simplest calculations, 
such as the dose distribution for two or three super­
imposed beams in a homogeneous unit-density medium, 
are extremely tedious and tend to be undertaken infre­
quently and reluctantly where computer support is not 
available. Thus in many places radiation therapy ad­
heres to longstanding conventional prescriptions that 
have proven relatively effective for the "average 



patient" given the constraint that the risk of notable 
side effects in all is to be vanishingly small. Computer­
assisted treatment planning seeks to individualize 
therapy, to help the therapist take every possible ad­
vantage of a particular patient's tumor location and 
body geometry. It also encourages him to explore new 
general treatment strategies which might, even in 
places that do not use computers, become part of the 
conventional armamentarium of treatment plans. 

Two types of computer support for treatment plan­
ning are regularly used in a small but noteworthy 
number of treatment centers.12 Some excellent batch 
programs for external-beam therapy have been tested 
by many years of use. Representative of these are 
Theodor Sterling's programs (University of Cincinnati 
and Washington University, St. Louis), Jack Cunning­
ham's (University of Toronto), and those developed 
under the direction of John Laughlin (Memorial 
Hospital, New York). The latter are widely available 
via remote typewriter terminals. The earliest program 
extensively used for implant therapy (placement of 
sources within the body) was developed by Robert 
Shalek and Marilyn Stovall (M. D. Anderson Cancer 
Research Hospital, Houston). Both the three-dimen­
sional complexities of implant therapy and the correc­
tions for tissue inhomogeneities found in the batch 
progra~s for external beams require major processors. 

The Programmed Console developed by Jerome Cox, 
Wesley Clark, and their associates (Washington U ni­
versity, St. Louis) provides clinicians an economical 
interactive graphics system for treatment planning. It 
permits simple beam superimposition in a homogeneous 
body whose outer contour is specified to the computer 
by a rho-theta digitizing scribe. Program modifications 
are relatively difficult to introduce because of full utili­
zation of the small processor dedicated to the system, 
and a number of the capabilities available in batch 
programs understandably are not present. However, 
the Programmed Console has demonstrated by wide 
acceptance the radiotherapist's strong preference for a 
hands-on graphics system which provides him rapid 
graphical dose distribution feedbacks for a sequence of 
conveniently repositioned superimposed beams. Other 
small-processor graphics systems have been developed 
in the United Kingdom and elsewhere. 

Remote graphics radiation treatment planning** 

Clearly, one wishes to combine as economically as 
possible the advantageb of interactive graphics and 

** We wish to acknowledge the very valuable collaboration of 
Richard Nelson, City of Hope, Duarte, California. 
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Figure 1-Treatment prescription display for external beam 
therapy: Light-pen tracing of organ contours has been guided by 
a transparency taped to the graphics scope. Information has been 
entered for the first beam, a Co-60 beam whose center and range 
of oscillation is indicated by the angular structure to the left 

of center 

major processor support, developing programs having 
the greatest possible degree of exportability. IBM 2250 
programs utilizing GRAF have run on a variety of IBM 
360 computers operating under as, and the new version 
of GRAF designed for the IMLAC terminal has been 
organized and will be documented in a manner that 
should facilitate its rewriting for other processors. Im­
mediate exportability is enabled by the IMLAC ter­
minal's low price and its ability to operate over conven­
tional telephone lines. 

The first two members of our package of graphics 
programs to support radiation treatment planning 
have been selected as follows: First, one wishes to take 
fullest possible advantage of excellent batch programs 
that have been tested by years of use. The initial pro­
gram in this category is a graphics adaptation of Me­
morial Hospital's external-beam program. RADCOMP 
III, the most recent version of M. D. Anderson's pro­
gram, and Sterling's program will be next. Although 
there is some overlap among these, it is desirable to 
offer the different programs that have won various 
radiotherapists' confidence. Second, we want to explore 
the special advantages of our system. For this we have 
chosen a three-dimensional implant application, the 
widely used Fletcher-Suit intracavitary method for 
treating cancer of the uterus. 

Several capabilities are common to all programs: 
input of a brief information record for each patient, 
routines for providing a proper scale and assessing its 
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2a 2c 

2b 2d 

Figure 2-Portion of the interactive specification of afterloader location in Fletcher-Suit treatment of uterine cancer: (a) Important 
points on the afterloaders having been located on an anterior-posterior (A-P) view of the pelvis, one of the known distances in 3-dimen­
sional space is being requested. (b) An inconsistency being noted between that distance and previous specifications, the user is given 
the choice of relaxing tolerances or correcting one of the inputs. (c) The computer finally accepts the revisions and asks for the one item 
of information now required to fully determine tandem location. (d) The sequence of linear sources "loaded" into the tandem in a previous 
frame is now displayed as it should appear on the X-ray. If this visual. check is satisfactory, the user may select from several levels of 

redundancy in specifying information from a lateral view 

uniformity throughout the CRT display whenever 
graphical information is to be specified by light-pen, 
and contour plotting routines for displaying dose 
distributions. 

1. The external-beam program. When users wish to 

take advantage of the Memorial Hospital program'& 
capability to correct for tissue inhomogeneities, they 
must specify contours and densities for the various 
organs. They may do so by taping a transparent draw­
ing over the CRT face, using the light-pen for a point-



to-point specification of each contour. (A continuous 
light-pen tracking capability is available on the IMLAC 
and on some other IBM 2250 models.) It is easy to 
revise or restart contours. The expense of additional 
input scribing equipment is avoided. This is much 
simpler to execute and easier to verify visually than 
providing the numerical contour specifications required 
for the batch program. Further burdens of coding input 
information are relieved as the user next responds to a 
conversational program that requests information con­
cerning the beams to be used and how they are to be 
directed (i.e., from a given angle, rotating about a given 
point, or oscillating within specified angular limits). 
Brief notations for each beam are added to the body­
contour diagram (see Figure 1). Dose-distribution in 
the plane containing the beams then is displayed. This 
may be filed for later comparison with other treatment 
plans. 

2. The intracavitary program for uterine cancer. In 
afterloading approaches, hollow instruments (the after­
loaders) are placed securely at various locations in the 
tumor area. Subsequent introduction or removal of 
radioactive sources within the lumens of the after­
loaders may therefore be accomplished without further 
discomfort to the patient or disturbance of the tumor­
source geometry. The Fletcher-Suit afterloading system 
for uterine cancer comprises a long curved tube which 
is introduced into the uterine cavity (the tandem) 
flanked laterally by two source holders (the colpostats) 
externally adjacent to the uterus. Each of the latter 
can hold a single radioactive source, and a sequence of 
sources can be spaced along the central axis of the 
tandem. Frontal (A-P) and lateral radiographs are 
used to locate the afterloaders. 

A conversational program facilitates light-pen specifi­
cations of afterloader locations, taking full advantage of 
their known geometries. The user may elect tradeoffs 
between rapidity of input and the security of checks 
enabled by obtaining redundant geometrical informa­
tion (see Figure 2). He also may control economy vs. 
quality of computation by such means as specifying the 
length of segments to be used to approximate linear 
radiation sources of uniform density. For instance, an 
economical initial exploration which approximates each 
linear source by three segments can be followed by a 
computation of higher quality which assumes a seg­
mentation of nine or ten. Dose-distribution displays 
may be requested for any A-P, lateral, or transverse 
plane (see Figure 3). Inventories are maintained for 
the afterloaders and sources. 

Arrangements are being made for live demonstration 
of these programs on the IMLAC terminal, in addition 
to motion-picture illustrations of their use. 
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Figure 3-Isodose plot for uterine treatment: Dose distributions 
may be requested in any A-P, lateral, or transverse plane. This 
display may be transmitted line-by-line as it is being computed. 
An occasional segment may be missed by the economical 

algorithms used here 

Possible implications of graphics in the acceptance of 
treatment-optimization programs 

Linear programming13 and other approaches14 •15 have 
been suggested for optimizing spatial dose-distributions, 
and one14 is being used regularly in a small number of 
radiotherapy centers in Great Britain. Graphical 
demonstrations tend to be more convincing than mathe­
matical proofs to the average clinician, and they help 
him to bring his experience to bear on criticizing the 
outcomes of using various criteria for optimality. One 
therefore anticipates that the present conjunction of an 
interactive graphics terminal with a processor capable 
of performing optimization calculations will encourage 
serious investigation, improvement, and perhaps even­
tual acceptance of more optimization procedures in 
radiotherapy. 

Implementation over low-bandwidth communications 
systems 

Transmission over conventional telephone lines poses 
serious response-time problems for the more complex 
graphical displays of organ contours and dose-distribu­
tion. Subsequent recall for display purposes rather than 
initial point-to-point specification is of main concern in 
the organ-contour display. However, methods currently 
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Figure 4-IMLAC PDS-l system block diagram (redrawn with permission of the IMLAC Corporation) indicating the dual processor 
nature of the systems design 

being explored to expedite transmission of a retrieved 
display may simplify the initial input as well. Advan­
tages of the interactive approaches that are possible 
for anatomical specifications or the input of graphical 
field-distribution data for sources and beams cannot be 
realized for the computed dose-distributions, since the 
latter are initiated at the host processor. Research on 
these problems in graphical representation is being 
pursued initially on the IBM 2250 while the remote 
terminal version of G RAF is being developed and tested 
on the IMLAC. However, both efforts assume a distri­
bution of processing between the terminal and host 
computer which has not been feasible on the IBM 
2250. This work is described in a later section, and 
additional presentations will be made at the time of the 
conference. 

REMOTE GRAPHICS HARDWARE 

The remote graphics system consists of three major 
hardware components: the host processor, a 360/91 
computer with 2 million bytes of high-speed core and 
672 million bytes of secondary direct-access storage; the 
graphics terminal, a mini-computer (PDS-1) manu­
factured by the IMLAC Corporation; and the data 
link between the two processors. While the typical 
graphics program does not normally require the re­
sources of a computer like the 360/91, it does permit 
the computer to simultaneously service far more 
graphics terminals than could be handled by a less 
powerful machine. In addition, the occasional heavy 
demands for arithmetic processing can be absorbed 
without severely impacting other concurrent activities, 



for as at most computer centers, graphics is only one 
aspect of the computer's total load at HSCF. 

The development of a remote graphics terminal is 
not a new idea, nor is using a small computer to over­
come the restrictions of low-bandwidth data links, as 
has been done elsewhere. I6- Is There are also available 
today at least five different storage-tube terminals 
which have a serial-communications interface that per­
mits them to operate from a remote location without a 
mini-computer. Storage tubes do not need local refresh 
memories and their display capacity is limited only by 
the resolution of the screen. By contrast, the display 
capacity of refreshable tubes is limited by the size of the 
local refresh memory and the drawing speed (refresh 
cycle) of the deflection system. However, the storage­
tube terminal's limited capacity to selectively erase one 
component of a display from the screen requires com­
promises between response time and the ideal presenta­
tion of information to be displayed. In order to modify 
one component, the screen must be erased and the 
entire modified display retransmitted to the terminal. 
In one storage-tube system it is possible to erase in­
formation from the screen by retransmitting the orders 
which created the display, but this also erases other 
components of the display frame which may have inter­
sected the portion which was erased. Lack of a selective 
erase can be overcome to some extent by the use of a 
local computer which can regenerate the image; this, 
however, nullifies much of the cost advantage which 
the storage-tube terminal otherwise enjoys. The 
GRAPHIC-II systemI6 developed by Bell Telephone 
Laboratories is similar in many ways to ours. There 
are, however, some major differences in approaches to 
optimizing the use of the data link and to distributing 
tasks between the remote and host processors. The 
PDS-1 is one fourth the cost of the PDP-9 system used 
in GRAPHIC-II. In part, this reduction in cost is a 
result of technological advancement; however, much of 
it is due to the fact that the PDS-1 was designed spe­
cifically as a low-cost display computer. 

The IMLAC PDS-1 (see Figure 4) computer is a 
dual processor machine with each processor sharing the 
same memory. The main processor executes an instruc­
tion set which is typical of most small computers (ADD, 
SUBTRACT, BRANCHING, LOGICAL and 
INPUT/OUTPUT operations) while the display pro­
cessor, which is controlled by the main processor, exe­
cutes a set of display instructions that generate the 
image on the CRT (see Figure 5). The display image 
is drawn using incremental vectors; each incremental 
order (8 bits) can move the CRT beam in one of 32 
directions for a distance of 0-9 raster units (a raster 
unit is 0.011 inches). Line segments, characters and 
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other graphics figures are generated by display sub­
routines composed of incremental orders. An eight-level 
hardware push-down is provided for nesting display 
subroutines. 

The principal disadvantage of the incremental draw­
ing technique used by the IMLAC is the slightly jagged 
appearance of lines or curves that results from the 32-
direction restriction on elements composing them. This 
can be a serious problem if high-quality images are 
required. For instance, depth cues of the perspective 
transformation might be blunted when three-dimen­
sional images are being generated. However, in the 
majority of medical applications, this is not a serious 

Figure 5-IMLAC graphics display terminal: Light pen and 
optional programmers console are shown to the left of the 

keyboard and display 

problem and the economies that result from the use 
of incremental drawing seem to outweigh the 
disadvantages. 

The choice of a data link between the graphics ter­
minal and the host processor was dictated by universal 
availability, low cost of modems and interfaces, and 
speed, in that order of importance. We chose to use a 
serial-synchronous communications format employing 
switch network telephone facilities at 2000 bps (WE-
201A type modems). However, while meeting our re­
quirements of availability and low cost, the transmission 
speed represents what can only be considered a mini­
mal level. A major component of the programming 
support is devoted to overcoming deficiencies of the 
data link. 
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REMOTE GRAPHICS SOFTWARE 

Programming systems support for the remote 
graphics terminals consists of a control program for the 
terminal computer, the host processor control program, 
and the applications programming "language." The 
latter two components are 360/91 programs while the 
first executes in the PDS-l computer. Application pro­
grams are written in FORTRAN using a collection of 
subroutines called GRAF9,lo which were originally de­
signed for use with the IBM 2250 and whose external 
format has been preserved in the remote graphics 
implementation. Thus, use can be made of the large 
number of programs written using GRAF at VCLA 
and elsewhere over the past four years. Although an 
emulation of the 2250 would have provided access to 
more existing programs, it would have compromised 
effective use of the data communications facilities. 

Strategies for overcoming the limitations of low-bandwidth 
communications systems 

Transmission over conventional telephone lines poses 
serious response problems for the more complex dis­
plays (see Figures 1 and 3). In Figure 1, the organ 
contour display, the main concern is with the subse­
quent recall of the image rather than its initial point­
to-point specification whereas in displays like Figure 2, 
response is poor because the terminal fails to react 
quickly to simple interactions. The logical and arith­
metic capabilities of the remote processor offer several 
means of improving response. Data compression can in­
crease the information density by removing extraneous 
bits from the graphic data structure or bits whose 
meaning is implicit from the context in which they are 
used. Another method is to organize the graphics data 
so that inactive static segments of the display are 
saved and recalled into the active display by the trans­
mission of a single command. Labels, grid lines, indexes, 
and explanatory text are examples of data which are 
fixed throughout the course of the typical graphics 
program and need only be transmitted once when 
sufficient remote processor storage is available. Re­
sponse time is determined by the variable display data. 

Approaches that decrease the number of bits trans­
mitted to specify graphical or other data will be dis­
cussed in the next section. The portions of G RAF ini­
tially developed for remote IMLAC terminals have 
emphasized storage-management and look-ahead capa­
bilities that facilitate terminal response by avoiding 
retransmission of graphical information that may be 
displayed repeatedly and by anticipating transmission 

of that information which is most likely to be used 
next. 

V nless the remote computer is augmented by a 
peripheral storage device, the static display data which 
can be retained generally will not exceed two or three 
display frames. The added cost of direct-access storage 
caused us to prefer extending the storage capacity of 
the standard terminal by formulating a procedure 
which retains those inactive segments of the terminal's 
display buffer which are most likely to be reused when 
it becomes necessary to overlay some segment in order 
to accommodate a new segment. This procedure is 
primarily a storage management technique and has 
been augmented by look-ahead facilities which are de­
signed to. anticipate the requirements for new display 
segments and transfer them during intervals when the 
data link would otherwise be idle. 

New G RA F storage-management facilities 

Implementation of the storage management and 
look-ahead facilities is largely unknown to the GRAF 
programmer although he has some control over the 
transmission of graphics data to the remote processor. 

As in the IBM 2250 version of G RAF, the basic 
element of the graphics data structure is the display 
variable (DV), which is composed of the primitive 
elements that generate the display. The DV is formu­
lated in the host processor by graphics subroutine calls, 
for subsequent transfer to the display buffer, that por­
tion of the terminal's memory which services plotting. 

The display buffer of the remote processor is divided 
into primary and secondary display lists. The secondary 
display list entries correspond to a subset of the DV's 
in the host processor. The primary list consists of point­
ers (display subroutine jump instructions) to each 
entry in the secondary list which is currently being 
displayed on the CRT screen. DV's are added or re­
moved from the screen by adding or removing appropri­
ate pointers in the primary list. A display frame is 
composed of one or more DV's which may contain 
their own screen coordinates, or the position which the 
DV occupies may be determined by positioning orders 
in a DV which "calls" it. The DV can be considered a 
display subroutine, and in the instance of a relative 
DV (one which does not contain absolute positioning 
orders), only one copy of the DV is stored within the 
remote graphics processor. 

The best response characteristics will be obtained 
when each frame is segmented into DV's such that the 
static information is separated from the variable data, 
and when display components which are used re-



peatedly are each declared to be unique DV's rather 
than combined into a few DV's. Thus, the user can 
improve response characteristics not only by partition­
ing each display frame into fixed-format and variable 
DV's but also by further subdividing the fixed-format 
portions to take advantage of relative DV's that are to 
be used repeatedly. For example, in a single session 
with the computer, the radiotherapist probably will 
explore up to three or four treatment approaches for 
each of several patients. There will be delays when 
DV's guiding conversational input are initially called, 
but use of the program thereafter would, for the most 
part, flow as freely as on the IBM 2250. The saving is 
especially notable for the grids supplied to effect input 
of graphical data. One coarse grid covers the entire 
screen, but for more precise description of curves a 
finer grid patch is moved to desired locations on the 
large grid. Treating the patch as a relative DV, only the 
transmission of two coordinates is required to reposition 
it. Because of frequent use, DV's representing both 
types of grid would have a high probability of remain­
ing on the secondary list of the terminal's display 
buffer. 

All of the decision making and tables for managing 
the remote processor's display buffer are provided by 
the host processor. The graphics processor's storage 
management functions are limited to unpacking the 
transmission records, relocating addresses, and moving 
entries within the primary and secondary lists. When 
a new DV is to be transmitted to the remote terminal, 
its storage requirements are determined by the host 
processor and it is assigned a relative location within 
the display buffer. If sufficient free space is available 
either in one contiguous block or in multiple free blocks, 
the DV is placed in this region. When a single region is 
not available, commands to compact the display buffer 
are transferred ahead of the graphics data. Normally, all 
free space will be in one continguous block, since the 
host processor's storage management routines use idle 
time on the data link to transfer the commands neces­
sary to compact the secondary display list. Upon re­
ceiving the DV, the remote processor unpacks the data 
and relocates all relative addressing information into 
absolute display buffer addresses. When members of 
secondary display lists are moved from one location to 
another to compact the list, all absolute addressing in­
formation in both lists is again relocated. 

When insufficient free space exists for a new DV 
that is to be transferred to the terminal, the required 
space must be created by some combination of using 
free space and removing secondary display list entries. 
The criteria used for choosing which blocks(s) in the 
secondary list should be deleted attempt to reduce the 
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chance of deleting DV's which could be used in a sub­
sequent display while also minimizing response time, 
since further action by the terminal user is suspended 
until a successful transfer enables the DV to become 
part of the active display. Three decision levels are used: 
( 1) The system first tries to find a contiguous set of 
free or inactive blocks within the secondary display 
list. The inactive DV's which are chosen are those 
with the lowest probability that they will be reused. 
The assignment of these probabilities is described later. 
Contiguous sets are sought in order to avoid an addi­
tional pause to transmit commands required to compact 
the secondary display list. (2) When a contiguous set 
has not been found, the free blocks and the inactive 
DV's with lowest reuse probabilities are collected into 
a list, weights assigned, and a good set chosen to be 
deleted. The secondary display list subsequently must be 
compacted. The weight assigned to each DV is a func­
tion of it~ size, its position in the secondary display list 
(which determines the delay necessary to compact the 
list if this DV is deleted), and the reuse probability. 
The optimum set, that which provides enough space 
while minimizing the summed weights of DV's to be 
removed, can only be chosen while examining all pos­
sible combinations. Since this would burden the host 
processor, an alternative, approximate stepwise pro­
cedure is used. First, the list is sorted by weights and 
partitioned into two groups. Initially, the first group 
will contain the first n elements of the list whose total 
size is sufficient. The procedure then compares the sum 
of the weights of each pair of elements in the first group 
with the weight of an element of the second group. An 
element in the second group replaces the pair in the 
first when its weight is less and its size is greater than 
or equal to the corresponding pair in the first group. 
Similarly, the process is repeated by comparing com­
binations of three elements in the first group with 
pairs and single elements of the second group. We have 
found that continuing the search beyond three combina­
tions does not yield a significant improvement. (3) If a 
check made prior to pursuing (1) and (2) reveals that 
the total free space and that occupied by inactive DV's 
is less than the space required, the operator is permitted 
to delete DV's from the active display by using the 
light-pen. This final means of obtaining the required 
space in the display buffer is provided primarily for 
program debugging, permitting the program to con­
tinue when it otherwise would have been aborted. 

Look-ahead facilities 

The communications link between the graphics ter­
minal and the host processor is normally idle for several 



1154 Spring Joint Computer Conference, 1972 

seconds between each interaction. During this interval, 
the user is determining his next step. This suggests 
that if the host processor has a reasonable probability 
of predicting the user's choice, the effective transmis­
sion speed of the data link could be increased by using 
the idle time to transmit the graphics data most likely 
required for the next display frame. The display pro­
gram can be represented as a discrete Markov chain 
whose states are all the possible display frames which 
the program may generate. In GRAF, the states are 
defined by the DV's which generate the display frame. 
The transition from one state to the next occurs at each 
interaction (light-pen detection, keyboard entry, or 
terminal processor interrupt) . 

To predict which state is most likely to occur next, 
we form a transition probability matrix 

Pijn,n+l=Pr{Xn+l=j I Xn=i} 

Pijn,n+l is the probability that j will be the display 
program's next state given that i is the current state. 

Each time the program enters a waiting state for 
some form of remote processor interrupt, the transition 
probabilities of the current state are examined and the 
DV's corresponding to the most probably next state of 
the program are transferred to the remote processor to 
the extent permitted by time and by space in the dis­
play buffer. Not all of the DV's corresponding to the 
next state can be transferred in advance since some 
may not be defined until after the operator interaction 
is completed and others, although fully specified, may 
not have been generated in advance. 

The state matrices are of two types: When the pro­
gram is being executed for the first time, no information 
about the transition probabilities exists. All probabili­
ties are assumed equal unless the programmer specifies 
otherwise. The second type of state matrix represents 
a typical use profile for the program which has been 
accumulated through many executions of the program. 
Even when an extensive use profiles exists, considerable 
improvements in the predictions can be made by dy­
namically updating the transition matrix so that it will 
more accurately predict the current use of the program. 
Provisions are made for each user to save and update 
his own transition matrix to tailor the program's re­
sponse to his own needs. For example, new users of the 
intracavitary radiotherapy program will tend to seek 
more explanatory material and to elect more conserva­
tive approaches for locating the afterloaders. They will 
tend initially to use the transition matrix provided by 
the system, changing to their own when familiarity 
with the program motivates expedition of shortcuts 
and other preferred routings through the program. 
Thus, the system's matrix for each program will tend 

to remain oriented toward its most likely client, the 
new user. 

Data-compression techniques 

Processing capabilities of the graphics terminal en­
able unpacking of information transmitted from the 
host processor in a variety of condensed formats. While 
computations required for condensation can be com­
plex without taxing a fast host machine, unpacking 
must be efficient enough to provide the desired ad­
vantage over unpacked transmission formats. The 
radiotherapy programs have directed attention to the 
problem of compacting information required for speci­
fying graphical displays. Investigations proceeding on 
the 360/91 and 2250 while 'basic GRAF software is 
being tested are mindful of the two types of local 
graphics interfaces provided by the remote terminal: 
(1) specialized function generators such as those sup­
porting curvilinear display generators, the light-pen 
tracking routine, routines which can translate, scale, 
and window display variables; and (2) routines which 
are written in the IMLAC PDS-l machine code by 
applications programmers. The routines for both types 
of interface are assembled by the host processor and 
stored in a library to be dynamically loaded into the 
remote processor as they are required by the graphics 
programs. For purposes of memory management, the 
relocatable PDS-l programs are considered to be dis­
play variables. Remote processor programs can extend 
the capability of the entire remote graphics terminal 
system, particularly where display dynamics are 
involved. 

More general, conventional approaches to parame­
terized representation of graphical data are being ex­
plored initially, e.g., conic sections19 and families of ex­
ponential curves,20 as alternatives to piecewise repre­
sentation by straight-line segments. The combined 
processing capabilities of this system permit additional 
approaches to be explored without the immediate con­
straint that they be implementable in hardware. For 
instance, for specification of organ contours or the dis­
tribution of fields around radioactive sources or X-ray 
beams, the approximation of large segments by French 
curves visually fitted at the terminal is being 
investigated. 

Graphical information originating at the host proces­
sor, such as the dose distributions calculated for a given 
patient, cannot benefit initially from interactive ap­
proaches such as the latter. However, since considerable 
computation is required for each point in the dose­
distribution field, procedures that transmit graphical 
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(a) IMLAC: (b) IBM 2250 

Figure 6-Polar transform with different expansion moduli: Among approaches being explored to compact patient anatomical information 
for subsequent rapid transmission is representation of an individual's configuration by transforms mapping it into standard anatomical 
cross-sections. The outer contour on the left (non-anatomical) figure is being mapped into that shown on the right by expansions around 
a central point that assume different "expandability" of various domains. In this case, the outer (fat) layer is assumed to vary more 

than other "tissues." 

information as the doses are being calculated alleviate 
much of the transmission delay. They have the addi­
tional advantage of enabling the radiotherapist to 
economize by terminating computations when the in­
formation displayed suffices for decision making. The 
contours shown in Figure 3 were generated line by line. 
The line at which computations are to commence may 
be indicated by the user. Another routine is available 
which computes and displays contour by contour. 

An interest in transforms of related sets of graphical 
data is aroused by the awareness that a number of 
radiotherapists estimate internal-organ location by 
adjusting standard anatomical atlas cross-sections to 
measurements of the patient's external contour. We 
are exploring an improved version of this approach 
which allows different size-preserving factors for various 
tissues to be observed while transforms are being applied 
(see Figure 6). The objective is to reconstruct an ade­
quate display of an individual's anatomical cross­
section, using processing capabilities of the graphics 
terminal, locally stored standard cross-sections, and a 
small number of parameters characterizing a previously 
determined resultant transform. The latter would be 
obtained initially at the graphics terminal, as the radio­
therapist seeks by a number of transforms on the entire 
cross-section or on individual organs to achieve an ade­
quate correspondence between a transformed atlas 

cross-section and that determined for the patient by 
tomography or other methods. 

By storage-management and look-ahead facilities, 
we have sought to provide users the most economical 
terminal possible. However, should radiotherapists 
wish to add a disk at the terminal for more complete 
anatomical atlas storage or capacity for additional 
stand-alone applications on the IMLAC, it would be 
worthwhile to investigate transferring to the terminal 
processor a stand-alone capability for many conversa­
tional portions of anatomical and treatment specifica­
tion, to reduce subsequent communications charges. 
These program developments would be expedited by a 
360/91 FORTRAN compiler that generates object code 
for the IMLAC. 

Performance measurements 

At this writing, we have not had enough experience 
with user programs to give any quantitative assessment 
of the remote graphics terminal's performance as com­
pared to the 2250 terminal. There are areas where 
further development is already indicated. Decreasing 
response time by facilitating programmer's access to 
the remote computer through a compiler or by the 
addition of hardware components are areas to which 
we are now turning our attention. 
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In order to evaluate performance of the system and 
to quantitatively measure the effect of changes in the 
hardware and software, an extensive data collecting 
facility has been built into the programming packages. 
The programs continually log information regarding 
response time, data link utilization, storage utilization, 
display variable characteristics and other parameters 
which are believed to relate to system performance. 
This information is printed for the programmer at the 
end of each graphics job and is accumulated in a histori­
cal file for later analysis. Being provided with per­
formance information regarding the execution of his 
graphics program, the user is likely to take an interest 
in those aspects of the program which affect its per­
formance and to take the necessary steps to improve 
his program. The data gathering routines of the graphics 
system can also be instructed by an execution time 
parameter to collect a complete profile of a graphics 
job to the extent that its execution can be reproduced 
by using the profile as an input source instead of the 
terminal. This is particularly useful in debugging the 
system by providing a reproducible set of test jobs 
which can be run over and over until an error is found 
and corrected or the desired performance improve­
ments have been made. 
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Automated information-handling in pharmacology research 

by WILLIAM F. RAUB 

National Institute of Health 
Bethesda, Maryland 

Pharmacology in its broadest sense involves the 
multitude of interrelationships between chemical sub­
stances and the function of living systems. Since these 
interrelationships manifest themselves at all levels of 
physiological organization from the individual enzyme 
to the intact mammal, research in this area involves 
concepts and techniques from almost every biomedical 
discipline. Detailed understanding of the mechanisms 
of drug action is the best prescription for the discovery 
of new therapeutic agents and the rational use of old 
ones. 

The breadth and complexity of the domain of phar­
macological inquiry interact to produce a class of in­
formation-handling problems as formidable and enticing 
as any that can be found in the medical area. In recogni­
tion of this, the National Institutes of Health (NIH), 
through its Chemical/Biological Information-Handling 
(CBIH) Program, is attempting to accelerate the ac­
quisition of new pharmacological knowledge by design­
ing and developing computer-based research tools 
especially for scientists in this discipline. Working 
through a tightly interconnected set of contracts with 
universities and colleges, nonprofit research institutes, 
profit-making organizations, and Government agencies, 
the CBIH Program seeks to blend the most advanced 
information science methods into a computer system 
which can be an almost indispensable logistical and 
cognitive aid to these investigators. This paper charac­
terizes the current status of these efforts. 

THE PHARMACOLOGICAL 
INFORMATION-HANDLING "PROBLEM" 

The ultimate goal of pharmacology is a well-validated 
theory having the following two properties: 

(1) given the identity of a chemical substance and 
the parameters of its administration to a given 
living organism (e.g., the dose, route, course, 
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etc.), predict the effect, if any, on the behavior 
of the biological system; and 

(2) given a desired behavioral end state for a given 
biological system, predict the specific chemical 
substance (s) and parameters of administration 
which can bring about that end state. 

Only when such a theory is in hand will it be possible 
to make an accurate assessment of the therapeutic 
efficacy of a new substance without extensive testing in 
animals and human subjects. Only then will one be 
able to assume with confidence that a given drug will 
not have adverse side effects in a particular clinical 
context. 

As is painfully obvious to both pharmacologists and 
laymen alike, an all-encompassing theory of drug action 
is nowhere in sight. Present understanding of drug ac­
tion still is based almost exclusively upon empirical 
observation. Only a figurative handful of investigators 
have made extensive attempts to formalize their 
knowledge through mathematical modelling and the 
like. Natural language still serves as the predominant 
medium for the expression and communication of con­
cepts. And textbooks and review articles constitute 
almost the entire body of organized knowledge. 

N or has information science and technology done 
much to aid in the development of a broad-based 
theory of drug action. On the contrary, even the most 
sophisticated document reference and archival manage­
ment systems are only marginally useful in helping 
pharmacologists cope with the plethora of literature 
which is relevant to their interests. Moreover, outside 
of a few parochial areas, there are essentially no truly 
effective data retrieval (as opposed to document re­
trieval) services. And easy-to-use tools for building, 
exercising, managing, and communicating models of 
drug action are much more nearly fantasy than they 
are routine offerings of the typical general-purpose 
computer center. 

Thus, the pharmacological information-handling 
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Figure i-The PROPHET system in context 

"problem" can be stated as a series of interrelated 
questions: 

(1) Can one design computer-based information­
handling tools which encourage formalistic 
rather than empirical approaches to the study of 
molecular structure/biological activity relation­
ships? 

(2) Can one use these tools to facilitate the inter­
change of data, procedures, and models among 
geographically and disciplinarily disjoint scien­
tists whose work is relevant to the understanding 
of drug action? 

(3) Can one use mathematical models and other 
formalisms to enhance traditional methods for 
the storage and retrieval of pharmacological 
information? 

These questions circumscribe the domain of the CBIH 
Program. Some very preliminary answers are included 
in later sections of this discussion. 

RELATED WORK 

The interests of the CBIH Program in attacking the 
pharmacological information-handling "problem" inter­
sect in one way or another with a large number of 
activities in the information science area, for the rubric 
"computers in pharmacology" covers a wealth of topics. 
As depicted in Figure 1, the CBIH Program in its 
work on the PROPHET System and related projects 
focuses on only a small-albejt crucial-subset of the 
potentially valuable applications for automated in­
formation-handling methods. Most notable is the ab­
sence of concern with (a) data acquisition and process 
control for experimental laboratory and clinical care 
settings and (b) automated archival management 
methods and other uses of computers in libraries. Since 

these topics are only of marginal interest to the CBIH 
Program (though obviously of utmost importance 
from other perspectives), they are not treated further 
in this account. 

Turning attention specifically to the topjc of personal­
ized pharmacological data-management 'and analysis 
(i.e., the middle portion of the spectrum shown in 
Figure 1), there are two major classes of activity upon 
which the CBIH Program draws. The first is the collec­
tion of efforts concerned with chemical information­
handling, especially those involving highly dynamic 
man/ machine interaction about molecular structure 
data. The second is the collection of efforts concerned 
with general-purpose data management, especially 
those systems which offer the user great flexibility in 
the definition of file structure and which are designed to 
operate in a time-sharing environment. 

Chemical information 

The use of computers in handling chemical data 
(primarily structural information) is widespread and 
dates back to the mid-1950's. The need to deal most 
effectively with large numbers of organic molecules (in 
some cases hundreds of thousands) provides the con­
tinuing strong motivation; the fact that structural 
data is readily codified for machine manipulation makes 
this aspect of chemical information processing the most 
nearly tractable-and, hence, the most popular. Among 
the organizations who have made significant contribu­
tions are the Chemical Abstracts Services, the Walter 
Reed Army Medical Center, the Institute for Science 
Information, and a number of leading chemical and 
pharmaceutical manufacturers. The bulk of the efforts 
in this field are reviewed in two publications of the 
National Academy of Sciences-National Research 
Council. 1 ,2 

The subject of greatest concern in the chemical in­
formation field over the years has been the selection of 
an appropriate notation for encoding molecular topol­
ogy. Almost every group has struggled with the choice 
between connectivity tables and linear ciphers. The 
connectivity tables have the advantage of being direct 
atom-by-atom/bond-by-bond descriptions of molecules 
and, hence, they allow one to perform searches for es­
sentially any subgraph without the need for predeter­
mined indices. Connectivity tables invariably make 
heavy demands upon storage, however, and, in the case 
of even medium-sized files (e.g., 10,000 structure re­
cords) the extensive processing time required for many 
substructure searches renders them impractical for 
production use without some fairly rigorous preliminary 



screening of the queries to the file. By contrast, linear 
notations are compact in terms of internal representa­
tion, are processed with relative ease and economy, and, 
with some perseverance, can be mastered by the scien­
tist for direct use as a form of nomenclature. But linear 
notations do not allow readily for the full range of 
possible substructure queries, and this shortcoming has 
proved serious in some cases. 

Obviously, the strengths and weaknesses of these two 
basic approaches are highly context-dependent, and 
there is not likely to be a move toward consensus until 
additional advances in retrieval methods (e.g., in hash­
coding strategies) are made. Moreover, since there are 
many possible compromises (e.g., the linear notations 
are useful in substructure searching as screening terms 
preliminary to full-scale topological tracing), the study 
of search and retrieval methods for chemical informa­
tion is almost certain to be an active area for the fore­
seeable future. And since chemical structure data is of 
direct concern to pharmacologists, the CBIH Program 
will attempt to insure that the pertinent results of the 
many efforts involving new chemical information­
handling methods will be available for their use. 

Another major problem area in the chemical informa­
tion field is the man/machine interface, and in this case 
CBIH Porgram contractors have played a rather sub­
stantial role. Especially noteworthy are (a) the efforts 
of Corey and Wipke3 on easy input of two-dimensional 
chemical graphs via computer-controlled stylus and 
tablet and (b) the efforts of Levinthal and Katz4 on the 
computer-driven display and manipulation of three­
dimensional molecular models. Both of these groups 
have amply demonstrated the viability of these man/ 
machine methods in the context of medically relevant 
research-Corey and Wipke in the area of artificially 
intelligent systems for the design of organic chemical 
syntheses and Levinthal and Katz in the area of macro­
molecule structure and function. Moreover, as described 
further below, a number of the results of these groups 
have been integrated by yet a third CBIH Program 
contractor (Bolt Beranek and Newman Inc.) into a 
powerful computer graphics front end for a phar­
macological information-handling system called 
PROPHET. 

General-purpose data management 

In parallel with the work on chemical information­
handling via computer, the concept of a general-purpose 
data management system has received considerable 
attention. In brief, many groups have recognized the 
need for a software system which can be used to manage 
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a wide range of files flexibly and efficiently and with 
little, if any, requirement for programming on the part 
of the user. Among the most active organizations are 
System Development Corporation, Computer Corpora­
tion of America, and many of the major equipment 
vendors. A somewhat dated but still useful characteri­
zation of work in this area is given in the review article 
of Minker and Sable.5 

From the CBIH Program perspective, the most in­
teresting data management systems are those designed 
to operate in a time-sharing environment. Since per­
sonalized information-handling tools for pharmacolo­
gists almost inevitably will need be highly interactive 
if they are to be effective, the successes and short­
comings of the many ongoing efforts involving time­
shared data management systems will do much to 
influence how this technology is applied in support of 
drug research. For example, the various compromises 
involving the degree of file inversion (in part, a trade-off 
between the speed of file update and the speed of 
retrieval) and the degree of optimization to a particular 
storage medium (in part, a trade-off between speed and 
generality) are especially instructive. Moreover, within 
the CBIH Program's own activities, the use of a power­
ful interactive text editor as a simple file management 
tool for the study of structure/activity relationships in 
morphine-like substances has served to clarify a number 
of system design questions.6 

MAJOR CBIH PROGRAM EFFORTS 

Turning to the currently ongoing activities receiving 
direct CBIH Program sponsorship, the remainder of 
this discussion is devoted to two proj ects: (a) the design 
and prototype implementation of the PROPHET Sys­
tem by Castleman, Briscoe, and colleagues at Bolt 
Beranek and Newman Inc. (BBN) and (b) the studies 
of automated management of pharmacological knowl­
edge by Werner, Pople, and associates at the University 
of Pittsburgh. Both of these projects are extensive, 
multiyear endeavors and can only be described in 
broad outline here; nor do they constitute the total 
range of current program efforts. Nevertheless, they 
best portray the CBIH Program's strategy for dealing 
with the pharmacological information-handling "prob­
lem," and their early results provide invaluable indica­
tors of the promises and difficulties which lie ahead. 

The PROPHET system 

PROPHET is an experimental information-handling 
system designed specifically to subserve pharmacology 
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Figure 2-PROPHET system equipment organization 

research. It is intended to be a medium through which 
the latest pharmacologically relevant information­
handling methods can be developed, integrated, and 
made available to practicing scientists throughout the 
nation. I t is viewed as a research tool encouraging 
more rigorous approaches to the organization and analy­
sis of laboratory and clinical observations. Its ultimate 
goal is to facilitate the acquisition and dissemination 
of knowledge about mechanisms of drug action across 
a span of disciplines ranging from molecular biology to 
human clinical investigation. 

The general nature of PROPHET is given in Figure 
2. As shown there, PROPHET is designed to employ a 
dedicated, medium-sized, time-sharing computer (a 
Digital Equipment Corporation PDP-10) and to serve 
a geographically dispersed set of users via remote 
graphics terminals operating over voice-grade telephone 
lines. Information-handling procedures and data files 
reside in the central computer. Provision is made for 
eventual interfacing with both utility computers and 
information services. A detailed description of the sys­
tem is given in the document entitled "The PROPHET 
System: A Final Report of Phase I of the Design Effort 
for the Chemical/Biological Information-Handling 
Program."7 

The primary features of PROPHET as seen from the 
perspective of computer technology are five: 

(1) 

(2) 

a powerful interactive command language en­
abling even a computer novice to effect sophisti­
cated procedures for handling empirical data on 
chemical substances and their biological 
consequences; 
a simple procedural language syntactically 
modelled on PL-l which is coextensive with the 
command language and which allows essentially 
unfettered interleaving of system and user­
defined functions; 

(3) 

(4) 

(5) 

a special emphasis on making complex computa­
tional processes relatively invisible to the phar­
macologist user (e.g., presenting sophisticated 
data management strictly in terms of operations 
on tables, allowing stylus and tablet input and 
CRT display of molecular structures, etc.); 
a rich substrate of special data types for handling 
such pharmacologically relevant data structures 
as tables, molecules, graphs, and nodal networks; 
and 
a design which attempts to circumscribe the full 
power of a general-purpose digital computer in 
such a way that communication among users is 
strongly facilitated without inappropriately con­
straining options for individual initiative. 

In other words, by specifically encouraging user-system 
and user-user interactions within the somewhat rigid 
context of standard predetermined data types, 
PROPHET is designed to allow research pharmacolo­
gists to handle their personal data files and communi­
cate with their colleagues more effectively than they 
can any other way. 

Although PROPHET, like most complex computer 
systems, is better demonstrated than described, a few 
simple illustrations may prove useful. Figures 3 and 4 
show the system commands for operating on tables and 
molecules, respectively. Arguments for the commands 
are given in small letters; square brackets enclose op­
tional portions; braces enclose alternative forms. These 
two lists are only a fraction of the commands available 
to the user. Note especially the integration of the vari­
ous data types-e.g., the data type molecule can be an 
entry in the cell of a table. 

1_ MAKE TABLE unused-name [FROM table-name [FOR relational expression]] 

2 ADD {COLUMN[S]} TO table-name [FROM table-name] 
. ROW[S) 

3 ENTER [ROW[S) {;~:{~~~~~~;(s)} (I ~] OF table-name 
. column-name s 

COLUMN[S) column-numbedsl 

4_ FILLIN table-name FROM table-name 

{
DISPLAY} ~[COLUMN[S] {column-name(s) }oF]l 

5_ PRINT L column-numbeds) ~ 

~[ROW[S) {row-name(s) } OF) table-namel L row-numbeds) J 
6. LlST{~!~~~entifiicaton } TABLES 

{
column-name(s) } 

7. SORT table-name BY COLUMN[S] column-number(s) 

S_ PROTECT table-name 

Figure 3-Summary of table-handling commands 



1. MAKE MOLECULE unused-name [FROM display-indication] 

2. DISPLAY [CONFORMATION OF] molecule-name [COMPLETE] 

3. 

4. 

5. 

6. 

7. 

COMPUTE MODEL OF molecule-name 

CHEMSET property-name TO value(s) {elembent(-in)dicatiOn(S)} 
num er s 

WHAT IS e t { element-indication(s) } 
prop r y-name number(s) 

ADD COLUMN [S] TO {BONDS} of molecule-name 
ATOMS 

[UN] LABEL property-name of molecule-name 

8. ROTATE [DISPLAY] BOND number {
element-indications} 
numbers 

9. DISPLAY molecule-name WITH molecule-fragment-name 

Figure 4-Summary of molecule-handling commands 

The nature of PL/PROPHET, the procedural lan­
guage is illustrated in Figures 5-8 using data drawn 
from a study of antileukemic drugs being conducted by 
the Southern Research Institute in Birmingham, Ala­
bama. Figures 5 and 6 show selected columns from a 
user-defined table set up to handle survival time data 
on mice inoculated with various quantities of L-1210 
leukemic cells; the numbers in the cells of Figure 6 
indicate the number of mice which died on that particu­
lar day. Note that columns 19 and 20 of the table 
(Figure 5) are blank since they are intended to accom­
modate results derived from earlier columns. 

Figure 7 lists a brief user-defined procedure for calcu­
lating the number of II-day survivors and the mean 
survival time from the observations recorded in columns 
4-14 and storing them in columns 19 and 20. Figure 8 
then gives the result of calling this new function-i.e., 
an updated version of the table with the derived values 
in place. Note that the user need take no special action 
to have his personal PL/PROPHET procedures operate 
in conjunction with the standard system functions. 

'DISPLAY COLUMNS 1,2,3,19,20 OF MEGAMOUSE$ , 

MEGAMOUSE 
8R X 20C 

1. IMPLANT 2. DOSAGE 3. SCHEDULE 19. 11 DAY 20. MEAN 

1.E7 

1.E7 

1.E7 

1.E7 

1.E6 

1.E6 

1.E6 

1.E6 

CELLS (MG/KG) SURVIVORS LIFE SPAN 
ITOTAL 

2.25E2 07D,DAYS 

1.5E2 2,9,16 

1.E2 

6.7El 

2.25E2 07D,DAYS 

1.5E2 2,9,16 

1.E2 

6.7El 

Figure 5a-Mouse survival time: Selected columns of the table 
"Megamouse" 
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'DISPLAY COLUMNS 4·14 OF MEGAMOUSE$ 

MEGAMOUSE 4. 5. 6. 7. S. 9. 10. 11. 12. 13. 14. 
SRX20C DAY4 DAY 5 DAY 6 DAY 7 DAY 8 DAY 9 DAY10 DAYll DAY12 DAY13 DAY14 

Figure 5b-Mouse survival time: Selected columns of the table 
"Megamouse" 

SURVIVE: PROCEDURE (TABNAM); 

DECLARE (I,J,DEATH,SUMDEATH,SURVS) FIXED; 
DECLARE TABNAM TABLE· 
DECLARE (ENTRYIJ,ENTRY19,NU,TOT) CHARACTER; 

NU ="; 
TOT = '/10'; 

DO I = 1 TO 8; 
SUMDEATH = 0; 
DEATHDAYS = 0.0; 
DO J = 4 TO 14; 

SET ENTRYIJ TO COLUMN J ROW I OF TABNAM· 
IF ENTRYIJ=NU THEN GO TO ABC· ' 
DEATH = CINT(ENTRYIJ); , 
SUM DEATH = SUMDEATH + DEATH· 
DEATHDAYS = DEATHDAYS + CREAL(DEATH)*CREAL(J)· 

ABC: END; , 
SURVS = 10 - SUMDEATH· 
ENTRY 19 = CSTRING(SURVS).TOT; 
ENTRY20 = DEATHDAYS/CREAL(SUMDEATH); 
SET COLUMN 19 ROW I OF TABNAM TO ENTRY19· 
SET COLUMN 20 ROW I OF TABNAM TO ENTRY20: 

END; , 

RETURN; 
END; 

Figure 6-Listing of PL/PROPHET procedure "Survive" 
to analyze mouse survival time data 

'CALL SURVIVE (MEGAMOUSE)$ 'ERASE ALL$ 'DISPLAY 
COLUMNS 2,3,19,20 OF MEGAMOUSE$ 

MEGAMOUSE 2. DOSAGE 3. SCHEDULE 19. 110DAY 20. MEAN 
SR X 20C (MG/KG) SURVIVORS LIFE SPAN 

/TOTAL 

1 2.25E2 Q7D,DAYS 3/10 1.3El 

2 1.5E2 2,9,16 5/10 1.46El 

3 1.E2 4/10 1.466666El 

4 6.7El 0/10 9.1 

5 2.25E2 OlD,DAYS 4/10 1.lEl 

6 1.5E2 2,9,16 7/10 1.7El 

7 1.E2 5/10 1.4SEl 

S 6.7El 0/10 1.079999El 

Figure 7-Selected columns of the table "Megamouse" showing 
results of the procedure "Survive" 



1162 Spring Joint Computer Conference, 1972 

Figure 8-Simple model of neural control of skeletal muscle movement 

At the present time PROPHET is available on a 
dedicated PDP-IO computer housed and operated for 
the CBIH Program by First Data Corporation of 
Waltham, Massachusetts, and is ready for extensive 
evaluation by research pharmacologists in the context 
of their day-to-day activities. It is hoped that the test­
ing period now beginning will help both to refine current 
concepts and to identify areas for future investigation. 
It is also hoped that these collaborative projects using 
PROPHET will result in clear-cut demonstrations of 
the utility of modern information-handling methods in 

the search to understand the mechanisms of drug 
action. 

A utomated management of pharmacological knowledge 

A vital complement to the initial work on the 
PROPHET System is the basic research being con­
ducted by Werner, Pople, and their associates at the 
University of Pittsburgh.8 This group is exploring the 
problems and promises of using automated inference 



methods as cognitive aids to the individual pharmaco­
logical investigator. They seek to demonstrate where 
and how the concepts of artificial intelligence might be 
applied to achieve marked qualitative and quantitative 
improvements in current capabilities for the storage 
and retrieval of information. 

The Pittsburgh team has concentrated the bulk of 
its efforts to date on model-handling tools-i.e., system 
functions which make it relatively easy for even the 
computer novice to construct and exercise models of 
pharmacological processes, assuming, of course, that he 
has the basic biomedical knowledge to engage realis­
tically in such an endeavor. The intent is to aid in­
dividual investigators not only in expressing their 
concepts about mechanisms of drug action but also in 
assessing the validity of those conceptualizations 
through digital simulation and other algorithmic pro­
cesses. Put another way, the goal is to produce an 
easy-to-use software system whose capacity to absorb 
and operate upon pharmacological knowledge is un­
precedented in its scope and power. 

Werner, Pople, and their associates have found es­
pecially useful the class of models known as finite state 
automata. In brief, the builder of the model specifies 
each node in a network in terms of algorithmic pro­
cesses, direction and nature of connectivity, threshold 
logic and other control information, and the like. Pro­
ceeding a "fact" at a time, so to speak, the user can 
build arbitrarily large and complex model structures. 
To effect a simulation, the state of each node in the 
network is determined at each of a succession of discrete 
time steps using the algorithms and other information 

.RUN NORMAL 

*(ADD NEURON @N-RUBER 1$ 
N-RUBER 
(49001 00) (lMPINGE+) (lMPINGE-) 

NIL 
*(ADD DELAY DEEP·CEREBELLAR-NUCLEUS 15$ 
DELAY 40 
(INPUT: 3) 
*(ADD DELAY N·RUBER 20$ 
DELAY36 
(INPUT: 49) 
*(TIE EXCITATORY DELAY40 N-RUBER$ 
N·RUBER 
(4900100) (lMPINGE+ DELAY40) (IMPINGE·) 

NIL 
*(TIE EXCITATORY DELAY36 FLEXOR·ALPHA·MOTORNEURON$ 
FLEXOR·ALPHA-MOTORNEURON 
(3200200) (lMPINGE+ DELAY36 DELAY21 DELAYS AFFERENT2-INTERNEURON 
EXT·INTERNEURON1B) (IMPINGE· DELAY12 EXT·INTERNEURON1A RENSHAW-CELL 
INTERNEURON1B) 

NIL 
*(TIE EXCITATORY DELAY36 GAMMA1·MOTORNEURON$ 
GAMMA l·MOTORNEURON 
(3400100) (lMPINGE+ DELAY36 DELAY26 DELAY21) (lMPINGE-INTERNEUR 
ON1B DELAY12) 

Figure 9-Use of the model building commands "Add" and "Tie" 

(CLEAR) 

NIL 
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*(KILL SUBSTANTIA-NIGRA) 

YES·MASTER 
*(ANAL YZE @NORMAL) 

((PULSE·FLEX NEVER·RECOVERS LATE·PEAK AUGMENTED·PEAK) (PULSE·EXT ABSE 
NT) (STRETCH·FLEX OSCILLATIONS EARLY·RECOVERY) (STRETCH-EXT NEVER·REC 
OVERS)) 
* 
(RESTORE) 

NIL 
*(KILL SUBSTANTIA-NIGRA) 

YES·MASTER 
*(KILL N·VENTRALIS·ANTERIOR) 

YES·MASTER 
* 
(ANAL YZE @NORMAL) 

((PULSE·FLEX NEVER·RECOVERS LATE·PEAK AUGMENTED·PEAK) (PULSE·EXT ABSE 
~T) (STRETCH-FLEX EARL Y·RECOVERY) (STRETCH·EXT NEVER·RECOVERS)) 

Figure lO-Use of the model exercising command "Analyze" 

provided at the time of model construction. Moreover, 
by having the user (or another computer program) 
monitor the time course of the state transitions at 
selected nodes, one can perceive the behavior of the 
model in response to various stresses and compare this 
behavior with observations made in the laboratory or 
clinic. 

The neuropharmacology associated with the control 
of skeletal muscle movement has served as the prime 
subject for the Pittsburgh· group's early efforts. As 
shown by Figure 8, even a simple model of this phar­
macological system is essentially unmanageable without 
computer assistance. However, using an early version 
of their model-handling tools, these investigators have 
achieved some most encouraging results. While the 
following brief series of examples can hardly given an 
adequate characterization, they should impart the 
general flavor of the work. 

Figure 9 shows how the model building commands 
(i.e., ADD, DELETE, CUT and TIE) are used; in this 
case the user is adding the Nucleus Ruber to the model, 
assigning it a threshold value of 1 and connecting it via 
appropriate delays so that it gets excitatory input 
from the Deep Cerebellar Nucleus (already in the 
model) and delivers excitatory output to the alpha- and 
gamma-1 motorneurons on the flexor side. Figure 10 
illustrates the model exercising and perception func­
tions; in this case the command ANALYZE is entered, 
causing the model to be stressed by a standard set of 
stimuli analogous to the tendon taps and passive 
muscle stretch used routinely in clinical neurology ex­
aminations. The user has the option of setting a window 
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(GOLDIG (BRINGABOUT@((STRETCH-FLEX NO-OSCILLATIONS)) *))$ 
(ENTERING 1 BRINGABOUT) (((STRETCH-FLEX NO-OSCILLATIONS)) *) 
(LEAVING 1 BRINGABOUT) DEFERRED 
(RE-ENTERING 1 BRINGABOUT) (((STRETCH-FLEX NO-OSCILLATIONS)) *) 
(ENTERING 1 TRANS) ((DSET INTRALAMINAR-NUCLEUS 1)) 
(LEAVING 1 TRANS) (SOOOO) 
(ENTERING 2 BRINGABOUT) (((STRETCH-FLEX NO-OSCILLATIONS)) *) 
(LEAVING 2 BRINGABOUT) DEFERRED 
(ENTERING 1 TRANS) ((DSET EXT-N-VENTRALIS-LATERALIS -2)) 
(LEAVING 1 TRANS) (SOOOO) 
(ENTERING 2 BRINGABOUT) (((STRETCH-FLEX NO-OSCILLATIONS)) *) 
(LEAVING 2 BRINGABOUT) DEFERRED 
(ENTERING 1 TRANS) ((DSET N-VENTRALIS-LATERALIS -2)) 
(LEAVING 1 TRANS) (SOOOO) 
(ENTERING 2 BRINGABOUT) (((STRETCH-FLEX NO-OSCILLATIONS)) *) 
(LEAVING 2 BRINGABOUT) (NIL) 
(LEAVING 1 BRINGABOUT) (((DSET N-VENTRALIS-LATERALIS -2))) 
(((DSET N-VENTRALIS-LATERALIS -2))) 
* 

Figure ll-Use of the model exercising command "Bringabout" 

such that he may observe the time course of activity 
at only selected nodes. The command ANALYZE also 
invokes a perception program which monitors the time 
course of the simulated muscle length and, by applying 
a succession of linguistic abstractions to the output, 
produces a description of the model's behavior in clini­
cal terminology. 

Drug effects, of course, may also be studied with this 
system. In brief, the computer is provided with a list of 
drug names and the associated changes the drugs are 
thought to induce in the model's structure and/or con­
trol parameters. When the command to administer a 
given drug is entered, the software system automatically 
makes the indicated alterations. Note that surgical 
procedures (e.g., decerebration) can be handled via the 
same mechanism. 

Emphasis also has been directed toward having 
other computer programs exercise the neural model. 
Pople has experimented with a problem solving system 
whereby a high level executive processor accepts user 
queries and answers them by an appropriate combina­
tion of structural modifications and simulation runs. 
This allows the user to investigate hypotheses about 
drug action on-line by observing how the system can 
BRINGABOUT specified end states in terms of struc­
tural and functional changes in the model such as drugs 
are known to cause. Figure 11 gives a brief example of 
some preliminary results. In this case the system is 
asked to find an alteration which eliminates the pro­
longed oscillations following m.uscle stretch on a model 
mimicking Parkinson's disease. After two unsatisfac­
tory maneuvers (i.e., adding driving forces to the In­
tralaminar Nucleus and the External Nucleus Ven­
tralis Lateralis, respectively), the BRIN GAB OUT 
command discovers that applying a driving force of - 2 
to the Nucleus Ventralis Lateralis leads to the goal 
state. 

For the immediate future, the Pittsburgh group 
plans to continue its investigations into techniques 
whereby artificially intelligent computer programs can 
exercise or otherwise manipulate pharmacological 
models. For example, studies are now under way on 
such topics as (a) automatic selection of the appropri­
ate level of resolution of a model when it is used in a 
specific question-answering context, (b) definition of a 
quasi-English language whose utterances are equivalent 
to data structures in the model, and (c) development 
of techniques for using a model to organize and retrieve 
references to the experimental literature which is associ­
ated with that model. These investigators have only 
scratched the surface on a fascinating and formidable 
collection of information-handling problems. 

FUTURE PROSPECTS 

The CBIH Program's progress to date represents a 
collection of small (but nevertheless real) inroads into 
an enormously difficult task. In the years ahead the 
Program must deal with three basic questions: 

(a) How can the evolving PROPHET System best 
be integrated into the mainstream of pharmaco­
logical research? 

(b) When and how can PROPHET be enriched with 
capabilities for model management? 

(c) What additional research topics in the informa­
tion science field should be addressed if the in­
formation storage and retrieval aspects of 
PROPHET are to be made most effective? 

The first two of these questions will be met initially at 
least by continuing the work at BBN and the Uni­
versity of Pittsburgh, taking steps specifically to co­
ordinate these efforts even more closely with one 
another and with leading pharmacology laboratories 
throughout the nation. The third question, to the ex­
tent that funds permit, will be approached by experi­
menting with new pharmacological data types and 
representation conventions and by exploring such no­
tions as the utility of data description schema. 

To recapitulate the opening theme, pharmacology 
offers an enormously rich problem space for those inter­
ested in applying computers in the biomedical world. 
Pharmacology impinges on almost every area of medi­
cal science and its progress is heavily dependent on the 
continuing erosion of disciplinary boundaries. More­
over, its information-handling requirements strain at 
the frontiers of computer science in almost every direc-



tion. And the overwhelmingly important implications 
for society that accompany even small advances in our 
understanding of drug action make it urgent that the 
challenge for further inquiry be accepted. 
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Where do we stand in implementing information systems? 

by JAl\tlES C. EMERY 

University of Pennsylvania 
Philadelphia, Pennsylvania 

ACHIEVEMENTS OF THE COMPUTER 
INDUSTRY 

By any reasonable yardstick the computer has been 
a fantastic success. It has grown in one generation 
from a laboratory curiosity to one of our major in­
dustries-perhaps the most vital one in our informa­
tion-oriented post-industrial society. Raw computa­
tional speed has increased during this period by an 
order of magnitude every four or five years. The cost 
of computation has dropped to the point that we can 
employ it lavishly on everyday tasks. 

The computer has already brought significant 
changes in science, engineering, and commerce. Some 
branches of technology, such as space exploration, 
would scarcely be possible without the computer. 
Virtually all scientific fields have been affected in vary­
ing degrees. Without the modern computer it would be 
very difficult to perform the myriad data processing 
tasks required to run a large organization. Indeed, 
many of the companies most heavily involved in data 
processing, such as those in the banking and insurance 
industries, could simply not exist in their present form 
without the computer. 

PROBLEM IN APPLYING COMPUTERS 

Despite these unprecedented achievements, we com­
puter professionals are not universally hailed as heroes. 
In fact, we have a difficult time staving off our detrac­
tors. It would be comforting to think of them as un­
grateful wretches who resent the bounty that we have 
bestowed upon them. Unfortunately, much of our 
difficulty stems from our own failures to exploit the 
technology nearly as well as we might. It is all too easy 
to identify these failures. 

Underestimating complexity 

Man seems to have a natural bias toward under­
estimating the complexity of information systems. It is 
easy to see how this can come about. When we think 
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about a problem we tend to concentrate on the normal 
combination of circumstances; we often overlook the 
exceptions. And yet it is the exception that causes 
much of the work in designing and implementing an 
information system. It is not uncommon, for example, 
for over half of the design effort to go into the handling 
of exceptions that account for a few percent of the 
transactions entering the system. One approach, of 
course, is to handle the rare exception outside of the 
automatic system. But even this requires considerable 
design effort to detect the exception and control the 
eventual entry of the corresponding correction. 

Just as man seems to have a proclivity to ignore the 
exception, he also seems to have a bias toward optimism. 
Estimates are frequently based on the assumption 
that everything will work out as planned, ignoring the 
overwhelming evidence to the contrary. Critical diffi­
culties often appear in the process of linking individual 
subsystems into the overall system. System integration 
and testing typically account for over half of the total 
cost of implementing a complex system, but it is the 
rare estimate that provides this level of funding. 

Reinforcing these psychological biases are certain 
institutional biases toward optimistic estimates. The 
cost of implementing a large system is very great, but 
many organizations have not been willing to face up to 
this fact. More than once I have heard an MIS director 
say that he could never get authorization approved if 
he gave honest estimates. 

Underestimation of the complexity of a system leads 
to a number of unfortunate consequences. An obvious 
one is the cost and schedule overrun that we so often 
experience. This, in turn, often leads to hasty shortcuts 
that result in systems that are error-prone, inflexible, 
and poorly documented. 

Design of overly sophisticated systems 

Underestimating complexity can lead into the trap 
of striving for too much technical sophistication. A 
technician naturally wants to design systems that 
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move to-or even extend-the frontier of technology. 
Often overlooked is the cost-effectiveness of marginally 
useful sophistication. 

A common example is an overemphasis on quick re­
sponse. On-line file updating and retrieval, with re­
sponse times in the order of a few seconds, can add 
enormously to the cost, complexity, and technical risk 
of a system. Alternatives exist that may give nearly 
the same benefits at much lower cost. For example, 
skip sequential processing of indexed sequential files 
permits short batch cycles-perhaps in the order of an 
hour or less. If this is not short enough, it is possible to 
provide on-line data retrieval without the much greater 
complexity that on-line updating requires. There are 
certainly cases where the extra cost of on-line updating 
is more than justified by substantial incremental bene­
fits, but these tend to be quite exceptional. 

The bias toward sophistication manifests itself in 
other ways. Designers and programmers often strive 
too much to achieve machine efficiency. In doing this, 
they ignore the broader aspects of efficiency that in­
clude programming costs, flexibility, and maintain­
ability. We live every day with past mistakes of this 
sort-for example, the ludicrous situation in which a 
third generation computer spends its time emulating 
a second generation computer because earlier systems 
were programmed in assembly language to gain effi­
ciency. We tend not to make this mistake now; instead, 
we make errors at a higher level by rejecting, for ex­
ample, use of a generalized software package because 
of its "inefficiencies." 

Failure to exploit existing technology 

Paradoxically enough, while we strive for sophistica­
tion we also ignore well established technology. This is 
perhaps understandable in a technology that has been 
expanding so rapidly: it is almost impossible for the 
practitioner to keep up with his field. Nevertheless, it is 
painful to see. 

A good example of the problem is our failure to 
include an information retrieval capability within a 
management information system. The ability to handle 
ad hoc inquiries has been. available for well over a 
decade. Some companies began to apply such systems 
in the late 1950s, and proprietary retrieval packages 
came on the market soon afterwards. Although there is 
now widespread interest in such systems, they are used 
much less than they ought to be. 

Poor human factors design 

One of our greatest failings is the incredibly poor job 
we often do in serving the human user of our systems. 
Anyone who has tried to correct a billing error knows 

the problem. Systems are too unreliable, unforgiving, 
and uncorrectable. They spew out masses of data that 
are often poorly identified and displayed in a form 
that is difficult to comprehend. It is no wonder that 
users shudder a little when the computer moves in. 

IS THERE A BETTER WAY? 

Clearly we can do better than we have; the relatively 
few organizations that have done an outstanding job 
demonstrate what can be done. 

There is no simple prescription for success in this 
business. Nevertheless, there are certain steps to follow 
that are probably necessary, but not sufficient, for 
success. I offer them not as a unique set of guidelines­
indeed, they are all well-known-but as a reminder of 
those things we frequently choose to ignore. 

Stay within the state of the art 

It is a well-known aphorism in our trade that pioneers 
are distinguishable by the arrows in their backs. With 
rare exceptions, it does not pay to develop systems 
that rely on an extension of the frontier of technology. 
Even military systems, which have a better justification 
than most for such a strategy, usually are well advised 
to stick with proven hardware and software. 

Exploit available technology 

Staying within the state of the art is not a very 
serious limitation. The art has advanced to the point 
that technology does not impose many real constraints. 
It is perfectly feasible, for example, to design systems 
that have the following characteristics: 

1. Considerable use of shared computer resources. 
Al though the issue of centralized versus de­
centralized computation is not closed, most ad­
vanced systems will find it exceedingly attractive 
to combine computational loads into a few (often 
one) large computers. Centralization offers the 
undeniable advantages of economy of scale, the 
power of a large facility, load levelling, and the 
availability of a centralized data base. There will 
no doubt always exist systems that call for the 
simplicity and economy of specialization that a 
small decentralized computer can provide, but 
for the bulk of our needs we should surely look 
to relatively centralized facilities. 

2. Considerable integration of the data base. The 
consolidation of files has been going on apace for 
a number of years. This has resulted in a reduc-
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tion of redundancy and greater sharing of data 
across programs. There still remains, however, 
the need to link non-contiguous records. This 
only becomes feasible when one employs a fairly 
sophist.icated data base management system for 
on-line storage. The capability of linking rec­
ords has existed for a number of years now­
beginning with General Electric's IDS-but it 
has yet to be widely applied. This technology 
has now matured to the point that it should be 
considered in the design of any new system. 

3. Interactive computation. My earlier comment 
on the overemphasis given to short response 
time should not be interpreted as a blanket 
rejection of quick-response systems. Certainly 
the technology is available to provide reliable 
on-line response or file updating when the re­
sulting benefits justify the added cost. Our 
str.ategy should not be biased in favor of either 
short or delayed response; rather it should aim 
at a tailored response that allows each applica­
tion or user to have the response that best 
balances costs and benefits. Such a system will 
very likely provide a whole spectrum of response 
times-from interactive retrieval and data entry 
to periodic batch processing. 

4. Finally, virtually any well designed system 
should include some decision making models. 
The models can vary from analytical optimizing 
models to man-machine decision systems that 
rely on elaborate simulation models. It is only 
when the information system provides direct 
support of decision making that it really begins 
to take advantage of the full capabilities of in­
formation technology. The most serious issue 
facing the designers of such systems is the extent 
to which the models should be embedded within 
the information system. It is always a difficult 
task to provide formal, automatic links between 
transaction processing and decision models. 
They should therefore be provided only in the 
case of high-volume and rapidly changing inputs 
and outputs; in the remaining cases the models 
can be loosely coupled to the transaction process­
ing through some sort of manual intervention 
(e.g., smoothing or normalizing transaction data 
to generate inputs, and reviewing and adjusting 
decision outputs prior to introducing them into 
the operational part of the system). 

Provide long-term organizational commitment 

If there is anything certain about our business it is 
that the development of successful systems calls for 

long-term, sustained support. No system is ever really 
finished; it undergoes continual modification and adap­
tation over the course of many years. Eventually it 
may be scrapped and replaced by an entirely new 
system. 

An organization's commitment to a long-term pro­
gram should take a number of forms. One requirement 
is for relative stability in the resources devoted to sys­
tems development. Insofar as possible, these expendi­
tures should not be viewed as an easy target for cash 
savings in time of belt tightening. 

Management's commitment should also take the 
form of participating in the design of the system and 
smoothing the way for its introduction. The call for 
such participation has become a commonplace in our 
profession, but it is no less t.rue because of that. A well 
designed system should become an integral part of the 
management process of an organization, and it is hard 
to see how this can come about without continual sup­
port by all levels of management. Many important 
management policy decisions are embedded within the 
MIS design, and so managers must participate to the 
extent required for them to resolve these issues. 

A long-term commitment implies an explicit program 
to develop systems personnel. The need is especially 
critical at the management level within the systems 
group itself. The philosophy that any good manager 
can head a systems group has surely been discredited 
by now. The body of knowledge within the field has 
grown to the point that this knowledge cannot be 
quickly or casually acquired; the development of real 
professionals requires a long-term program. We should 
be no less reluctant to turn over systems development 
to the untrained and unseasoned manager than we are 
to trust the removal of an appendix to a barber. 

An organization's commitment is also measured by 
the calibre of personnel they assign to the MIS function. 
Little success can be expected if the function is con­
sidered a dumping ground for misfits, if it does not get 
its share of the organization's fair haired boys, or if it 
does not attract outstanding computer professionals. 
Without at least. a sprinkling of really top-flight de­
signers, analysts, and programmers, the organization 
would be well advised to scale down its aspiration level 
to meet only bare requirements. 

Emphasize users 

Everyone talks about the need to serve users, but 
we nevertheless continue to make many of the same 
mistakes. Evidentally we must take much more formal 
and explicit steps to deal with this problem. 

The use of steering committees is one way to get user 
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participation. They can certainly help in making re­
source allocation decisions and in resolving policy 
questions. They are equally applicable at all levels in 
the organization-a high-level committee to deal with 
broad, long term issues, for example, and lower-level 
committees to deal with operational subsystems. The 
form of the committees and their tenure may vary 
considerably, but certainly some relatively formal 
means is needed as a forum for dealing with issues that 
cross existing organizational boundaries. 

System groups should include staff members who are 
specifically assigned responsibility for human factors 
design. Included within their scope of activity should 
be such matters as the design of hard copy forms and 
CRT display formats, procedures connected with the 
information system (including error handling proce­
dures), specification of the operating characteristics of 
terminals, and concern for the ability of the system to 
adapt to changing user needs. These responsibilities 
tend to be scattered about within most groups, rather 
than dealt with as a whole. 

A formal user sign-off procedure should exist so that 
users have an explicit opportunity to get their views 
incorporated into the MIS design. Such sign-off should 
be required at all major stages of the implementation­
the feasibility study, functional design, detailed design, 
testing procedures, and final operational acceptance. 

It might be a good idea for each organization to have 
an ombudsman to look out for users' interests. As in­
formation systems become more and more pervasive 
throughout the organization, we stand some chance of 
being swallowed up by them unless someone is around 
who can pull the plug in an emergency. To be effective, 
the ombudsman should remain independent of the 
MIS group, have the authority to investigate all matters 
connected with the information system, and have the 
right to voice his opinions at the highest levels of man­
agement. One would probably not find enthusiastic 
support for such a position among systems directors, 
but it nevertheless may provide a very useful safeguard. 

Devote more effort to project management 

The implementation of a large MIS has itself become 
a formidable management task. It may require the 
efforts of over a hundred persons extending over the 
span of several years. The various subsystems tend to 
interact closely with one another, and therefore call for 
a high degree of coordination among the project teams. 

An activity as complex as this requires more atten­
tion to its management than normally given. Tech­
niques exist for dealing with the problem-network 
scheduling and resource allocation models, documenta-

tion and configuration management procedures, simu­
lation packages for analyzing alternative designs, and 
all the rest. Unfortunately, however, most projects do 
not formalize project management to the extent neces­
sary. The direct cost of good management is quite 
high, but the indirect cost of poor management is 
staggering. 

Centralization of systems management 

It is hazardous to generalize too much about the 
proper degree of centralization of systems activities. 
Organizations thoroughly committed to decentralized 
management find it hard to treat the systems activity 
as a centralized exception. Centralization can also in­
crease problems of keeping the system responsive to 
users' needs. 

Nevertheless, considerable benefits can come from a 
certain amount of centralization. The benefits basically 
stem from the economies of shared use of hardware, 
software, and data. 

For most organizations it does not make much sense 
to maintain more than one group concerned with the 
development of standards for programming, docu­
mentation, languages, data base design, and project 
evaluation. Vendor hardware and software evaluation 
should likewise be centralized in most cases. Design of 
common application programs might even be central­
ized. Clearly we are already seeing more and more 
centralized computer facilities. 

Centralization of this sort does not imply isolation 
from users. Specialized applications can-and probably 
should-be handled on a decentralized basis. A remote 
termial hooked to a centralized computer should be 
viewed logically by decentralized managers as an inde­
pendent resource with the capabilities of a large machine 
at a fraction of its full cost. To be sure, any centraliza­
tion imposes some constraints on the organization's 
subunits, but when intelligently applied the constraints 
still can leave ample room to meet users' requirements. 
After all, we all must live within certain constraints, 
whether imposed internally or externally by govern­
ments or vendors. 

Incremental development 

A comprehensive system takes many years to de­
velop. Noone can foresee how technology and users' 
requirements will evolve over this length of time. It is 
therefore absolutely essential that systems be designed 
in a way that permits continual modification and 
extension. ' 
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A number of steps can be taken to achieve a much 
higher degree of flexibility than most systems offer. 
Perhaps the most important requirement is a master 
plan to guide the development of separate subsystems. 
Such a plan defines the subsystems that will comprise 
the eventual overall system, and establishes the major 
interfaces among these subsystems. It is only when such 
a plan has been developed that one can have any 
assurance that all of the subsystems will mesh together. 

The master plan need not go into great d~tail. Its 
purpose is to establish constraints within which each 
subBystem can be developed more or less independently. 
In principle, one should limit the detail to just that 
level required to define the interfaces among sub­
systems. Detailed work beyond this level can wait 
until the actual implementation of the separate 
subsystems. 

Insofar as possible, the subsystems should be imple­
mented in a sequence that provides early interim bene­
fits. Certain technological constraints may partially 
limit the choice of sequence-for example, some gen­
eralized software may be required before application 
programs can be written, and a forecasting program 
cannot be implemented until the order entry subsystem 
from which it gets its inputs has first been developed. 
Other factors, such as the particular skills available 
and political considerations, may playa part in choos­
ing the implementation sequence. The basic strategy 
should be, however, to implement each sUbsystem in a 
way that provides interim benefits that justify develop­
ment costs, while at the same time leading toward the 
eventual accomplishment of the master plan. 

The plan should evolve along with the system: it is 

not meant to impose inflexible constraints on the design. 
Changes will inevitably occur as technology advances, 
the organization's needs change, and the system ma­
tures. The changes should, of course, be controlled 
and consideration given to trade-offs and the need for 
coordination among subsystems. 

In addition to the development of an evolutionary 
master plan, other well-known techniques exist for 
increasing the flexibility of a subsystem. These include 
use of higher-level languages, modularity, data and 
program independence, avoidance of unnecessary pro­
gram complexity, and careful documentation. These 
techniques typically carry a short-term price, but they 
are vital for long-term success. 

CAN SUCCESS BE REPLICATED? 

We know that real success can be achieved, but we 
also know that it is relatively rare. This is so because 
success requires the rare combination of exceptional 
management, sustained support, and top-flight tech­
nical personnel. Without these ingredients, results are 
likely to be marginal at best and disastrous at worst. 

Unfortunately, there is not enough talent to insure 
that each organization has an adequate supply. The 
great challenge we face is to develop a technology that 
does not require genius to implement. Conversion of a 
field from an art to a routine science is the chief sign 
of its maturity. To achieve this in our field we must 
devote a great deal more effort to gaining a better 
theoretical understanding of complex systems, planning 
and control of large organizations, and the behavioral 
aspects of formal information systems. 
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INTRODUCTION 

Industry tabulations for 1970 indicated there were 
some 85,000 computer installations in the world, 
valued in excess of $40 billion. By 1975 these figures are 
expected to double; in ten years they may be redoubled. 
The continuing exponential growth in raw computing 
power prompted Art Buchwald recently to editoralize 
on "The Great Data Famine" of the 1970's. According 
to Buchwald's expert source by January 12, 1976 
" ... every last bit of data in the world will have been 
fed into a machine and an information famine will 
follow." To cope with this impending disaster, a crash 
program is urged in which (1) "no computer can be 
plugged in more than three hours a day"; (2) the 
government will spend $50 billion to set up data manu­
facturing plants and their output will be mixed with 
soy bean production; and finally (3) a birth control 
program will be advocated for all computers-pro­
vided, "the Vatican's computer gives us its blessing." 

On Tuesday evening, September 9, 1965, the largest 
power failure in history blacked out all of N ew York 
City and some 80,000 square miles of neighboring areas 
in which nearly 25 million people live and work. The 
blackout lasted for three hours before partial power was 
restored. It is awesome today to imagine what the 
consequences would be if a computer blackout were to 
occur throughout the world. Yet in spite of our in­
creasing dependency over the past twenty years on 
computer technology, one continues to hear of a 
"technology gap." Instead of a "data famine" the 
technological issue today is that computers haven't 
been able to do all that was expected of them. In 
stronger language, Isaac Auerbach stated at the closing 
session of the recent fourth triennial Congress of the 
International Federation for Information Processing 

* The author wishes to acknowledge many enlightening conversa­
tions on MIS with Dr. David B. Hertz and R. George Glaser, Jr. 
of McKinsey and Company, Inc. 
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that the performance obtained by users of computers 
for business data processing shows: 20 percent are 
successful, 40 percent are marginal, and 40 percent are 
failures. Reviews by others of computers in manage­
ment information systems also sharply criticize the 
notable lack of results in spite of great expectations.2 

If true, this is a dismal return for a $40 billion invest­
ment in equipment. What went wrong? Who's at 
fault? 

On the one hand computer manufacturers and the 
industry have been blamed for overselling, for not 
developing the right technology, and for not solving the 
users' problems. On the other hand the user and 
managers have been criticized for overbuying hardware, 
for misapplying an inert technology, for "living in the 
last century" and not exploiting the modern methods of 
today. There is some truth on both sides of these argu­
ments. But acknowledging the existence of a gap is at 
best only the beginning of a solution. What "are the 
dimensions of "the gap?" What remedies are proposed 
to close it? What future developments can we anticipate 
towards progress in MIS? Before gazing into a crystal 
ball for the answers, we can gain perspective on the 
problem by briefly probing the surface of the issues 
involved. A conceptual framework is particularly 
important in this case because the broad connotation 
of MIS and misunderstanding are the source of most of 
today's difficulties. 

INFORMATION STRUCTURES AND MIS 

The phrase "management information systems" or 
"MIS" has gained popularity as a descriptor for in­
formation processing activities in support of manage­
ment. If one explores the environment of management 
it is soon apparent that decision making is the primary 
function that distinguishes managerial activity from 
other behaviors. In fact, management decision occupies 
a singular role in management literature, since other 
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Figure I-Basic stages of activity in decision processes 

behavior-such as planning and control-is often 
defined in terms of decision activity. Thus, an under­
standing of the central issues in MIS might logically 
begin with the concept of management decision. 

To economists decision making is the allocation of 
scarce resources. Other writers emphasize the choice 
activity in that for them, decision making is selecting 
the "best" action from among available alternatives­
where the criterion of choice might also be viewed as 
one of the alternatives. Since our immediate interest 
concerns informational aspects of decision, it is instruc­
tive to adopt a broader view of the process by con­
sidering the stages which rationally precede the choice 
of action and a commitment of resources. 

Although a variety of elegant models are available 
in the literature, the essential ideas behind a rational 
structure for decision making are really quite simple. A 
parsimonious description of the decision process would 
include four identifiable stages of activity: observation, 
inference, evaluation and choice (see Figure 1).* 
Within the limits of this model, the process begins 
with observing states of the environment; surrogate 
images are assigned to natural events, measurements 
are taken, and data is collected, encoded and stored. 
The second stage in the process involves analysis of the 
reeorded data as a basis for inference and prediction. 
Here, in effect, reports are made and reviewed to 
determine whether or not a situation requires a decision 
to be made. Stage three is initiated by the need for a 
decision. At this point inferences and projections are 
analyzed to identify action alternatives and these in 
turn are evaluated with respect to goals, constraints 
and efficiency. Finally, an alternative is selected which 
is preferred (or "best") under the criterion of choice, 
the action is communicated, resources are committed, 
and the decision is implemented. As implied by the 
diagram the process actually perpetuates itself through 
cycling and feedback, since upon implementation the 
decision becomes a source for new observation; and 
so on. 

N ow suppose we consider the development of In­
formation structures in support of the activities In-

* The well-known antecedent for this model is, of course, the 
"scientific method." For an interesting and more elaborate 
taxonomy see Simon (1960). 

volved in each stage of this process.* That is, the 
simplistic decision model can serve to characterize four 
levels of the relative maturity (or sophistication) 
achieved by an information system. In its most ele­
mental form an information system is simply a reposi­
tory or data bank, encompassing only the "observation" 
activities of the model. Th~ raw data has been organized 
in some convenient manner and is stored, say, in a 
computer file; upon interrogation the manager retrieves 
a report and performs all subsequent analyses from 
inference to decision. Most accounting systems are of 
this elementary form, employing a linear transactions 
model of the organization and serving as simple data 
banks. Simplicity, per se, is not a criticism of such 
systems; their shortcoming in application is that 
typically they do not discriminate between vital 
information and trivia. Thus managers interacting with 
an elementary data bank system often become frus­
trated by the lack of relevancy in large volumes of data. 

At the second level of maturity in development the 
data bank system has been expanded to include most of 
the activities of inference as part of the formal system. 
In addition to exception reporting, the system now 
includes the capacity to forecast and to artificially test 
the consequences of implicit decisions. The emergence 
of the fields of management science and operations 
research accompanied by computer-based models, 
particularly linear programming and simulation, has 
done much to facilitate the realization of these selective­
inference information systems. Here the manager can 
interrogate the system with "What if ... " questions, 
and receive an array of consequences in response for 
his evaluation. The hidden danger in this dialogue is 
that the manager is usually insulated from factual data 
in the system by a host of assumptions imbedded in the 
model which provides the inferences. While a seemingly 
obvious caution, it is surprising how readily individuals 
are lulled into believing "realistic-looking" output 
is fact. 

At level three in development, evaluation activities 
have been programmed into the selective-inference 
structures so that the information system now encom­
passes action recommendation. Here the need for a 
decision is triggered within the formal system on the 
basis of monitored observations and predetermined 
rules or a time scheduled event. Procedures are pro­
grammed to evaluate alternatives against assigned 
goals as the situation requires, the "best" course of 
action is chosen, and the recommendation is com­
municated to the manager. At that point the manager 

* Analogies of this form have been proposed by others in similar 
contexts; for example, Chapter 15 in Gregory and Van Horn 
(1963) and Mason (1970), in particular. 



either implements a decision based on the recommenda­
tion or he rejects the alternative and further analysis 
may be initiated. The most common form of this 
action-recommending information system in organiza­
tions today is the advisory staff group or committee. 
In this case line management delegates authority for a 
certain area of responsibility to a staff department, 
but retains final control for decision through review and 
certification. Another variant of this system has ap­
peared in the form of large scale optimization models, 
particularly linear programming applications in indus­
trial scheduling. In many of these cases, however, 
systems originally designed for "action recommenda­
tion" have over time reverted back to "selective­
inference" systems as limitations of the model became 
apparent. 

In the final stage of maturity the entire decision 
process has been automated within the information 
system. All activities from observation to choice and 
the ability to initiate action, commit resources and 
monitor results have been programmed. In effect the 
manager is now outside the structure having fully 
delegated his authority, although he retains the power 
to revoke the delegation at some future time. The 
simplest form of the automated decision system is the 
"standard operating procedure" in organizations; a 
more sophisticated example would be a computerized 
process control system in a petroleum refinery. Modern 
factory inventory control systems are another common 
example. Obviously, automated decision systems rf'­
quire extensive knowledge of the decision process for 
the given application and consequently their develop­
ment has been limited to well-defined environments. 

Figure 2 summarizes this overview of information 
structures in MIS. Concerning the classification it is 
important to recognize that the levels of development 
should not suggest a linear or necessarily sequential 
progression of system maturity. That is, the MIS in a 
modern organization today is not one of these in­
formation structures; it is a composite of all four types. 
Said differently, the two basic components of design in 
any information system are (1) a model of the user, 
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Figure 2-Classification of information structures in MIS 
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and (2) a data store. The former defines the output 
interface or system application, and the latter con­
stitutes the environmental image or system input. For 
MIS the user model reference is management decision 
processes. In the evolution from "data bank" to "auto­
mated decision" the user model becomes technologically 
more sophisticated, as more activities of the process are 
formalized and programmed into the system. But 
decision processes exist at all management levels in an 
organization hierarchy. Thus, one finds information 
structures of different maturity at different manage­
ment levels. The most mature computer-automated 
information structures in MIS today are still confined 
to lower management levels. 

The preceding discussion provides a framework in 
which to assess the dimensions of MIS technology, the 
"gaps" today inhibiting implementation, and the 
direction of future developments. For present purposes 
I will confine these remarks to two dimensions: (1) 
the user model component and (2) the data (pro­
cessing) store component. * 

USER MODEL TECHNOLOGY IN MIS 

The lackluster results vis-a-vis expectations realized 
in MIS to date can be attributed in part to the fact that 
the implicit model of the user has remained naive. As 
with more elementary information storage and retrieval 
systems, the user of a MIS can occupy two distinct 
roles either as a generator of system input or as a 
consumer of system output. In most cases these roles 
occur in different individuals in the organization and 
each interacts with the system differently. The struc­
tural interface of the system which facilitates com­
munication between these respective roles is the data 
file. 

Dating from the early 1950's the user model which 
typified first generation, computer-based MIS was 
accounting transactions. For most applications this 
model better served the system input role than the 
output requirements of managers. Consequently, 
management decision support was limited to a class of 
data bank structures for financial reporting, and system 
performance evaluation (when executed) was based on 
administrative (or clerical) cost reduction. With the 
development of operations research techniques and the 
evolution of second generation computer systems for 
MIS, accounting was supplemented by a series of user 
models based on management function, such as personnel 
administration, production-inventory control, mar-

* In Chapter 1 of Kriebel, et al. (1971) we have classified MIS 
research along five dimensions, however, space limitations here 
prevent a more extensive discussion. 
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keting management, and so on. In seeking to close the 
output gap in the user model and advance to selective­
inference information structures, functional area 
managers in effect developed their own information 
systems. The counter-cries to this movement were the 
appeals for "integrated data processing" or (in some 
circles) "the total systems approach." System com­
partmentalization during this period aggravated a 
variety of development problems including data 
collection, data redundancy and inconsistency, and 
serious limitations on file cross-talk. System costs were 
often hidden in overhead accounts, data processing 
feasibility governed applications selection, and "man­
agement intangibles" dominated systems evaluation. 

As total costs continued to increase in spite of gains 
in computer hardware efficiencies, the third generation 
systems of the mid-to-late 1960's saw a shift in emphasis 
towards consolidation-though not necessarily of the 
"total systems" variety. The output-oriented, manage­
ment function user models in large measure were 
abandoned for an input-oriented data base model with 
the goal of data processing efficiency. The development 
orientation in MIS now focused on a corporate data 
bank which stressed input data format, flows, and files 
with little attention to the specific output requirements 
of end users. Working applications programs in the 
system were decoupled from data files through the 
imposition of file management software. Most formal 
information systems today are still in this stage of 
evolution. 

From this brief history one sees that the user model 
technology in MIS has not progressed very far over the 
past fifteen years. At lower management operating 
decision levels where an OR model may be in good 
correspondence to the actual management problem, 
the decision mechanism often becomes an automated 
information structure in the MIS. But above the level 
of routine behavior, the user (output) model rapidly 
returns to a data bank structure. Today's "solution" to 
the issue of user output requirements is to maximize 
the flexibility for options at the output interface. Data 
managers and report generators are two common 
examples of such output flexibility. In effect specifica­
tion of the user (output) model is now left up to "the 
user." Similarly, evaluation of the system benefit to 
the user is becoming his own responsibility. That is, 
in several large organizations today the computer-based 
resources of the MIS have been divisionalized into a 
"profit center" and, though not a freely competitive 
market place, the user is required to pay for services 
requested. The performance criterion for system 
operations is thus "simplified" to efficient utilization 
of resources. 

This present stage of evolution raises several ques­
tions concerning future developments in the user model 
dimension of MIS technology. For example, the profit 
center organization is a move toward the information 
utility concept; but is "information processing" a 
homogeneous commodity? Divorcing the system design 
from specific user needs is an attempt to make the 
technology independent; but is MIS technology inert? 
The contemporary orientation on data input and EDP 
technology implies that resource efficiency is a major 
bottleneck; but has EDP utilization been the key 
barrier in MIS implementation? The data base model 
development of a MIS seeks to establish a corporate 
data bank, often building from the bottom up; but do 
information structures for managers draw upon common 
data? 

In anticipating the next ten years, my first prediction 
is the demise of the present-day data base orientation 
as the dominant user model image in MIS development. 
Instead the development focus will shift back to an 
output orientation that is user dependent, though not 
as a return to the second generation MIS. The emphasis 
will be on basic decision processes and problems of the 
specific organization and manager without regard to the 
functional environment. Information structures will be 
developed to solve a particular manager's problems; 
some of the structures will be generalizable to other 
situations in broad outline. For example, one early 
attempt at such a structure for strategic planning 
decisions has been the so-called corporate economic 
simulation model. 14 The mixed results achieved by 
corporate simulators thus far can be attributed in part 
to the difficulty in implementation of securing top 
management attention and involvement. Another less 
publicized illustration of an information structure 
tailored to a specific decision problem is the concept of 
an "issue map" developed by McKinsey and Company 
for Mayor Lindsay of New York City.7 Still another 
structure that I would include in this context was the 
original development and application of PERT (Pro­
gram Evaluation and Review Technique) and CPM 
(Critical Path Method). 

The user model image that focuses on critical decision 
processes for MIS development, however, is only one 
aspect of the new technology. Allied with the change in 
orientation will be a rise in the application of operations 
research and behavioral science in developing and 
implementing these information structures. It is common 
knowledge that many of the basic methods and known 
results in operations research are not being used by 
managers today, even though many of the techniques 
have considerable potential as decision aids. 8 This issue 
has been labeled a "communications gap," although 



some feel the problem is more fundamental. 3 I think a 
majority would agree that MIS technology is not inert, 
even though the computer might be. To achieve com­
patibility at the user/system (or man/machine) inter­
face, technology can either (1) adapt the system to fit 
the user's requirements (or behavior patterns), or (2) 
seek to change user behavior to better match system 
capabilities. * Much of the effort by industry profes­
sionals to date has been directed at the second approach, 
particularly in the popularized education programs on 
"OR and computer concepts for executives." Results 
notwithstanding, the empirical evidence on MIS 
implementation suggests: (1) except for the most 
routine activities, managers actively resist attempts 
(real or perceived) to erode their authority base; (2) 
the executive's orientation is toward the "people" in 
the organization, his self-concept is as an individual 
who directs the activities of others; (3) there is rela­
tively little understanding of upper management 
decision processes. Emerging information structures in 
the next decade will increasingly incorporate behavioral 
parameters in their design which reflect organizational 
associations, leadership style, and management at­
titudes as a means toward improving acceptance and 
effectiveness at the user/system interface. 

For example, in the mid 1960's the experience of 
IBM with "executive terminals" for their own MIS led 
to the establishment of an Information Center at 
corporate headquarters with a human rather than a 
machine interface for the user, primarily because of 
dominating behavioral considerations (cf., Chapter 8 in 
Reference 10). Similarly, at Alcoa in developing their 
new Picturephone Remote Information System 
(APRIS) for executives, "the principal design criterion 
was ease of use ... rather than provide just a tool, the 
goal was to provide ... the service of better access to 
information."4 The "complete" user guide for APRIS 
is printed on a 3" X 5" index card. More basically, 
perhaps, research is already under way to parameterize 
behavioral constructs in the decision process, such as 
"participation,"16 to model how managers identify 
problems to be solved,13 and to understand how humans 
process information in the act of solving problems.12 

Before the end of the decade I think these develop­
ments will impact on MIS design in the appearance of 
more "personalized" information structures which 
better match the users' needs and in the identification 

* I'm reminded here of the lament some years ago, by the EDP 
manager of a very large steel company who in responding to an 
inquiry by the Chairman of the Board was required to process 
some 90 million records over a two-day computer run. Apparently, 
the Chairman did not ask his "MIS" the right question. 
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of new requirements for system technology. Within the 
data processing industry the emerging trend toward 
companies which provide "information services" will 
continue; they will be the developers of the new 
technology which solves the user's problems. 

DATA PROCESSING TECHNOLOGY IN MIS 

Although organizational information systems existed 
long before the appearance of the computer and EDP, 
the formal designation MIS is commonly associated 
with the modern information technology of the last 
twenty years. A company's decision to "establish" an 
MIS capability in this period contained two conditions 
of entry: (1) a large initial capital investment of $.5 
million or more, and (2) a non-revocable commitment 
to EDP, since the "bridges" to existing manual systems 
were usually "burned" as new systems were developed 
and mechanized. Consequently, the initial stakes to 
play the MIS game were high even if amateur players 
did not always recognize them. But then so was. the 
promise of payoff. The economic equation for manage­
ment was simple: replace labor with capital so that as 
data volumes increase and technology improves the 
per unit cost of processing declines. The engine that 
would power this system (or the MIS) was the com­
puter. 

Computers have been successfully employed in 
engineering instrumentation, scientific data processing, 
military and space applications, and in business where 
the application involves large volumes of data and 
relatively straightforward computations, such as in 
communications switching or bank check processing. 
To secure the capital leverage of the computer in each 
case requires that the process involved be formalized 
and programmed. But the needs for different applica­
tions are different and, as discussed above, the absolute 
requirement to formalize management decision pro­
cesses has been the key barrier to the computer's 
success in MIS. In my opinion this problem has been 
further compounded by the promoters of so-called 
"integrated systems." 

EDP technology encompasses a broad domain 
beyond "the computer," from firmware to peripheral 
devices and communications, from POLs to data 
management software and hypervisors, from system 
configuration to systems analysis and people. Within 
the space available it is obviously impossible to cover 
all aspects or even do partial justice to the many 
contemporary developments. As a compromise, I will 
instead highlight a subset of the whole that I think 
holds particular significance for MIS in the future. 
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Figure 3-Distributed data processing grid 

Perhaps the most distinguishing characteristic of 
third-generation EDP system operations was the 
emergence of teleprocessing, facilitated by multi­
programming and data communications technology. 
Although early time-sharing applications were restricted 
by the existing hardware and operating systems con­
siderable progress has been made in a relatively' short 
time span. This development is significant for at least 
two reasons. First, it provided the basic framework for 
distributed data processing; second, it turned the 
centralized vs. decentralized operations debate into an 
academic issue to be decided on a relative basis by 
org~nizational philosophy. The distributed data pro­
c~ssmg (DDP) approach (see Figure 3) employs a 
hIerarchy of EDP centers, ordered on the dimension of 
capacity and interconnected through direct com­
munication lines. (Increasingly in the future these 
lines will be dedicated for data transmission rather than 
modifications of voice networks.) At the lowest level in 
the DDP grid the point-of-origin device for data capture 
and interaction will be an "intelligent terminal" 
ranging from a Picturephone-like* device to a mi~i­
computer with local data processing capacity. Where 
online access and speed are not important data cassettes 
will provide communication linkages. In more sophisti­
cated applications computer networking will be em­
ployed for direct communication between computers 
and multiprocessor centers. Although thus far the DDP 
concept has been employed primarily in experimental 
systems, I believe it will be commonplace in the future. 

The distributed data processing approach in one sense 
is a natural outgrowth of the time-sharing principle to 
extend system utilization while capturing some of the 
econo.mies-of-scale in· hardware technology. However, 
experlence has shown that the massive "universal" 
system approach rapidly leads to substantial dis­
economies in software overhead and administration. 
By analogy, the computer is not a universal machine' 
" t k ' a ruc, a motorcycle or a racing car each has a 
different engine which is designed for high performance 

* Picturephone is a registered trademark of the Bell System. 

and economy in the specific use intended."! The com­
puter system and MIS that seeks to be all things to all 
people in one package is doomed to failure at the outset. 
The cost balance in configuration is between operating 
control over a fragmentation of diverse specialized 
systems which may be locally optimal but globally 
expensive, and the universal system "dinosaur."9 

A .critical problem to date has been technically with 
~he Integrated data processing approach-particularly 
In extreme applications for MIS which have attempted 
to "integrate" everything from customer sales trans­
actions to the President's appointment calendar. The 
basic difference under DDP is not to integrate but 
instead to provide a well-defined interface for relatively 
independent sub-systems. Data managers have been a 
first step and in the future these systems will be dedi­
cated to sub-set applications as required. What emerges 
t~en is a portfolio of technology (packages) optimized 
wIth respect to the portfolio of user information struc­
tures. Some of the elements in the overall portfolio will 
interact, some will not; however, all elements will be 
highly modular. That is, one application may periodi­
cally require augmented computer capacity from the 
sector or regional centers in "competition" with other 
applications, others may share certain master files for 
data, and still others may be locally self-sufficient. For 
example, the "executive terminal" might well become 
a~ inf.or~ation structure serviced by a minicomputer 
WIth lImIted communication to a corporate data bank 
via cassette. 

The utility structure of the DDP grid recalls the 
previous question: Is "information processing" a 
homogeneous commodity? The purist would answer 
affirmatively at some level of computer science or, 
above the ISP (Instruction Set Processor) level one 
could identify kernel processes. But the ab;olute 
answer to this question does not seem critical to me. 
That ~s, defining the requisite interfaces will begin to 
establIsh the standardization required to achieve 
plugboard modularity of sub-systems. For example 
General Electric is currently addressing parts of thi~ 
problem with "interprocessing" in which customers' 
computers and GE's network service are usedjointly5-
to cite one illustration. A more interesting issue, 
perhaps, for managers and EDP technology in future 
MIS now becomes the "make or buy" decision. 

Earlier I remarked that the economic rationale by 
management in making the commitment to EDP and 
MIS. was essentially to replace labor with capital 
and Improve productivity. What has happened, how­
ever, is that total costs have increased. Even if one 
examines only the apparent costs of systems operations 
and development the capital/labor ratio advantage has 



not materialized; equipment hardware cost continues 
to decline as a percentage of the total which includes 
systems personnel and administration-today ranging 
between 35 and 45 percent. Furthermore, as most of 
the trade literature reports, apparent costs are only the 
visible portion of the economic "iceberg" in MIS when 
we include such hidden cost factors as the drain on 
management time, inadequate priority analysis of 
competing applications (and the foregone opportuni­
ties), abandoned projects due to vacillating support, 
security in the EDP department, inefficient software, 
etc. The constant advance in the sophistication of the 
new technology will continue to raise the economic 
stakes for payoff in MIS as this total cost base expands. 
Sunk cost notwithstanding, the decision many com­
panies are literally beginning to face is whether or not 
they can afford to be in the MIS business. 

This economic crossroad in MIS' is not to suggest 
that management is contemplating a nostalgic return 
to the Dark Ages. More realistically, they are weighing 
the practicality of making it themselves or buying it on 
the outside. Today information services companies sell 
pieces of an MIS; you can buy information problem 
solutions as a complete package and for a price con­
tracted in advance. Often this opportunity does not exist 
inhouse and cost estimates are notoriously biased. The 
large corporations with the requisite capital base and 
absolute system constraints will retain inhouse tech­
nology for their MIS. Increasing numbers of companies 
in the $50 million annual sales or less category, however, 
are going to buy their MIS technology over the next 
ten years. Few companies today generate their own 
electrical power requirements; many companies buy 
their legal services as needed; most small companies 
buy their accounting services. The distributed data 
processing approach will facilitate a comparable 
opportunity for EDP technology. Management will 
decide how much of it to "buy" and how much to 
"make" in establishing an economically viable MIS. 
For the data processing industry: establishing the 
centers, developing the technology, and regulating 
operations will be determined in the market place by 
the user or the government or both. 

CONCLUSIONS 

Having reviewed the state-of-the-art in MIS tech­
nology contemporary developments indicate that the 
future holds no radical departure in the promise of a 
major technological breakthrough, although there will 
be change. The MIS as the computer itself is still in its 
infancy and progress in design and development is an 
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evolutionary process that depends on how much is 
learned from past mistakes. 

Perhaps the most significant change in the future 
from the perspective of results will be a reestablishment 
of purpose as information structures in lVIIS seek to 
solve the bona fide problems of users. In simplified 
terms we characterized system technology by the model: 

EJ Decision j 
Model 

of User 
+ 

Data 
Processing 

Support 

We further stressed that the many information struc­
tures which in aggregate constitute a ]VIIS range in 
their sophistication as a descriptor of management 
decision processes from a relatively naive "data bank" 
model to a complete and closed-loop program for 
"automated decision." As developers seek to advance 
the state of user model technology the MIS design focus 
will shift from a data base orientation to a focus on the 
critical decisions of line managers in organizations. 
More emphasis will be placed on education of both 
system analysts and managers to close the communica­
tions gap; design teams will be formed to better utilize 
the methods of operations research and management 
science. To further increase understanding and ac­
ceptance behavioral considerations will assume a 
dominant position in development, becoming parame­
terized where possible to better match the information 
structure to the user's problem. The MIS then will 
become a portfolio of information structures designed 
to solve the information requirements of a hierarchy of 
management decision processes. 

Data processing support within MIS will also undergo 
change over the next decade in an evolution from 
current developments. One major outgrowth will be 
extension of the distributed data processing approach 
to delivering a portfolio of EDP support in ::vns. 
Within this framework efforts on integration will 
diminish in favor of modularity in design to decouple 
and develop relatively independent sub-systems with 
well-defined interfaces for plugboard compatibility. 
Data management systems will become dedicated to 
improve the linkage between data base development 
and the user model portfolio's requirements. Com­
munication within the distributed data processing grid 
will be over dedicated lines for data transmission or in 
some cases by data cassettes. The minicomputer will 
become commonplace as "intelligent terminals" in the 
grid. Finally, pressured by rising inhouse costs and the 
requirement for economic payoff, all but the large 
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corporations will decide to buy their EDP technology 
from outside suppliers, in some cases retaining mini­
computer terminals as the system connection. 

In looking toward the future of MIS technology 
then, my view sees payoff and portfolio as the most 
descriptive adjectives. To me they are inevitable if 
1\IIS in the future is to include progress. 
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Although the general requirements of data security 
in file management and retrieval systems are fairly 
obvious, and have been often stated1 •2 current practice 
does not provide even an approximation of these re­
quirements and, in fact, current languages and operat­
ing systems, with few exceptions3 •4 make it relatively 
difficult to achieve these objectives when one tries to do 
so. Apparently, current languages and hardware serve 
as an informal security and privacy protection system 
that is more or less satisfactory for most current appli­
cations. While security and privacy controls are often 
discussed, they do not appear to be high on most 
managers' lists of pressing problems. 

The authors' concern with security is limited to the 
systems implications which arise when one or both of 
the following circumstances exist: 

1. A common file is used for two or more different 
purposes, e.g., an integrated management in­
formation system. 

2. A file is directly accessible by those who are 
responsible for generating input, and those who 
use the information it contains. 

Questions of physical security of facilities, tampering 
with hardware etc., have been treated elsewhere5 •6 and 
will not be discussed here. 

At present, the programming languages and operat­
ing systems that are used for most file maintenance and 
information retrieval applications are sufficiently com­
plex and esoteric that professional programmers and/or 
production controllers have been interposed between 
the ultimate users of the file and the file itself. More­
over, the majority of such applications are still handled 
by relatively conventional batch processing systems, 
without remote access devices being placed directly 
in the hands of the information supplier or consumer. 
Both the physical separation, and the necessity of 
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human review of access to the file serve to provide an 
informal but adequate security system to protect 
against abuse by the information consumer. The pro­
grammers and production controllers in such a system, 
however, often have considerable freedom to attack 
the security or privacy from within. (How many data 
processing departments are able to keep salary informa­
tion from their programmers?) 

It is clear that remote access systems represent the 
future for such applications-the only question being 
how rapidly the future will arrive. It is also clear that 
user and problem-oriented languages now exist7 and 
once data-consumers have experienced the power and 
convenience of these languages they wi1l not willingly 
return to a situation in which they are at the mercy 
of a staff programmer. Both of these developments 
suggest that formal and explicit treatment of the ques­
tions of data security is rapidly becoming a necessity. 
The following describes the approach to these questions 
that has been taken by the authors in ASAP, a file 
maintenance and information retrieval system designed 
and implemented by the authors. 

There are three principal questions associated with 
the security of a particular file: 

1. Which people with physical access to the hard­
ware containing the file should have access to any 
particular file? 

2. What subset of the file is each authorized user 
permitted to access? 

3. What types of processing operations are per­
mitted to each authorized user? 

ASAP approaches each of these questions by using a 
complete directory of authorized users which is ap­
pended to the master file in question. While ASAP 
cannot prevent the data-set that represents the master 
file from being processed by independent programs 
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written in other languages, it can and does supervise 
all requests for information entry, update, or retrieval 
which are written in the ASAP language, and in doing 
so enforces the security restrictions that are explicit in 
the user directory. This directory contains, for each 
authorized user: 

1. "password" identification information. 
2. A description of the file subset accessible to this 

user. 
3. A description of the processing actions this user 

is permitted. 

RECORD SELECTION 

The first method of specifying the subset accessible 
to a particular user is to describe which records of the 
file are accessible to him. This is done by including in 
the directory entry for each user a Boolean expression 
that describes by content those records to which he is 
permitted access. When a user makes a request, a 
monitoring routine based upon this filed Boolean ex­
pression is interposed between the file management 
utility routine and the user program. The result is un­
obtrusive, but absolute-the user program only "sees" 
records for which the Boolean expression is satisfied; 
other records essentially do not exist for this user. The 
syntax of ASAP permits the user to easily further 
restrict the selection of records from the file, but this 
individual Boolean constraint is automatically and 
invisibly 'ANDed' to the selection criterion for each 
and every request submitted by this user and there is 
no way he can override it without going completely 
outside of ASAP and obtaining independent access to 
the master file. 

For example, consider a master student file at a 
university in which there is one record for each student. 
One user of this file might be the administrative office 
of the College of Engineering. (The system is, of course, 
quite content with such 'corporate' users, actually 
representing a number of different individuals.) The 
selection condition for this user would probably be 
something like: 

COLLEGE = 'ENG' 

where COLLEGE is the name of a field in the record 
and 'ENG' is one of the possible values of the field. 
The user representing the office of the Dean of Women 
might be assigned the selection restriction: 

SEX='F' 

and a user concerned with those football players on 

athletic scholarships who are III academic difficulties 
might be restricted with: 

ATHLETICS = 'F' 
AND FINANCIAL_AID> 1000.00 
AND GRADE_AVG<2.0 

A complete program in ASAP could consist of the 
following statement: 

FOR ALL STUDENTS WITH CLASS='FR', 
PRINT LIST: NAME, CAMPUS._ADDRESS, 

CLASS_RANK, ORDERED 
BY CLASS_RANK; 

If this request were submitted by the College of En­
gineering it would produce a listing of all freshmen 
engineering students. Exactly the same request sub­
mitted by the Dean of Women would yield a list of all 
freshmen women. 

While the primary purpose of providing this mecha­
nism is to restrict the distribution of inforrrlation to 
those users with a preestablished need-to-know, it has 
a secondary effect which may be more important and 
interesting than the security aspect for many applica­
tions. This is the fact that each user can deal with his 
accessible subset of the file exactly as if that constituted 
the complete file. He is in every sense unaware of the 
existence of other records and can employ the full 
facility of the language and the system for his subfile, 
without requiring any special treatment because it is 
a subfile. This means that most of the difficulties associ­
ated with multiple, decentralized files can be avoided 
without sacrificing their simplicity of use. One can 
avoid the currently typical situation in which an indi­
vidual student is the possessor of a score or more records 
in different and separated files in various stages of u p­
date and decay.* 

FIELD SECURITY 

A second method of defining the subset of the file 
accessible to a particular user is to assign different 
'security classes' to different fields within each record. 
When the record is defined each data element (field) is 
assigned to one of nine security classes. One class is 
called unrestricted and this is the default when no 

* In conventional processing of sequential files the 'invisible' 
records in such a system would impose a prohibitive processing 
penalty on the user of a small subset. This is avoided in ASAP by 
simultaneously processing many independent requests in one pass 
through the master file. 



explicit security designation is given; the others are 
designated 1, 2 ... 8. The classes are independent, 
with no hierarchy implied by the level numbers. 

When each user is enrolled in the system the security 
classes to which he has access are explicitly listed. 
While every user has access to unrestricted information, 
access to each of the other three classes must be ex­
plicitly granted or denied. Field and record security are 
multiplicative-a user may see only authorized fields 
in authorized records. 

To continue the previous example, the fields of the 
student record might be classified in the following way: 

Unrestricted information: 
Name, campus and home address, telephone, 
college, class. 

Security Class I-Personal/biographical 
information: 

Medical history, draft status, disciplinary 
actions, race, religious preference. 

Security Class 2-Academic information: 
Class standing, individual course records, 
standardized test scores. 

Security Class 3-Financial information: 
Treasurer's account, financial aid, family 
financial report. 

Now the administrative office of the College of En­
gineering, whose access is already limited to records for 
which COLLEGE = 'ENG', could also be limited to the 
fields in those records that are unrestricted and class 
two information. Fields containing personal and finan­
cial information, as well as the complete records for 
students not in engineering are inaccessible to this user. 

As in the case of record, a significant advantage of 
the system is the opportunity to combine several 
different types of information in a single master file, 
and keep that information out of reach of unauthorized 
users, out of the way of users who don't want it, and 
still have complete information readily available when 
it is required. 

RESTRICTION OF PROCESSING OPERATIONS 

A third, almost independent type of security con­
cerns the type of actions that a particular user can per­
form. Actions are classified in the following way in the 
ASAP system: 

1. Read only access 
2. Read/write access to existing records 
3. Record creation and deletion 

Selective Security Capabilities in ASAP 1183 

4. Ability to extend language by adding definitions* 
5. Attach read only external procedures 
6. Attach read/write external procedures 
7. Alter the record definition 
8. Modify the user directory-add or delete users, 

or change the security restrictions for existing 
users 

The directory entry for each user includes a list of the 
types of actions that are permitted to this particular 
user. Read only access to the accessible fields of acces­
sible records is assumed; all other types of actions 
must be explicitly authorized. No hierarchy is implied 
in the above list so that, for example, the ability to 
extend the language does not imply write access to the 
file. t Obviously, the ability to modify the user list 
must be granted with great frugality since this implies 
the ability to obviate the entire security system. 

IMPLEMENTATION 

ASAP is a compile-and-go system-each run begins 
from source, and security tests are applied at the source 
language level. Since no object decks are ever produced 
by the system, there can be no opportunity for security 
to be obviated by an alteration to the object program. 
Although the compile-and-go strategy is unusual in the 
data processing environment, it does not exact the 
penalty in compilation time that might be expected. 
The compiler is very fast, and recompiles source in 
time comparable to, if not better than, time required 
to load the object modules of a corresponding program. 
(On a 360/40 ASAP compiles at card reader speed, 
on a 360/65 at 50-100 statements per second.) 

The first card of each user program is an identifica­
tion card bearing the user's password. This is used to 
search the user directory for the appropriate entry. 
When the user's entry is found, the record selection 
condition is passed, in source language form, to the 
compiler, along with two bit masks, one for field se­
curity, and one which specifies permissible actions. 

The record selection condition is compiled into ob­
ject code that is appended to the file management 
utility routines. This code is exercised for each record 
of the master file, thus representing some execution 
overhead. Since the compiled code is made part of each 

*,t In ASAP, users may define report formats, input formats, 
codes, and other frequently used constructs. These are then 
catalogued for future reference. Often, therefore, users will 
extend the language by adding special reports or macros to the 
system, an action quite independent of the ability to write on 
the master file. 
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selection criterion, however, this often amounts to no 
more than two or three machine instructions per record. 
Only records that satisfy these conditions are passed 
on to the program representing the user-specified 
record selection criterion. 

Both field selection and action restriction are entirely 
exercised at compilation time and represent no execu­
tion overhead whatever. Each entry in the symbol 
table, e.g., field name, report name, keywords, etc., 
contains a security mask. On each source reference to a 
field, the security class of that field is ANDed with a 
copy of the current user's security mask, and a simple 
test then decides whether or not the field is inaccessible 
to the user. If an attempt is made to reference a "classi­
fied" field, a condition code is set that the run is 
terminated after compilation. When processing defini­
tions of entities which may include information from 
several fields, such as reports or summaries, the security 
of the report is simply the OR of the security classes of 
all fields mentioned. Thus, while each field of a record 
may only have a single security class, a report may 
require the user to have access to several classes before 
he can use it. 

The permissible action checking is done in a similar 
manner. Each action is tested against the action mask 
for the user for whom the code is being generated, and 
an improper action will cause the run to terminate after 
compilation. 

Since references to the symbol table are made for 
every symbol scanned, the overhead involved in check­
ing the security classification is rather small. And, 
since it is only exercised during compilation, at rather 
low cost, a fairly large set of security restrictions can be 
enforced. 

The different types of security are not quite inde­
pendent in the ASAP system, although there is no 
technical reason why they could not be. When a user is 
permitted to attach an external procedure (which may 
be written in any programming language) the system 
does not attempt to enforce field security. Record se­
curity is still effective since the call to the external 
procedure is not made until after the record has been 
selected for processing. However, once the record is 
selected, the entire record is available to the external 
procedure. Although it would have been possible to 
pass an abbreviated copy of the record in which inac­
cessible fields had been blanked out, the substantial 
overhead this would require was considered unneces­
sary, since the use of external procedures requires a 
special security class which must be approved by the 
system controller. 

The current implementation also includes a provision 
for encrypting the master files. This is performed using 

standard cryptographic techniques, with the keywords 
based on the system controller's passwords. The cost 
for encrypting or decrypting a 500 byte record on a 
370/155 is about 500 microseconds of CPU time. 

SUMMARY AND CONCLUSIONS 

The security provisions of ASAP are rudimentary, but 
are relatively simple to understand and use. Since the 
language is compiled, rather than interpreted, and 
most of the security features are fully exercised at 
compilation time, rather than at execution time, the 
security aspects of the system are not expensive to use. 
It will be interesting to observe in time whether these 
simple and inexpensive features of the system will be 
widely exploited by users. If not, then perhaps security 
considerations have been overemphasized by those in 
research and development and do not constitute an 
important general problem. If they are used, it is 
likely that users will become more sophisticated in 
their requirements and these simple classifications may 
not long suffice. It is, of course, no problem to increase 
the complexity of record selection conditions, or the 
number of classifications in either field or action re­
strictions, but it may turn out that other types of 
security exist, with concepts unlike those here. 

Clearly, the ASAP security system is mainly designed 
to prevent the casual user from gaining access to in­
formation he should not see, and the determined pro­
fessional would have little trouble going around these 
security measures, using other languages. 

It is interesting to consider the problems of imple­
menting even this rudimentary security system for a 
conventional file-that is one created, updated, and 
interrogated by programs written in a contemporary 
general purpose language (PL/I, COBOL, etc.) and 
executed under a standard operating system. One 
might then conclude that the task is most formidable, 
and that if security is a real problem, the software 
now in general use is not up to solving it. 

The CODASYL Data Base Task Groups has pro­
posed language extensions which permit one to specify 
security and privacy restrictions. They allow for quite 
general restrictions, and would probably lead to a far 
more costly implementation of security than that of 
ASAP. A more general treatment of methods for reduc­
ing the cost of information security systems is 
forthcoming. 9 
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INTEREST IN SIMULATION 

Interest in simulation by computer has grown steadily 
over the last ten years. This interest has become even 
more strong in the last couple of years with the advent 
of popular interest in environmental and social systems. 
Frequently the most limiting factor in the simulation 
and in the evolution of the techniques of simulation is 
not the ability to generate the programs to do the 
arithmetic. It is the ability to handle in an easy way 
the information flow which results from the simulation 
and to provide users-particu1arly those who are not 
intimately familiar with computers-an easy versatile, 
hands-on way of displaying this information. 

The above need is felt in two ways. First when a new 
simulator is written a significant portion of the effort 
of its design and coding goes into that portion of the 
code which maintains the data base on which the 
simulator operates. Another significant portion of 
effort goes into the system which allows the simulator 
to communicate with a user. This repetitious diversion 
of energies and money from the primary interest of 
the people who write simulators (the arithmetic itself) 
is at this time severely limiting the growth of simu­
lators. In addition the lack of easy graphics display 
and information retrieval makes it more difficult to 
correct and evolve the simulators. One can correct and 
calibrate a simulation more rapidly if one can see 
exactly what it is doing and if there is a system which 
allows a sort of throttle control over the activities of the 
simulator. 

The current limited usefulness of simulators can 
partially be attributed to the fact that the real people 
who should use the results of the simulators are people 
who are not familiar with computing equipment. They 
frequently have only an intuitive feel for what they 
would like to display and how they would like to see it. 
Most simulators currently built are left to wither in 
the academic realm because there is no mechanism 

1187 

for communicating the powers of these simulators to 
the people who are really interested. 

It is the purpose of this paper to explain an infor­
mation retrieval and graphics supervisory system which 
will accept most forms of simulation and execute them 
as subsystems. It provides users with an easy and 
flexible way of maintaining the data output from the 
simulators and of displaying this information in 
graphic and tabular form. 

THE lIPS PROJECT (Inter-Institutional Policy 
Simulator) 

The work that is described in this paper was done 
with a particular simulation project in mind, even 
though the system itself is not simulator dependent. 
This project is the Inter-Institutional Policy Simulator 
project financed by Ford Foundation and as a joint 
effort between the University of British Columbia, the 
City of Vancouver, the Greater Vancouver Regional 
Board, and the Province of British Columbia. The 
purpose of this project is to involve several diverse 
institutions in the development of a simulation which 
can then be presented to the various governmental 
and social agencies in the Vancouver region. The 
project is characterised by having several groups 
working on diverse simulators which must interact. 
Also its ultimate audience does not in general have a 
high familiarity with computers. It is also a, require­
ment with this system that it be independent of the 
types of devices on which output is to be displayed. This 
project therefore has made an ideal testing ground for 
the ideas presented in this paper since the variety of 
people and the variety of simulators involved makes a 
maximum test of the design of the system itself. 

THE SUPERVISOR FROM THE USER'S POINT 
OF VIEW 

This description from the user's point of view will 
freely use examples based on the regional project being 
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done in the Vancouver area. This means that, because 
this simulation is basically over time and subregions 
of the study area, the dimensions of time and 
region will be used liberally in the following descrip­
tions. As far as the simulator supervisor itself is con­
cerned, time is not a dimension any different from any 
other dimension or key in the information retrieval 
system. The only exception to this is the fact that the 
simulation supervisor does assume that there is one 
dimension in the simulation which is unique in that 
the policy interventions explained below are over a 
certain interval of this dimension. In the vast majority 
of simulations being built today this dimension is time, 
so there is no confusion. This dimension could just as 
easily be distance, however. Let's say that one is 
simulat:ng a rocket trip from the earth to the moon. 
The dimension chosen might be distance rather than 
time. It is conceivable for the simulation of an elec­
tronic circuit that this unique dimension would be a 
voltage level. In the following discussion, however, it 
will always be assumed that this dimension is time 
over a subset of regions. 

THE INFORMATION BASE 

The user of this system sees three things. The primary 
aspect of this system from his point of view is a large 
data base which represents all of the available infor­
mation about the system being simulated over a time 
interval in years which is chosen by the user. As far 
as the user is concerned all of the data base informa­
tion is always present in the computer files. He simply 
has to display whatever aspects of the system are of 
interest to him. 

The second element which the user sees is called the 
policy vector. This is a set of variables each of which 
has a name conveniently chosen for the user. The names 
themselves may be redefined by the user. Each variable 
can take on different sets of values over time. As an 
example, the interest rate prevalent in an economic 
situation would be a single variable which the user 
might want to set to different values for different sub­
intervals of the time span in which he is interested. 
These variables which can be set by the user con­
stitute the policy interventions which the user can 
make into the model. In this way the user can attempt 
to study the effect of certain policy decisions and to see 
the differences in the display for different policy values. 
Each policy variable has a certain default value at the 
time the user begins a session with the simulator. He 
can change this default value to any value he chooses 
over the entire time interval he is studying or over a 

subinterval. Assume that the time interval is 1970-1990 
and assume that the initial value for the interest rate 
is 7 percent. The user can change this value over the 
whole time interval or he can change the value for a 
subinterval. For example, he could make the interest 
value 8 percent in the interval from 1980-1985. As far 
as the user is concerned the current state of the data 
base reflects the set of policy values which he has 
chosen and they also reflect the total situation over 
the whole time interval he is studying. He can also set 
the time interval that he wants to study. 

The third element available to the user is the com­
mand language with which he requests displays and 
asks for changes in policy elements. Although these are 
the two main functions of the command language there 
are many other commands associated with the type 
of displays desired, the devices available, and with 
saving and restoring portions of the information base. 

SOME SIMPLE EXAMPLES 

Before describing in more detail the structure of the 
information base or the command language, it might 
be well to show a couple of examples of the types of 
displays a user might request. Let us assume that the 
user is aware that the figures for population for a set 
of regions in the study area are available in the data 
base. Assume that there is one population figure for 
each region and each year and one total figure called 
POPULATION for each year. In that case, he might 
make the following simple display statement. 

DISPLAY POPULATION BY TIME 

This produces a simple graph shown in Figure 1. 
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Then let us assume that the user gives the command 

CHANGE INTEREST RATE TO 8 PERCENT 

He then repeats the first command. In this case, he 
would get the following graph in Figure 2 displaying 
the population figures reflecting his policy intervention. 
As in indicated later it is possible to split whatever 
device he is using for display into several areas. Using 
this feature, he could have displayed these two graphs 
one beside the other on his screen or his paper. He 
could then compare directly the two population figures. 
It was also possible for him to give the following 
command as his second display command and he would 
have the two graphs superimposed over each other. 
Thus he could compare them on the same area. 

DISPLAY POPULATION BY TIME 
SUPERIMPOSED 

Or he might have given the following single command 
which would have produced the same results but with 
each graph marked by the corresponding interest rate: 

DISPLAY POPULATION BY TIME 
BY INTEREST RATE FROM 7 

PERCENT TO 8 PERCENT 

This would have produced the graph in Figure 3. 
The simple examples give a clue to the power 

of the system by showing the direct control the user 
has over the actions of the simulator. It also suggests 
that there exists a wide variety of types of displays. 
The following shows how the user relates these displays 
to whatever devices he has available and what display 
types are available. 
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DISPLAY DEVICES 

The system is set up so that no matter what sort of 
device the user is working from he can receive some 
type of display. The limits of the display for given 
device type are dependent on the quality of display 
that the device can support. If the user is sitting at a 
teletype, he can receive graphs of whatever resolution 
a typewritten line can support. Similarly, if he has a 
line printer available to him, he can receive plots on 
the line printer. If he has a scope available, then he can 
receive his displays with the much greater resolution 
and flexibility that a scope allows. Finally if he has a 
Calcomp, he can receive the same resolution as that of 
the scope but with the limitations that the use of paper 
obviously implies. The system as implemented at 
U. B. C. supports an Adage type non-storage scope, a 
Techronix scope, Calcomp plotters, line printer, 2260 
display, teletype or 2741 disp1ays, and a dot printer. 

The user has quite a bit of flexibility in the way in 
which he can relate his displays to the particular de­
vices. In the above sample command, the defaults were 
all in effect so that the user did not have to worry about 
assigning the graphs to areas. For a particular device, 
the user is allowed to cut the face of the device into 
1, 2, or 4 areas. This is most advantageous when using 
a Calcomp or storage scope. It is also possible that the 
user has more than one device available at any given 
time. If he has for example a scope and a Calcomp this 
allows him to develop certain images on the scope and 
then have them plotted on the Calcomp. In the case 
that the user has established multiple areas he must 
indicate the area on which he expects a display to 
appear. As was evident in the above examples, the 
user can cause a new graph to be superimposed on an 
old graph or he can start with a completely fresh image 
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in an area. It is also possible in the command language 
for him to move a current display from one area to 
another. This allows an evolution of a display on a 
CRT type device and the creation of hard copy from 
a device like a Calcomp. In addition to this the graphic 
supervisor is set up so that it provides a memory buffer 
of images for each area currently in use. This implies 
that whatever images have been created for a given 
area, a user can always step back and review a previous 
image or move forward and again see the current image. 
The number of images contained in the memory buffer 
for each area is defaulted to five but it can be changed 
by an individual user. 

RATES OF DISPLAY 

It must be remembered that the whole purpose of 
this system is to display information quickly to a 
human being and in a form which he finds under­
standable and pleasing. In light of this it can be ob­
served that a static display is hot in general pleasing 
to a human being. It is much more intriguing and 
informative to see something that moves. For t,his 
reason, the displays on this system have been given a 
wide flexibility in the way in which they are displayed 
with respect to time. Naturally these methods of 
display with respect to time are much more flexible 
on a CRT but some of these principles are also ap­
plicable to paper graph displays. 

Each graph is considered to be a subset of a graph 
with four dimensions. It may seem rather surprising 
to consider a graph as having four dimensions. How­
ever, if one can superimpose several graphs in one 
area, one already has three dimensions, as in Figure 3. 
In Figure 3, the three dimensions are population, time 
and interest rate. Do not confuse time as used here 
with the idea of the real time of the person using the 
system. Time here is ,simply one of the data variables 
from the information base. If a sequence of figures 
such as that in Figure 3 could be displayed where each 
frame in the sequence corresponds to the given value 
of some fourth variable, the display would effectively 
be showing the relation of four variables. Not only that, 
but it would be showing it in a way that would be 
fairly palatable to human understanding. If the user 
can see the change in his graphs from one frame to the 
next, it is actually a fairly good way of transmitting 
information to a person. The idea of the "rate" in 
these displays is based on these two ideas~that one 
can display a four dimensional graph and that the 
graph can be displayed through time. 

THE RATE CLAUSE IN THE DISPLAY 
COMMAND 

The general form of the display commands for graphs 
is as follows: 

DISPLAY (SEQUENCED) BY X (SE­
QUENCED) BY Y (SEQUENCED) BY 
Z (SEQUENCED) BY T AT RATE R 

The above example does not include all of the features 
of the DISPLAY command but includes those which 
are relevant to the rate of display. It is intended that 
the SEQUENCED phrase can occur only in one of the 
four positions. These four positions represent the four 
dimensions which will appear on the graph. The 
variables X, Y, Z and T are to be replaced by data 
names from the data base. The form of the display 
is determined by which variable has the SEQUENCED 
phrase associated with it. If the SEQUENCED phrase 
is associated with the last variable T, then the system 
merely pauses after each complete frame. Note that 
it is possible to have less than 3 dimensions in a given 
display command. The rate R is in tenths of a second. 
If the word PAUSE is used, then a single frame of the 
graph is displayed and the next frame is not displayed 
until the user generates an interrupt on whatever type 
of terminal he is using. This allows the rate of display 
to be completely controlled by the user. He can then 
investigate the characteristics of a single frame before 
he proceeds to the next frame. Otherwise the image is 
built up at whatever rate he specifies. The benefit of 
this type of approach is that it allows one to display 
more information and to give a person a feeling of 
something growing. As the graph emerges, one gets 
the feeling of being able to see a process. 

The SEQUENCED phrase can also be associated 
with any of the earlier dimensions. If it is associated 
with the Z dimension, then the individual frame of 
the graph is also built up with pauses in between its 
parts. Associating the rate with the X dimension also 
generates a different pattern or growth of the graph 
and different pattern of pausing. This will be par­
ticularly beneficial when using the model for instruc­
tional purposes, in which people can discuss a set of 
policy interventions and then test them out on the 
model. At this point one can guess what is about to 
happen in the graph as it grows. After seeing part of 
the graph one can make predictions as to what will 
happen next. This will stimulate discussion and the 
use of the individual's imagination as to what the simu­
lator might do. For example, a policy intervention 
might require a period of several years in order to take 



effect. This will allow people to stop and discuss their 
ideas about how long it might be before the policy 
takes effect. Since one of the primary purposes of a 
simulation like this is to stimulate people's imagina­
tion, this rate or throttle control on the graph output 
is very valuable. Figure 4 shows the three different 
types of growths of graphs which can be displayed. In 
the succeeding paragraphs, other types of displays 
than graphs will be explained. Some of these can also 
have the rate associated with them. At this time no 
meaning has been associated with the concept of 
putting the SEQUENCED phrase on the Y dimension. 

Lines marked with the same number of cross lines 
are displayed simultaneously. It is difficult to indicate 
motion as below by printing on a static sheet of paper. 

TYPES OF DISPLAYS 

There are actually more types of displays available 
to the user than those indicated above. Any graph may 
be superimposed on any other. The five types are: 

1. Map 
2. Point 
3. Line 
4. Bar 
5. Contour 

BAR: The bar graph is of a standard form. It is 
assumed that if more than two dimensions are ex-
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pressed in the display statement for a bar graph that 
the third dimension will indicate different time frames. 
It does not make sense to have more than three dimen­
sions for a bar graph. 

LINE: The line drawing is just the standard line 
graph which has been explained above. This can have 
from two to four dimensions. 

POINT: If the display command is indicated to be 
of type POINT, the first two dimensions are taken to 
be the X,Y coordinates of the point. Point data may 
or may not be superimposed over a map. If the X and 
Y coordinates are the coordinates of some regions on 
a map, then it can be superimposed over a map. There 
are other cases, for example population versus unem­
ployment over several regions, which would generate 
a scatter diagram for all of the points within the 
specified time interval and for all of the regions in the 
model. In a point graph, if the third dimension is given 
it is assumed to be a Z value and the numerical value 
is drawn in on the graph at the spot indicated by the X 
and Y coordinates. If there is a fourth dimension, it is 
assumed to always represent different time frames in a 
point graph. 

MAP: Maps are generated from files in the data 
base which are the output of point digitizing equip­
ment. They are currently all outline maps. Any point 
data can be superimposed over an outline map. 

CONTOUR: This type of display is generated'from 
point data with at least three dimensions. In this case 
the first two dimensions indicate the location of point 
on the map as in the point graph and the third dimen­
sion indicates the value to be used by the contour 
generating program. If there is a fourth dimension it 
is assumed to represent different time frames as always. 

The form of the display command to indicate the 
type of display is as follows: 

DISPLAY/X/BY /Y /BY /Z/BY /T AS MAP 

See Figure 5. 

THE COMMAND LANGUAGE 

BAR 
LINE 
POINT 
CONTOUR 

The above examples have given references to various 
commands in the language. Although it is not the in­
tention of this document to produce a user's guide to 
the language, several commands are explained below 
with their features to give an idea of the range and 
flexibility of the system. 
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Figure 5-Map with overlaid contour lines. Contour may be 
formed using any data variable from the data base which has 

map origins 

The commands are broken into three groups: display 
and data manipulation commands; systems and graph 
manipulation commands; and user aid and text for­
matting commands. 

The display and data manipulation commands are 
LIST, DISPLAY, SAVE and RESTORE. 

The LIST command has several options. It can list 
for the user any of the names in the system, such as 
the names of the policy vector interventions available 
to the user, the names in the information base, the 
file names into which the information base is organized, 
or any text replacement names which the user has 
defined. The list command can also output data from 
the information base in tabular form if this is more 
desirable than having it in graphic form. 

The options on the DISPLAY command which have 
not yet been mentioned are that data may be sum­
marized according to another variable which mayor 
may not be in the display. For example, if population 
data is present in the information base by region for 
display purposes it could be summarized by time so 
that a single value would appear for the total study 
area for each time interval. Also on anyone of the four 
dimensions, limits can be attached by typing FROM 
lower limit TO upper limit BY increment, where the 
increment value is simply the value used to step from 
the lower limit to the upper limit. Soon there will be 
added a feature to the system whereby any of the 
display dimensions can be replaced by an arithmetic 
expression. Then given unemployment, population and 
total population available in the data base, one could 

say 'DISPLAY UNEMPLOYMENT/POPULATION 
BY TIME,' and this ratio would then be calculated. 
It is also possible in a display command to introduce 
a policy vector entry. For example: 

DISPLAY POPULATION BY TIME 
BY INTEREST RATE FROM 8% TO 9% 

It is very likely that the user, after developing a data 
base and a set of policies in which he may have in­
vested quite a bit of time and money, may want to 
save all or part of the current status of the system. It 
is also possible that the user may also want to investi­
gate a decision tree of his own policy strategies and 
to compare the results. In order to do this he must 
have the capacity to save all or part of the system in 
his own private files. This is the function of the SAVE 
and RESTORE command. The SAVE and RESTORE 
commands can save the total contents of the system, 
the contents of anyone of the data files, or the symbol 
names that a user may have defined. See below for an 
explanation of the user defined symbol names. 

SYSTEM AND GRAPH MANIPULATION 
COMMANDS 

These commands set up the structure of a given 
session using the simulator supervisor and alter the 
status of the system. The ESTABLISH command 
initially indicates which devices are available to the 
system and how many areas each device should be 
broken into. This allows the use of multiple devices of 
different types simultaneously. For example, in one 
location in which the system is used, there is both a 
storage scope and Calcomp plotter available. 

Since each area has a memory buffer, there must be 
commands for displaying images stored in this buffer. 
These are the GO BACK and GO FORWARD com­
mands. These commands will also transfer an image 
from one area to another. This allows one to take a 
display from the memory buffer of a scope device and 
to display it on hard copy such as a Calcomp. 

The ERASE command simply blanks the image on 
one area. The primary use comes when the system is 
being used for teaching purposes and one wants to have 
the viewer's attention directed elsewhere. 

The SET command changes a variety of different 
system functions and defaults. This is used to set the 
number of images contained in the memory buffers, 
certain defaults about the way files are to be handled 
and so forth. 



USER AIDS AND TEXT HANDLING 
COMMANDS 

The EXPLAIN command can be followed by any 
of a variety of names. If it is a name of an item in the 
data base, a pre written explanation of this item wi11 
appear. If it is a command name, a portion of the 
command manual will appear. If an error has occurred 
and the command says "EXPLAIN ERROR", a pre­
written explanation of the error message will be printed 
out. 

The HELP command currently supplies the user 
with information about where he can obtain various 
types of information about the system. It is hoped that 
this function will be greatly expanded in the future. 

I t is possible for the user to define any character 
string as any other character string and to have this 
text replacement occur in his command. The ability 
to redefine text allows each user to build up during 
the session the environment in which he operates. This 
means that he can redefine any name in the system to 
be a name more comfortable to his own way of thinking. 
He can also give names to graph descriptions which 
he feels he wants to display frequently. This will be 
particularly useful when users begin to generate 
arithmetic expressions which they do not want to 
repeatedly type out. The commands here are DE­
FINE, which defines one string as another string for 
replacement purposes, i.e., 

DEFINE POP AS POPULATION_VALUES 

This would allow the user to use the characters POP 
whenever the full name was required. DROP followed 
by a string simply drops that string from the replace­
menttable. 

DROP POP 

It will frequently be the case that a user discovers 
that he wants to name a whole description of a graph. 
So it is very convenient to have this built right into 
the display command itself. The command is then 
DISPLAY followed by the new name followed by the 
word AS followed by the usual graph description. This 
enters the name given in the replacement table and 
enters as its replacement the string describing graph 
as below. 

DISPLAY P_GRAPH AS POPULATION BY 
TIME BY REGION AT RATE 40 
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THE SUPERVISOR FROM THE SIMULATORS 
POINT OF VIEW 

One of the primary goals of this system is to make 
it very easy to add a new simulator and to minimize 
the burden of input/output command parsing and 
display on these simulators. For this reason the world 
into which the simulator fits is made extremely simple. 
As far as the simulator is concerned, the communica­
tion with the outside world consists of reading variables 
from files which are accessed by a file number and 
writing other numbers into other files. In case of an 
error there is a routine which is called with an error 
message number and which has some macro capa­
bilities. The files that the simulator sees are basically 
sequential files with keys allowing either a sequential 
or random read or write. The file descriptions which 
define the names of the values which will be put in 
these values are written out in simple character format 
very much like the data description for any high level 
language. These file formats are shared by all the simu­
lators in the system at one time, so that one simulator 
can read the files generated by another simulator. Since 
these file descriptions are in character format, they can 
be easily changed and evolved as the simulators them­
selves evolve. It is only required that (as in FORTRAN 
style input and output) the simulator assumes the 
function of each variable in each row that it reads in 
from the file. For one given file, the simulator must be 
aware when it is written that the fourth variable of 
this file is population. 

MORE DETAIL ON THE INFORMATION 
RETRIEVAL SYSTEM 

The information retrieval system is really the heart 
of the simulator supervisor. It must be able to access 
the files by key and it must be able to support a fairly 
complicated key structure within the files. For ex­
ample, there will be files which are indexed by time 
and region and there will be some files which will be 
indexed only by region. Yet for display it would be 
necessary to relate these two files by region alone 
ignoring the time key on one of the files. There would 
also be files by time and region and other files by time 
region, and time of day. This effectively means that 
the information system must support a hierarchical 
data structure with multiple keys. However, the vast 
majority of accesses to the data base by the simulators 
are made in a completely sequential fashion. That is, 
very little of the structure is used in a hierarchical 
fashion. The possibility must be there when it is re­
quired. 
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In order to maintain this facility, the information 
retrieval system has been structured to operate on 
sequential files with fixed length records. These are 
designed to look like FORTRAN vectors; they are 
just a row of variables. In order to maintain the facility 
of multiple keys, each file may have several keys which 
are concatenated together to form a single key. If one 
wants to generate a facility for accessing the kind of 
structure mentioned above where one file is by time 
and another by time and region, the implementation 
must have two files with the information recorded by 
key in each file. To do this key lists are kept for each 
file which gives the key value and a line number or 
record number for locating the corresponding record. 

Since it is possible to change policy variables over 
certain intervals of time it is also necessary that there 
be a mechanism for invalidating portions of the data 
base. For example, if the current data base had been 
computed from 1970 to 1990 and the interest rate were 
changed in 1980, it would be assumed that some of the 
output from some of the simulators would no longer 
be correct if they were influenced by the interest rate. 
Therefore those files would have to be erased beginning 
with 1980. This can be accomplished by simply erasing 
the elements in the key list which have year values 
after 1980. 

This organization of the information retrieval system 
allows very simple access routines for the simulator. 
Yet it will allow a fairly complex hierarchical structure 
of keys if necessary. The fact that the user assumes 
all the data to be present at a given time and that the 
data is actually computed by the simulators only when 
it is requested for a display means that unnecessary 
computations never have to be made. Therefore the 
information retrieval system must be able to com­
municate to the supervisor what data is actually 
present in a file at a given time. 

In order to explain to the system the structure of 
the files, and the interdependencies among the simu­
lators for data, there must be a set of simulator de­
scriptions and the file descriptions. These file de­
scriptions as mentioned above are simply lists of the 
variable names that will be used by the user for ref­
erencing the data. It also includes other characteristics 
of the variables such as the maximum value that they 
should be allowed to obtain and the minimum. For 
each file there is a description of the simulator which 
writes the file and how to load that simulator in order 
to execute it. There is also a set of simulator descrip­
tions which describe the files each simulator reads. 
This is sufficient information for the supervisor to 
decide on a given display command what data is. re­
quired, what data is missing, which simulators must 

be called to generate the data and in what order the 
simulators must be called. The rule is that a single file 
may be written by only one simulator. This is required 
so that the supervisor can tell how to replace data which 
has been invalidated by policy changes or which may 
never have been computed in the first place. In order 
to generate missing data, the supervisor steps through 
the years in the current time interval and at each year 
runs the simulators required to generate data for that 
year. These simulators are dynamically loaded and are 
kept in core as long as possible until another simulator 
is required to run. 

AN OVERALL FLOW DIAGRAM OF 
THE SYSTEM 

The system is broken up into three major sections 
of code. The primary section is the supervisor itself. 
This code does the initialization work of reading in all 
the tables, reads in each command from the user, and 
converts the alphabetic strings in the command to 
integers which are merely reference numbers cor­
responding to the strings. This allows command inter­
pretation to be done very easily. It is at this point that 
text replacement is also done. The commands then go 
through a large switch to individual subsections of the 
supervisor which process each command. The second 
section of coding are the I/O routines. These routines 
maintain the key lists for the individual files and do all 
of the sequential and random reading and writing 
requested either by the simulator or by the supervisor. 
At the time the simulator originally begins running 
it is assumed that each file that is non-empty is in a 
read-only master copy. As long as display commands 
are generated for these files this read-only copy is 
used. As soon as simulator wants to write a file a 
scratch copy is made. This copy can either default to 
a temporary file or can be put into a private file of the 
user, depending on a systems switch. Notice that the 
I/O routines, except for saving original data, treat 
observed data and simulator output exactly the same. 
There is no distinction between data bases which were 
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originally observed and which are modified by simu­
lators, data bases which were written only by simu­
lators, and data bases which were only observed. This 
symmetry of treatment coupled with the ability to 
describe files in format-like statements allows the 
structure of the files to evolve very easily. 

The third piece of code involved is the graphics 
supervisor. This section of code maintains the current 
state of all of the display devices in the system. It also 
maintains the image buffers, the memories for each 
area of each display. It is the responsibility of this 
section of code to convert a standardized graph de­
scription which it receives from the supervisor into 
the proper display for each device in the system. It is 
also the responsibility of this section of code to OR the 
graph images together into single images when super­
position has been requested. This part of the program 
also does the computations required for contouring 
and displaying of bar graphs and so forth. 

/o~ 
Interest rate=7% Interest rate=8% 

Inunigratio~3% ImmigraLo~% 
/~ ~ \ 

Housing start=ZOO/month 300/month ZOO/month Housing starts=lOO/month 

DISPLAY POPULATION BY TIME 

DISPLAY GEOGRAPHICALLY SINGLE_FAMILY_DWELLINGS AS CONTOUR 

DISPLAY GEOGRAPHICALLY POPULATION SEQUENCED BY TIME AS CONTOUR 

At each level display might be made of population, land use contours. etc. 

Figure 7-A possible decision tree for investigating policy 
alternatives 
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EXTENSIONS 

The most exciting extensions to this system will be 
in the area of providing facilities to the user for de­
veloping policy strategies. The first cut in this area 
will be to give him the ability to develop a decision 
tree of alternatives, and to compare and display data 
across these different alternatives. See Figure 7. At 
this point it would also be of value to be able to provide 
him an analysis of which variables in the data base are 
affected and at what level by changes in the policy 
variables. At first this can be done on· a guesswork 
basis by knowing which data is invalidated by changes 
in which policy variables. Later on, however, it may 
be interesting to do more in-depth analysis by actually 
running the simulators for a short period, noting which 
variables change, and attempting to give some indica­
tion of the derivatives involved. 

What would also be very interesting in this context 
is to generate a rudimentary artificial intelligence 
device which searches out policies which tend to satisfy 
certain goals set up by a user. In this case the interac­
tion between the user's intuition in suggesting goals 
and a rudimentary artificial intelligence device might 
produce some very exciting results. 

CONCLUSION 

It is strongly believed that this system will bring the 
power of large interactive computer systems rapidly 
to users in two different ways. Primarily, it will provide 
an ability for an untrained user to investigate in great 
detail and according to his own experience the workings 
of a set of simulators. Secondly, by relieving the simu­
lator writers of the burden of providing user interface 
and information retrieval it will allow the quality of 
the simulators and the types of the simulators them­
selves to be evolved very rapidly. 





NASDAQ-A user-driven, real-time transaction system 

by NAT MILLS 

Bunker Ramo 
Trumbull, Connecticut 

INTRODUCTION 

By Christmas time of 1970, 1200 brokers active in the 
Over-The-Counter securities market nation-wide, had 
had a new Bunker Tamo CRT terminal placed upon 
their desk. Through these "NASDAQ" terminals, they 
would be expected to watch and change all their quota­
tions from then on. Within a month, they were confi­
dently using the data in the system, that they were 
themselves updating, and turning their backs on almost 
all of the previous phone checking and "pink sheets." 

By March, 1971, Barron's magazine had reacted to 
NASDAQ as follows: "To the amazement of virtually 
everyone, the complex network of cables, computers 
and cathode ray tubes ... breezed through its shake­
down period with scarcely a hitch. What's surprising 
(is) ... the almost instantaneeus success and acceptance 
NASDAQ has scored." 

And before the new year was half gone, the talk had 
turned to the feasibility of automating the exchanges 
themselves. NASDAQ was becoming a model of how 
aptly a computer complex could serve a national trad­
ing community. 

"BEATING THE ODDS" IN REAL-TIME 
SYSTEM CREATION 

The NASDAQ system is but one of many large real­
time, transaction processing configurations that have 
been attempted during the past 10 years and in most 
cases been completed, sooner or later, during the past 
5 years. Many of our computing fraternity (and soror­
ity) have been involved in these efforts, and many 
more will be immersed in similar efforts during the next 
10 years. In this paper, we are offering the highlights of 
our own particular experience, and some of the reason­
ing behind the course we took, which did "beat the 
odds." 

In fact, evaluating the design decisions made in 
building the NASDAQ system might well be viewed as 

1197 

one half of a very useful object lesson in the problems 
and pitfalls to be met in developing large on-line, real­
time systems. The other half of this object lesson would 
then be the comparative evaluation of the design op­
tions chosen in less fortunate projects where the pit 
was fallen into. It would be presumptuous, and cer­
tainly not fitting for us to make a critical analysis of 
such projects. Therefore, we confine ourselves to pre­
senting the following picture of our own effort. 

THE SYSTEM IN PROFILE 

The NASDAQ System is a nation-wide, real-time 
configuration now serving the quotation needs of the 
Over-The-Counter securities market. NASDAQ stands 
for the National Association of Securities Dealers 
Automated Quotation system. It is centered in a pair 
of Univac 1108 multi-processing computers in Trum­
bull, Connecticut (see Figure 1). Radiating from this 
center is a network of data lines to Bunker Ramo 
Model 2217 CRT's in the individual offices of sub-

Figure 1 
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scribers. Controlling and concentrating the traffic in 
this network at four regional points are duplicate 
Honeywell DDP-516 computers, each with a Bunker 
Ramo designed Communication Control Unit as a 
front end interface (see Figure 2). In each office being 
served is at least one Over-The-Counter Control Unit 
(OCU) to support the terminals installed for NASDAQ 
(see Figure 3). 

At the Trumbull Center, as units integral to the cen­
tral processor, are a group of auxiliary memory devices 
and communication traffic handlers. In the hierarchical 
levels of the directly accessi ble storage is held the 
on-line data base, from which quotation, index, volume 
and other information is retrieved for remote display. 
The system restricts to a particular level of terminals 
in the offices of market makers and the N ASD itself 
the functions of data base updating and control. 

Activity is, as of this writing, averaging over 900,000 
calls per day, and peaking at busy periods at over 110 
calls processed per second. The size and scope of the 
system is still expanding. At this point, over 900 offices 
are tied into the system, with 1,400 terminals installed. 

The data base is built around records for over 2,800 
securities, active in the system on the basis of over 
19,000 quotations by market makers taking positions 
in them. The volume of purchases and sales is being 
reported into the system daily and now exceeds that 
of all other exchanges combined, except the NYSE. 

THE UNIQUE CHALLENGE FACING 
IMPLEMENTATION 

Of course, this whole system and its functions did not 
arise haphazardly. The start of the design effort was 

the recognition that the implementor of NASDAQ 
faced a formidable task for several pivotal reasons. 

• The direct users of the system would be brokers 
interacting amid their hectic daily trading. They 
would be entering, verifying, and retrieving the 
data upon which the data base itself would be 
built. No trained clerical personnel or computer 
operators could intervene. 

• The whole process being automated would actually 
create an entirely new way of doing business for 
the Over-The-Counter Market. No precedents or 
earlier system existed. 

• To support a viable market, the whole trading 
community, nation-wide, had to be on-line to­
gether at system start-up. 

• A substantial portion of the expected users were 
reluctant and skeptical about being supported by 
automation. Any failures or ambiguities in func­
tion could be expected to be exploited to question 
the whole system's utility. 

Recognizing the seriousness of these challenges, the 
system analysis effort began in earnest. 

Figure 3 



ESTIMATES OF TRAFFIC LOAD AND MIX 

In the effort to provide a solid basis for all design 
decisions, there were studies in the field, simulations, 
and functional analyses of many aspects of the processes 
NASDAQ would automate. Particularly, in order to 
properly select and locate components of the communi­
cation network, we needed informed projections of 
traffic loads, geographic distribution, and mix of entry 
types. 

With the decision already made to put the central 
site in Trumbull, Connecticut, the heaviest volume of 
traffic would obviously be between there and downtown 
New York City. Other traffic paths were mapped out 
and studied for potential service demand. Then formal 
network analysis was applied to the data, using 
"COPE," Bunker Ramo's own computerized analysis 
tool. 

From the functional aspect, observation of O.T.C. 
brokers' activities indicated an approximate ratio of 
seven to one between the number of requests for the 
quotations in a security and the number of updates of 
those quotes. The human factors of location, style of 
work and data interaction were studied in the actual 
trading environment to obtain further data for the de­
sign decisions, which are described in the following 
sections. 

THE CENTRAL SITE CONFIGURATION 

For the central processor in the NASDAQ configura­
tion, the Univac 1108 was chosen on the basis of its 
already proven reliability and the elements of its design 
which expedited real-time operation. Two units, as a 
multi-processing complex, were recognized as essential 
to carry the system's total processing load, though unit 
processing, when necessary, would be sufficient to 
maintain all on-line functions. 

The total complex is controlled as a configuration 
by an Availability Control Unit (ACU), which allocates 
facilities in the multi-processing environment (see 
Figure 4). 

Since swift accessing of a large data base would be 
critical, an hierarchy of random access storage devices 
was chosen from those in the Univac line. In this case, 
a wide range of high-speed and low-speed drums and 
common core has provided an adequate supply of ran­
dom access storage for the data base, programs, tables, 
and dictionaries as needed. From these devices, indi­
vidual record retrievals, program overlays or even re­
mapping core has functioned with speed sufficient to 
keep within the specified response time on all 
transactions. 

NASDAQ 

CENTRAL COMPLEX 

Figure 4 
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Auxiliary to the central complex is a normal com­
plement of magnetic tape drives, consoles, two Univac 
9300 processors driving printers, and card units. For 
environmental control, dual air conditioning systems 
have· been installed. To assure continuous power, an 
Uninterrupted Power Supply (UPS) of batteries and a 
gas turbine motor stands by in permanent readiness. 

At the center's terminus of the communication net­
work, a Bell System exchange is installed on site, 
dedicated solely to handling NASDAQ traffic. Inter­
faced with the central processors are a pair of com­
munication terminal module controllers (CTMC's) 
each with its own set of 16 communication terminal 
modules (CTM's) cross-switchable for carrying all 
traffic through the appropriate modems to the users via 
the regional concentrators and to the auxiliary services 
tapping the data base, such as the public quotation 
services and newswire distributions. 

The upper limit for traffic through this present central 
configuration was pegged by original design estimates 
at 220 calls per second. However, built into the hard­
ware plan (and the software design as well) is ample 
provision for expansion to handle growth in load, and 
changes or extensions in function. 

THE DECISION TO INSTALL REGIONAL 
CONCENTRATORS 

Those who have been close to the NASDAQ develop­
ment effort from the start feel that the most important 
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single design decision was that made to set-up regional 
concentrators for communication processing and poll­
ing. The danger of over-burdening the central process­
ing complex with the details of terminal servicing was 
recognized early. 

The network analysis indicated the economic benefits 
of concentrator placement at New York City, Chicago, 
San Francisco, and Atlanta. This divided the com­
munication network of leased lines into two levels: 

• dual trunk lines transmitting point-to-point be­
tween the central site and the concentrators syn­
chronously at 4800 bps. (To and from New York 
City at 50 K bps.) 

• regional circuits between the concentrators, and 
the control units in the brokers' offices, trans­
mitting asynchronously at 1600 bps, as private line 
multi-point duplex data circuits. (Asynchronous in 
order to match the most suitable modem and the 
chosen line speed.) 

At each regional concentrator site, the following equip­
ment was installed (see Figure 5): 

• A pair of unitary configurations each backing up 
the other with: 
-A Honeywell DDP-516 processor (16K Core) 
-A Bunker Ramo designed and built communi-
cation front-end interface 
-A paper tape reader 
-A teletype Model 35 ASR 

• Connecting this pair of units with its regional 
lines are: 
-a cross-connect panel 
-two Multiplexer Control Cabinets 
-two Modem cabinets 

With this concentra tor structure, it was possible to 
introduce priority handling and line controls at the 
regional level. For instance, full duplex use of the re­
gional circuits became effective with the introduction 
of nested polling initiated by the concentrator. With 
the multi-station local control units all riding their 
assigned regional circuits, polls could be nested into 
individual messages and be recognized by the proper 
addresses at a great saving in traffic load and message 
turn-around time. This technique also tends to equalize 
the service for all terminals, by giving priority in the 
polling process to control units in offices with multiple 
CRT's. 

AUTOMATING THE OTC TRADER'S 
FUNCTIONS 

An often somewhat neglected aspect of system de­
sign, the human interface, had to be studied carefully, 
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and be coped with realistically for this project to get 
off the ground. The extraordinarily hectic environment 
of the trading room of a busy brokerage house has to 
be seen and heard to be believed (see Figure 6-an 
unbusy example). 

Of course, Bunker Ramo has had some experience 
in this industry, dating back to 1929 for the first auto­
matic dissemination of quotations. But the direct 
input of data by the broker at his desk was something 
entirely new, and a somewhat frightening prospect for 
seasoned real-time computer professionals. 

For NASDAQ, this meant first of all the keyboard 
layout, and the ease of entry message generation. Thus, 
a unique keyboard was designed from the table up for 
this new type of user (see Figure 7), which attempted 
to support his manner of operation, and to avoid ap­
pearing overloaded and baffling. Special function keys 
directly expedite the setting up of certain messages. In 
particular, the broker maintaining a quotation in the 
system is able to change it rapidly with a few key­
strokes, or with little more than a directional character 
(i or 1) to cause the normal change of 78th of a 
point. Other design advances contributed to an overall 
layout which sought to give the user a "congenial" 
keyboard. It seems to have succeeded. 

The second terminal area to which human factors 
concerns were applied was the query/response display 
content. Actually the processing logic of the whole 
system became query/response oriented by conscious 
decision. No demand to respond to computer processes 
is put upon the user. The entries the user transmits are 
accepted as a whole and displayed as updated for the 
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user to verify or are rejected with an explanatory mes­
sage, which does provide some self-teaching interaction. 
The effect has been to enable the users to get what 
they want from the system with next to no training. 

Just behind the individual terminal, supporting up to 
24 of them per office, is the O.T.C. Control Unit 
(OCU). This unit handles the refresh, character gen­
erator and control logic for the CRT's. It also provides 
some by-product functions that assist the user. For 
instance, it generates a unique office and device address, 
which it prefixes to every out-going message, thus en­
suring protection to the firm's quotations, and enabling 
office oriented services to be selectively implemented 
by software processes. 

As an example of the flexibility of the OCU, there 
was the necessity to cope with a late addition to the 
functional requirements as originally specified. Some 
brokers wanted to be able to capture the changes in 
their own quotations as they were entered into a 
NASDAQ terminal, and post them on automated dis­
play boards in their own offices. This was implemented 
for such users by setting a special bit in the response 
which would signal the OCU, and by supplying a 
"Local Post" key on the keyboard to permit such local 
transmission when desired for non-NASDAQ securities. 

This then completes a capsule description of the 
major hardware elements at each level of the system. 
I t has proved to be a smoothly functioning, coherent 
complex. The next sections of this overview deal with 
the program structure which made the system function. 

SOFTWARE ELEMENTS 

The major NASDAQ components III the software 
category are the following: 

• An expanded version of Univac's "EXEC 8" 
operating system, supporting multi-thread, real­
time transaction processing with queued file ac­
cessing and updating. Bunker Ramo extensions to 
this system upgraded its real-time communication 
control features. 

• The necessary set of on-line functional application 
programs, processing the full range of acceptable 
queries to, and required outputs from, the system. 

• A hierarchy of recovery programs, designed to re­
allocate system elements, to restart, or to drop to 
degraded service as necessitated by conditions. 

• A series of off-line processing programs to handle 
file maintenance tasks, report production, and 
pre-processing to optimize the file structure of the 
next day's on-line operations. 
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• A communications control program to function in 
each of the DDP-516's of the remote concentrator 
configurations for: 

-polling each control unit and servicing each 
regional circuit 

-store-and-forwarding message traffic 
-managing buffer resources and time clock 

functions 
-printing out (at NYC) the newspaper trans­

missions 
-monitoring circuits for error rates which might 

predict line deterioration, and alerting opera­
tions personnel to the need for intervention. 

• An overriding time-monitoring program to initiate 
at pre-set times various activities such as: 

-opening or closing all active securities 
-calculating index values 
-disseminating data to news media 
-halting the volume reporting function 

• A many-faceted program providing supervisory 
access of several types to the system and its data 
as follows: 

-on-line entries to cause immediate display or 
alteration of file contents 

-on-line intervention to change system parameters 
or time functions 

-on-line entry of file maintenance transactions for 
off-line processing 

-off-line batched transactions for normal file 
maintenance 

CREATING A CLEAN MESH OF 
SOFTWARE 

Developing all the elements of the total software 
environment required a staggering amount of co­
ordination and attention to detail. The general prin­
ciples followed were the standard ones for real-time 
programming such as: 

-reentrant and reusable code 
-dynamic buffering 
-program overlays 
-record lock-out during update 
-automatic system recovery and restart 
-queued file accessing within multi-thread logic 
-multi-processing utilization of dual processors 

On top of taking full advantage of the current "state 

of the real-time art," certain solutions to problems 
unique to this system deserve mention. 

1. The analysis of expected traffic had highlighted 
the predominance of quote requests, and among 
them, for the "top of the list" for any security, 
that is, what would be the first quote frame on 
the CRT. The rest of the list of quotations is 
obtained frame by frame as a "MORE" key is 
pressed. To save processing time with this first 
frame frequency, it was decided to keep it al­
ways pre-formatted in the security record ready 
for immediate transmission. 

2. In a similar effort to expedite retrieval response, 
the statistics of accesses for each security are 
used daily to order the next day's allocating of 
the addr~ss keys of the most popular securities 
to a core-resident dictionary, and all others to a 
drum-resident dictionary. 

3. The security of the data base was guaranteed by 
the storage of two copies of all on-line files in 
cross-drum and cross-channel locations so that 
the availability of any record would not be af­
fected by the failure of anyone hardware 
component. 

4. Buffers are grouped in different sizes and re­
quests are queued first by buffer size needed, 
and then shifted away from the longer queues, if 
possible, to the queues of the buffers next in 
size. Access to a drum record is also shifted to 
that copy of the record which resides on the 
sub-system with the shorter queue. 

The net result of these and many other techniques 
has been a quite unflappable system. The meshing of all 
the programmed modules was accomplished before 
start-up with the usual around-the-clock effort, but 

. fortunately with a minimum of unpleasant surprises 
and crash patching sessions. 

PUSHING EXEC 8 OVER THE HUMP TO 
ACCEPTABILITY 

Even thouglt the operating system for the Univac 
1108 had been around for a while, it was clear fairly 
early to the NASDAQ implementors that it had its 
weaknesses, and some serious gaps for real-time system 
control. Therefore, a special effort was directed toward 
identifying all the problems that turned up, and all 
potential problem areas as early as possible. 

With alacrity and concentration, the Univac program 
development staff in St. Paul, Minnesota went to work 



and produced the necessary enhancements. Some of the 
improvements, however, were developed by the 
NASDAQ crew itself, and most of these were then 
adopted as part of official versions of Exec 8. 

The most significant modifications and enhance­
ments to Exec 8 were the following: 

-Protection against improper mass storage 
assignment. 

-Ability to optimize drum utilization by using 
absolute addressing to allocate or access mass 
storage. 

-Ability to bring up or shut down I/O paths and 
units initially and dynamically. 

-The aborting of I/O queues at abnormal pro­
gram termination to facilitate faster reload. 

-Provision for extensive logging and accounting 
of I/O error events. 

-Ability to get "immediate functions" performed 
by the Exec. 

-Revising the drum read and write routines to 
shift from one in two interleaving up to one for 
one interface between drum and core. This par­
ticular stratagem significantly improved data 
transfer speeds. It had not been regarded as 
feasible for the hardware involved, but the step 
has proven to be sound. 

-Ability to reconfigure any component at any 
time with or without manual intervention. 

-Applying the processor monitoring capabilities 
of the Availability Control Unit (ACU) in order 
to detect CPU malfunctions. 

-Utilizing automatic reboot, whenever possible, 
to reduce the amount of operator intervention 
required. 

-An automatic dump to high speed drum when 
the system has to reboot. 

-The detection of a rebooting loop and signaling 
for operator intervention. 

-The monitoring for, and the correction of a 
real-time error loop by automatic program 
reload. 

-Maintaining a Master Configuration Table in 
core and on drum, containing the current status 
of the system. 

-Ability for an application program to be reloaded 
without losing its facilities allocations. 

-Entry point to Master Configuration Table to 
enable application programs to obtain necessary 
recovery data. 

-A variety of enhancements of the operator inter­
face with application programs, including a dis­
play of the program mix functioning at the time. 
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-A repertoire of debugging aids such as core and 
drum traps, dynamic core and drum dumps, 
and a trace routine. 

-The development of a "moving picture" of core 
displayed on the console CRT. This is a little 
gem of a monitor routine for debugging and 
analysis work. For instance, the rhythm and 
pattern of dynamic buffer allocation could be 
observed as its core locations changed on the 
display screen. 

-A package of test routines to shake down new 
levels of the Exec itself. 

-A variety of lesser improvements to clean-up 
and remove unnecessary code, and generally to 
reduce overhead. 

It is not too much to say that this effort was as 
crucial as any to the success of the total NASDAQ 
implementation. 

THE TACTICS OF IMPLEMENTATION 

The NASDAQ project got under way with the con­
tract signing in December, 1968 between the NASD 
and the Bunker Ramo Corporation. The completion 
date specified in that contract was two years later to 
the day. 

Many things had to be set into motion. Hardware 
units had to be designed} checked out and scheduled for 
assembly line production. A new building had to be 
planned and built for the central processor site. Sys­
tems design, network analysis, and computer selection 
all had to be tackled in short order. The early installa­
tion of the central processors was a big help to all 
concerned. 

One of the things that was not set into motion was 
the functional specification after it was carefully elab­
orated and clarified. Of necessity, it was frozen early 
and fortunately was able to stay that way almost 
inviolate. 

A relatively small crew of engineers, system analysts, 
and programmers (approx. 50 in all) was assembled, 
mostly from within Bunker Ramo, to tackle the direct 
system creation. They turned out to be an extraor­
dinarily dedicated and resourceful crew. Just before 
Christmas in 1970 they offered a functioning NASDAQ 
to the waiting world. It had arrived only four days 
late, and it stayed arrived. 

THE PARCEL OF SUBSIDIARY FUNCTIONS 

As in most such systems, a variety of subsidiary 
functions were included in the functional specification, 
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and then turned out to require a major part of the 
effort. These bonus components, all of which were safely 
on board when NASDAQ started functioning included 
the following: 

-A median quote, called the Representative 
Bid/ Ask (RBA) , for display on the top line of 
every quote frame, and for public dissemination. 

-A set of indices for the OTC market, based on 
all the stocks in the system, for retrieval and 
dissemination. 

-The display of news bulletins in response to re­
quests from any terminal. 

-The provision of direct transmission of RBA's 
and Indices to the quotation and newswire 
services. 

-A full gamut of overnight off-line processing to 
prepare the data base for the next day with all 
file changes made, to produce regulatory reports 
for the NASD, and to provide statistics on sys­
tem behavior. 

-The support of all varieties of supervisory inter­
vention and file adjustments entered on-line, 
with some requiring action immediately on-line 
and some held for off-line processing. 

This last area generated the largest single module of 
programming and required extensive rearrangements 
in the overlay logic. These areas as a whole required 
more extensive testing than all the rest of the system 
combined. In fact, the last critical hurdle before start-up 
was the satisfactory completion of that part of the 
cycle which went through the off-line processing from 
the end of one day into the start of the next day. 

THE TEST TO END ALL TESTINESS 

To guarantee that the NASD and all its user­
members would find nothing in the system to get upset 
about, a frontal attack on all aspects of the system 
was mapped out. The functional, supervisory and com­
munication functions in all their complexity required 
exhaustive testing. The system's capacity also needed 
testing under over-loaded traffic conditions. 

How could we throw every possible permutation and 
combination of query at the system and verify that we 
were getting the correct, prescribed response? The type 
and content of the response in turn depended on a 
multi-dimensional matrix of conditions, such as the 
brokers' type, the status of the security affected, the 
time of day, and the other quotations already entered. 
In other words, to predict any particular query / 

response pair, we would have to establish the content of 
the data base at that point in time for that particular 
interaction. 

Only then could we expect to isolate those responses 
which might be proper in form but incorrect in content. 

The immensity and crucial role of this stage of the 
system's development forced us to become the midwife 
of some unique methods to meet the necessity. We 
realized from the start that we would have to automate 
the process in some fashion in order to avoid the hor­
rendous, error-prone chore of creating exhaustive (and 
accurate) test data input. 

The possibility of writing a program to generate a 
full variety of test input in query form, without re­
sponses, proved on examination to demand an extraor­
dinary programming effort, among other drawbacks. 
Even to check response messages on a print-out by eye, 
or on a dump by programmed comparison were each 
clearly prohibitive prospects. There had to be a better, 
yet absolutely thorough method of automating the 
check-out of system responses. 

THE SOLUTION TO OUR PROBLEM 

Since 99 percent of the live input data would be 
entered via the CRT keyboards, and most of the output 
would be displayed on the CRT screens, these terminals 
and their control units were the critical message­
formatting modules of the system. A processable query 
and a displayable response would have to be sent from, 
and be returned to, this control unit. 

The accuracy of the visual content of keyed entries 
could be checked on the display before being sent, and 
the content of the resultant response from the system 
could be visually verified in the same way. 

Could we hold this query / response pair in their mes­
sage formats and then, if correct as displayed, capture 
the paired record on tape, or if not, divert it for diagno­
sis? In the second case, the encoded messages would 
provide precise evidence for remedial action by either 
programming, systems, or hardware design staffs. 

The equipment to handle this task was already at 
hand in the form of two communication concentrators 
located in the Trumbull Data Center, adjacent to the 
central processing unit. 

Thus for the test, one of these concentrators per­
formed in its actual NASDAQ role,but as the only 
active front end for the whole system. Thus the system 
configuration and its software did not need to be altered 
in any way for test purposes. As far as the NASDAQ 
system could tell, it was receiving and responding to 
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genuine activity from real users (see Figure 8 for a 
schematic of NASDAQ plus our test configuration). 

The second concentrator was programmed as a test 
monitor and manipulator. This concentrator had to 
function in a two-sided fashion, appearing to the first 
concentrator and the central processors just like any 
one of many possible control units with terminals. On 
its other side, interacting with the test control units, it 
behaved as if it were the NASDAQ system itself. 
Among other facilities, this enabled us to circumvent 
the restrictive integrity of the NASDAQ design, which 
accepts file updates only when uniquely identified by 
the user's own hardware-supplied address. 

For test manipulations in general, this programmed 
concentrator gave us the flexible control we needed. Its 
program responded to a set of control level entries 
from the test CRT terminals to trigger the verification 
capture, numbering, and printing, etc., of the test 
query/response pairs as created. 

Early in the game we decided that we would have to 
simulate at least six days of system operation. This 
became necessary not only to allow for some gradation 
in complexity, but also in order to permit certain global 
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conditions to be amply tested, such as a "delayed 
opening" of the market on a particular day. 

We were equipped to map into core memory and 
drum files a check-pointed or start-of-day on-line data 
base which recreated a previous stopping point. Using 
this facility, we could push ahead with the testing 
effort in several different areas in parallel fashion. 
Otherwise with a linear check-out path, each bug would 
have hung us up until the necessary program patching 
was accomplished. 

By allocating a different set of simulated securities to 
each major function, we were also able to work around 
any buggy area until it was ready to be tested again. 
Within each of these allocations, a spectrum of security 
types and market maker positions was developed in 
order to exercise every conceivable variation. 

In addition, we set up separate charts to keep track 
of every scripted entry that generated a line on one of 
the required off-line, "overnight" reports. 

CARRYING OUT THE TEST 

Anyone who has ever been involved with the demon­
stration of an on-line process knows what happens next. 
With everyone crowded around to watch, the previ­
ously infallible gear or program begins to fall apart 
with a spectacular display of recalcitrance. Well so it 
went. We set the stage, everyone held their breath, 
and then the first query we keyed in proceeded to pull 
down the whole software structure. 

Of course, with only six weeks to go before cutover, 
there was consternation, pandemonium, and dire fore­
bodings from all sides. Scrutinizing the wreckage, the 
programming team quickly spotted and repaired the 
fatal flaw. It turned out to be precisely the type of 
problem that live volume testing or actual use would 
eventually have hung up on. The unique feature of 
that first frame was simply the use, in a particular 
function, of a security whose initial letter was beyond 
"S" in the alphabet. Our test scripting fortunately had 
the range of detailed variation to catch this situation. 

When all the smoke had cleared, we resumed our 
testing effort and this time the scene settled into a more 
normal process. 

The check-out continued right up to start-up time, 
and helped assure everyone that all was well with 
NASDAQ. 

ACHIEVING RELIABILITY 

The reliability of the NASDAQ system is by now an 
accepted fact of life for the OTC market. System per-



1206 Spring Joint Computer Conference, 1972 

formance has been on an uninterrupted basis for 99.92 
percent of the scheduled time since January 1, 1971 
(total down time of one hour and 57 minutes in 2,376 
hours of operation). 

Reliability is, of course, critical to the success of any 
such system after it becomes the functioning structure 
of a nation-wide market place. Its realization in the 
case of NASDAQ is the result of a web of carefully 
designed features. 

On the hardware side, it has been due first of all, to 
the inclusion of units of already proven dependability 
in service. The long evolution of Bunker Ramo's on-line 
configurations for the brokerage industry n.ow guaran­
tees the production of terminals, control units and 
multiplexers which inherit a built-in reliability. 

Bell Telephone lines are another matter, but in this 
area also, Bunker Ramo experience has served to en­
hance reliability. Predictions of line occupancy, by 
which selection of lines and transmission speeds were 
made, resulted in a communications network, which 
has: 

• Provided response times averaging well under 
three seconds, 

• Kept the message error rate, over conditioned 
lines, well within agreed limits, 

• Provided as yet uninterrupted trunk line service 
by establishing dual lines with diverse routing, 

• Allowed for future trunk line upgrading as needed, 
to 7200 and 9600 bps speeds. 

Through the NASDAQ configuration, uninterrupted 
hardware performance has been ensured by the dou­
bling of each processing unit for instant fallback sup­
port. Likewise, for the software side of NASDAQ, 

reliability has been designed into the functioning sys­
tem itself. 

Since non-technical users would be on-line to the 
system, entering data and updating files constantly in 
real-time, it was necessary to shield the processing 
from any disruptive entries. This is maintained by 
rigorous programmed control of all input. As a result, 
the system has not been "bombed" by any entry since 
regular functioning started .. 

Finally, the software provides extensive recovery 
facilities to get the system back-up and keep it running 
under a wide variety of adverse conditions, either 
temporary or of some duration. The fact that NASDAQ 
has been cited as "an outstanding engineering achieve­
ment" is due in large part to this reliability, now fully 
proven after nine months of service. 

IS NASDAQ INVULNERABLE? 

So it does seem as if Bunker Ramo "beat the odds" 
with the NASDAQ system. Despite all the things that 
could go wrong, everything seemed to click into place 
neatly. To observe the system functioning now at the 
Trumbull Center is to see nothing happening. 

And, in that situation is hidden a new and potentially 
serious problem. The operators in the central site can­
not avoid becoming extremely bored. There is a danger 
that their experience gained with a visibly struggling 
and trouble-loaded system in the days before start-up 
will now fade completely. What will happen to their 
ability to cope with future crises, which will, by that 
time, be unavoidably unique and complex? Achieving 
such a high level of automation can bring new problems 
in its wake. But since this new problem is already 
recognized, the remedy is on its way, we hope. 



LSI Perspective-The last five years 

by H. G. CRAG ON 

Texas Instruments 
Austin, Texas 

INTRODUCTION 

An attempt to write the history of LSI over the past 
five years is a difficult task because of the lack of 
definition of just what is LSI-LSI means different 
things to different people; and there is little documented 
evidence on the successes and failures. I believe it is 
instructive to look back approximately seven years 
from the date of this conference to a document which, 
in my opinion, represents the first clear statement of 
the requirements for and goals of LSI. 

BACKGROUND 

On June 28, 1965, the Systems Engineering Group, 
Research and Technology Division, Air Force Systems 
Command issued a request for proposal for Large 
Scale Integrated Circuit Arrays. The problem statement 
and objective are quoted below. 

Statement of the problem 

The successful deyelopment, and subsequent produc­
tion of silicon circuitry, has proven this technology 
capable of providing an order of magnitude improve­
ment in reliability of systems utilizing this approach. 
Concurrent with this improvement in reliability has 
been a continuing reduction in circuit function cost. 
This reduction has progressed to the degree that pack­
age cost for these circuit functions represents approxi­
mately 50 percent of the final cost. It has been further 
shown that the intrinsic reliability of. the silicon inte­
grated circuit (SIC) is at least one more order of 
magnitude higher than that which is achievable with 
the circuits after individual packaging. This indicates 
that predominant failures are associated with bonding 
and lead failures within the circuit and multilayer 
wiring board or interconnection failures at the system 
level. These failures can be further eliminated by 
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reduction of the circuit to circuit transfers required at 
the subsystem level. This in turn will greatly reduce the 
number of individual packages with their associated 
input-output terminations. Thus, it is readily apparent 
that',if these higher order circuit functions can be 
achieved, today's level of reliability, cost, and size 
reduction can be further improved. It is the objective 
of this program to develop the technology for such 
an approach. 

Objective 

It is the objective of this program to accomplish as 
much as a ten-to-one improvement in reliability in 
electronic subsystem or systems over that presently 
available with today's integrated circuit capability. 
It is a further objective to achieve this improved 
reliability while simultaneously achieving enhanced 
subsystem performance and an overall cost reduction. 
These improvements will be accomplished through the 
sophisticated use of a large-scale monolithic integrated 
circuit array containing up to 1000 circuits utilizing 
either metal-oxide-semicondutor (MOS) or bipolar 
active devices with associated passive elements capable 
of being interconnected to perform logic for data 
processing, memory, and/or analog functions." 

Several interesting points can be observed in these 
statements. First, the reasons for desiring LSI were to 
extend the reliability, reduced cost, and improved 
density factors that had been observed in the transition 
from transistor to integrated circuit equipment. 

The second important point was that LSI was defined 
as having up to 1000 circuits using either MOS or 
bipolar devices for both logic, memory, and even analog 
functions. 

Three contracts resulted in late 1965 from this Air 
Force initiative-one to Texas Instruments, one to 
RCA, and another to Philco-Microelectronics. The 
major thrust of the Texas Instruments effort was 
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directed to the discretionary interconnection of the 
good cells on a bipolar slice for both logic and memory. 
RCA's program was to develop complementary MOS 
memory devices, while Phil co-Microelectronics worked 
on the development of four-phase MOS shift registers. l 

The conference proceedings of the AFIPS conferences 
provide a documented history of the computer industry; 
and, for this reason, most of my references are from this 
source. Many of the papers I will cite have bibliog­
raphies which will, in total, give an extensive reference 
to the field of LSI. 

LOGIC IN LSI 

The Proceedings of the Fall Joint Computer Con­
ference of 1965 contain four papers dealing with cellular 
type array structures.2 ,3,4,5 While these structures are 
interesting from an academic point of view, it is clear 
that the authors were concerned with devising a class 
of "standard" circuits which would perform the 
combinatorial logic function without a proliferation 
of part types. 

Both the prospective user and the semiconductor 
manufacturer seemed completely preoccupied with 
this combinatorial logic problem during the period 
1966 through 1968. L. C. Hobbs6 stated in 1966 that 
"System designers must consider large-scale integrated 
circuits arrays as a new type of device that necessitates 
major revisions in systems design concepts, machine 
organization, and hardware software tradeoffs." At 
the same conference, Michael Flynn7 made the asser­
tion that "Integrated electronics should be much more 
than monolithic circuitry." Flynn believed that better 
solutions to the computer users problem would result 
if LSI were considered as a new component, and new 
computer systems could be devised which were based 
on this component. 

The problems of unique parts and part types which 
LSI generates were studied extensively. Fubini and 
SmithS stated that "the total number of unique part 
numbers the industry may require for a typical group 
of different machine types may be as large as 100,000." 
They went on to suggest that the system reorganization 
would be useful to reduce this number of part types. 

Robert Noyce9 addressed the question of LSI cost 
and concluded that "Only standardization, plus the 
development of automatic design capabilities, will 
make integrated arrays available in the future at a sub­
stantial cost reduction compared with today's inte­
grated circuits." 

The recognition that an associative memory re­
quired standard logic distributed within the memory 

prompted several research projects in this technology. 
One such program was described by Ryo Igarashi and 
Tora Yaita10 in 1967. 

LSI MEMORY 

Perhaps the seed of the first really successful LSI 
was planted when the computer designer's attention 
turned from the logic problem to the use of LSI in the 
memory function. Gibson'sll paper on "Considerations 
in a Block-Oriented System Design" at the SJCC in 
1967 discussed how a small but fast memory could be 
used to enhance the performance of a large but slow 
memory. In retrospect, it is obvious that this paper 
describes the "Cache" concept employed by IBM in 
some of the 360 and 370 computers. While the devices 
used in Mod 85 cache cannot be called LSI, a trend in 
the use of higher levels of integration was beginning 
to emerge. 

At the FJCC of 1968, Conway and Spandorferl2 

discussed system enhancement applications for LSI 
where complete rethinking of the historical computer 
architecture art would not be required. Of the 10 
enhancement application areas cited, 5 concerned 
random access memories and 1 the use of read-only 
memory for microprogramming. 

This same conference in 1968 received a paper by 
Sanders13 on semiconductor memory circuits and 
technology. He stated that "The manufacturing process 
for semiconductor memories is characterized by mass 
production of similar items." The industry had finally 
and clearly identified the first home for LSI! Since 
1969, we have seen the cost per bit battle rage between 
the semiconductor memory manufacturer and the core 
memory manufacturer. 

It would appear that most computer systeII).s de­
signers had not considered the significant cost reduc­
tion in the total cost of the hardware that would 
result by the use of low cost LSI memory devices. While 
observing that the memory represents 25 percent 
of a computer's main frame, we still struggled with the 
problems associated with replacing the 15 percent 
cost of the logic. l The core memory manufacturers were 
not ignoring this point, however, as core prices dropped 
by 30-50 percent during the 1969-1970 period. 

Some of the first semiconductor memory devices 
were quite small; 16 bits. The technology has developed 
to the point where 1024-bit MOS devices and 256-bit 
bipolar devices are now being delivered in quantity by 
several manufacturers. As these devices contain the 
decoding logic, the problem of an excessive number 
of pins required for logic LSI has been circumvented. 



We must conclude that these devices are true LSI as 
originally defined by the Air Force in 1965. We can 
expect that memory devices of greater capacity will 
continue to be introduced over the coming years. 

The introduction of the IBM 370/145 with an all­
semiconductor memory must establish that this 
technology is mature with the only question left being 
the upper limits on the number of bits on a chip. The 
memory device used is a 128-bit chip with four of these 
chips contained within a package giving a package of 
512 bits.1s 

LSI LOGIC REVISITED 

I wish to return to the question of logic in LSI. The 
concept of microprogramming advanced by Wilks16 in 
1951 is becoming a reality due to the availability of 
LSI read-only memory devices which make micro­
programming an economic technique. The large num­
ber of mini-computers using microprogramming in 
conjunction with an ever expanding family of MSI 
logic devices is evidence of this success. 

MSI logic devices are now being offered in excess of 
100 device types by several manufacturers. These 
devices have provided the computer designer with the 
capability of designing very compact equipment using 
high volume production devices with the resulting 
low cost and high reliability. Many of size, cost, and 
reliability goals of the original LSI concept have been 
approached to a degree that seems to be acceptable 
from an engineer's point of view. 

The quest for standard logic part types has made 
possible a new product that has swept the world in the 
last two years. This product is the electronic desk 
calculator. These calculators, in general, have one, two, 
or three MOS chips which make up the complete logic 
and memory function. It is difficult to trace this 
development in the computer literature because this 
product is not called a "computer." But, when one 
considers the complexity levels of the devices used in 
these calculators, one must conclude that LSI has 
scored another success. A typical single-chip calculator 
contains approximately 5000 MOS transistors on a bar 
having an area of approximately 25,000 square mils. 
This success has come about because there is a high 
volume requirement for a small number of part types 
having only a few pins. It is reported that 2,000,000 
desk calculators of various types will have been pro­
duced in 1971. The fact that a device as complex as the 
desk calculator can be purchased for a few hundred 
dollars should revive the thinking on the distributed 
computer concept, but I will leave future projections 
to another author. 
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CONCLUSIONS 

I can only conclude that LSI has been a success. When 
the manufacturer and the user worked together on real 
problems, then truly remarkable feats were accom­
plished. The one thousand bit memory device and the 
desk calculator stand as conclusive evidence. The 
search for applications of LSI in the logic section of the 
computer goes on and will perhaps find a solution which 
has economic justification. 
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Toward more efficient computer organizations* 

by MICHAEL J. FLYNN 

The Johns Hopkins University 
Baltimore, Maryland 

Two significant trends have evolved which will 
substantially effect the nature of computer organiza­
tions over the next ten years: 

1. The almost universal use of higher level pro­
gramming languages and corresponding decrease 
in the use of machine level programming. 

2. The continued improvement in cost and per­
formance of both logic and memory technologies. 

These trends portend many changes. Most of them 
gradual, but certainly effecting the nature and perspec­
tive that we currently hold of computer organizations 
and their future evolution. 

The machine language programmer of today does not 
program in assembly code for convenience. He codes 
almost exclusively for reasons of efficiency require­
ments, that is, the control of the physical resources in an 
optimal way. Ease of use is not as important a con­
sideration in the development of a machine language 
as efficiency. This coupled with technological improve­
ments, especially in the area of memory, portend the 
first significant change in computer organizations: the 
increase in use of parallel "or concurrent" operation 
of the resources of the systems. Since the hardware is 
inexpensive, units are made autonomous in the hope 
that their concurrent operation will produce more 
efficient program performances. "Efficient" in this 
sense is the respect to the user program and its perfor­
mance, not with respect to the busyness of some internal 
subcomponent of the system. 

There are several forms of parallelism: First, one 
may have concurrency of operation within a (internal) 
Single Instruction stream-Single Data stream (con­
ventional type) program. In fact, this concurrency may 
or may not be transparent to the programmer. The 

* This work was supported, in part, by the U. S. Atomic Energy 
Commission under contract AT(1l-1)-3288. 
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second form of parallelism involves the use of multiple 
streams in programs. 

Il\1PLICIT VS EXPLICIT P ARALLELISIVI 

Implicit concurrency or parallelism may be grossly 
characterized as that degree of concurrency, achieved 
internal to the processors, which is not visible to its 
programmer. Thus explicit parallelism is that con­
currency of functional execution which is visible to the 
programmer" and demands his attention and exploita­
tion. To date most attempts to take advantage of the 
two earlier mentioned trends have used a form of 
iIpplicit parallelism. The machine designers attempted 
to achieve a certain concurrency of execution which is 
transparent to the problem program (machine 
language) by "wiring in" the concurrency control and 
preserving the use of older machine languages; thus 
the existence of the cache type! memory, as well as 
heavily overlapped computer organizations.2 

Cache memory involves the use of high speed buffer 
memory to contain recently used blocks of main mem­
ory storage in an attempt to predict the subsequent 
memory usage requirements-thus saving the slow 
access time to storage. 

The overlap organization involves the multiple 
issuing of instructions concurrently. When more than 
one instruction is in process at a given time, care must 
be taken that the source and sink data are properly 
interlocked. 

Notice that much of the implicit parallelism is a 
direct result of the present -nature of the machine 
language instruction. Rather than change the definition 
of the present machine language instruction to make it 
more complex, the manufacturers essentially standardize 
on it and use it as a universal intermediate programming 
language. Thus it has the aspect of transportability 
not usually found in other languages. Notice the ma-
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chine language instruction is not an ideal vehicle to 
allow one to control the physical resources of the sys­
tem since the concurrent control is achieved automat­
ically, without the possibility of any global optimization. 

EXPLICIT PARALLELISM* 

How can the control of the resources of the system 
be made visible to the programmer? First let us review 
the evolution of the machine language as we know it 
and compare it with microprogrammed systems. 

An essential feature of a microprogram system is the 
availability of a fast storage medium. "Fast" in this 
sense is used with respect to ordinary logical combina­
tional operations. That is, the access time of the storage 
device is of the same order as the primitive combina­
tional operations that the system can perform-the 
cycle time of the processor. Another important attri­
bute of modern microprogrammed systems is that this 
"fast" storage is also writable, establishing the concept 
of "dynamic microprogramming." It is the latter that 
distinguishes the current interest in microprogrammed 
systems from earlier attempts using READ-ONLY 
memory.3-5 Consider the timing chart for a conventional 
(nonmicroprogram) machine instruction (Figure 1). 
Due to slow access of instruction and data, a substantial 
amount of instruction execution time is spent in these 
overhead operations. Contrast this with the situation 
shown in Figure 2, illustrating the microprogram's 
instruction. In Figure 2 there is an implicit assumption 
of homogeneity of memory, that is, that data and 
operands are all located in the same fast storage as the 
instructions. The latter assumption is valid when the 
storage is writable. 

The preceding implies another significant difference 
in conventional machines and microprogrammed ma­
chines-the power of the operation to be performed by 

* The remarks on microprogramming are abstracted from 
Reference 15. 

the instruction. In the conventional machine, given 
the substantial accessing overhead, it is very important 
to orient the operation so that it will be as significant 
as possible in computing a result. To do otherwise 
would necessarily involve a number of accessing over­
heads; thus we have the evolution of the rich and 
powerful instruction sets of the second and third 
generation machines. With dynamically micropro­
grammed systems (Figure 2), the powerful operation 
will do no more than a sequence of steps. Indeed, the 
rich instruction operation may (if its richness is done 
at the expense of flexibility) cause an overall degrada­
tion in system performance. 

EXPLICIT INTERNAL PARALLELISM 
(see Figure 3) 

In the traditional system, since the overhead penalties 
are so significant, there is little real advantage in keep­
ing the combinational resources of the system simul­
taneously busy or active. This would mean that perhaps 
17 or 18 cycles would be required to perform an in­
struction rather than 20-hardly worth the effort. A 
much different situation arises with the advent of 
dynamic microprogramming. 6 Consider a system parti­
tioned into resources, e.g., adder, storage resources, 
addressing resources, etc. If the microinstruction can 
be designed in such a fashion that during a single 
execution one can control the flow of data internal to 
each one of these resources, as well as communicate 
between them, significant performance advantages can 
be derived. Of course these advantages come at the 
expense of a wider microinstruction. The term hori­
zontal microinstruction has been coined to describe 
the control for this type of logical arrangement. 

RESIDUAL-CONTROL IN DYNAMIC 
MICROPROGRAMMING 

The preceding scheme sacrificed storage efficiency in 
order to achieve performance. Schemes which attempt 
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Figure 2-Microprogrammed execution 



to achieve efficiencies both in storage and performance 
can be conceived, based upon an information theoretic 
view of control and storage. Much information specified 
in the microinstruction is static, i.e., it represents 
environmental information. The status remains un­
changed during the execution of a number of micro­
instructions. Many of the gating paths and adder 
configurations remain static for long periods of time 
during the emulation of a single virtual machine. If this 
static information and specification is filtered out of the 
microinstruction and placed in "setup" registers, the 
combination of a particular field of a microinstruction 
with its corresponding setup register, would completely 
define the control for resource (Figure 4). This sacrifices 
nothing in flexibility-it allows for a more efficient use of 
storage., 

EXTERNAL P ARALLELIS1VI -SIl\1D 

Explicit parallelism may be internal as in the earlier 
discussion or external, that is, where the programmer 
directly controls a number of different items of data 
(Data Streams) or has a number of programs 
executed simultaneously (Instruction Streams). We 
refer to the first type of organization as a single instruc­
tion stream, multiple data stream (SIMD).2 There are 
three kinds of SIMD machine organizations currently 
under development: (1) the array processor,7 (2) the 
pipeline processor, 8 (3) the associative processor. 9 
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Figure 4-Residual control in microprogramming 

While these systems differ basically in their organiza­
tion of resources and their communication structures, 
their gross programming characterizations are quite 
similar. One instruction is issued for essential concurrent 
execution on a number of operand data pairs. Figure 
5 illustrates each of the three organizations. In the array 
processor the execution resources are replicated n 
times. Since each set of resources is capable of ex­
ecuting an operand pair, in a sense each resource set 
is an independent slave processor. It may indeed (and 
usually does) have its own private memory for holding 
operand pairs. Since each processing element is physi­
cally separate, communications between the elements 
can be a problem. At least it represents an overhead 
consideration. 

The pipelined processor is in many ways similar to the 
array processor, except that the execution resources are 
pipelined. That is, they are staged in such a way that 
the individual staging time for a pair of operands is 
lin of the control unit processing time. Thus n pairs of 
operands are processed in one control unit time. This 
has the same gross structure (from a programming 
point of view) as an array processor. But since the pairs 
of operands reside in a common storage (since the 
execution units are common) the communications 
overhead occur in a different sense. It is due to required 
rearranging of data vectors in proper order so that they 
may be scanned out at a rate compatible to the pipelined 
rate of the execution resources. 

Both array processors and pipelined processors work 
over directly addressed data pairs. Thus, the location of 
each pair of operands is known in advance before 
being processed . 

The associative processor is similar in many ways 
to the array processor except that the execution of a 
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control unit instruction is conditional upon the slave 
unit matching an inquiry pattern that is presented to 
all units. Matching here should be interpreted in a 
general sense, that is, satisfying some specified condition 
with respect to an inquiry pattern. Each slave unit 
contains at least one pattern register which is compared 
to the inquiry prior to conditional execution. 

Each of these processor types performs well within a 
certain class of problem. The dilemma has been to 
extend this class by restructing algorithms. It has been 
suggested (by M. :l\1insky,17 B. Arden, et al.) that 
instead of an ideal of n fold performance (on data 
streams) improvement over a sequential processor, the 
SIMD processor is more likely to realize 

Perf~log2 n 

A possible rational for this is discussed elsewhere. I6 

EXTERNAL PARALLELISM-MIMD 

The multiple instruction-stream multiple data-stream 
programs are merely statements of independency of 
tasks-for use on "multiprocessors." I believe that 

exciting new developments are occurring in the multi­
processor organization through the use of shared 
resources. 

Two traditional dilemmas for a multiprocessor 
(MIMD) computer organization are: (1) that of im­
proving performance at a rate greater than linear with 
respect to the increasing number of independent 
processors involved, and (2) providing a method of 
dynamic reconfiguration and assignment of the in­
struction handling resources to match changing pro­
gram environments. Shared Resource Organizational 
arrangements may allow solution of these problems. 

SHARED EXECUTION RESOURCES 

The execution resources of a computer (adders, 
multiplier, etc.-most of the system exclusive of 
registers and minimal control) are rarely efficiently 
used. This is especially true in modern large systems 
such as CDC7600 and IBM Model 195. Each execution 
facility is capable of essentially processing, at the 
maximum ra,te, an entire program consisting of in­
structions which use that resource. The reason for this 



design is that, given that instruction I i-I required a 
floating point add type resource, it is probably that L 
will also-rather than, say a Boolean resource. Indeed 
the "execution bandwidth" available may exceed the 
actual instruction rate by a factor of 10. 

Another factor aggravating the above imbalance is 
the development of arithmetic pipe lining internal to the 
resources. In these arrangements, the execution func­
tion itself is pipelined, as per the pipeline processor. 
This provides a more efficient mechanism than replica­
tion for attaining a high execution rate. 

SKELETON INSTRUCTION UNITS 

In order to effectively use this execution potential, 
we postulate the use of multiple skeleton processors 
sharing the execution resources. A "skeleton" processor 
consists of only the basic registers of a system and a 
minimum of control (enough to execute a load or store 
type instruction). From a program point of view, 
however, the "skeleton" processor is a complete and 
independent logical computer. 

These processors may share the resources in space,10 
or time.u· 12. 13 If we completely rely on space sharing, 
we have a "cross-bar" type switch of processors-each 
trying to access one of n resources. This is usually un­
satisfactory since the "cross-bar" switching time over­
head can be formidable. On the other hand, time phased 
sharing (or time multiplexing) of the resources can be 
attractive, in that no switching overhead is involved 
and control is quite simple if the number of multiplexed 
processors are suitably related to each of the pipelining 
factors. The limitation here is that again only one of 
the m available resources is used at anyone moment. 

We suggest that the optimum arrangement is a 
combination of space-time switching (Figure 6). The 
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time factor is the number of "skeleton" processors 
multiplexed on a time phase ring while the space factor 
is the number of multiplexed processor "rings," K, 
which simultaneously request resources. Note that K 
processors will contend for the resources and, up to 
K-l, may be denied serivce at that moment. Thus 
rotating priority among the rings is suggested to guar­
antee a minimum performance. The partitioning of the 
resources will be determined by the expected request 
statistics. 

SUB-COMMUTATION 

When the amount of "parallelism" (or number of 
identifiable tasks) is less than the available processors, 
we are faced with the problem of speeding up these 
tasks. This can be accomplished by designing certain 
of the processors in each ring with additional staging 
and interlock14 (the ability to issue multiple instructions 
simultaneously) facilities. The processor could issue 
multiple instruction execution requests in a single 
ring revolution. For example, in a ring of N = 16 

-8 processors could issue two request/revolutions or 
-4 processors could issue four request/revolutions or 
-2 processors could issue eight request/revolutions 

or 
-1 processor could issue sixteen request/revolutions. 

This partition is illustrated in Figure 7. 
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IMPLEMENTATION AND SIMULATION 

A proposed implementation of this shared resource 
multiprocessor is described elsewhere, together with a 
detailed instruction by instruction simulation.13 

The system consisted of eight skeleton processors 
per ring and four rings per system. The execution re­
sources were generally pipelined by eight stages. The 
proposed system had a maximum capability of over 
about 500 million instructions per second and was 
capable of operating at over eighty percent efficiency 
(i.e., performance was degraded by no more than 20 
percent from the maximum). 

THE TECHNOLOGY OF OPERATING SYSTEMS 

Yet another type of parallelism involves the con­
current management of the gross (I/O, etc.) resources 
of the system by the operating system. 

The evolution of very sophisticated operating systems 
and their continued existence is predicated on one 
essential technological parameter: the latency of access 
of data from an electro-mechanical medium. Few other 
single parameters in computing systems have so altered 
the entire face and approach of computing systems. 
Over the period of time, 1955 to 1971, access time to a 
rotating medium has remained essentially constant 
between 20 to 100 m seconds. Processing speeds, on the 
other hand, have increased by almost a factor of 10,000. 
Thus, originally we had a very simple system of schedul­
ing. Data sets and partitions of programs were processed 

by simply waiting in turn as each request was processed. 
Today's situation requires scheduling essentially 1,000 
times more sophisticated. In other words, if more than 
one instruction in 1,000 requires a machine to go to an 
idle state, we would have the same system performance, 
as we had in 1955. Thus the nature of the dilemma. If a 
technological solution, on the other hand, could be 
achieved with low latency for accessing large data sets, 
the whole need for sophisticated operating systems to 
sustain job queues and I/O requests would be dimin­
ished if not eliminated altogether. A great deal of time 
and money has been spent in analysis and synthesis of 
complex resource scheduling, resource control operating 
systems. I surmise that if a small fraction of these 
resources had been directly addressed to the physical 
problem of latency, physical solutions would have been 
found which would have resulted in much more efficient 
systems. 

This remains one of the great open challenges of the 
next five years. 

CONCLUSIONS 

With the adoption of higher level languages for user 
convenience and the evolution of machine language for 
efficient control of resources, a departure in user 
oriented machine level instructions is seen. This coupled 
with the increasing performance of memory portends a 
major shift in the structure of the conventional machine 
instruction. A new structure will allow the program 
explicit control over the resources of the system. 

With the increasing improvement in logic technology 
cost-performance, more specialized and parallel organi­
zations will appear. For specialized applications 
SIMD type organization in several variations will 
appear for dedicated applications. The more general 
organization MIMD (particularly of shared resource 
type) appeared even more interesting for general 
purpose applications. 

The major technological problems for the next five 
years remain in the memory hierarchy. The operating 
systems problems over the past years are merely a 
reflection of this. A genuine technological breakthrough 
is needed for improved latency to mass storage devices. 
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